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DISCLAIMER 
 

“This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof.  The views and opinions of authors expressed 
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ABSTRACT 

This topical report covers the year 2 of the subject 3-year grant, evaluating the 
relationship between fracture-related dolomite and dolomite constrained by primary rock 
fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician 
Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee 
Formation).   

The characterization of select dolomite reservoirs has been the major focus of our 
efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock 
data for interpretation of depositional environments, fracture density and distribution as 
well as thin section, geochemical, and petrophysical analyses. Structural mapping and log 
analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close 
spatial relationship among gross dolomite distribution and regional-scale, wrench fault-
related NW-SE and NE-SW structural trends. A high temperature origin for much of the 
dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization 
temperatures and stable isotopic analyses,) coupled with persistent association of this 
dolomite in reservoirs coincident with wrench fault-related features, is strong evidence 
for these reservoirs being influenced by hydrothermal dolomitization. 

For the Niagaran (Silurian), a comprehensive high resolution sequence 
stratigraphic framework has been developed for a pinnacle reef in the northern reef trend 
where we had 100% core coverage throughout the reef section.  Major findings to date 
are that facies types, when analyzed at a detailed level, have direct links to reservoir 
porosity and permeability in these dolomites.  This pattern is consistent with our original 
hypothesis of primary facies control on dolomitization and resulting reservoir quality at 
some level.  The identification of distinct and predictable vertical stacking patterns within 
a hierarchical sequence and cycle framework provides a high degree of confidence at this 
point that results will be exportable throughout the basin. 

Ten petrophysically significant facies have been described in the northern reef 
trend, providing significantly more resolution than the standard 4-6 that are used most 
often in the basin (e.g. Gill, 1977).  Initial petrophysical characterization (sonic velocity 
analysis under confining pressures) shows a clear pattern that is dependent upon facies 
and resulting pore architecture.  Primary facies is a key factor in the ultimate diagenetic 
modification of the rock and the resulting pore architecture.  Facies with good porosity 
and permeability clearly show relatively slow velocity values as would be expected, and 
low porosity and permeability samples exhibit fast sonic velocity values, again as 
expected.  What is significant is that some facies that have high porosity values, either 
measured directly or from wireline logs, also have very fast sonic velocity values.  This is 
due to these facies having a pore architecture characterized by more localized pores 
(vugs, molds or fractures) that are not in communication. 
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EXECUTIVE SUMMARY 

This topical report covers Year 2 of the subject 3-year grant, evaluating the 
relationship between fracture-related dolomite and dolomite constrained by primary 
rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin 
(Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the 
Devonian Dundee Formation).  Phase I tasks, including Developing a Reservoir 
Catalog for selected dolomite reservoirs in the Michigan Basin (Tasks 2.1, 2.2, and 
2.3), Characterization of Dolomite Reservoirs in Representative Fields (Tasks 3.1, 
3.2, 3.3, 3.4 and 3.5) and Technology Transfer (Task 5) have continued through Phase 
II and progress is consistent with our original scheduling.   

The characterization of select dolomite reservoirs (Task 3) has been the major 
focus of our efforts in Phase II/Year 2. Fields have been prioritized (after being 
identified in Phase I/Task 2) based upon the availability of rock data for interpretation 
of depositional environments, fracture density and distribution as well as thin section, 
geochemical, and petrophysical analyses.  The majority of our Task 3 efforts in the 
first half of the year were focused on the Devonian and Silurian sections, with the 
enhanced efforts in the Ordovician section ramping up in the 3rd and 4th quarters of 
2006.  Task 3 objectives are on time and target for Phase II as per our original 
proposal. 

Structural mapping and log analysis in the Trenton/Black River (Ordovician) 
and Dundee (Devonian) suggest a close spatial relationship among gross dolomite 
distribution and regional-scale, wrench fault-related NW-SE and NE-SW structural 
trends. A high temperature origin for much of the dolomite in the 3 studied intervals 
(based upon fluid inclusion homogenization temperatures and stable isotopic 
analyses) coupled with persistent association of this dolomite in reservoirs coincident 
with wrench fault-related features, is strong evidence in support of these reservoirs 
being influenced by hydrothermal dolomitization. Ongoing efforts will be focused on 
determining whether the hydrothermal dolomite represents the only phase of dolomite 
in these fault-related fields, or whether there is evidence of low temperature 
dolomitization as well.  In either case, our main concentration is whether the reservoir 
quality of the dolomite can be tied to primary facies type and/or an established 
sequence stratigraphic framework, either of which will enhance the predictability of 
such reservoirs. 

For the Niagaran (Silurian), a comprehensive high resolution sequence 
stratigraphic framework has been developed for a pinnacle reef in the northern reef 
trend where we had 100% core coverage throughout the reef section.  Our next step is 
to test this sequence framework within a larger reef complex in the southern reef trend 
(Ray Reef Field).  We have started a detailed geological characterization of the field 
utilizing 18 cores for development of a 3-D rock-based reservoir model that is 
scheduled to be developed during Phase III.  Major findings to date are that facies 
types, when analyzed at a detailed level, have direct links to reservoir porosity and 
permeability in these dolomites.  This pattern is consistent with our original 
hypothesis of primary facies control on dolomitization and resulting reservoir quality 
at some level.  The identification of distinct and predictable vertical stacking patterns 
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within a hierarchical sequence and cycle framework provides a high degree of 
confidence at this point that results will be exportable throughout the basin. 
 The initial stages of data evaluation and synthesis in Task 4 are well underway per 
our original proposal.  Most of the effort on this task has necessarily had to follow 
results of Phase I results from Tasks 2 and Phase II results of Task 3.  We have 
entered into an agreement with Dr. Matthew Pranter, University of Colorado, who 
will be collaborating with us on the 3-D modeling efforts during Phase III.  
 Technology transfer efforts (Task 5) continue with formal presentations on the 
state and national levels as well as ongoing advertisement of the project’s scope, 
anticipated results and funding agency on the WMU Department of Geosciences web 
site.  During Year 2, we presented two papers at the National AAPG Meeting in 
Houston, TX (see Appendix 2), 2 papers at the Midwest Regional PTTC workshop on 
carbonate reservoirs, and 7 papers (3 professional and 4 student presentations) at the 
Eastern Section of AAPG in Buffalo.  We also received an award, the Vincent E. 
Nelson Memorial Award, for the Best Poster presented at the 2005 ES AAPG 
Meeting (Sandomierski, Grammer and Harrison). 
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PROJECT APPROACH AND DISCUSSION OF RESULTS BY TASK (PHASE I AND II)  

 
 
Task 2.0 – Development of a Reservoir Catalog for selected dolomite reservoirs 
in the Michigan Basin 
 
 

Wireline Log Scanning – to date we have scanned about 14,000 wireline logs and are 

well underway digitizing selected logs for further data manipulation. The scans are digital 

raster images captured by using a Neuralog Scanner.  Each image is a TIFF type image, 

scanned at 200 dpi resolution.  These images can be used directly in Petra software for 

creating cross-sections and for stratigraphic correlation.  They can also be pasted into text 

files as illustrations or used in PowerPoint presentations or on posters.  These images can 

also be digitized into LAS files using the Neuralog software. Numerous logs for the 

Devonian section, the Ray Reef Field (Silurian) and the Albion-Scipio fields have been 

digitized and are currently being used for analysis within the Petra software.   

 

Digital Conventional Porosity and Permeability Core Analyses – students have been key 

punching core analysis data from paper copies into Excel spreadsheets to supplement our 

current digital data bases.  To date they have completed an additional 250 wells from 5 

northern Michigan and 2 southern Michigan counties across the Niagaran Reef trend.  

This data includes the depth of the analyzed core sample, conventional air permeability 

and helium porisimetry, oil and water saturations, descriptive lithology and (when 

available) gas chromatographic analyses of C-1 through C-5 on selected footages. 

 

Brine Chemistry Data – Students have key punched a paper data set from Dow Chemical 

containing brine analyses from the Michigan Basin.  This data contains 218 analyses from 

numerous formations throughout the state and supplements our current digital data base. 

These have been entered into an Excel spreadsheet and added to a previous data set of 

165 wells. To give a reasonably comprehensive data set of 383 wells.  Data includes well 

location information, depth of sample, total dissolved solids (salinity), major elements, 

some trace elements and some temperature data. 
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Dolomitized intervals in wells of Albion/Scipio Field – An Excel spreadsheet has been 

created for all wells in the Albion/Scipio and Stoney Point fields, and wells have been 

ranked based on available data for further study.  Albion/Scipio is the largest field in 

Michigan and the largest Trenton-Black River Field in our study.  The field contains 746 

wells.  The data set includes well location information and footage intervals in the 

Trenton and Black River formations that are dolomitized.  This data will be used in 

concert with other databases to define the distribution of the Albion Scipio reservoir and 

construct a three-dimensional model of the reservoir. It will also be useful in selecting 

wells to analyze that might have core or cuttings. The dolomitized intervals were 

identified from drilling records for each well.  

 

Organizing and compiling other large digital datasets – Numerous digital datasets for 

Michigan oil and gas wells are being combined into a single complete dataset (we 

currently have >25 million cells of data) for use in this project. An example of the 

parameters included are as follows: 

 

o Cored wells – this is a listing of all known cored wells from Michigan.  

This list is compiled from private and public sources.  It includes well 

location information, cored interval, cored formations, storage location of 

the core (if known), any analyses performed on the core (e.g. P&P). 

 

o Thin sections – well name, footage interval, formation and repository 

location of thin sections. 

 

o Core Analyses – conventional or special core analyses with footage 

analyzed and core properties (usually P&P) as reported in item #2 above. 

 

o Drill cutting samples – well name and location along with depths and 

sample increment. There is also a database with numerous 
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chromatographic analyses of bulk cuttings. Data includes abundance of C-

5 though C-26 derived from solvent extraction on cuttings samples. 

 

o Engineering parameters – lists of selected parameters and data including: 

bottomhole pressure, gas chemistry, and oil/gas ratio. 

 

o Mudlogs – contains lithologic descriptions, gas log and drilling comments. 

 

o Wireline logs – catalog of all logs run in Michigan wells, list of those in 

WMU collection, list of scanned images, and list of LAS digital logs. 

 

Compiling exhaustive bibliography and reference reprint collection – Using Endnotes 

software and extensive database of geologic and engineering references has been 

compiled and entered into the Endnotes software system.  

• Subtask 2.1 We currently have >1200 references compiled and entered into an 

Endnote data base on reservoirs aspects of dolomite.  Of these, 372 are specifically on 

the Michigan Basin reservoirs in the zones of interest, with the remaining references 

covering various aspects of dolomitization and dolomite reservoirs that may have 

application to our project goals.  The references will be added to a digital collection 

for distribution through WMU to Michigan Basin operators and others with interest. 

 We are on schedule per our original proposal whereby the majority of Subtask 2.1 

was completed during Phase I with additional work continuing through Phase II and 

finalizing in Phase III. 

 

• Subtask 2.2 Individual producing unit data bases have been constructed in 

Microsoft Access and Excel that include fields, numbers of wells, oil and gas 

production, brine production, active and abandoned wells.  Currently we have over 25 

million data points in various categories including well location coordinates and ID, 

TD, IP, Salinity and Water Chemistry, Production History, Core and Perforation 

locations, Formation tops, and results of various core analyses.  Additional 
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engineering parameters including porosity, permeability, derived water saturations 

and type/style of dolomite are still being added, and will continue to be added during 

Phase III to the 3 data bases. 

 Production summaries and curves have been created for 44 fields in the 

Trenton/Black River, 1151 fields in the Niagaran, and 141 fields in the Devonian.  

These data are currently being analyzed in relationship to the distribution of mapped 

fracture areas in the basin, with our initial focus on the Devonian as mentioned 

previously.  These results are being correlated to fields with core data and 

petrophysical analyses to facilitate selection of samples for further petrographic and 

geochemical analysis for dolomite genesis and reservoir quality.  

 We are on schedule per our original proposal whereby the majority of Subtask 2.2 

was completed during Phase I with continuing work through Phase II and finalizing in 

Phase III. 

 

• Subtask 2.3 

1. Devonian Dundee well penetration Petra projects (i.e. data bases) for 39 

central Michigan Basin counties have been created with detailed structure 

contour maps for a 24 county region (using error checked tops data).  Data 

base includes digital logs for ~450 wells with numerous cross sections 

showing log-based (litho-density) variations in lithofacies.  Dundee 

Formation, member scale mapping and member tops/log character analysis is 

ongoing, with our intention being to test the feasibility of identifying primary 

facies (and therefore porosity/permeability distribution) from combined 

gamma ray and litho-density log analysis. 

    

2. Silurian Niagaran well penetration Petra projects (data bases) for Macomb 

County (northern trend) and Ray Reef Field (southern trend) have been 

developed along with preliminary structure maps.  Included to date are spatial 

data for ~700 wells and digitized logs for ~30 wells from Ray Reef. 
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3. Ordovician Trenton/Black River Group well penetration Petra project (data 

base) currently includes spatial data for 2080 wells and digital logs for 169 

wells.  An extensive library of maps and cross sections have been made from 

the Albion-Scipio and Stoney Point fields with an emphasis on lithofacies 

identification based upon litho-density log signatures. 

 

 We are on schedule per our original proposal whereby the majority of Subtask 2.3 

was completed during Phase I with continuing work through Phase II and finalizing in 

Phase III. 

 
 
Task 3.0 – Characterization of Dolomite Reservoirs in Representative Fields 

 The characterization of select dolomite reservoirs (Task 3) has been the major 

focus of our efforts in Phase II/Year 2. Fields have been prioritized (after being 

identified in Task 2, Phase I) based upon the availability of rock data for 

interpretation of depositional environments, fracture density and distribution as well 

as thin section, geochemical, and petrophysical analyses.  The majority of our Task 3 

efforts to date have been in the Devonian and Silurian sections, and we have 

presented results at the regional and national AAPG meetings (see Appendix 2). Our 

major push on the Ordovician part of the section ramped up in Quarter 3 and 

significant progress has been made.  As an example, at the ES AAPG in October 

2006, we presented one oral paper as well as a poster with core workshop on the 

Ordovician Trenton/Black River.  Task 3 objectives are on time and target for Phase 

II as per our original proposal. 

 

Approach and Methodology 

In order to investigate the geological origins and controls on the occurrence of 

dolostone reservoirs in the three formations of interest we have been compiling 

available digital subsurface geological data (mostly from the Michigan Department of 

Environmental Quality, Geological Survey Division {MDEQ-GSD}) including 

formation tops, wire-line logs, and driller’s reports. Where appropriate we compiled 
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these data into tabular spatial databases as discussed above. These spatial databases 

were used to construct Geographic Information Systems files (utilizing both ArcGIS 

and Petra software), maps and cross sections of important geological properties 

including the spatial distribution of dolomite versus limestone relative to structural 

features and oil field occurrences in the Michigan Basin. For the Devonian, quality 

controlled Dundee Formation tops from a well database with more than 25,000 wells 

(originating from J. R. Wood, MTU Subsurface Visualization Lab) were used in the 

structural mapping. 

  

 

Results to Date – Devonian and Ordovician (Figures 1-6, and 26-28 respectively) 

Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black 

River (Ordovician) suggest a close spatial relationship among gross dolomite 

distribution and regional-scale, wrench fault-related NW-SE and NE-SW structural 

trends. A high temperature origin for much of the dolomite in the 3 studied intervals 

(based upon initial fluid inclusion homogenization temperatures and stable isotopic 

analyses, see Table 1) coupled with persistent association of this dolomite in 

reservoirs coincident with wrench fault-related features, is strong evidence for these 

reservoirs being influenced by hydrothermal dolomitization. Ongoing efforts will be 

focused on determining whether the hydrothermal dolomite represents the only phase 

of dolomite in these fault-related fields, or whether there is evidence of low 

temperature dolomitization as well.  In either case, our main concentration is whether 

the reservoir quality of the dolomite can be tied to primary facies type and/or an 

established sequence stratigraphic framework, either of which will enhance the 

predictability of such reservoirs beyond that of just regional structural control. 

 

Devonian Dundee Formation 

 The Middle Devonian Dundee Formation consists of two subsurface units, the 

Reed City and the Rogers City (Gardner, 1974). The Reed City Member initially 

transgressed the Michigan basin following restricted marine conditions that existed 
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throughout lower Middle Devonian Detroit River Group time. The Reed City member 

is interpreted as a generally shoal water assemblage including grainy carbonates, 

stromatoporoid reefs, and supratidal/evaporitic facies in a overall regressive pattern 

stratigraphically. More open marine facies (Reed City “equivalent”) predominate in 

the eastern basin, while more restricted evaporite-bearing facies (Reed City Member) 

occur to the west (Gardner, 1974). The Reed City comprises a complex primary facies 

package in the basin that is not well known. The Rogers City Member overlies 

various facies of the Reed City at a generally sharp, probable marine flooding surface 

marking rapid marine transgression. Primary depositional facies in the Rogers City 

are incompletely known but, in general, were apparently lithologically homogeneous 

basin wide and consisted mostly of open marine lime wackestone to mudstone. 

Our analyses to date have important implications for both new exploration plays 

and improved enhanced recovery methods, especially in the Dundee Formation "play" 

in Michigan – i.e. on the basis of interpreted (first order) fracture-related 

dolomitization control on the distribution of hydrocarbon reservoirs. In an exploration 

context high-resolution structure mapping using quality controlled well data should 

provide leads to convergence zones of fault/fracture trends not necessarily related to 

structural elevation. Acquisition of high-resolution seismic data in areas with 

prospective structural grain may provide decreased risk for fractured Dundee 

exploration drilling.  

 Field scale structural mapping of top Dundee with high quality well data indicates 

a spatial correlation between subtle structure and reservoir facies variations in the 

Rogers City Member.  In fields with suitable well log control, mapped structure 

suggests faults with limited throw (generally less than tens of feet). These faults and 

related fractures may have provided geometrically-complex fracture conduits for 

dolomitizing fluids permeating through otherwise tight lime wackestone of the Rogers 

City. 

 Preliminary fluid inclusion homogenization temperatures and stable isotopic 

(C/O) analyses from Devonian Dundee/Rogers City dolostone samples suggest 

pervasive hydrothermal dolomitization in core samples from 2 wells studied to date. 
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Both the saddle dolomite which occurs as vein and vug fill, as well as much of the 

matrix dolomite is apparently of hydrothermal origin in these samples. 

 Application of fracture models to reservoir characterization in secondary and 

tertiary recovery projects in existing fractured Dundee fields, especially when tied to 

detailed facies mapping, may result in substantial additional recovery from fields that 

typically had low (<30%) primary recovery factors. Careful consideration of fracture 

orientations and water coning problems should decrease risk in enhanced recovery 

activities. 

Undoubtedly more complex, hybrid reservoir types exist in dolomitized lower 

Dundee/Reed City Member lithofacies in the central basin as a result of complex, 

early fluid flow through primary limestone porosity conduits in a reflux system(?) in 

addition to fracture generated pathways in fault/fracture convergence zones. 

Continuing work in Phase 3/Year 3 is necessary to understand Reed City Member 

dolomitization processes in Michigan with respect to the relationship between 

primary facies and/or sequence stratigraphic framework. 

 

Trenton/Black River Formations 

 Fields in the Ordovician Trenton/Black River Formations in Michigan, most 

notably the Albion-Scipio Field, are classic examples of geometrically complex 

dolomite reservoirs modeled by the hydrothermal dolomite reservoir facies (HTDRF) 

concept. Application of models for reservoirs of this generic type are controversial but 

of great current interest for both exploration and enhanced recovery in the petroleum 

industry. Structural analysis of Michigan Trenton/Black River (e.g. Hurley and 

Budros, 1990) suggests a relationship between probable reactivated basement wrench 

faults, anticlines with steep margins, and fractured, hydrothermal dolomite reservoirs. 

Riedel shear deformation mechanisms, including complex flower structure fracture 

patterns, are suggested as important components in the development of these 

dolomitized fields. The transport of dolomitizing hydrothermal fluids delivered to 

various reservoir units is thought to result from flow through fractures, associated 

with periodically reactivated wrench faults, as well as primary permeability conduits. 
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The presence of a regional hydrothermal fluid “aquifer” unit may be a critical 

component of these complex hydrothermal fluid flow systems. 

 Trenton-Black River Pools are characterized by stratigraphic traps in dolomitized 

limestone within the Upper and Middle Ordovician Trenton and Black River groups. 

The Albion-Pulaski-Scipio-Stoney Point trend, which was discovered in 1957 (Figure 

5), makes up the largest field in the Michigan Basin (~120 MMBO). The 

Trenton/Black River rocks are present in the subsurface throughout the Lower 

Peninsula and in parts of the Upper Peninsula and Wisconsin, but, to date, almost all 

discoveries have been from the southern part of the Lower Peninsula of Michigan and 

the adjoining parts of Indiana and Ohio. Oil and gas pools occur mainly as 

stratigraphic traps resulting from porosity and permeability variations between porous 

dolostone and tight regional limestone. In a definitive study by Hurley and Budros 

(1990) Trenton/Black River production in the Albion-Scipio field was shown to be 

from classic fracture-controlled dolostone reservoirs related to northwest-southeast 

fault and fold trends related to a regional structural grain. In the Albion-Pulaski-

Scipio-Stoney Point trend, generally low porosity limestone is altered to a relatively 

“narrow fairway of vuggy, fractured, and cavernous dolomite” (Hurley and Budros, 

1990). 

An increased percentage of activity in Quarters 3 and 4 was focused upon the 

Trenton/Black River formations. Based upon production data analysis completed 

during quarters 1 & 2, and a review of available core materials, it was decided to 

concentrate upon developing a new, updated analysis and interpretation of the 

Trenton – Black River cores from the Albion Scipio Field. This field is the only giant 

field (>120 MMBO) found to-date in Michigan. Discovered in 1957, this field has 

never been subjected to more recently developed geological analytical techniques and 

interpretation. In particular, there has never been a sequence stratigraphic framework 

developed for the producing Ordovician Trenton – Black River reservoirs in the field 

area. Work this past quarter has shown that it is possible to develop just such a 

stratigraphic framework, and that this framework will in turn allow for the 



 16

development of new exploration models and concepts. Specific accomplishments 

include:    

 

(1.) The exploration, discovery and early drilling history of the Albion-Pulaski- 

Scipio Trend were complied and analyzed for field-wide similarities and 

differences. These data were assembled into poster format and presented along 

with portions of three Trenton – Black River, Albion-Scipio Field cores at the 

“Core Blast” presentation at the “American Association of Petroleum Geologist 

(AAPG) Eastern Section Meeting” in Buffalo, New York during October 10-16, 

2006. 

 

(2.) The Hergert #2, Skinner #1 and Mann #6 cores from the Albion-Scipio field were 

examined in detail, fully described, and calibrated to other available data types 

such as electric logs, driller reports, porosity and permeability analyses, etc. 

These data were all assembled into poster format and presented at the “Core 

Blast” for the “American Association of Petroleum Geologist (AAPG) Eastern 

Section Meeting” in Buffalo, New York during October 10-16, 2006. 

 

(3.) Preliminary results from the examination of the Hergert, Skinner and Mann wells 

were compiled and organized into a presentation entitled “Albion-Scipio Field - 

What Does a Detailed Look at Cores Tells Us about the Reservoir?” (Gillespie, 

Robb; Barnes, David; Grammer, G. Michael; and Harrison, William, III). This 

was presented by Robb Gillespie at the “American Association of Petroleum 

Geologist (AAPG) Eastern Section Meeting” in Buffalo, New York during 

October 10-16, 2006. 

 

(4.) Samples were selectively collected from the Hergert, Skinner and Mann cores for 

isotopic (C/O) analysis. Preliminary examination of the data indicates no 

difference between fracture fill dolomites and dolomite recrystallized within the 

host rock (matrix). It appears that: (1) all the dolomites resulted from the same 
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emplacement episode, or (2) the matrix dolomites have been “reset” by high 

hydrothermal temperatures of subsequent episodes. 

 

 

Results to Date – Silurian (Figures 7-25) 

For the Niagaran (Silurian), a comprehensive high resolution sequence 

stratigraphic framework has been developed for a pinnacle reef in the northern reef 

trend (Fig. 7) where we had 100% core coverage throughout the reef section.  Our 

next step is to test this sequence framework within a larger reef complex in the 

southern reef trend (Ray Reef Field). We have started a detailed geological 

characterization of the field utilizing 18 cores for development of a 3-D rock-based 

reservoir model that is scheduled to be developed during Phase III.  Major findings to 

date are that facies types, when analyzed at a detailed level, have direct links to 

reservoir porosity and permeability in these dolomites (Figures 8-25).  This pattern is 

consistent with our original hypothesis of primary facies control on dolomitization 

and resulting reservoir quality at some level.  The identification of distinct and 

predictable vertical stacking patterns within a hierarchical sequence and cycle 

framework provides a high degree of confidence at this point that results will be 

exportable throughout the basin. 

Ten petrophysically significant facies have been described in the northern reef 

trend, providing significantly more resolution than the standard 4-6 that are used most 

often in the basin (e.g. Gill, 1977).  Figures 24 & 25 illustrate how the higher 

resolution facies analysis can be crucial for establishing porosity and permeability 

relationships in these reservoirs.  Porosity and permeability values tend to increase 

towards the top in both the large and smaller (higher frequency) cycles (see Figure 

15).  

Initial petrophysical characterization (sonic velocity analysis under confining 

pressures) show a clear pattern that is dependent upon facies and resulting pore 

architecture (see Figures 16-21).  Primary facies is a key factor in the ultimate 

diagenetic modification of the rock and the resulting pore architecture.  Facies with 
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good porosity and permeability clearly show relatively slow velocity values as would 

be expected, and low porosity and permeability samples exhibit fast sonic velocity 

values, again as expected.  What is significant is that some facies that have high 

porosity values, either measured directly or from wireline logs, also have very fast 

sonic velocity values.  This is due to these facies having a pore architecture 

characterized by more localized pores (vugs, molds or fractures) that are not in 

communication, resulting in facies with good porosity but poor permeability (Figures 

19-21). 

Stable isotopic analyses (C/O) show that most of the reefs evaluated to date have 

matrix values near Silurian seawater values, suggesting that the dolomite is early (and 

therefore formed as a result of either multiple episodes of isotopically similar waters, 

or one episode that dolomitized the entire reef – considered unlikely).  Minor 

excursions of carbon (+) and oxygen (-) occur at a number of cycle boundaries 

(Figure 15).  In general there is about a 1 per mil enrichment in C for dolomite 

relative to calcite.  Under normal circumstances, diagenetic products resulting from 

the influence of meteoric fluids results in highly negative del-C values.  Voice’s 

(2005) summary of Earlier Silurian isotopes show carbon values ranging from -1 to 

+2.5 per mil, so these are about the same.  The slight enrichment of del-C, at the same 

time that del-O is depleted, was reported by Karen Cercone (1985) as possibly being 

due to anaerobic fermentation of organics related to organic rich layers deposited 

during the ensuing transgression. 

Subtask 3 is on schedule to be mostly completed by the end of Phase II or early in 

Phase III.   

 

 

Task 4.0 – Development of Geological Models and Assessment of Application 

Potential 

 The initial stages of data evaluation and synthesis in Task 4 are well underway per 

our original proposal.  Most of the effort on this task has necessarily had to follow 

results of Phase I (Task 2) and Phase II results of Task 3.  We have entered into an 
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agreement with Dr. Matthew Pranter, University of Colorado, who will be 

collaborating with us on the 3-D modeling efforts during Phase III. 

 

 

Task 5.0 – Technology Transfer 

Technology transfer efforts (Task 5) continue with formal presentations on the state 

and national levels as well as ongoing advertisement of the project’s scope, 

anticipated results and funding agency on the WMU Department of Geosciences web 

site.  During Year 2, we presented two papers at the National AAPG Meeting in 

Houston, TX (see Appendix 2), 2 papers at the Midwest Regional PTTC workshop on 

carbonate reservoirs, and 7 papers (3 professional and 4 student presentations) at the 

Eastern Section of AAPG in Buffalo.  We also received an award, the Vincent E. 

Nelson Memorial Award for Best Poster presented at the 2005 ES AAPG Meeting 

(Sandomierski, Grammer and Harrison). 

 

Equipment purchased during Phase II: 

No capital equipment has been purchased in Phase II. 

 

 

Summary Financial Records 

Financial reports covering the period were mailed to NETL AAD Document Control, 

Pittsburgh, from Carole Nelson and Nick Griffith at WMU, most recently dated Oct. 

30, 2006. 
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Figure  1.  Structure contour map of the Devonian Dundee Formation (top) and details 
of one of the fields of interest. 
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Figure 2-3.  Structure contour map of the Devonian in Winterfield Oil Field with 
cross section showing pervasive regional scale dolomitization of the Reed City 

member of the Devonian Dundee. 
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Figure 5.  Riedel shear model for major fracture control at the Albion-Scipio fields in 
south-central Michigan (Trenton/Black River reservoirs).
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Figure 6.  Hydrothermal dolomite filling fractures and primary porosity in Devonian 
Dundee and Trenton/Black River Formations. 
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Carbon and Oxygen Isotopic Composition  
of Saddle Dolomite: Selected Devonian Examples 

 
Source δ18 O %o PDB δ13 C %o PDB Reference 

M. Dev., Manatoe, 
NWT 

-17.33 to -6.25 -5.5 to -1.45 Morrow et al,  
1990 

M. Dev., Elk Point,  
N. Alb. 

-12 to -14 -1.0 to +2.0 Dravis & Muir,  
1992 

M. Dev., Pine Point, 
NWT 

-16.0 to -7.0 -3.8 to +1.7 Qing & Mountjoy, 
1994 

Dev., Sidang-Burdan, 
China 

-9.58 to -6.78 -3.08 to -0.78 Schneider et al,  
1991 

U. Dev., Wabaman, 
Alb. 

-8.99 to -5.71 -0.69 to +0.12 Mountjoy & 
Dihardja, 1991 

U. Dev., Wabaman, 
Alb. 

-6.7 +/- 0.7 0.55 +/- 0.5 Packard et al,  
1989 

Devonian, Michigan 
Basin 

-8.2 to -10 -0.6 to +1.34 This Study 

 
Table 1.  Stable isotopic values for Devonian hydrothermal dolomites in Canada and 
China.  Note values from Devonian fit well within published range.  Fluid inclusion 
data from the same Devonian samples show homogenization temperatures of 105-

1400C, with an average of 1220C  (N=38).
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Figure 7.  Maps showing structure contour of Brown Niagaran with well penetrations. 
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Figure 8.  Schematic model for Niagaran reefs currently in use within the Michigan 
Basin (top) and detailed, high resolution facies analysis and sequence stratigraphic 
hierarchy established for the northern reef trend in work done to date. 
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Figure 9.  Schematic facies model of Belle River Mills reef showing evidence of 
lateral and vertical variability in facies (Gill, 1977).  Detailed rock-based 
characterization of Niagaran reefs in this study illustrate that reservoir heterogeneity 
is much more complex, but that predictable patterns are revealed after constructing a 
sequence stratigraphic framework.
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Figure  10.  Schematic diagram for the 480 ft. Miller Fox 1-11 Niagaran reef showing 
the complex, but predictable facies succession and the sequence stratigraphic 
hierarchy established in this reef.
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Figures 11 and 12.  Examples of shallowing upward high frequency cycles that make 
up Niagaran reefs in this study.



 30

 

 
 

 
Figures 13 and 14.  Examples of shallowing upward high frequency cycles that make 
up Niagaran reefs in this study. 
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Figure 15.  Details of portion of Miller Fox 1-11 reef illustrating the complex 
variability in facies vertically, and the correlation between porosity and permeability 
spikes near the top (regressive portion) of many of the high frequency cycles.
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Figure 16.  Examples of varying types of pore architectures common in carbonate 
rocks.  Depending on the connectivity (i.e. permeability) of the pore network, 
carbonate rocks exhibit significant variability in sonic velocities. 
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Figure 17.  Plot illustrating variability in porosity, permeability and sonic velocity in 
carbonate rocks as a function of pore architecture (Eberli, 2004).  Examples show 
how rocks with 42% porosity can have sonic velocities ranging from 2200 to 4500 
m/s, or how rocks with an equivalent sonic velocity (in this case around 4500 m/s) 
may have porosities that range from 12-42%.  This variability is a function of pore 
architecture which can be correlated back to primary depositional facies and 
positioning within a sequence stratigraphic framework. 
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Figure 18.  Porosity vs. P-wave velocity values for Niagaran reef facies.  Cluster in 
upper left exhibits normal behavior (i.e. low porosity and high velocities) as does 
samples 5 and 15 (higher porosities with slower velocities).  Velocity values were 
measured under confining pressures of 20-30 MPa, where 20 MPa equals about 1km 
of burial depth.  Therefore, 30 MPa would equal approximately 1500m or 4920 feet 
which is consistent with the average burial depths for most Niagaran reefs in the 
Michigan Basin.
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Figure 19.  Thin section photomicrographs illustrating variability in porosity, 
permeability and sonic velocity dependent upon pore type and pore architecture.
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Figure 20.  Thin section photomicrographs illustrating variability in porosity, 
permeability and sonic velocity dependent upon pore type and pore architecture.
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Figure 21.  Thin section photomicrographs illustrating variability in porosity, 
permeability and sonic velocity dependent upon pore type and pore architecture. 
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Figure 22.  Location of Ray Reef field in the southern reef trend.  Three graduate 
students are currently working on various aspects of reservoir characterization within 
this field, utilizing 18 cores for rock-based reservoir characterization and modeling. 

Ray Field Macomb Co. 
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Figure 23.  Schematic diagram showing general vertical variability in Ray Reef 
identified by Balogh (1981). 

 
 
 

 

Modified from Balogh (1981) 
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Figure 24.  Core porosity and permeability from the Belle River Mills (southern reef 
trend) from Wylie and Wood, 2005, AAPG Bulletin, v. 89.  The authors conclude that 
“no apparent trend exists between the core permeability and core porosity by 
rock type”, p. 420.  
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Figure  25.  Top figure show similar distribution of core porosity and permeability for 
the Miller Fox 1-11 as observed in the Belle River Mills field data published by 
Wylie and Wood (2005).  Lower figure illustrates how when the facies are broken up 
into more detailed geological-based units, there is a distinct correlation between facies 
type and reservoir quality (porosity and permeability). 
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Figure 26.  Core photo and thin section photomicrographs illustrating the variability in 
facies and pore systems in the Trenton/Black River formations. 
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Figure 27.  Core photo and thin section photomicrographs illustrating the variability in 
facies and pore systems in the Trenton/Black River formations. 
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Figure  28.  Slab photograph and thin section photomicrographs illustrating hydrothermal 
dolomite in the Trenton/Black River of Albion-Scipio Field.  Note well-developed, 
classic baroque (saddle) dolomite crystals identified by their curved crystal lattice. 
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DISCUSSION:  PHASE  I AND II - INITIAL RESULTS FROM TASKS 2 AND 3 
 
Controls on Dolomitization in the Middle Devonian Dundee Formation - Oil 

Field Scale Structure and the Distribution of Log-Based Dolomite 
Lithofacies: 

 
Introduction 

 The Middle Devonian Dundee Formation (Figure 29) is a prolific oil and gas 

producer, initially discovered in 1927, with cumulative oil production to date in excess of 

350 MMBOE from over 130 fields in the Michigan Basin (Figure 30). Exploration and 

production drilling in the Dundee in the 1920’s through the 1940’s was conducted prior 

to the advent of modern drilling technology or acquisition of quantitative reservoir 

characterization data. Furthermore, many Dundee wells were “top set”; that is, drilled to 

within a few feet of the top of the producing horizon and completed for production with 

little or no sampling or logging of reservoir rock types. Oil and gas production is known 

from both primary limestone and secondary dolomite reservoirs in the Dundee.  

 Limited modern logs and rare core from more recent drilling activity in the 

Dundee provide an incomplete picture of important reservoir lithofacies, their 

distribution, and geological origin in Michigan. Geological models for the origin of 

prolific oil producing dolomite reservoir facies, most common in the central Michigan 

basin, are of particular interest. A better understanding of the origin, regional distribution, 

and reservoir scale characteristics of this dolomite reservoir facies should have significant 

impact on continued exploration for novel and untested exploration targets, and increase 

the effectiveness of secondary and tertiary recovery operations in the Basin in the Dundee 

Formation. 

 On the basis of unpublished work by numerous petroleum geologists in Michigan 

during the Dundee boom years of the 1930' and 1940's and more recent work, petroleum 

production is thought to occur from at least three different reservoir lithofacies types 

(Knapp, pers. comm., Fig. 31a and b):  

1) Sedimentary Facies-controlled ("early diagenetic") dolomite reservoirs, 

dominantly in the western third of the central basin such as in the Reed City 

Member (e.g. Reed City Field). 
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Figure 29. Devonian stratigraphy in the Michigan basin, from Gardener, 1971 (Drafted by Eric 
Taylor) 
 

 
 
Figure 30. Dundee Formation fields in Michigan. Probable producing lithology indicated by 
dolomite and limestone symbols 
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Figure 31a. 
Generalized 
lithofacies and 
spatial distribution of 
reservoir types in the 
Dundee Formation, 
from Tom Knapp, 
personal 
communication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Figure 31b. Generalized 
lithofacies and spatial 
distribution of reservoir 
types from Tom Knapp, 
personal communication. 
“Dundee” unit refers to 
Reed City Member of this 
report. 
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2) Sedimentary Facies-controlled limestone reservoirs, mainly in the eastern third of 

the central basin in the Reed City "equivalent" Member (e.g. South Buckeye, Mt. 

Pleasant, and West Branch fields). 

3) Dolomite reservoirs of controversial origin in the upper Dundee/Rogers City 

Member predominantly in the central basin (e.g. Vernon Field), but also 

noteworthy both to the far west (e.g. Pentwater field) and east (e.g. Deep River 

Field). Some fields of this type have been referred to as "dolomite chimneys" due 

to linear, fracture-related field geometry. 

 

Geological Background - Dundee Formation 

 The Dundee Formation in the Michigan Basin consists of two subsurface 

members, the Reed City and overlying Rogers City members (Gardner, 1974, see Figure 

29). A diverse lithologic assemblage of predominantly fossiliferous and grainy carbonate 

rocks of the Reed City member overlies dolomicrite, anhydrite and salt of the Lucas 

formation, deposited in sabkha, peritidal, and restricted lagoon environments (Gardner, 

1974, Figure 29). The Reed City Member is most distinct in the western parts of the basin 

where it consists of restricted marine, peritidal facies, including a prominent anhydrite 

unit informally called the Reed City anhydrite near the top of the member. The primary 

depositional facies in the Reed City member basin-wide consists of a shallow marine 

shelf carbonate assemblage including, grainy carbonate, stromatoporoid reef, and 

peritidal to supratidal/evaporitic facies that generally shoal upwards to the Rogers City 

contact (Gardner, 1974; Montgomery, 1986; Curren and Hurley, 1992, Montgomery, and 

others, 1998).  More open marine limestone facies (Reed City “equivalent”) are 

predominant in the eastern basin, while more restricted, dolomitized and evaporite-

bearing facies (Reed City Member) occur to the west (Gardner, 1974, Figure 32) 

suggesting that the Reed City was deposited on a carbonate ramp that transgressed the 

basin from east to west. Pervasive alteration of grainy and fossiliferous primary limestone 

facies to dolomite occurs in the Reed City member throughout most of the western parts 

of the Michigan Basin. The Reed City member comprises a complex primary facies 



 49

mosaic that is not well known due to the lack of outcrop and subsurface core material in 

the basin. 

 
Figure 32.  Dundee Formation 
(Reed City Member) lithofacies 
and isopach map from Gardner, 
1974. 
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 The Rogers City Member overlies various rock types of the Reed City Member at 

a generally sharp, probable marine flooding surface (as determined in core, Curran and 

Hurley, 1992) that marks an apparent rapid marine transgression. This contact is not 

easily recognized in logs, especially in the east, and its origin may vary throughout the 

basin. Primary depositional facies in the Rogers City, although incompletely known due 

to limited core, are generally lithologically homogeneous and consist of mostly open 

marine nodular lime wackestone to mudstone. Biostromal buildups and spatially-related 

fossiliferous grainstone-packstone deposits in the upper Reed City-Rogers City interval 

found in several oil fields in the eastern basin, suggest possible syn-depositional 

structural relief on the sea floor and resulting shoal water facies in some parts of the 

Michigan Basin during the transition from the upper Reed City equivalent to the Rogers 

City member (Montgomery, 1986). 

 

Dolomite Reservoirs in the Dundee Formation 

Some of the most productive (initial production {IP} of 2000-9000 BOPD) 

reservoirs in the Dundee are found in dolomite facies in the central and western parts of 

the basin.  Some of the largest fields include the Reed City Field (42.9 MMBO); Deep 

River Field (27.2 MMBO); Coldwater Field (22.3 MMBO); Freeman-Redding Field (17 

MMBO); and North Adams Field (9.5 MMBO). Dolomite reservoirs in the Reed City 

Member are thought by some basin geologists to originate as "early diagenetic" or "facies 

related" dolomite that is spatially related to the stratigraphic distribution of the Reed City 

Anhydrite (see Figure 31b and 32) and formed through seepage reflux mechanisms 

(Jones and Xiao, 2005, Figure 33). This is likely the case in several fields in the western 

basin (Reed City, most notably). Application of a seepage reflux model to the distribution 

of dolomite reservoirs in the central basin, however, is strongly dependant on an inferred 

pinch-out of the Rogers City Member over a proposed “shell bank” or shoal water 

bathymetric feature that existed in the central basin during the transition between Reed 

City and Rogers City time (Figure 34). A pinch out of the Rogers City member is 

interpreted to exist over this “shell bank”, and magnesium-rich saline fluids are thought 



 51

to have migrated basin-ward and up-section, dolomitizing porous primary limestone 

facies in the Reed City Member that extended to the top of Dundee Formation at the base 

of the Bell Shale.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33. Model for lithofacies distribution in a reflux system, from Jones and Xiao, 
2005. 
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Figure 34. Paleogeographic map and cross section during regressive, Reed City member 
time, from Gardner, 1974. Note the inferred paleo-bathymetric high in the central basin 
that is interpreted by many basin geologists to be responsible for pinch-out of the 
overlying Reed City Member in this area.  It is important to note, however, that this 
“interpretation” has not been substantiated in the literature but is more of a general 
impression in the basin. 
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 An alternative model for dolomitization of the upper Dundee, Rogers City 

member in the central basin has been suggested as resulting from fracture-related 

mechanisms and hydrothermal alteration (see model by Strecker and others, 2005 after 

Boreen and Davis, 2001, Figure 35). This is a much more feasible hydrodynamic model 

for dolomitization in the central basin if the upper Dundee originally comprised Rogers 

City member limestone because primary porosity in this predominantly lime mudstone to 

wackestone unit would preclude flow of significant dolomitizing fluids through primary 

permeability conduits. It is a widespread industry perception that such fracture 

mechanisms are the probable origin of linear “dolomite chimney” fields in the eastern 

Michigan Basin (e.g. Deep River, Pinconning, and North Adams fields in Arenac and 

Bay counties, Wood and Harrison, 1999), although this inference is based primarily on 

anecdotal drillers reports, mud logs and the distinctive linear geometry of the developed 

fields.  

 The importance of distinguishing mechanisms for dolomitization in Dundee 

Formation reservoirs is fundamental to maximizing production of hydrocarbons from this 

interval. Regional flow systems that delivered dolomitizing fluids to the Dundee, 

eastward of the probable source of these fluids in the western basin, would result in 

dolomitized reservoirs that may have significant lateral continuity dependant mainly on 

the lateral continuity of facies controlled, primary fluid flow conduits. In sharp contrast is 

the abrupt lateral discontinuity that should exist between primary limestone and dolomite 

as a result of fracture-controlled delivery of hydrothermal dolomitizing fluids. These 

distinct mechanisms for dolomitization would result in fundamentally different timing of 

reservoir and trap development, oil migration pathways, and reservoir geometry relative 

to structural features. 

 

Study Methodology and Objectives 

 In order to investigate the geological origins and controls on the occurrence of 

dolomite reservoirs in the Dundee Formation in Michigan, we compiled available digital 

subsurface geological data (mostly from the Michigan Department of Environmental 

Quality, Geological Survey Division, MDEQ-GSD) including formation tops, wire-line 
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logs, and driller’s reports. Where appropriate we compiled these data into tabular spatial 

databases. These spatial databases were used to construct Geographic Information 

Systems files (both ArcGIS and Petra software),  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Generalized geometry and lithofacies model for fracture related hydrothermal 
dolomite reservoirs, from Strecker and others, 2005 
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as well as maps and cross sections of important geological properties in the Dundee - 

including the spatial distribution of dolomite versus limestone in the Dundee Formation 

relative to structural features and oil field occurrences in the Michigan Basin. Modern 

wireline logs in digital format were analyzed from over 400 wells. Quality controlled 

Dundee Formation tops from a data base with more than 25,000 wells (data base 

originated from J. R. Wood, MTU Subsurface Visualization Lab) were used in the 

structural mapping. The current availability of large institutional digital subsurface 

databases, modern digital well logs, readily accessible computational power, and 

appropriate software provides the opportunity to evaluate correlations amongst general 

structural and lithologic trends in the Dundee from a wide range of data sources. A 

limited number of modern litho-density well logs from across the basin provide an 

important source of information available for investigation of lithology in the Dundee 

Formation relative to spatial location and structural features in the Michigan Basin 

subsurface. 

 

Dundee Field Water Production Characteristics 

Field production characteristics in Dundee Formation fields (Figure 36a and b) 

define at least two distinct drive mechanisms basin-wide on the basis of water production 

and pressure decline: 1) bottom water and 2) gas expansion. Figure 36a shows per well 

water production from representative fields with two distinct trends of 1) relatively high 

water production per well from inferred bottom water drive dolomite fields (Fork, 

Vernon, Crystal; central basin dolomite fields, and Deep River; an eastern basin dolomite 

chimney field) versus 2) relatively low water production from probable gas expansion 

drive limestone fields (West Branch and South Buckeye; eastern basin limestone fields). 

Pressure decline is substantially greater in the gas expansion fields and initial bottom hole 

pressures are generally preserved in the inferred bottom water drive, dolomite fields. A 

similar breakout of field drive mechanisms is suggested by percent water cut plot (Figure 

36b). The increase in water cut later in the production history of the eastern limestone 

fields is, in part, influenced by secondary recovery water flood projects. Facies related 

fields (both limestone and dolomite) in the Reed City member typically possess gas 
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expansion type drive while upper Dundee/Rogers City dolomite fields possess bottom 

water  

 

  A. 

 

 

 

 

 

 

 

  B. 

 
 
 

Figure 36a and b. Water production characteristics of Dundee field types. 
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drives that apparently tap a regional aquifer of substantially greater volume than any 

individual field. 

 

Fracture Related Hydrothermal Reservoirs in Michigan 

The significance of fracture-related mechanisms in the origin of important 

hydrocarbon reservoirs in Michigan is virtually undisputed. Fields in the Ordovician 

Trenton/Black River formation in Michigan, most notably the Albion-Scipio Field, are 

classic examples of geometrically complex dolomite reservoirs effectively modeled by 

the hydrothermal dolomite reservoir (HTDR) concept (Figure 37). Application of models 

for reservoirs of this generic type in other Michigan formations is controversial but of 

great current interest for both exploration and enhanced recovery in the petroleum 

industry. 

 Structural analysis of Michigan Trenton Black River (Hurley and Budros, 1990) 

and (more recently) Dundee Formation Fields (Prouty, 1988; Wood, 2003; and Budros, 

2004; and others) suggests a relationship between probable reactivated basement wrench 

faults, anticlines with steep margins, and oil field occurrences. Riedel shear deformation 

mechanisms including complex flower structure fracture patterns are suggested as 

important components in the development of these dolomitized fields. The transport of 

dolomitizing hydrothermal fluids delivered to generally low permeability, primary 

limestone facies in the Rogers City Member in particular, is thought to result from flow 

through fractures associated with periodically reactivated wrench faults. Recent 

petrologic study of central basin, fractured upper Dundee/Rogers City lithofacies (Luczaj, 

2001), suggests temperatures of saddle dolomite formation in excess of 120oC in several 

central basin wells, which is well above ambient burial temperatures. 

 

Distribution of Wire-line Log Based Lithofacies in the Dundee Formation 

 Lithofacies in the Dundee Formation were investigated using an industry standard 

"quick-look" overlay methodology and digital litho-density wire-line logs. When Neutron 

porosity and Bulk Density logs are overlain on a common, limestone equivalent porosity 

scale, changes in lithology can be inferred with depth (Figure 38). Shale, tight and porous  
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Figure 37.  Model for 
Riedel shear control 
on the Albion-Scipio 
fractured dolomite 
field, Michigan basin, 
from Hurley and 
Budros, 1990. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Hypothetical neutron-density overlay patterns for simple log-based lithofacies. 
The overlay uses a common calibration to an equivalent limestone porosity scale. (From 
Doveton, 1986). 
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limestone, dolomite, and anhydrite are relatively confidently identified using this "quick 

look" overlay method and log-based lithofacies in the Dundee Formation can be 

interpreted. Since log-based lithofacies are dependant on bulk density properties it is not 

possible to distinguish dolomite facies with different textural properties or geological 

origins including overprinted dolomitization. 

 A wide range of dolomite versus limestone successions are observed throughout 

the basin (figures 39a-f; in both producing and dry holes) including six distinctive 

assemblages: 

1. No dolomite in the Dundee in the eastern basin (Gladwin Co., Figure 39a; 

lithofacies assemblage 1) 

2. Complete dolomitization of Reed City Member (and associated Reed City 

“Anhydrite”) with no dolomite in the Rogers City member; western-most central 

basin, (Mason Co., Figure 39b; lithofacies assemblage 2) 

3. Complete dolomitization of both Dundee members in the central basin (Isabella 

Co., Figure 39c; lithofacies assemblage 3) 

4. Partial/minor dolomitization of the Reed City (and associated Reed City 

Anhydrite) and no dolomite in the Rogers City west-central basin (Mecosta Co. 

Figure 39d; lithofacies assemblage 4) 

5. Partial dolomitization (bottom up) of the Reed City and no dolomite in the Rogers 

City in the central basin (Isabella Co., Figure 39e; lithofacies assemblage 5) 

6. Partial dolomitization in the Reed City/Rogers City undivided (top down) and 

minor associated Reed City Anhydrite in the northwestern central basin 

(Missaukee Co., Figure 39f; lithofacies assemblage 6). 

 

Regional Dundee Structure Mapping and Log-based Lithofacies Distribution 

 Top Dundee structure was mapped using an extensive tops data base compiled 

from data made available by James Wood, Michigan Tech, Subsurface Visualization Lab. 

Ten central Michigan Basin counties were each individually analyzed using geostatistical 

methodology and industry standard ArcGIS software. Structure contour and grid maps 

were created for each county through a quality control procedure involving iterative error 



 60

analysis. Apparently spurious data points were eliminated from the tops data set by 

county until root mean square error (RMSE) of measured versus predicted tops in that 

county was less than 20 ft (the displayed contour interval). Some analyses produced 

RMSE well below 20' (Figure 40). A ten county composite Dundee top structure 

prediction map was then produced (Figure 41) that shows a strong preferred northwest-

southeast grain and a less pronounced, essentially conjugate, northeast-southwest grain. 

 

The distribution of productive, Dundee dolomite fields in the central basin is typically 

associated with structural trends with a predominant 310o - 130o and a conjugate 40o - 

220o orientation. Areas marked by a convergence of these structural grains typically 

coincide with dolomitized Dundee fields. Small-scale spatial variation and complex 

geometric patterns of dolomitization in several counties supports local rather than 

regional dolomitization in the upper Dundee due to fracture-related fluid migration 

pathways (e.g. Figure 42).  Dolomitization patterns in the lower Dundee, Reed City 

Member have wider spatial distribution but may represent a complex interplay between 

primary facies controlled dolomitizing fluid conduits and fracture related conduits. If the 

geometrically complex dolomitization in the upper parts of the Dundee occurs in what 

was regional tight primary limestone of the Rogers City, this relationship is almost 

certainly the result of fracture related hydrothermal dolomitization associated with 

geometrically complex matrix fracturing. 
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39a     39b      39c 
 
Figure 39a,b, and c. Litho/density log-based Dundee Formation lithofacies assemblages 
1, 2, and 3 respectively. See text for discussion. 
 

 
39d     39e      39f 
 
 
Figure 39d,e, and f. Litho/density log-based Dundee Formation lithofacies assemblages 4, 
5, and 6 respectively. See text for discussion. 
 
 
 
Field Scale Structure Mapping and Log-based Lithofacies 

 Field scale structural mapping of top Dundee with high quality, wire-line log 

controlled well data indicates a geometrically complex spatial correlation between subtle 

structure and reservoir facies variations in the Upper Dundee/Rogers City Member. High 

resolution structure contour mapping (5'-10' contour interval) based on high quality top 

and lithofacies picks, suggests top Dundee surface irregularities that are best interpreted 

as faults with small throw of generally less than tens of feet in two Dundee fields, 

Winterfield (Clare Co., Figure 43a) and Vernon-Rosebush (Isabella Co, Figure 43a). In 
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the Winterfield field a transition from dolomitized upper Dundee/Rogers City to 

undolomitized upper Dundee occurs within less than 0.3 mi. The alignment of wells with 

dolomitized upper Dundee/Rogers City is in accordance with a 40o- 220o orientation 

superimposed on an overall 310o - 130o trend for the field. A nearby extension of the 

Winterfield field (not shown) with a linear, 310o - 130o field orientation and probable 

fracture-related Dundee production (Chittick, 1996).  

 

 

 

 

 

Figure 40. Example of 
central Michigan basin 
county structure map on 
top Dundee Formation 
with superimposed 
Dundee fields and 
inferred reservoir 
lithofacies. 
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Figure 41. Michigan central basin 10 counties structure map on top Dundee Formation 
with superimposed Dundee fields. 
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Figure 42. Osceola County structure map on top Dundee and litho-density “quick look” 
lithofacies assemblage cross-section. Small-scale spatial variation and complex geometric 
patterns of dolomitization supports local rather than regional dolomitization in the upper 
Dundee/Rogers City due to fracture related fluid migration pathways.  
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Figure 43a. High resolution (5’ contour interval) structure contour map of the Winterfield 
field, Clare Co. Note small spatial scale variation in upper Dundee dolomite distribution 
associated with interpreted small throw displacement faults (dashed lines) with ~310 o-
130o and 40 o -220o orientation. 
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Figure 43b. High resolution (10’ contour interval) structure contour map of the Vernon-
Rosebush field, Isabella Co. High initial production in wells in the Vernon (northwest, 
down structure) portion of the field coincide with interpreted small throw displacement 
faults (dashed lines) with ~310 o-130o and 40 o -220o orientation. One litho/density well 
log in the Vernon area (Faber well) suggests complete dolomitization of the entire 
Dundee section while wells to the southeast (Rosebush area) are mostly limestone 
coincident with relatively simple, open structural style. 
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 A similar, relationship between small scale structure and the inferred distribution 

of Dundee dolomite reservoirs is interpreted in the Vernon-Rosebush field of Isabella Co. 

Small scale structural deformation of the top Dundee surface is mapped in the north-

northwest extension of the Vernon-Rosebush structure (Figure 43b). In the down dip 

north and west portion of the Vernon-Rosebush field, sparse log control can be 

interpreted to indicate complete dolomitization of the Dundee associated with high initial 

oil production rates. The IP’s (to several thousand BOPD) are comparable to many 

central basin Dundee fields that are probably fracture-related. Less than 2 miles to the 

south and east, which is up structure, the Dundee contains limestone from bottom to top.  

 Interpreted faults and related fractures apparently propagated to the Dundee-Bell 

Shale contact in places throughout the central basin (and apparently elsewhere in the 

basin) and may have provided geometrically complex secondary conduits locally for 

dolomitizing fluids that permeated upwards through the otherwise regional tight 

limestone of the upper Dundee/Rogers City. 

 
 
Implications for Petroleum Geology in Michigan and other U.S. Hydrocarbon 
Basins 

Our mapping efforts to date, have important implications for both new exploration 

plays and improved enhanced recovery methods in the Dundee and Ordovician 

Trenton/Black River "plays" in Michigan – i.e. the interpreted fracture-related 

dolomitization control on the distribution of hydrocarbon reservoirs. In an exploration 

context, high-resolution structure mapping using quality-controlled well data should 

provide leads to convergence zones of fault/fracture trends that are not necessarily related 

to structural elevation. Acquisition of high-resolution seismic data in areas with 

prospective structural grain may provide decreased risk for fractured Dundee or 

Trenton/Black River exploration drilling.  

 Application of fracture models to reservoir characterization in secondary and 

tertiary recovery projects in existing fractured Dundee or Trenton/Black River fields, may 

result in substantial additional recovery from fields that typically had low (<30%) 

primary recovery factors. Careful consideration of fracture orientations and water coning 

problems should decrease risk in enhanced recovery activities. 
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 Undoubtedly more complex, hybrid reservoir types exist in dolomitized lower 

Dundee/Reed City Member lithofacies in the central basin.  This is anticipated as a result 

of complex, early fluid flow through primary limestone pore conduits within a reflux 

system, in addition to fracture generated pathways in fault/fracture convergence zones. 

Much additional work is necessary to understand Reed City Member dolomitization 

processes in Michigan and implications for petroleum geology and is a primary goal of 

continuing efforts. 
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INITIAL SUMMARY OF CURRENTLY AVAILABLE GEOLOGIC DATA  (TASK 2) 

 

Ordovician Trenton/Black River Production 
 

The Ordovician Trenton-Black River Formation is a fractured, dolomitized 

reservoir that has produced 140 MMBO and 260 BCFG in the State of Michigan. 

However, theories concerning the nature of fracturing, the controls exerted by the original 

depositional rock type and pattern, the extent of dolomitization, the types of fluids 

involved, and the various stages of diagenesis are still evolving. All previous studies deal 

only with data from specific field areas. There has never been a basin-wide synthesis and 

analysis of these data despite the fact that the Trenton-Black River Formation is one of 

the largest hydrocarbon producing reservoirs in the state. It is doubtful that the current 

Trenton-Black River exploration model, developed from independent field studies, 

adequately encompasses all the exploration and exploitation opportunities that exist for 

this reservoir in the Michigan Basin. Increasing the current total recovery for this unit by 

only 1% would add 1,380,000 BO and 2.6 BCF to the already recovered reserves. It is 

reasonable to expect that a comprehensive, basin-wide examination of the Trenton-Black 

River Formation, resulting in the development of additional exploration models and 

methods could ultimately produce a 5% increase in recoverable reserves (6.90 MMBO 

and 13 BCF).        

 

Trenton-Black River Discovery and Development  

Drilling began in 1884 along the Findlay-Kankakee Arch in Indiana and Ohio 

(Davies, 1996, 2000) resulting in the first Trenton-Black River discoveries. This led to 

the drilling of over 100,000 wells and the production of 500 MBO along the Bowling 

Green Fault Zone. 

The first commercial Trenton-Black River discovery in the State of Michigan 

occurred in 1936 in Monroe County. This resulted in the Deerfield Field located along 

the Lucas-Monroe monocline, an extension of Bowling Green Fault zone in Ohio. 

Reservoir quality dolomite lenses in the upper 125’ of the Trenton Group produced more 

than 608 MBO by 1959 from 40 wells drilled on 360 acres.  
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The Albion-Scipio Field, a giant (>120 MMBO) Trenton-Black River field 

located in Calhoun & Hillsdale Counties, Michigan was discovered in 1955 – 1958 

(Davies, 1996, 2000). The Scipio Field discovery well was the Houseknecht No. 1 (Sec 

10, T5S-R3W – Hillsdale Co.) which was originally drilled for Devonian gas but proved 

dry. It was then deepened based upon the advice of a psychic family friend, encountered 

oil at 3900’, and was completed at 140 BOPD with “considerable” gas. The Albion Field 

was discovered by the Rosenau No. 1 (Sec 23, T3S-R4W, Calhoun Co.) and completed 

for 200 BOPD. Subsequent drilling discovered the Pulaski, Barry, Sponseller, Van Wert, 

and Cal-Lee Fields; all to become part of the Albion-Scipio Trend. Over 961 wells were 

drilled by 1986, of which 573 are still producing.  

 Stoney Point Field (5 miles east and sub-parallel to Albion-Scipio) was not 

discovered until 27 years later in 1982 when the JEM Casler No. 1-30 (Sec 30, T4S-

R2W, Jackson Co.) encountered dolomite reservoir 115’ into the Trenton at 3910’. This 

well hit lost circulation at 4248’. Casing was set and the well was tested at 2000 BOPD 

from perforations at 4161’ - 4179’. The bottom hole pressure drop never exceeded 3 psi 

and the well was put on production at 220 BOPD. Two hundred and ten wells were 

drilled around the Stoney Point Trend between 1983 and 1987. Seventy five wells were 

oil and gas producers. 

Estimated oil-in-place figures are difficult to accurately calculate due to 

difficulties in establishing a reliable porosity number; however, Scipio Field is estimated 

to have 170 MMB OOIP, Albion Field is estimated to have 120 MMB OOIP. No figures 

are available for Stoney Point Field. There are 18 Trenton-Black River fields that have 

produced in Michigan. 

  

Stratigraphy and Structure  

The Trenton-Black River Formation was originally deposited during the 

Ordovician in open marine conditions. Wackestone - mudstones were deposited on a 

basin-wide scale. Trenton-Black River carbonates in the Stoney Point Field area (south-

central Michigan) are open marine, subtidal carbonates, typically crinoidal 

packstones/wackestones and mudstones with pervasive burrowing. Trenton rocks in the 
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Deerfield Field area (SE Michigan) prograde from open marine to intertidal carbonates 

while Black River rocks remain subtidal (Davies, 1996, 2000). The Trenton is overlain by 

the Utica Shale that forms a regional seal. This is in turn overlain by reef and inter-reef 

carbonates of the Niagara Formation and Salina Formation evaporates. 

 Repeated reactivation of a Precambrian left-lateral wrench fault system (en 

echelon faults with a total of 2.5 miles of offset) occurred throughout the early to mid 

Paleozoic. These faults (dominant set oriented N30W, conjugate set oriented east-west) 

are thought to have provided conduits through which dense Salina residual evaporite 

brines were able to flow downward into the Trenton-Black River formation. Dissolution 

and dolomitization of the Trenton-Black River occurred immediately adjacent to faults 

resulting in long, linear, porous dolomite reservoirs associated with downward collapse 

of overlying units. The collapsed interval extends into the Devonian section where it dies 

out. Fractures in the Utica Shale must have healed at the cessation of faulting to provide a 

seal for the Trenton-Black River reservoir. Tight un-dolomitized limestones act as lateral 

stratigraphic seals (Allen and Wiggens, 1993). DeHaas and Jones (1984, 1989) proposed 

cave development related to karsting responsible for lost-circulation zones; however, this 

theory has been largely discounted by recent workers. 

Budros (APPG Annual Meeting, 2004) proposes that “sags” or “grabens” 

overlying dolomitized reservoirs (thereby defining Trenton-Black River fields) are in fact 

negative flower structures due to Reidel shear faulting with trans-tension and are not the 

result of previously considered collapse due to dissolution. He also proposes that some 

fields are characterized by positive flower structures produced by Reidel shear faulting 

with compression. 

Faulting has compartmentalized the Albion-Scipio Trend. These compartments 

are probably due to a combination of Reidel shear negative and positive flower structures 

along the same fault trend; however, this hypothesis demands further investigation. These 

discontinuities do account for dry holes drilled apparently “directly on trend” (Davies, 

1996, 2000).  

Fields such as Deerfield Field exhibit a more circular pattern rather than a long, 

linear NW - SE pattern typically considered indicative in the current Trenton-Black River 
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exploration model. It is thought that secondary east-west oriented faults may have played 

a more significant role in the development of dolomitized reservoir facies in the Deerfield 

Field. Fractures and faults with minor displacement play an important roll controlling 

dolomitization and porosity development (Davies, 1996, 2000). 

  

Trenton-Black River Reservoir Characteristics   

 Reservoir dolomites are composed of coarse crystalline dolomitized limestone 

host rocks that are vuggy and cavernous. Fractures and vugs are often solution enlarged 

and contain white saddle dolomite with minor anhydrite. Porosity normally ranges from 

2-5%, but 8-12% porosity is present, though uncommon. Permeability is extremely 

variable (0.01 – 800 md) but is generally low (85% of samples < 10 md). Porosity and 

permeability plots do not show any uniform relationships. Isotopic, fluid inclusion and 

water chemistry analyses all indicate a hydrothermal genesis for reservoir dolomites with 

a dual source of fluids from the Salina and Trenton - Precambrian Formations (Allen and 

Wiggens, 1993).     

 

Origin of Dolomite   

Shortly after discovery of the Albion-Scipio Trend, Burgess (1960) determined 

that reservoir dolomite was a secondary mineral formed as Cambrian and Lower 

Ordovician waters moved up along fracture zones (analogs - Dover and Colchester Fields 

in Ontario). 

Ells (1962) observed that Albion-Scipio Field dolomites were similar to 

Mississippi Valley-Type (MVT) lead-zinc mineral deposits. He proposed that 

magnesium-bearing waters ascending through fractures were responsible for 

dolomitization. 

Beghini and Conroy (1966) stated that Trenton-Black River reservoirs were 

formed by pre-Black-River Group waters that moved through faults and fractures to 

produce secondary dolomite. 

Buehner and Davis (1968) concluded that the Trenton-Black River reservoir 

facies was epigenetic dolomite related to a fault system. 
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Shaw (1975) described a mineral assemblage (including sphalerite) in Albion-

Scipio cores similar to MVT mineral deposits. He noted 2-phase fluid inclusions in 

Albion-Scipio dolomites and pore filling saddle dolomites that he believed were 

precipitated from fluids at a minimum of 80 degree C. He also identified a liquid-

hydrocarbon phase in some fluid inclusions indicating hydrocarbons were present at time 

of cementation. These observations allowed him to propose a model of replacement 

dolomitization and development of intercrystalline porosity during the Middle to Late 

Silurian by waters percolating through fractures. Magnesium was sourced from 

underlying Prairie du Chien dolomite or Trempealeau Formations. Then, a second phase 

of dolomitization occurred during Lower to Middle Devonian as hot fluids from the basin 

center created cavernous porosity, subsequent collapse, and precipitation of a MVT 

assemblage. 

Ardrey (1978), DeHaas and Jones (1984, 1989) proposed that diagenesis of the 

Trenton-Black River in Albion-Scipio area was due to exposure as indicated by the top-

of-Trenton unconformity. They also stated that dolomitization must have resulted from a 

mixing model based on the observation that Trenton Formation water is less saline than 

water in shallower horizons; therefore, it could not be of hydrothermal origin. 

Taylor and Sibley (1986) identified 3 major types of dolomite (1) regional 

dolomite not associated with the field area, (2) cap dolomite that occurs in the top 40 feet 

(related to interaction of the Trenton with Fe-rich fluids formed during the de-watering of 

the overlying Utica Shale) (3) fracture-related dolomite (formed during deeper burial at 

approximately 80 degrees C based on geochemical results). 

Budai and Wilson (1986) identified various MVT accessory minerals, including 

pyrite, calcite, anhydrite, barite, celestite, sphalerite, and fluorite in association with 

saddle dolomite cements. They proposed a hydrothermal model with Paleozoic and 

Precambrian basement rock as sources of iron, sulfur, and other trace metals. 

Hurley and Cumella (1987) proposed a model based on (1) carbon, oxygen, and 

strontium isotopes, (2) fluid-inclusion geothermometry, (3) brine geochemistry, and (4) 

regional hydrologic constraints. Dolomitizing fluids were thought to be Silurian-

Devonian hypersaline sea-waters that moved down fracture zones to meet with hot 
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limestone-dissolving fluids moving up from the basement. These fluids mixed in a 

pattern consistent with the known distribution of dolomite reservoirs and lost-circulation 

zones. This model is supported by Coniglio et al (1994) for Ordovician rocks in Ontario 

(Davies, 1996, 2000). 

 

Exploration  

 Originally, the Albion-Scipio Field was discovered by the advice of a psychic. 

“Trendology” quickly become the exploration method of choice as the linear field pattern 

began to emerge. Indications of a northwest-southeast linear fracture zone associated with 

a top-of-Trenton synclinal sag (up to 60’ recognized in early producing wells) has been 

the long held exploration model for the Trenton-Black River Formation. 

Gravity was used through the 1960’s and early 70’s to define basement faults 

along the Albion-Scipio Trend. This met with limited drilling success because dolomite 

porosity mutes the density contrast between the regional limestones and dolomite 

reservoir rocks.  

Magnetics was used in the 1970’s to detect basement discontinuities and faults; 

however, this also proved to have limited use. The giant Albion-Scipio does not appear as 

an individual feature on magnetic maps. Recently, micromagnetic surveys and resistivity 

profiles have been employed, but their significance is not yet proven. 

Reflection-seismic is currently the primary exploration method; however, there 

are problems associated with this technique: (1) variable till overburden thicknesses 

produce noise and statics problems, (2) secondary porosity, the dominant reservoir 

characteristic, is not detected by P-waves, (3) reservoir dolomites (2-5% porosity) have 

an acoustic impedance similar to the regional limestones, and (4) reservoir geometries are 

difficult to image. To date, reflection-seismic Trenton-Black River discoveries have been 

based on: (1) disruptions (sags) at the Trenton event, (2) internal waveform changes, (3) 

disruption of lower events, and (4) recognition of faults from offsetting events and/or 

diffractions. 
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Soil gas geochemistry studies above Scipio field showed no correlation between 

soil gas and producing parts of the field; however, soil gas geochemistry reportedly 

played an important role in the Stoney Point Field discovery. 

  

Exploitation  

Secondary Recovery has been minimal. Results were discouraging from a pilot 

waterflood of the Haskell Unit (near south end Scipio Field). Marathon Oil has drilled a 

number of Trenton-Black River horizontal wells that show considerable promise for 

future exploitation. 

 

Summary  

This is the first comprehensive, systematic study to determine the basin-wide 

relationships of:  (1) original carbonate depositional patterns, (2) formation of early stage 

diagenetic dolomites vs. later stage burial and hydrothermal dolomites, (3) types and 

patterns of faulting, (4) types and patterns of dolomitization resulting from this faulting, 

(5) resulting reservoir rock quality, (6) oil accumulations (field delineation and 

orientation), and (7) hydrocarbon production. The current Trenton-Black River 

exploration model of looking for a seismic sag associated with basement faults in long 

linear patterns appears to be only partially correct. It is possible, in light of evolving 

geological concepts concerning the Michigan Basin, that other styles of Trenton-Black 

River fields exist. However, no exploration models covering these variations have yet 

been developed. This work will provide numerous opportunities to expand our 

understanding of Trenton-Black River hydrocarbon accumulations and significantly add 

to known reserves.  

 

Silurian Niagaran Production 

General Observations 

1. Production data for the Niagaran Trend is generally good. The play began in the 

early 1950’s and hit its peak during the 1970’s-1980’s. Digital data bases 



 76

developed by the state beginning in 1981 include a large portion of the data for 

this play. 

 

2. The log plot of the data displays a curve typical of that for a mature play. Nearly 

all field sizes are represented and no “gaps” in field size occur. The slope of the 

curve is shallow indicating full representation of each field size. Future potential 

is probably resource limited for this particular exploration model; however, new 

technology, combined with a new/expanded exploration model could potentially 

re-set the curve to a higher level.  

 

3. There are 1,162 fields in this play. There are 1,063 fields producing oil. This 

volume of data makes it difficult to plot trends including individual field names. 

Rather, data can best be examined as categories based upon field size. 

“Cumulative Oil Production” can be broken down into 5 basic categories:  1) 

Fields 1-10 million barrels cumulative oil production, 2) Fields 100,000 – 1 

million barrels cumulative oil production, 3) fields 10,000 – 100,000 barrels 

cumulative oil production, 4) fields 1,000 – 10,000 barrels oil cumulative 

production and 5) fields less than 1,000 barrels cumulative oil production.   

 

4. Fields making less than 1,000 barrels oil cumulative production are probably not 

economic based upon oil production alone. The sharp drop-off in fields of this 

size is probably due to the fact that no one purposely looks for this sized field. 

However, a few disappointing fields of this size do occur and are produced to 

recover at least some of the cost of exploration and development.  These fields, in 

most cases, are associated with gas production that makes the venture economic.  

 

5. Gas is produced in 991 fields compared to oil being produced in 1,063 fields. Gas 

production volumes remain somewhat level in relationship to oil production 

volume (1 million BOE). 
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6. Brine is produced in 664 fields. Production of brine is roughly related to oil 

production. The larger oil fields all produce brine whereas the smaller the oil 

field, the less likely it is to produce brine. Only 8 fields produce only gas and 

brine. Brine volumes are roughly related to oil volumes. Only 28 fields produce 

more brine than oil. (refer to Cumulative Oil-Gas-Brine Production by field 

Graph)  

 

7. The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 

wells. 

 

8. The graph of “Discovery Size (Cumulative Oil) by Year of Discovery” displays a 

wide variety of field performance for each year. Although originally kicked-off in 

1950, Niagaran fields did not hit peak oil productivity until 1971 when drilling 

boomed with the discovery of 32 new fields that year. The 1970’s represent the 

“best times” for Niagaran discoveries, with a sharp decline after 1981. This data 

set does not include the onset of horizontal drilling during the 1990’s. 

 

9. There are 1,162 fields in the Niagaran Trend. The oldest field in the trend was 

discovered in 1950. Only 9 fields in the Niagaran Trend have produced more than 

35 years. Nearly one half of the fields have produced for 15 – 30 years (531 

fields). Only 181 fields have produced for 5 years or less. Seventy-three fields 

were either produced for less than one year or not produced at all. 

 

10. “Cumulative Oil Production” varies substantially when plotted against “Years of 

Production.” However, the best producers in each age bracket show impressive 

results. Nearly 10,000,000 barrels of cumulative oil have been produced by fields 

in the 30 to 50 year age bracket. Fields in production from 22 years to 30 years 

have top producers in the 1-5 million barrel range. Top producing fields in the 5 – 
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22 year bracket still hit the 1 million barrel mark other than for year 9.  Even 

fields in production for only 1 year have obtained the 100,000 barrel mark.  

 

Current Activity  

1. Fields from each of the 5 basic categories defined above will be correlated to the 

newly developed index covering data quantity, quality and availability for each 

field. Fields in each category ranking high in data coverage will be selected for 

detailed study.   

 

 

Devonian Dundee Trend Production 

General Observations 

1. Production data for the Dundee Trend is generally good. Dundee production 

statistics go back to 1934 although commercial Dundee production began in 1928 

and has remained a stalwart of the Michigan Basin ever since. Its production 

ranks second only to that of the Niagaran Trend; however, the Niagaran Trend 

contains 1,162 fields vs. only 178 fields in the Dundee Trend. 

 

2. The log plot of the data displays a curve typical of that for a mature play. Nearly 

all fields sizes are represented and no “gaps” in field size occur. The slope of the 

curve is shallow indicating full representation of each field size. Future potential 

is probably resource limited for this particular exploration model; however, new 

technology, combined with a new/expanded exploration model could potentially 

re-set the curve to a higher level.  

 

3. There are 178 fields in this play. There are 155 fields producing oil. This volume 

of data makes it difficult to plot trends including individual field names; therefore, 

data has been examined as categories based upon field size. “Cumulative Oil 

Production” can be broken down into 7 basic categories: 1.) 8 Fields making 10-

50 million barrels cumulative oil production, 2.) 30 fields 1 – 10 million barrels 
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cumulative oil production, 3.) 50 fields making 100,000 – 1 million barrels 

cumulative oil production, 4.) 39 fields making 10,000 – 100,000 barrels oil 

cumulative production and 5.) 20 fields making 1,000 – 10,000 barrels cumulative 

oil production, 6.) 8 fields making 0 – 1,000 barrels cumulative oil production, 

and 7.) 14 fields making 0 oil production.   

 

4. Fields making less than 1,000 barrels oil cumulative production (9 fields) are 

probably not economic based upon oil production alone. The sharp drop-off in 

fields of this size is probably due to the fact that no one purposely looks for this 

sized field. However, a few disappointing fields of this size do occur and are 

produced to recover at least some of the cost of exploration and development.   

 

5. Gas is produced in 41 fields compared to oil being produced in 155 fields 

(although many fields may have initially had gas, production was limited due to 

infrastructure and much of the gas production was flared). 

 

6. Brine is produced in 141 fields. Only 13 oil fields do not produce brine. Only 4 

gas fields do not produce brine.  

 

7. The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 

wells. 

 

Current Activity  

1. Work is currently underway to further develop data covering Reed City vs. 

overall Dundee Formations. 

 

2. Dundee Cumulative production vs. Year Discovered data is currently being edited 

for analysis. 
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3. Fields from each of the 7 basic categories defined above will be correlated to the 

newly developed index covering data quantity, quality and availability for each 

field. Fields in each category ranking high in data coverage will be selected for 

detailed study.   
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APPENDIX  1  
INITIAL SUMMARY OF CURRENTLY AVAILABLE GEOLOGIC DATA  (TASK 2) 

 
Ordovician  - Trenton-Black River Production Analysis Data and Graphs 

(Prairie du Chien, Trempealeau generally not productive) 
 
 

DISCOVERY 
 1884 – Drilling begins on Findlay-Kankakee Arch in Indiana and Ohio 
  Indiana-Lima trend 
   100,000 wells 
   500 MBO Bowling Green Fault Zone (Albion-Scipio analog) 

1917 – SW Ontario – Dover Field 
narrow, elongate, east-west trending dolomitized reservoir          

   with synclinal expression 
   highly variable dolomitization 
   4 separate pools 
   production from 2800-3200’ 
   249 KBO and 12.8 BCF CUM 
 1920 – Dundee Township, Monroe County, Michigan 
   First Trenton oil in Michigan 
   Noncommercial 
 1936 – Deerfield Field, Monroe County Michigan 
   First Commercial Trenton oil in Michigan 
   Along the Lucas-Monroe monocline 
    Extension of Bowling Green Fault zone in Ohio 
   Dolomite lenses in upper 125’ of Trenton Group 
   1959 – 40 wells drilled on 360 acre field 
   1959 – 608 KBO CUM 
 1954 – Northville Field, Washtenaw, Oakland and Wayne Counties, Michigan 
   drilled as gravity prospect 
   faulted anticline 
   production from 
    Dundee (Devonian) 
    Salina-Niagaran (Silurian) 
    Trenton-Black River (Ordivican) 
     Fractured and dolomitized limestones 
     East flank of structure 
     Production is fault associated 
 1955-58 – Albion-Scipio, Calhoun & Hillsdale Counties Michigan  

1955 - Scipio Discovery Well – Houseknecht No. 1 (Sec 10, T5S-
R3W – Hillsdale Co.) 

    Originally drilled for Devonian gas - Dry 
    Deepened on advice of family psychic friend 
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    1/57 - Encountered oil @ 3900’ 
    Comp @ 140 BOPD and “considerable” gas 

9/57 – Confirmation well – Stephens No. 1 (Sec 10, T5S-R3W – 
Hillsdale Co.) 

 Spetacular blowout – hit lost circulation @ 3769’ (235’ into 
Trenton) 

    Shut-in – craters began to form around location 
    Flowed for 25 houras @ 15 MMCFGPD 

11/58 – Albion Discovery well Rosenau No. 1 (Sec 23, T3S-R4W, 
Calhoun Co.) 

    Comp @ 200 BOPD 
Subsequent drilling discovered Pulaski (1959), Barry, 
Sponseller, Van Wert, Cal-Lee Fields – All part of the 
Albion-Scipio Trend 

   1986 - 961 wells drilled, 573 still producing 
1989  –  330 Trenton penetrations in Albion Field 
 631 Trenton penetrations in Scipio Field 
 
12/82 – Stoney Point Field Discovery (sub-parallel to Albion-

Scipio 5 miles east) 
    JEM Casler  No. 1-30 (Sec 30, T4S-R2W, Jackson Co.) 
   Encountered dolomite reservoir 115’ into Trenton @ 3910’  
   Hit lost circulation @ 4248’, casing set 
   Tested @ 2000 BOPD from perfs 4161’-4179’ 
   BHP drop never exceeded 3 psi 
   Put on production @ 220 BOPD (1/83) 
   1983 –1987 – 210 wells drilled around Stoney Point Trend 
   1987 – 75 wells oil and gas producers in Stoney Point Trend 
  

STRATIGRAPHY 
 Trenton – Limestone, brown-gray, fossiliferous with carbonaceous partings 
  Top-of-Trenton Unconformity: 
  Rooney (1966) – southward thinning of Trenton toward Findlay 

arch in Ohio 
  DeHaas and Jones (1984,1989) – Exposure and karsting to produce 

caverns 
Keith (1985) and Gray (1983) – dismissed any top-of-Trenton 

unconformity, considered this surface to be a marine hardground  
  
 
 
 Black River – Limestone, tan-gray, lithographic; altered to porous dolomite  
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TRENTON-BLACK RIVER TRAP 
 Deerfield Field 
  Lucas-Monroe monocline (extension of Bowling Green Fault Zone) 
 
 Northville Field 
  Faulted anticline 

Albion-Scipio Trend and Stoney Point Trend 
Stratigraphic traps, limited development of porous, fractured dolomite 

reservoirs within the tight regional Trenton-Black River limestone 
northwest-southeast, left-lateral strike slip faulting (en echelon 
faults) offset 2.5 miles 

Reactivated basement faults, primarily Precambrian, w/ additional 
reactivation during Late Ordovician-Early Silurian?, Late-Silurian-
Early Devonian?, Mississippian? 

Synclinal sag-like compartments related to down-dropping over partly 
extensional, en echelon breaks in the underlying section 

Diagenetic porosity development (dolomitization) near faults 
Sharp contacts between dolomite and regional limestone 
Albion-Scipio, Stoney Point Fields– no anticlinal closure 

    
 

TRENTON-BLACK RIVER SEAL 
(1) Overlying Utica Shale 
(2) Non-porous, finely crystalline, ferron “cap dolomite” at the top of the Trenton 

Group 
(3) Non-dolomitized regional Trenton-Black River limestone  

 (4)  Trace fluorite, sphalerite, barite mineralization observed as late-stage pore 
 fillings 
 
TRENTON-BLACK RIVER CHARACTERISTICS 
 Porosity 
  Vuggy, cavernous 
  Intercrystalline 
  Open fractures, often solution enlarged 
  2-5% normal 
  8-12% present but uncommon 
 
 Permeability 
  Extremely variable (0.01 – 8000 md) 
  Generally low (85% of samples < 10 md) 
  Porosity/Permeability plots show no uniform relationship 

Capillary Pressure 
 High entry pressures in cap dolomite (confirms seal) 
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 High entry pressures in Trenton-Black River = moderate to poor reservoir 
rocks 

Log Signatures 
 Lost circulation – most wells cased and then logged 
 Gamma ray – neutron log typical 
 Neutron porosities range 2-10% (4-6% most common) 

Modern gamma-ray logs, porosity of 26% observed at Utica Shale   
  baseline 

Many wells show < 0% neutron porosity = no cement behind casing 
 Base of zone usually at gas/oil contact 
Thin shale layers acted as flow barriers during dolomitization, so most 

Reservoirs located below persistent shale layers - particularly true 
for “E” Shale (Best developed in northern portion of Albion Field) 
and Black River Shale (Best developed in southern portion of 
Albion Field) 

  Typical log – Figure 18 in Hurley and Budros 
  
Fractures 

  Dominant trend N30W 
Secondary trend east-west (Finnigan’s Finger north of Haskell Unit) 
Open, partially filled, and filled 

Filling = saddle dolomite w/ calcite and anhydrite locally present, 
 trace amounts of MVT minerals 

  
Lost Circulation Zones/Caves 

  Some zones encountered in cap dolomite (seal) 
  30% of wells in Albion-Scipio encountered lost circulation 
  54% of wells in Stoney Point encountered lost circulation 
  Bit drops up to 62’ reported in Albion-Scipio - rare 
  Bit drops up to 8’ reported in Stoney Point – rare 

DeHaas and Jones (1984, 1989) propose cave development related 
to karsting responsible for lost-circulation zones; however, few 
others agree with this relationship due to: 

1.) bit drops rare, most zones solution-enlarged fractures or 
vuggy rock 

2.) Trenton-Black River arbitrarily divided into 4 levels w/ 
no true geological relationship to caves and lost-
circulation zones 

3.) Synclinal depression across field persists through Early 
Devonian - Cave formation would collapse under 1500’ 
of overburden 

4.) Geochemical data shows reservoir dolomites 
precipitated from hot solutions, some dissolution 
porosity is a late-stage event 
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5.) No cave features such as flowstone, cave sediments, 
cave pearls observed 

6.) Core shows no karst features at Trenton/Utica contact – 
rather phosphatic and pyritic mineralization suggest a 
hardground (same as top-of-Trenton contact in Indiana) 

7.) If caves formed during Ordovician – then Utica Shale 
should have filtered down into subsurface and this is 
not observed. 

It appears that Mammoth Cave analog is not correct, rather, lost-
circulation zones were probably developed by fracturing and 
dolomitization in a hydrothermal setting in a burial environment 
(Hurley and Budros)  

  

 

RESERVOIR COMPARTMENTS 
  Determined by: 
   Structure Maps 
   Fluid Contacts 
   Oil and Gas Ratios 
   Bottom-hole Pressures 
   Lateral Well Drilling Data 
  Inter-well Scale shows en echelon synclinal compartments 
  Field Scale shows free gas cap with 150’-200’ oil column 

Pulaski Break – Major non-dolomitized discontinuity of fluid levels  
  between Albion and Scipio Field 

  Stoney Point Field – 4 major compartments based on BHP’s and decline  
   rates 
  Albion Field – 3 major compartments based on BHP’s and decline rates 

Albio, Scipio and Stoney Point Fields – subtle east-west permeability 
barriers due to fracture zones that have undergone mylonitization 
and/or pervasive cementation 

Finnigan’s Finger – east-west production due to incomplete late-stage 
crystallization 

Compartment Boundaries vs. Lost Circulation Zones 
Most lost circulation zones on up-dip (south) side of barriers 

between Group 2 and 4, and Groups 1 and 2 (Figure 27, 
Hurley and Budros) 

Lost circulation zone decrease southward in Group 2 Suggesting 
 that dolomitizing fluids move upward along east-west fracture 
 zones 

Dolomites also formed on undersides of shales suggesting upward 
fluid flow 

Stoney Point - Dolomites/lost circulation zones concentrated in 
lower part 
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ORIGIN OF DOLOMITE 
1) Burgess (1960) – Reservoir dolomite was a secondary mineral formed as 

Cambrian and Lower Ordovician water moved up along the fracture zone 
(analogs- Dover and Colchester Fields in Ontario) 

 
2) Ells (1962) – Magnesium-bearing waters ascending through fractures 

responsible to dolomitization (Albion-Scipio Field similar to Mississippi 
Valley-type [MVT] lead-zinc mineral deposits) 

 
3) Beghini and Conroy (1966) – Reservoir formed by pre-Black-River Group 

water that moved through faults and fractures to produce secondary dolomite 
 
4) Buehner and Davis (1968) – Reservoir is epigenetic dolomite related to a fault 

system 
 
5) Shaw (1975) – Described a mineral assemblage (including sphalerite) in 

Albion-Scipio cores similar to MVT mineral deposits. He noted 2-phase fluid 
inclusions in Albion-Scipio dolomites. Pore filling saddle dolomites 
precipitated from fluids at minimum of 80 degree C temperature. He identified 
a liquid-hydrocarbon phase in some fluid inclusions indicating hydrocarbons 
were present at time of cementation. Proposed a model of replacement 
dolomitization and development of intercrystalline porosity during Middle to 
Late Silurian by waters percolating through fractures. Magnesium is sourced 
from underlying Prairie du Chien dolomite or Trempealeau formations. 
Second phase - during Lower to Middle Devonian as hot fluids from basin 
center created cavernous porosity, subsequent collapse, and precipitation of 
MVT assemblage. 

 
6) Ardrey (1978), DeHaas and Jones (1984, 1989) Diagenesis of Trenton-Black 

River in Albion-Scipio area due to exposure (top of Trenton Unconformity). 
Dolomitization is the result of mixing models based on the observation that 
Trenton formation water is less saline than water in shallower horizons; 
therefore, it could not be of hydrothermal origin. 

 
7) Taylor and Sibley (1986) – They identified 3 major types of dolomite (1) 

regional dolomite not associated with Field, (2) Cap dolomite that occurs in 
the top 40 feet (related to interaction of  the Trenton with Fe-rich fluids 
formed during the de-watering of the overlying Utica Shale) (3) fracture-
related dolomite (formed during deeper burial at approximately 80 degrees C 
based on geochemical results) 

 
8) Budai and Wilson (1986) – They identified various MVT accessory minerals 

including pyrite, calcite, anhydrite, barite, celestite, sphalerite, and fluorite in 
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association with saddle dolomite cements. They proposed a hydrothermal 
model with Paleozoic and Precambrian basement rock as sources of iron, 
sulfur, and other trace metals. 

 
9) Hurley and Cumella (1987) – They proposed a model based on carbon, 

oxygen, and strontium isotopes fluid-inclusion geothermometry, brine 
geochemistry and regional hydrologic constraints. Dolomitizing fluids were 
Silurian-Devonian hypersaline sea water that moved down fracture zones to 
meet with hot limestone-dissolving fluids moving up from the basement. 
These fluids mixed in a pattern that is consistent with the distribution of 
dolomite reservoirs and lost-circulation zones. 

 
  

SOURCE ROCK 
 Trenton Black River Sequence is the primary source 
  Shaley layers have TOC’s 20-25 wt% 

Burial history indicates maturity reached in the Carboniferous for the 
central basin area 

TAI (visual kerogen) and pyrolysis (Tmax) indicate thermally maturity for 
oil and gas 

  Utica Shale (above Trenton – traditionally considered source) – TOC’s too 
  low 
 

HYDROCARBONS 
 Paraffinic 
 41-43 degree API 
 0.0.02% Sulfur 
 0.974 cp Viscosity (at reservoir conditions) 
 GOR’s – 400 – 600 scf/STB 
 Cloud Point – 70 degree F 
 Free gas cap at time of discovery 
  

WATER CHARACTERISITCS 
 Connate water dense, CA-rich brine 
 North of Albion - 234,000 mg/L Total dissolved solids 
 South of Scipio – 196,000 mg/L Total dissolved solids 
 Formation water resistivity approximately 0.03 ohm-m at 104 degree F (BHT) 
  

RECOVERY MECHANISMS 
 Original Recovery 
  Solution-gas drive 
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  Gas cap expansion 
  Gravity drainage 
  Limited water drive 
 Current Recovery 
  Stoney Point Field – Pressure is still high (approximately 1100 psig) 
  Albion-Scipio Field 

Pressures down to 100-150 psig 
Gravity drainage now main mechanism 

 Volumetric Calculations meaningless – unable to accurately estimate porosities 
 Material Balance Calculations suggest: 
  Scipio Field – 170 MMB OOIP 
  Albion Field – 120 MMB OOIP 
  Stoney Point Field – Not Available 
 Secondary Recovery 

Pilot Waterflood of the Haskell Unit (near south end Scipio Field) – 
discouraging results 

  Marathon Oil – drilled a number of horizontal wells with considerable  
   promise 

 

EXPLORATION TECHNIQUES 
 Originally - Advice of psychic after dry hole exploring for Devonian gas 

Early - “Trendology” 
  Linear Fracture Zone (northwest – southeast) 
  Top-of-Trenton synclinal sag (up to 60’) recognized in producing wells 
 1960’s - early 70’s – Gravity defined basement fault along Scipio Trend 
  Limited drilling success 

Dolomite porosity mutes density contrast between regional limestone and 
reservoir Dolomite 

 1970’s - Magnetics used to detect basement discontinuities and faults 
   Albion-Scipio does not appear as an individual feature on magnetic maps 
 Recently – Micromagnetic surveys and resistivity profiles have been employed 
   Significance not yet proven 
  Reflection-seismic currently the primary method – Problems: 
  Variable till (overburden) thicknesses produce noise and statics problems 

Secondary porosity (dominant reservoir component) not detected by P- 
   waves 

Reservoir dolomites (2-5% porosity) have similar acoustic impedance as 
 regional limestones 

  Reservoir geometries hard to image 
  Reflection-seismic Trenton-Black River discoveries based on 
   Disruptions (sags) at Trenton event 
   Internal waveform changes 
   Disruption of lower events 
   Recognition of faults from offsetting events and/or diffractions 
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Soil gas geochemistry studies above Scipio field showed no correlation 
between soil gas and producing parts of the field (despite Stoney Point 
Field discovery) 

LANDSAT – effective as a regional tool but interpretations of individual 
anomalies subjective  

Stoney Point Field - Soil-gas geochemistry 

 

DEVELOPMENT 
 Albion-Scipio Trend 
  Initial Maximum Allowable 150 BOPD and/or 200MCFGPD 
  7/1/60 - Maximum Allowable reduced to 125 BOPD and/or 165 MCFGPD 
  7/1/61 - Maximum Allowable reduced to 100 BOPD and/or 150 MCFGPD 

(applies only to wells drilled in center of NW qtr of SE qtr of 40 
acre unit  

  Current – Oil allowable lifted, gas allowable 150 MCFGPD 
  Developed on 20 acre spacing 
  Decline rate 15% per year 

Stoney Point Trend 
  Maximum Allowable 150 BOPD and/or 175 MCFGPD 
  Drilling window maximum is 10 acres per 40-acre unit 
  Developed on 40 acre spacing 
  Decline rate 15% per year 
 Subsurfacing mapping useful as development tool 
  % dolomite in Trenton-Black River sequence 
  Hydrocarbon shows in Trenton-Black River sequence 

Isopach Traverse Limestone (Devonian) to top of Salina Group (Silurian) 
showing thick of synclinal sag over productive part of field 
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Trenton – Black River Trend:  Production Analysis  
 

General Observations 
1. Production data for the Trenton – Black River trend varies in quality and 

completeness. The State of Michigan did not require complete production data 
reporting until xxx. Digital data bases developed by the state beginning in 1981 
generally do not include data before that date or data before and after that date 
may be cataloged in different groupings. 

 
2. Production data are often grouped by lease hold and not necessarily by either 

individual well or by geological producing unit (e.g. – Albion Scipio 1 – 7 South 
Units). There is no means to separate the data and recalculate results based upon 
more geologically based, flow-unit parameters.  

 
3. Initial potential data was never recorded for most wells in the trend. Only long-

term and/or average data are available in most instances. Data is often duplicated 
as leasehold results and trend summaries. However, it is seldom clear as to 
exactly what data are included.    

 
4. The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 
wells. 

 
5. During the beginning stages of field development, many operators produced the 

oil and flared the gas. Complete gas production data were only recorded during 
the later stages of field development as oil production declined and the gas cap 
was blown down to extend the economic life of the field. 

 
6. Graphs of “Cumulative Oil and Cumulative Gas Production by Field” show an 

expected exponential decline in field size. “Gaps” in the curve are “filled” by 
“trend data” which give a distorted view as to the particular field sizes discovered. 
When these trends are omitted (difficult to accurately identify) a pattern emerges 
showing a few very large fields discovered (Albion-Scipio Trend), a large number 
of 1-5 well size fields discovered, and only a few intermediate field sizes 
discovered. Dr. Christopher Swezey of the U.S.G.S. interprets this to mean that 
there are still intermediate sized Trenton-Black River fields to be found. He 
calculates that as much as 723 million barrels of oil, 2,002 billion cubic feet of 
gas, and 112 million barrels of NGL’s may yet remain. The play is not resource 
limited as much as it is technology limited. It represents the greatest single 
remaining potential reserves for a particular reservoir in the State of Michigan.  

 
7. Most fields have produced more oil than gas. However, there are 5 fields in the 

trend that have produced more gas than oil. These are: Albion-Pulaski-Scipio 
Trend, Albion-Scipio 3 South, Albion-Scipio 4 South, Albion-Scipio 5 South, and 
Northville.  
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8. Only Stoney Point field has produced more brine (bbls) then gas (BOE).  

 
9. Cumulative Oil Production can be divided into approximately 5 main groups:  

a.) >10,000,000 bbls 
Albion-Pulaski-Scipio Trend, Scipio-Fayette-Moscow, Stoney Point, 
Pulaski-Homer Twp, Albion Twp. 

b.) 500,000 – 6,000,000 bbls 
Adams Twp, Sheridan Twp, Lee Twp, Hanover, Albion-Scipio 6 
South, Albion-Pulaski-Scipio Trend, Albion-Scipio 5 South, 
Northville, Dearfield, Albion-Scipio 3 South, Albion-Scipio 4 South 

c.) 5,000 – 50,000 bbls 
Albion-Scipio 2 South, Reading Section 25, Albion-Scipio 1 South, 
Northville?, Henrietta, Tekonsha, Lee Section 34 (Black River), 
Freedom, Reading, Medina, Springport, Green Oak 

d.) 500 – 5,000 bbls 
Rattle Run, Summerfield, Albion-Scipio 7 South, Huron, Hanover 
Section 13, Summerfield Section 07, Macon Creek, Summerfield 
Section 19, Blissfield, New Boston,  Newburg, Cadmus, Olivet, 
Sumpter 

e.) 0 - 60 bbls 
Ridgeway Section 01, Winterfield 

 
10. Cumulative Gas Production can be divided into approximately 5 groups: 

a.) >100,000,000 MCF 
Albion-Pulaski-Scipio Trend 

b.) 6,000,000 – 100,000,000 MCF  
Scipio-Fayette-Moscow Trend, Pulaski-Homer Twp, Stoney Point, 
Albion Twp, Northville, Albion Scipio 4 South 

c.) 1,000,000 – 6,000,00 MCF 
Adams Twp, Albion Scipio 5 South, Albion-Pulaski-Scipio Trend, 
Albion Scipio 3 South, Reading Section 3 South, Reading Section 
25, Albion Scipio 1 South, Albion Scipio 6 South, Sheridan Twp 

d.) 300,000 – 1,000,000 MCF 
Albion Scipio 2 South, Hanover, Lee Section 34 (Black River), 
Lee Twp 

e.) 50,000 – 300,000 MCF 
Cadmus, Winterfield, Green Oak, Blissfield  

 
11. There is little correlation between “Years of Production” vs. “Cumulative Oil 

Production by Field” or “Year of Discovery.” Longest producing fields (most 
years of production) range from discovery dates of 1935 (Deerfield), 1947 (New 
Boston),  1954 (Northville), 1961Springport, and 1967 (Green Oak). However, 
these fields do not reflect the greatest cumulative oil totals. Instead, 
accumulations from these fields are similar to those from fields having produced 



 130

for the fewest years (Reading Section 25 – disc 1999, Henrietta – disc 1979, 
Albion-Pulaski-Scipio Trend – disc 1981). Fields reflecting “Maximum  Oil 
Accumulation” are associated with “Years of Production” intermediate in range 
(Scipio-Fayette-Moscow Trend – disc 1957, Albion Twp – disc 1959, Albion-
Pulaski-Scipio Trend – disc 1960, Pulaski-Homer Twp – disc 1959, Stoney Point 
– disc 1984, Albio-Scipio6 South – disc 1982, Adams Twp – disc 1967, Sheridan 
Twp – disc 1967). The lack of correlation between “Years of Production,” 
“Cumulative Oil Production by Year” and “Year of Discovery” leads one to 
speculate that fields of varying reservoir types and production capabilities, 
overprinted by the learning curve of discovery, have been mixed into a single data 
base. Approximately four groups can be identified within this data base: 

 
(1) > 30 years of production; Deerfield, Northville, Springport, New Boston, 
 
(2) 20 – 30 years of production; Green Oak, Freedom, Ridgeway Section 01, 
Summerfield, Albion-Scipio 1 South, Albion Scipio 3 South, Hanover, Scipio-
Fayette-Moscow, Tekonsha, Albion Twp, Albion-Pulaski-Scipio Trend, Macon 
Creek, Medina, Pulaski-Homer Twp, Stoney Point, 
 
(3) 10 – 20 years of production;  Blissfield, Lee Section 34 (Black River), Albion 
Scipio 2 South, Albion Scipio 5 South, Cadmus, Albion Scipio 6 South, 
Northville, Albion Scipio 4 South, Adams Twp, Lee Twp, Olivet, Sheridan 
 
(4) 0 – 10 years of production; Reading, Albion Scipio 7 South, Summerfield 
Section 19, Winterfield, Rattle Run, Reading Section 25, Summerfield Section 07, 
Huron, Henrietta, Newburg, Sumpter, Albion-Pulaski-Scipio Trend, Hanover.  
 

12. There appear to be four distinct groups of “Field Size” in comparison to “Year 
Discovered.”  

 
(1) 1935 -1960; Deerfield, Sumpter, Huron, New Boston, Freedom, Northville, 

Ridgeway Section 01, Scipio-Fayette-Moscow Twp, Summerfield, Albion Twp, 
Hanover, Pulaski-Homer Twp, Tekonsha, Albion-Pulaski-Scipio Trend,  

 
(2) 1960 – 1967; Macon Creek, Medina, Springport, Blissfield, Adams Twp, 

Green Oak, Lee Twp, Sheridan Twp,  
 
(3) 1969 – 1984; Olivet,, Reading, Henrietta, Newburg, Albion Scipio 1 – 6 

South, Northville (Gas Storage), Albion Scipio 7 South, Stoney Point, 
  
(4) 1985 – 1999; Winterfield, Cadmus, Lee Section 34 (Black River), Rattle Run, 

Hanover Section 13, Summerfield Section 07, Summerfield Section 19, Reading 
Section 25. Each group displays a general trend of increasing field size through time. 
This “re-setting of the curve” may reflect discovery of differing field types followed 
by increasing knowledge of how to explore and develop these new types. 
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13. Nearly one-half of the Trenton – Black River fields produce only oil (Albion-

Scipio 7 South, Deerfield, Freedom, Henrietta, Macon Creek, Medina, New 
Boston, Newburg, Northville, Olivet, Reading, Ridgeway Section 01, Springport, 
Summerfield, Summerfield Section 07, Summerfield Section 19, Tekonsha, 
Hanover Section 13, Huron, Rattle Run, Sumpter) . 

 
14. The other half of the Trenton – Black River fields produce both oil and gas 

(Albion-Pulaski-Scipio Trend, Scipio-Fayette-Moscow, Pulaski-Homer Twp, 
Stoney Point, Albion Twp, Northville, Albion-Scipio 1-6 South, Adams Twp, 
Reading Section 28, Sheridan Twp, Hanover, Lee Section 34 (Black River), Lee 
Twp, Cadmus, Winterfield, Green Oak, Blissfield) . 

 
15. Winterfield is the only field in the trend to produce only gas. This is primarily a 

Dundee Formation field producing both oil and gas from that interval. Only one 
well in the field penetrates the deeper Trenton – Black River Formations 
producing gas from those intervals. 

 
Current Activity  
Data from the first 4 years of the Albion – Scipio field which are contained in the Albion 
– Scipio Field Folio Series is currently being entered into a computer data base. These 
data are lease based and reported upon a monthly schedule. It is thought that these data 
more accurately reflect initial production conditions and are more consistently reported. 
These data will be analyzed when data entry is complete. 
 

1. Fields from each category defined above will be correlated to the newly 
developed  index covering data quantity, quality and availability for each field. 
Fields in each category ranking high in data coverage will be selected for detailed 
study.   
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Silurian Niagaran Trend 
Production Analysis Graphs 
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Devonian Dundee Trend 
Production Analysis Graphs 
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Appendix 2 
 
WMU Project Staff activity at Eastern Section AAPG Annual Meeting in Buffalo, NY 
October 8-11, 2006 
 
Session Chair  - Oral Technical Session: New Approaches to Carbonate Reservoirs of 
Eastern America, Michael Grammer  
Session Chair - Oral Technical Session: Geological Carbon Sequestration in the Eastern 
U.S., William Harrison,  
 
Papers presented: 

• New Insight into the Reservoir Architecture of Silurian (Niagaran) Pinnacle Reefs 
in the Michigan Basin - G. Michael Grammer, W.B. Harrison, III,  D.A. Barnes, 
and R. Gillespie, Western Michigan University, A.E. Sandomierski, Exxon Mobil 
Production Company 

• Albion/Scipio Field, Michigan:  What does a detailed look at cores tell us about 
the reservoir? - Robb Gillespie, David A. Barnes, G. Michael Grammer, and 
William Harrison, III, Western Michigan University 

• Potential for Geological Carbon Sequestration in the Michigan Basin - William B. 
Harrison III, David A. Barnes, G. Michael Grammer, and Amanda Wahr, Western 
Michigan University 

• Combining CO2 sequestration with EOR activities – a synergistic approach for 
the future: An example from the Michigan Basin - G. Michael Grammer, David 
A. Barnes, William B. Harrison III, Western Michigan University and Robert G. 
Mannes, CORE Energy 

• Geological Carbon Sequestration Potential in Devonian Saline Aquifers of the 
Michigan Basin, USA - David A. Barnes, Amanda Wahr, William Harrison, III, 
G. Michael Grammer, Western Michigan University and Neeraj Gupta, Battelle 
Memorial Institute 

 
Posters Presented: 

• Hydrothermal Dolomite: Occurrence and Mechanisms, Michigan Basin, USA 
 David A. Barnes, G. Michael Grammer, William Harrison, III, and Robb 

Gillespie, Western Michigan University 

• Subsurface Stratigraphy of the Devonian Dundee Formation, Michigan Basin, 
USA – A Log Based Approach - Joshua P. Kirschner, and David A. Barnes, 
Western Michigan University 

 
 
Posters Presented: 

• Four Student Job Quest posters presented by Jessica Crisp, Josh Kirshner, Amy 
Noack and Amanda Wahr 
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Appendix 2a – abstract presented at Annual AAPG Meeting in March 2006 
 

Hydrothermal Dolomite Reservoirs (HTDR) in a Mature Petroleum 
Province, Michigan Basin, USA 

David A. Barnes, Department of Geosciences and Michigan Basin Core Research 
Laboratory, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 
49009, phone: (269) 387-8633, barnes@wmich.edu, G. Michael Grammer, 
Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008, 
William Harrison, III, Western Michigan University, Kalamazoo, MI 49008, and 
Robb Gillespie, Michigan Basin Core Research Laboratory, Department of 
Geosciences, Western Michigan University, Kalamazoo, MI 49008.  

Carbonate reservoirs with a strong overprint of fracture related hydrothermal dolomite 
(HTDR) have unique spatial distribution, internal geometry, and hydrocarbon 
production characteristics. Recognition of HTDR in mature but under-studied basins 
has important commercial implication. Improved reservoir characterization and 
enhanced recovery operations and support for untested exploration concepts can result 
from identification of HTDR. One of the first well-documented examples of HTDR in 
a giant oil field is the Trenton/Black River (T/BR), Albion-Scipio field in the 
Michigan basin, USA. Wrench faulting and Riedel shear related features, including 
dilational fractures, and primary facies controlled fluid flow conduits are considered 
fundamental to the origin of HTDR relative to regional limestone in Albion-Scipio. 

Sedimentologic and petrologic analysis of several producing formations in core 
including T/BR, Ordovician St. Peter Sandstone (aka “PdC”), and Devonian Dundee 
Formation throughout the Michigan basin indicates a pervasive overprint of 
hydrothermal dolomite. Hydrothermal mineralization is also observed in units in the 
basin as young as Mississippian/Pennsylvanian age. Structural mapping and log 
analysis in the T/BR and Dundee suggest close spatial relationship among gross 
dolomite distribution and interpreted, wrench fault-related NW-SE and NE-SW 
structural trends. Hydrothermal origin of much dolomite in several stratigraphic 
intervals, from Ordovician through Mississippian/Pennsylvanian age and persistent 
association of this dolomite in reservoirs coincident with wrench fault-related features 
is strong evidence in support of HTDR in multiple producing intervals in the 
Michigan basin. Recognition of HTDR in these and other reservoir formations should 
result in revitalized and improved exploration/exploitation activity and increased 
production in Michigan and other mature petroleum provinces. 
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Appendix 2b – abstract presented at Annual AAPG in March 2006 
 
Evaluating Controls on the Formation and Reservoir Architecture of Niagaran 
Pinnacle Reefs (Silurian) in the Michigan Basin: A Sequence Stratigraphic 
Approach 
 
SANDOMIERSKI, A.E., GRAMMER,G.M. and  HARRISON, W.B., III,  
Western Michigan University, Kalamazoo, MI  

 
Silurian-aged (Niagaran) pinnacle reefs have been productive in the Michigan Basin for 

60+ years, but extensive lateral and vertical heterogeneity limits primary production to as 
little as 25%. Enhanced recovery efforts are generally focused on water and CO2 floods, or 
horizontal drilling, but the connectivity of the reefs laterally and vertically is poorly 
understood and unpredictable, leading to marginal success in many reefs.  Niagaran pinnacle 
reef growth has previously been described as continuous growth during a single relative sea 
level rise. In this model, the characteristic shoaling upward sequence varies from a microbial 
mound facies at the base, with a stromatoporoid-dominated reef core capped by algal 
laminites and anhydrites that form a regional seal for many of the reefs in the Basin.  

Detailed core analysis within a sequence stratigraphic framework, however, indicates 
that the overall shoaling sequence is made up of higher frequency depositional cycles, each 
bounded by exposure or flooding surfaces. These tens of meters to meter scale cycles support 
an episodic reef growth model controlled by multiple fluctuations in relative sea level, and 
provides a means to predict reservoir quality since porosity and permeability is often related 
to primary facies in these reefs.  Because many cycles contain reservoir facies bounded by 
low permeability units, the result is often significant vertical compartmentalization.  This 
core-based understanding of the episodic nature of pinnacle reef growth, as well as the 
vertical facies successions and resulting impact on reservoir heterogeneity, should lead to 
enhanced predictability of reservoir architecture from wireline log signatures alone. 
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Appendix 2c – abstract presented at Eastern Section AAPG in Oct. 2006 

 
 

Albion/Scipio Field, Michigan:  What does a detailed look at cores tell us 
about the reservoir? 
 
Gillespie, R. (robb.gillespie@wmich.edu 269-387-8633), Barnes, D. A., Grammer, G.M., and 
Harrison, W.B., Michigan Geological Repository for Research and Education, Western Michigan 
University, Kalamazoo, MI 
 
Michigan’s only giant oil field, the Albion/Scipio Field, has produced over 125 million barrels of 
oil and is used as an analog for much of the Trenton-Black River exploration in Eastern North 
America.  Current reservoir models, based on published literature suggest extensive fracturing 
and brecciation followed by pervasive hydrothermal dolomitization created the field’s reservoir 
architecture.  The general impression of this reservoir is one of facies-independent and fabric-
destructive processes, especially dolomitization that created the reservoir quality. 
 
Detailed examination of numerous cores from the field and a few outside the field, do show 
some intervals of extensive fracturing and brecciation along with hydrothermal (saddle) dolomite 
cement. Many other cores show only limited fracturing and rare saddle dolomite cement.  Some 
of the cores, in the heart of the field, show almost no fracturing although much of the cored 
interval is dolomitized.  Several well cores show interbedded dolomite and limestone with 
primary facies fabrics and textures very well preserved in both lithologies.  Depositional 
environments can easily be interpreted from most of the core material.  These cores show a 
diverse set of shallow shelf and peritidal facies stacked in multiple cycles through the Black 
River and Trenton intervals. 
 
It appears from this core study that fracturing and brecciation is very laterally restricted to the 
proximity of major faults within the field.  Wells a short distance from these faults may show 
little or no fracturing.  Dolomitization does, however, extend well beyond the fractured zone.  
Primary sediment texture and porosity may have provided sufficient fluid pathway to transmit 
the dolomitizing fluids substantial distance from the major faults. 
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Subsurface Stratigraphy of the Devonian Dundee Formation, Michigan Basin, 
USA – A Log Based Approach 
 
JOSHUA P. KIRSCHNER (joshua.p.kirschner@wmich.edu) and David A. Barnes 

Western Michigan University, Geosciences and MGRRE, Kalamazoo, MI, 49008 
 
A distinct hard ground surface separates two disparate facies tracts in numerous, Middle 
Devonian, Dundee Formation cores in the Michigan basin subsurface.  This sharp stratigraphic 
contact can be distinguished by scour and/or dissolution of a partially lithified surface, which is 
commonly bored and/or eroded, and overlain by rip up clasts. This contact is thought to represent 
both a subaerial or subaqueous exposure surface and a subsequent period of slow sediment 
accumulation.  Supratidal to shallow marine, shoal-water carbonate facies occur below this hard 
ground surface, basin wide.  A lithologically homogeneous, fossiliferous mudstone-wackestone 
facies overlies the hard ground surface in core and is indicative of transgression to more distal, 
open marine conditions.   
 
Careful analysis of hundreds of wireline logs throughout the basin reveals a ubiquitous gamma 
ray marker (grm) that coincides with this hard ground/marine flooding surface in core. Although 
present across much of the basin, the grm does not always occur apparently due to local 
variability of carbonate lithofacies, especially in more open marine Dundee successions in the 
eastern basin.  A corresponding decrease in porosity, inferred from lithodensity logs, commonly 
coincides with the grm and is typically present even when the grm is not. 
 
Formal lithostratigraphy does not subdivide the Dundee Formation in the Michigan basin 
subsurface.  This investigation supports the idea that the Rogers City Limestone formation 
recognized in outcrop is a laterally extensive unit, which can be differentiated from the 
underlying Dundee (aka “Reed City equivalent”) Formation throughout the Michigan basin 
subsurface.  Log-based, member scale, stratigraphic subdivision of the Dundee Formation is 
important in understanding the primary depositional history and the distribution of highly 
productive secondary dolomite reservoirs in the upper Rogers City Member. 
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New Insight into the Reservoir Architecture of Silurian (Niagaran) Pinnacle Reefs in 
the Michigan Basin 
 
Grammer, G.Michael1, Sandomierski, A.E.2, Harrison, W.B., III1, Barnes, D.A. and 
Gillespie, R.1 

1Michigan Geological Repository for Research and Education, Western Michigan 
University, Kalamazoo, MI 49008 
2ExxonMobil Production Company, Houston, TX  77002 

 
Silurian-aged (Niagaran) pinnacle reefs have been productive in the Michigan Basin for over 60 
years, but extensive lateral and vertical heterogeneity in the reservoirs may limit primary 
production to as little as 25%. Enhanced recovery efforts have generally been focused upon 
horizontal or directional drilling and waterfloods, but the internal reservoir architecture is often 
poorly understood which leads to marginal economic success in many reefs. Recent detailed 
facies analysis from core suggests that vertical compartmentalization in some pinnacle reefs is 
the result of complex facies variability, and that the vertical distribution of these facies can be 
constrained, and therefore predicted, within a sequence stratigraphic framework.   
 
The sequence stratigraphic framework of the Miller Fox 1-11 reef, Oceana Co., MI, is 
characterized by a tripartite hierarchy of sequences, high frequency sequences, and cycles. 
Large-scale sequences (90-120 ft) correspond reasonably well to the commonly accepted 
“pinnacle reef model” in the Basin which describes an overall shoaling from mud mound to 
coral-stromatoporoid framework reef, to a restricted marine algal/stromatolitic unit which is 
ultimately capped with supratidal algal mats and evaporites.  Smaller scale high frequency 
sequences (35-50 ft) and cycles (3-10 ft), however, consisting of shoaling upward packages 
bounded by low permeability facies, result in the potential for vertical permeability baffles or 
barriers within the overall “pinnacle reef” complex. Because there is a distinct correlation 
between various facies types and porosity/permeability values within these higher resolution 
packages, enhanced understanding of how these facies are distributed should result in more 
effective primary and enhanced production efforts. 
 
 

 
 


