
 

ACHIEVING NEW SOURCE PERFORMANCE STANDARDS (NSPS) 
EMISSION STANDARDS THROUGH INTEGRATION OF 
LOW-NOx BURNERS WITH AN OPTIMIZATION PLAN 

FOR BOILER COMBUSTION 
 

COOPERATIVE AGREEMENT DE-FC26-03NT41418 
 
 

Final Report 
 
 
 
 

principal author: 
Wayne Penrod, Sunflower Electric Power Corporation 

 
 

performance dates: 
September 2001 through September 2005 

 
issue date: 

November 2005 
 

re-issue date: 
June 2006 

 
 

prepared for: 
U.S. Department of Energy 

National Energy Technology Laboratory 
Power Plant Improvement Initiative Program 

Award Number DE-FC26-03NT41418 
 
 

submitted by: 
Sunflower Electric Power Corporation 

PO Box 1020, 301 West 13th Street 
Hays, KS 67601 

 
 

 



Disclaimer 
 
 

This Final Technical Progress Report was prepared with the support of the U.S. Department of Energy, under Award 
No. DE-FC26-03NT41418. However, any opinions, findings, conclusions, or recommendations expressed herein 
are those of the author(s) and do not necessarily reflect the views of the DOE. 

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

 



Abstract 

The objective of this project was to demonstrate the use of an Integrated Combustion 

Optimization System to achieve NOX emission levels in the range of 0.15 to 0.22 lb/MMBtu 

while simultaneously enabling increased power output. The project plan consisted of the 

integration of low-NOX burners and advanced overfire air technology with various process 

measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the 

use of sophisticated neural networks or other artificial intelligence technologies and complex 

software to optimize several operating parameters, including NOX emissions, boiler efficiency, 

and CO emissions. 

The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can 

be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. 

In Phase II, the boiler was equipped with burner modifications designed to reduce NOX 

emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the 

boiler was to be equipped with an overfire air system to permit deep reductions in NOX 

emissions. Integration of the overfire air system with the improvements made in Phases I and II 

would permit optimization of boiler performance, output, and emissions.  

This report summarizes the overall results from Phases I and II of the project. A significant 

amount of data was collected from the combustion sensors, coal flow monitoring equipment, and 

other existing boiler instrumentation to monitor performance of the burner modifications and the 

coal flow balancing equipment.  
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List of Acronyms and Abbreviations 
 

 
2V  Two Valve - Used to designate a half load performance test in which two of the four 

turbine control valves are opened 100% and the other two control valves are fully 
closed. 

 

APM   Atlantic Plant Maintenance – Industrial maintenance and construction company that bid 
on installation work associated with the project. 

 
B&W   The Babcock and Wilcox Company – Manufacturing company that provided the boiler 

at Holcomb Station. 
 
BACT  Best Available Control Technology – An acronym used in environmental permitting to 

describe the best technology available to control emissions. 
 
CEMS   Continuous Emissions Monitoring System – Computerized system used to monitor and 

report combustion emissions as required by law. 
 
CFD   Computational Fluid Dynamics – A modeling technique used to calculate predicted 

flows, temperatures, and emissions in a given process. 
 
CO    Carbon Monoxide – A gaseous pollutant produced in coal combustion processes. 
 
FEGT   Furnace Exit Gas Temperature – The temperature of flue gas in an industrial boiler 

measured just below the bottom of the pendant superheaters, on a horizontal plane 
approximately in line with the tip of the boiler bullnose. 

 
GE EER General Electric Energy and Environmental Research Corporation – Environmental 

company that was the primary engineering and material supply contractor for the 
project. 

 
I/O    Input/Output – Typically used to signify information passed to and from analog and 

digital electronic control systems.  
 
KDHE   Kansas Department of Health and Environment 
 
LOI   Loss On Ignition – A parameter that signifies the amount of unburned combustible 

material (typically carbon) remaining in solid particles (ash) following a combustion 
process. 
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MMI   Man-Machine Interface – Computer hardware and software used to provide an interface 
for people to provide and receive information from an analog or digital electronic 
control system. 

 
NOx   Nitrogen Oxides – Gaseous pollutants produced in coal combustion processes. 
 
NSE   National Steel Erectors, Inc. – Industrial maintenance and construction company that 

bid on installation work associated with the project and completed a portion of the 
installation work associated with Phase II of the project. 

 
O2    Oxygen – Excess oxygen is typically measured at the exhaust of an industrial boiler to 

provide an indication of how much excess air is being utilized in the combustion 
process. 

 
OFA  Overfire Air – A combustion technique in which a portion of combustion air is moved 

from the burner combustion zone to an area above the burner combustion zone to 
reduce NOx emissions.  Overfire air can be admitted immediately above the burner 
zone (close-coupled) or farther away from the burner zone (separated). 

 
PLC  Programmable Logic Controller – A controller used to control processes using analog 

and digital electronic inputs and outputs. 
 
PMC   Power Maintenance and Construction, Inc. – Industrial maintenance and construction 

company that bid on installation work associated with the project and completed a 
portion of the installation work associated with Phases I and II of the project. 

 
PSD   Prevention of Significant Deterioration – A type of air operating permit design to 

protect air quality by defining maximum emission levels for various pollutants. 
 
PC    Pulverized Coal 
 
PM    Particulate Matter – Very small liquid and solid particles floating in the air. 
 
PM10   Particulate Matter less than 10 microns in Diameter – This particulate matter is of 

greatest concern for human health because it is small enough to be inhaled into the 
deepest parts of the lungs. 

 
RFP   Request for Proposals – Document sent to companies to solicit monetary bids for a 

defined work scope.  This document typically includes bidding instructions, technical 
specifications, and terms and conditions  

 
SCR   Selective Catalytic Reduction – A process where a gaseous or liquid reductant (most 

commonly ammonia or urea) is added to the flue gas stream and is absorbed onto a 
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catalyst. The reductant reacts with NOx in the flue gas to form H2O and N2 and 
remove the NOx from the flue gas. 

 
SOFA   Separated Overfire Air – See definition of OFA above. 
 
SR    Stoichiometric Ratio – The exact ratio of air to fuel required to complete combustion 

based on the chemical combustion equations. 
 
SO2   Sulfur Dioxide - Gaseous pollutant produced in coal combustion processes. 
 
VOC   Volatile Organic Compounds - Organic chemical compounds that have high enough 

vapor pressure under normal conditions to significantly vaporize and enter the 
atmosphere.  

 
VWO   Valves Wide Open - Used to designate a full load performance test in which all four of 

the turbine control valves are opened 100%. 
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S.0 Executive Summary 

The objective of this project was to demonstrate the use of an Integrated Combustion 

Optimization System to achieve NOX emission levels in the range of 0.15 to 0.22 lb/MMBtu 

while simultaneously enabling increased power output. The project plan consisted of the 

integration of low-NOX burners and advanced overfire air technology with various process 

measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the 

use of sophisticated neural networks or other artificial intelligence technologies and complex 

software to optimize several operating parameters, including NOX emissions, boiler efficiency, 

and CO emissions. 

The program was set up in the following three phases: 

• In Phase I, the boiler was equipped with sensors that can be used to monitor furnace 
conditions and coal flow to permit improvements in boiler operation. 

• In Phase II, the boiler was equipped with burner modifications designed to reduce NOX 
emissions and automated coal flow dampers to permit on-line fuel balancing. 

• In Phase III, the boiler was to be equipped with an overfire air system to permit deep 
reductions in NOX emissions to be achieved. 

Integration of the overfire air system with the improvements made in Phases I and II was 

expected to permit optimization of boiler performance, output, and emissions. All work 

identified in Phases I and II has been completed.  

The NOx reduction goal was to be achieved through a combination of burner modifications, 

advanced controls and instrumentation, and SOFA.  Of the overall NOX reduction, a small 

percentage was projected from the burner modifications and the majority of the reduction was 

predicted as a result of SOFA implementation.  The additional unit output was expected as a 

result of reduced furnace exit gas temperatures and a resulting decrease in slagging potential that 

would allow the unit to run at higher loads for longer durations without slag buildup.  

Unfortunately, the burner modifications resulted in an increase in NOX emissions and increased 

slagging, as well as significantly increased burner maintenance issues. 
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1.0 Introduction 

The objective of this project was to demonstrate the use of an Integrated Combustion 

Optimization System to achieve NOX emission levels in the range from 0.15 to 0.22 lb/MMBtu 

while simultaneously enabling increased power output. The project plan consisted of the 

integration of low-NOX burners and advanced overfire air technology with various process 

measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the 

use of sophisticated neural networks or other artificial intelligence technologies and complex 

software to optimize several operating parameters, including NOX emissions, boiler efficiency, 

and CO emissions. 

Holcomb Station, shown in Figure 1, is a coal fired power plant located approximately 6 miles 

south of Holcomb, KS.  The plant, which went online in August of 1983, was designed to burn 

Powder River Basin coal.  The boiler is a Babcock & Wilcox (B&W) boiler with early 

generation low-NOX burners.  Figure 2 summarizes boiler design details.  The average NOX  

emission rate for Holcomb Station in the five years previous to the project was 0.283 lb/MMBtu. 

Figure 1 – Holcomb Station 
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Figure 2 – Holcomb Boiler Design Data 

 

 

The Integrated Combustion Optimization System was set up in three phases to demonstrate the 

synergistic effect of layering NOX control technologies. The three phases were: 

• Phase I – Advanced Sensors Upgrade / Burner and SOFA Design 

• Phase II – Low-NOX Burner Modifications and Coal-Flow Balancing 

• Phase III – Advanced Separated Overfire Air System 

Phase I – Advanced Sensors Upgrade was intended to demonstrate the effectiveness of novel 

measuring sensors with respect to the control of factors leading to reduced NOX emissions and 

improved thermal efficiency with minimal physical modifications to the boiler. 
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Phase II – Low-NOX Burner Modifications were intended to demonstrate the effectiveness of 

low-cost modifications to the existing, first generation low-NOX burners to reduce NOX 

emissions. The modifications consisted of new burner tips and other parts designed to lower 

NOX emissions. This phase also included modifications to the existing pulverized coal (PC) 

piping to permit automated fuel balancing among all burners. 

Phase III – Advanced Separated Overfire Air (SOFA) was intended to demonstrate deeper NOX 

control competitive to SCR installation with the addition of an overfire air system coupled with 

the existing Phase I and II modifications to optimize overall system performance. The integration 

of all three phases of these improvements would provide the opportunity to reduce NOX 

emissions and permit improvements in power plant performance and output. 

This report summarizes the technical results of Phases I and II of the project.  Phase III of the 

project was not completed. 
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2.0 Technical Progress 

Phases I and II of the project were completed.  The results of each phase are discussed below. 

2.1 Task 1.0 – Phase I – Advanced Sensors Upgrade / Burner and SOFA Design 

The objective of Phase I was to demonstrate the effectiveness of various measuring sensors with 

respect to the control of factors leading to reduced NOX emissions and improved thermal 

efficiency with minimal physical modifications to the boiler.  Phase I also included design work 

for burner modifications required to support SOFA and lower NOx. The scope of work for the 

Advanced Sensors Upgrade Phase was performed in the following six tasks. 

2.1.1 Task 1.1 – Process Design and Performance Analysis  

In this task analytical tools and methods were used to evaluate existing process engineering 

systems and to prepare material/energy balances for the low-NOX burner modifications and 

overfire air system.  System physical modeling and computer modeling were completed by 

General Electric Energy and Environmental Research (GE EER).  GE EER also utilized a 

Computational Fluid Dynamics (CFD) model to evaluate heat transfer, flow rates, combustion 

temperatures and emission rates. 

The physical model of the Holcomb boiler completed by GE EER was a 1:20 scale model of the 

boiler constructed out of plexi-glass, plastic, blowers, and hoses.  The burners were scaled using 

a modified Thring-Newby approach to assure the flow characteristics of the model accurately 

reflected actual flow characteristics in the Holcomb boiler.  Smoke and bubbles were utilized for 

visual observation of combustion air and overfire air mixing as well as velocity mapping and 

tracer dispersion measurements.    Figure 3 shows a picture of the physical model of the boiler.  

Figure 4 shows a close up of the burners in the model.  The picture labeled ‘Baseline’ in Figure 4 

represents a model of the original burners, and the picture labeled ‘Modified’ represents a model 

of the modified GE EER burner design. 
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Figure 3 – Physical Model of Boiler 

 

Figure 4 – Physical Model of Burners 
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Results of flow modeling in the physical model were consistent with expected results for an 

opposed wall-fired boiler.  The flow tended to stay in the center of the furnace between the front 

and rear wall.  Additionally, the swirl pattern of the burners tended to push flow out towards the 

two side walls of the furnace.  The flow modeling also showed a recirculation zone above the 

two upper burner elevations.  Velocity profiles were also measured in two horizontal planes 

during the modeling.  The first horizontal plane was at the elevation where the new overfire air 

injectors were to be installed and the second horizontal plane was at an elevation even with the 

tip of the furnace bullnose.  The velocity profiles were consistent with results of the flow 

modeling.  At the overfire air plane the highest velocities were measured in the center of the 

furnace.  At the boiler nose plane the highest velocities were measured on the east and west side 

walls, with velocities decreasing closer to the front wall.  Figure 5 shows a graphical 

representation of the velocity profile modeling. 

Figure 5 – Velocity Profiles 
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Results from the flow modeling and velocity profile tests were used to develop the model for the 

overfire air injectors.  The overfire air configuration in the physical model utilized six injectors 

on both the front and rear walls.  To account for the biased combustion air flow towards the 

furnace sidewalls, larger overfire air injectors were utilized on the four outboard injectors.  

Smoke visualization was used initially to evaluate how effectively the overfire air mixed with the 

combustion air.  Tracer dispersion measurement was then used to further quantify the overfire air 

mixing effectiveness.  Tracer dispersion was completed by injecting methane as a tracer gas in 

the overfire air, and then measuring the dispersion of methane at the nose measurement plane.  

Figure 6 shows results from the tracer dispersion measurement testing.  The plots show air 

stoichiometric ratios at various overfire air injection levels across the nose measurement plane.  

The results of the physical modeling also confirmed that there was sufficient secondary duct 

pressure to achieve adequate mixing without the need for booster fans. 
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Figure 6 – Tracer Dispersion Results 
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A CFD model was developed by GE EER to evaluate the impact of burner modifications and 

overfire air on heat transfer, combustion emissions, and gas flow within the boiler.  The CFD 

model utilized a three-dimensional representation of the boiler broken down into approximately 

380,000 cells.  Several advanced engineering calculational methods were used within the model 

to predict boiler performance.  Figure 7 shows a geometrical diagram of the model. 

Figure 7 – CFD Model 

 

The CFD model was first utilized to develop flow and temperature pathlines for each burner 

elevation.  These pathlines show the path flue gas takes from the combustion zone of each burner 

elevation through the furnace to the upper crossover and then entering the boiler backpass.  

Figures 8 through 12 show the pathlines for each of the five burner elevations at 376 MW.  Note 

that the temperatures indicated are in degrees Fahrenheit. 
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Figure 8 – Flow and Temperature Pathlines for ‘A’ Burner Elevation 

 

 

Figure 9 – Flow and Temperature Pathlines for ‘B’ Burner Elevation 
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Figure 10 – Flow and Temperature Pathlines for ‘C’ Burner Elevation 

 

 

Figure 11 – Flow and Temperature Pathlines for ‘D’ Burner Elevation 
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Figure 12 – Flow and Temperature Pathlines for ‘E’ Burner Elevation 

 

The CFD model was also utilized to show velocity, temperature, and oxygen dispersion at 

various planes within the boiler.  Figure 13 shows this data at full load with no overfire air. 
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Figure 13 – Velocity, Temperature and Oxygen Distribution @ Full Load, No OFA 
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The CFD model was then modified to include overfire air.  Temperature and flow pathlines were 

first predicted for the twelve OFA ports.  Figure 14 shows these pathlines for the OFA ports at 

full load with 20% overfire air.  Note that the temperatures indicated are in degrees Fahrenheit. 

 

Figure 14 – Flow and Temperature Pathlines for OFA Injection Ports 

 

Figure 15 shows the temperature and oxygen distribution profiles across the boiler at full load 

with 20% OFA.  A comparison of these profiles with the full-load, no OFA profiles shown in 

Figure 13 shows that the temperature of the flue gas at the boiler nose plane does not appear to 

increase with the addition of OFA.  Keeping temperatures at or below existing levels was a 

critical factor in the success of any modifications.  Increased temperatures in this zone lead to 

increased boiler slagging which has a detrimental affect on unit availability and reliability. 
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Figure 15 – Temperature and Oxygen Distribution @ Full Load, 20% OFA 

 

In addition to increased gas temperature, another potential negative consequence of adding OFA 

is increased carbon monoxide (CO) emissions.  The CFD model was utilized to predict CO 

emissions at various OFA levels.  As shown in Figure 16, the CFD model predicted increased 

CO emissions with OFA. 

Figure 16 – CO Emissions at Various OFA Levels 

 

15 



Because of the flow bias in the boiler towards the center of the furnace, GE EER felt that CO 

emissions could be improved by increasing velocity in the OFA ports to achieve better 

penetration in the center of the furnace where combustion gas flow is the highest.  GE EER 

developed a double concentric jet port design which could be utilized to control jet penetration.  

The OFA port has adjustable dampers that allow flow to be biased at various ratios through the 

inner and outer portions of the port.  Figure 17 shows a simple diagram of the port design with 

the double concentric discharge point on the left side. 

Figure 17 – GE EER Double Concentric Jet Overfire Air Injection Port Design 

 

GE EER used the CFD model to predict the impact on CO emissions of biasing the core jet 

velocity higher to achieve improved penetration.  The model indicated that biasing the OFA 

injector ports in this way would result in improved CO emissions.  Figure 18 shows the results of 

biasing the core jet velocity at full load with 20% OFA. 
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Figure 18 – CO Emissions at Full Load, 20% OFA – Biased Core Jet Velocity 

 

The next step in the CFD modeling process was to further evaluate the effects of OFA on furnace 

exit gas temperature (FEGT) and overall boiler performance.  To complete this evaluation the 

boiler was divided into several cross sections and the mean gas temperature at each cross section 

was calculated with advanced boiler performance modeling techniques.  The mean gas 

temperature was then plotted on a graph showing mean gas temperature versus furnace axial 

position.  Figure 19 shows how the boiler was divided into cross-sections.  Figure 20 shows the 

mean gas temperature profile at full load with no overfire air. 
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Figure 19 – Boiler Cross Sections along Furnace Axial Length 

 

Figure 20 – Mean Gas Temperature Profile – Full Load, No OFA 
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Figure 21 shows mean gas temperature profiles at various OFA levels as compared to the 

baseline data with no OFA shown in Figure 20. 

Figure 21 – Mean Gas Temperature Profiles, Full Load 

 

The data shown in Figure 21 indicates that the addition of OFA will result in higher gas 

temperatures in the burner zone but reduced gas temperatures at the furnace bullnose which is 

the defined measurement plane for FEGT.  As mentioned previously, keeping FEGT at or below 

existing levels was a critical component of the project to assure that slag formation in the 

secondary superheater inlet section of the boiler just above the furnace bullnose would not 

increase.  Figure 22 shows a plot of predicted FEGT at various OFA injection rates. 
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Figure 22 – Predicted FEGT at Various OFA Injection Rates, Full Load 

 

The CFD model was further utilized to evaluate the impact of OFA on overall boiler 

performance.  Figure 23 shows a table with calculated results at various OFA injection levels. 

Figure 23 – Boiler Performance Parameters at Various OFA Injection Rates, Full Load 
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One of the primary goals of the project was to be able to increase unit capacity while achieving 

reduced NOX emission levels.  This extra capacity could only be utilized if emissions were 

reduced at the increased load level and furnace exit gas temperatures were not increased.  Figure 

24 shows a table with the same calculated performance parameters as those shown in Figure 23.  

The values in Figure 24 are calculated at a load 7 MW greater than the full load values shown in 

Figure 23.  The FEGT at the increased full load value with 30% OFA was predicted to be 65oF 

lower than the FEGT at the existing full load value with no OFA. 

Figure 24 - Boiler Performance Parameters at Various OFA Injection Rates, Full Load 

plus 7 MW 

 

The results of the GE EER models indicated that NOX emissions would be reduced with the 

implementation of burner modifications, and further reduced with SOFA.  Their modeling also 

predicted that furnace gas temperatures would be reduced with the implementation of SOFA. 
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2.1.2 Task 1.2 – Design and Fabrication/Construction Documents 

In this task design and fabrication drawings for new equipment and other similar detailed 

information were developed to enable the receipt of contractor proposals for equipment supply 

and installation. GE EER completed design and fabrication drawings for burner modifications 

and coal flow balancing damper installation.  As part of Task 2.3 design and fabrication 

drawings were also developed for SOFA.  The installation of these components was planned to 

be completed in a phased approach.  The burner modifications and coal flow balancing damper 

installation were scheduled for completion in 2003 and the SOFA installation was planned for 

2004 or later.   

The design of the burner modifications was completed by GE EER based on results of the 

engineering design work completed in Task 1.1.  The burner modifications included replacement 

of the existing burner coal nozzle with a nozzle that flared out and included a flame stabilization 

ring and stabilizing teeth.  The tip of the burner was also designed to extend into the furnace an 

additional 4” which required an extension of the secondary air sleeve.  Because of this extension 

and a concern about increased exposure temperatures beyond the design temperatures of the steel 

in the burner tips, a thermocouple was added to measure tip temperature.  An adjustable shroud 

was also included in the design.  The shroud was designed to slide axially across the burner outer 

register opening to allow for air flow balancing between the burners on each burner elevation.  

Figure 25 shows a drawing of the original B&W low-NOX burner design.  Figure 26 shows a 

drawing of the same burner with the GE EER design modifications. 
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Figure 25 – Original B&W Burner Design 

 

 

 

Figure 26 – GE EER Burner Design Modifications 
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GE EER also completed design drawings for installation of coal flow balancing dampers on the 

coal pipes coming off the top of each pulverizer.  The dampers are a GE EER patented design 

called Flow MastEER.  Figure 27 shows a sketch of the Flow MastEER damper design, and 

Figure 28 shows the location of the damper installation on top of the pulverizers. 

 

Figure 27 – GE EER Flow MastEER Damper Design 
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Figure 28 – Coal Flow Balancing Damper General Arrangement 

 

Once all design was completed, GE EER developed bid specifications to be included in Request 

for Proposals (RFPs) which were sent to various installation contractors.  The results of the 

bidding process are discussed in later sections of this report. 

2.1.3 Task 1.3 – Boiler Combustion Optimization Sensors 

In this task the Holcomb boiler was equipped with various sensors to optimize the combustion 

process.  These sensors included a grid of 15 CO monitors in the boiler backpass, 5 Loss-of-

Ignition (LOI) sensors in the upper portion of the furnace, 25 NOX sensors, one on each burner, 

and coal flow measurement sensors on each burner coal pipe.  The boiler sensors were provided 

in a package supplied by MK Engineering.  The coal flow sensors were supplied by Air Monitor.  

All furnace sensors were installed during the Spring 2002 outage, and the coal flow sensors were 
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installed in 2003.    Figure 29 shows schematic from MK Engineering illustrating their 

combustion monitoring package and the various sensor locations. 

Figure 29 – MK Engineering Combustion Monitoring Package 

 

Figure 30 shows pictures from the installation of the CO sensors.  The upper two pictures show 

the sensors and their extension sleeves.  The picture on the upper right is a closeup of the CO 

sensor itself. The lower two pictures shows the installation sleeves that were installed in the 

boiler.  At the end of each sleeve a steel shield was installed to protect the sensor from fly ash in 

the flue gas.  Figure 31 shows the LOI sensors installed along the upper portion of the front wall 

of the furnace. 

26 



Figure 30 – CO Sensor Installation 
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Figure 31 – LOI Sensor Installation 

 

 

2.1.4 Task 1.4 – Sensor Integration/Testing 

In this task data from the new boiler and coal flow sensors was integrated into the existing plant 

performance monitoring system for tracking and trending.  In addition, testing was completed to 

evaluate information obtained from the sensors. The integration of the sensors included 

significant computer networking in order to get the data into the plant performance monitoring 

system database.  The existing plant performance monitoring system is a package called EtaPro 

supplied by General Physics.  General Physics was hired to assist with incorporating the data into 

the EtaPro Pi database.  Figure 32 shows a schematic of the computer networking configuration 

devised by GE EER and General Physics.  The schematic also shows the GE EER PLC used for 

coal flow balancing control that will be discussed later in this report. 
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Figure 32 – Computer Network Schematic 

 

 

Figure 33 shows a screen shot from EtaPro showing how data from the CO sensors and LOI 

sensors is displayed to the operators.  Similar screens were set up to display data from the NOX 

sensors and the coal flow measurement sensors. 
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Figure 33 – EtaPro Screen Displaying Combustion Sensor Data 

 

 

Data collected from the sensors during the baseline testing is presented in Section 2.1.5 of this 

report.  Figure 34 shows an example of how data from the CO sensors in the boiler backpass was 

utilized to assist with boiler tuning. 
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Figure 34 – Example of Using CO Sensors for Combustion Tuning on ‘E’ Elevation 
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2.1.5 Task 1.5 – Baseline Testing 

In this task tests were performed on Holcomb Station Unit 1 to gather baseline performance and 

emissions data prior to retrofit of the emissions control equipment. This data set served as a 

comparison reference for the results of optimization tests performed on the unit. The baseline 

testing was completed in February 2003. 

During the baseline testing several test runs were completed at various load points, excess O2 

levels, and mill biasing configurations.  Figure 35 shows a table summarizing the various test 

runs completed during the baseline testing. 

Figure 35 – Baseline Test Plan 

 

Emissions data from the full load data runs at various excess O2 levels were used to develop 

plots of NOX and CO emissions versus boiler O2.  Figure 36 shows the baseline emissions 

curves. 
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Figure 36 – Baseline NOx and CO Emissions Curves at Full Load 

 

Similar data was also collected for FEGT and a comparison of plant O2 levels measured from the 

existing in situ Yokogawa O2 probes and economizer O2 levels measured from a grid of test 

probes used to pull a flue gas sample into a bubble pot for analyzing with a Teledyne portable O2 

analyzer.  Figure 37 shows FEGT and economizer O2 levels versus plant O2 levels. 
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Figure 37 – Baseline FEGT and Oxygen Data at Full Load 

 

Baseline data was also collected from the new CO monitors, LOI combustion sensors, and burner 

NOx sensors.  Figure 38 shows baseline data from the CO sensors.  The plots on the left show 

the magnitude of CO (in ppm) at the horizontal cross-section of the boiler where the CO sensors 

are installed.  The cross-section plot is shown with west-to-east data going from left-to-right on 

the plot and front wall-to-back wall data going from front-to-back on the plot.  The plots on the 

right show corresponding O2 data at the vertical cross-section of the economizer outlet ducts 

where the in situ plant O2 probes are installed.  The cross-section plot is shown with west-to-east 

data going from left-to-right on the plot and upper-to-lower data going from top-to-bottom on the 

plot.    Figure 39 shows baseline data from the LOI combustions sensors.  The data is shown at 

various boiler excess air values with the probes shown west-to-east on the plot.  The values 

shown for Relative LOI and Relative T are dimensionless numbers used for comparison only.   
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Figure 38 – Baseline CO Sensor Data 

 

Figure 39 – Baseline Combustion (LOI) Sensor Data 
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Results from the baseline testing will be further discussed in Section 2.2.1. 

2.1.6 Task 1.6 – PSD Review  

In this task a regulatory review was to be performed to assure that the project would not impact 

the ambient air quality of the region.  Burns and McDonnell was hired to complete the PSD 

review.  They completed a draft permit review, however the permit review was not submitted to 

the Kansas Department of Health and Environment (KDHE) pending a decision on whether or 

not to proceed with Phase III of the project.  The review determined that CO, SO2 and PM10 

would be subject to a PSD review as a result of the project.  Figure 40 shows a summary of the 

calculated potentional emissions changes compared to the PSD significance level. 

Figure 40 – Emissions and Significance Levels 

Pollutant 

Pre-
Modification 

Emission 
Rates 

Pre-
Modification 

Actual 
Emissions* 

Post-
Modification 

Predicted 
Emission 

Rates 

Post-
Modification 

Potential 
Emissions** 

Actual-to-
Future-

Potential 
Emissions 

Change 

PSD 
Significance 

Level 
  (lb/MMBtu) (tons/year) (lb/MMBtu) (tons/year) (tons/year) (tons/year) 

SO2 0.163 2,054 0.35 5,387 3,333 40 
CO 0.028 360 0.15 2,309 1,949 100 

NOX 0.281 3,550 0.20 3,078 -472 40 
PM/PM10 0.016 198.5 0.03 461.7 263.2 25/15 

VOC 0.005 57.5 0.007 68.2 10.7 40 
Lead 0.00042*** 0.41*** 0.00042 0.41 -- 0.6 

Sulfuric 
Acid Mist 0.00018*** 0.16*** 0.00018 0.17 0.01 7 
 

* Based on data reported for 2000 and 2001. 

** Based on 3,514 mmBtu/hr heat input operating for 8,760 hours annually. 

*** Calculated using AP-42 emission factors and based on 3,389 mmBtu/hr heat input operating for 8,760 hours annually. 
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Figure 41 shows a summary of the Best Available Control Technology (BACT) analysis that was 

performed on the three pollutants subject to PSD review. 

Figure 41 – BACT Results 

Pollutant 
Proposed BACT Controlled Emission Rate 

SO2 Flue Gas Desulfurization System 0.35 lb/mmBtu 

PM10 Baghouse 0.03 lb/mmBtu 

CO Good Combustion Practice 0.15 lb/mmBtu 

 

2.2 Task 2.0 – Phase II – Low-NOx Burner Modifications 

The objective of Phase II was to demonstrate the effectiveness of low-cost modifications to the 

existing, first generation low-NOX burners to reduce NOX emissions. This phase also included 

modifications to the existing pulverized coal (PC) piping to permit automated fuel balancing 

among all burners. The scope of work for the Low-NOX Burner Modifications Phase was 

performed in the following three tasks. 

2.2.1 Task 2.1 – Low-NOx Burner Modifications 

In this task the existing twenty-five B&W dual-register burners installed on Holcomb Station 

Unit 1 were modified to improve flame stability and reduce NOX emissions.  The modified 

burners were designed to optimize combustion emissions when operated in conjunction with the 

overfire air system that was to be installed in Phase III of the project.  The burner modifications 

were completed during the Spring Outage in 2003.  The installation work was sent out for bids 

and Power Maintenance and Construction (PMC) was the successful bidder.  PMC also 

completed installation of the coal flow balancing dampers on one mill and coal flow 

measurements sensors on all five mills during the same outage.     
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Figure 42 shows pictures of the burner modifications.  The upper left picture shows scaffolding 

in place inside the furnace and new parts staged in front of the burner fronts.  The picture on the 

upper right shows a burner with the original coal nozzle and inner air sleeve removed.  The 

picture on the lower left shows a burner with the new coal nozzle and inner air sleeve installed.  

The picture on the lower right shows one of the new adjustable shrouds in place on the outer air 

register assembly. Figure 43 shows pictures of the coal flow balancing valves installed above ‘A’ 

pulverizer.  The picture on the left shows the coal pipes before the balancing valves were 

installed and the picture on the right shows the coal pipes with the new valves in place. 

Figure 42 – Burner Modifications 
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Figure 43 – Coal Balancing Valve Installation 

 

 

Post-outage combustion optimization testing began after startup following the 2003 Spring 

Outage.  GE EER put together a test plan that included coal flow balancing (discussed in Section 

2.2.2), burner tuning, CO tuning, and PA flow measurements.  There were over 100 test runs 

completed over a two month period during the optimization process.  Unfortunately the 

optimization testing was not successful at reducing NOX emission levels below pre-modification 

levels.  Figure 44 shows a plot of NOX and CO emission levels for several test runs during the 

optimization process. 
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Figure 44 – Emissions During Optimization Process 

 

Figure 45 shows optimization data compared to baseline data for NOx and CO.   

Figure 45 – Optimization Emission Data Compared to Baseline Test Data 
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The inability to reduce NOx emissions is shown in Figure 46.  This plot shows that both NOX 

and CO were higher after completion of the optimization testing. 

Figure 46 – Comparision of Post-Optimization Emission Data with Pre-Modification Data 

(Graph Labeled “Current” is Post-Optimization and Graph Labeled “Historical” is Pre-Modification) 

 

The performance of the low-NOX burner modifications continued to be monitored closely 

following completion of the burner modifications and optimization testing.  Prior to installation 

of the modifications, annual NOX emission rates were very consistent at around 0.28 lb/MMBtu.  

Annual average NOX emissions over the period 1996 - 2002 from the certified Continuous 

Emissions Monitoring System (CEMS) at the plant are shown in Figure 47. 
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Figure 47 – Historical Annual NOX Emission Rates 

Year Annual NOx Emission Rate 

(lb/MMBtu) 
1996 0.280 

1997 0.280 

1998 0.290 

1999 0.280 

2000 0.275 

2001 0.286 

2002 0.284 

 

From May through September 2003, following installation of the burner modifications, daily 

average NOX emissions began to increase.  The average daily NOX emission rate for this time 

period was 0.304 lb/MMBtu.  NOX emissions continued to run higher than normal throughout 

2004.  The annual average NOX emission rate for 2004 was 0.317 lb/MMBtu.  The NOX 

emission rate for the first quarter of 2005 was 0.326 lb/MMBtu.  This data is summarized in 

Figure 48. 
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Figure 48 – Annual NOX Emission Averages 
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In addition to increasing NOX emission rates, the burner modifications also resulted in increased 

furnace exit gas temperatures.  These elevated temperatures resulted in increased slagging in the 

upper portions of the furnace.  Figure 49 shows a plot of FEGT before and after the burner 

modifications that were completed in March of 2003. 
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Figure 49 – Average Furnace Exit Gas Temperatures 
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The burner modifications also resulted in significant maintenance issues.  The modifications at 

the burner tips included a new, flared coal nozzle with a stabilization ring attached around the 

outside perimeter of the nozzle tip.  Stabilization “teeth” were also added along the inner 

perimeter of the nozzle tip, and both the coal nozzle and the inner air sleeve were inserted 4” 

farther into the boiler than the previous design.  Figure 50 shows the original burner 

configuration and Figure 51 shows the modified configuration. 
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Figure 50 – Original Burner Configuration 

 

 

Figure 51 – Modified Configuration 
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The first problems encountered with the modified design were associated with the scanners and 

ignitors.  Because of the flared coal nozzle and the stabilizing ring, the gap between the coal 

nozzle and the inner air sleeve was significantly reduced.  This gap is utilized as a viewing port 

for the flame scanners.  The viewing area was significantly obstructed by the stabilizing ring, 

making it very difficult to sight the scanners to the flame.  The gap between the coal nozzle and 

the inner air sleeve is also where the gas ignitor is inserted before being placed into service.  The 

reduction in this gap following the burner modifications made it very difficult to squeeze the 

ignitor into its fully inserted position on many of the burners.  Figure 52 shows the tight fit for 

the ignitor on one burner. 

Figure 52 – Clearance for Ignitor 

 

 

The extension of the coal nozzle and inner air sleeve also resulted in overheating issues that 

resulted in significant overheating damage.  With the extension of these components, the ignitor 

did not insert far enough into the boiler to extend beyond the end of the inner air sleeve.  Flame 

impingement from the ignitor resulted in overheating of the steel in the inner air sleeve.  The 

extension of the burner tip also exposed the burner to increased radiant heat from the furnace.  
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This also resulted in overheat damage to the burner tips.  Figure 53 shows an example of the 

overheat damage that occurred.  It is likely that this damage and its impact on air flow 

distribution contributed to the increased NOX emissions and the increased furnace exit gas 

temperatures. 

Figure 53 – Example of Overheat Damage on Modified Burner 

 

 

Figure 54 shows a plot of net unit heat rate from 1997 through 2005.  The plot shows that the net 

unit heat rate increased (meaning the plant became less efficient) following the burner 

modifications.  There are several factors that affect overall plant efficiency, and it is not clear 

how much of the overall increase in heat rate is attributable to the burner modifications.  One 

variable that plays a role in combustion efficiency and overall plant efficiency is the quality of 

the coal being burned.  Holcomb Station burns coal from various mines in the Powder River 

Basin in Wyoming.  Figure 55 shows a summary of coal analyses from 1997 thru 2005. 
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Figure 54 – Annual Net Unit Heat Rate 
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Figure 55 – Annual Coal Analyses 

Annual Coal Analyses 
1997 - 2005 

Year 
HHV 

(Btu/lb) 
Moisture 

(%) 
Ash     
(%) 

Sulfur    
(%) 

LOI     
(%) 

1997 8429 29.51 5.44 0.33 0.15 
1998 8515 29.09 5.16 0.29 0.14 
1999 8457 28.41 5.73 0.29 0.05 
2000 8513 28.03 5.54 0.30 0.06 
2001 8497 28.21 5.46 0.30 0.08 
2002 8550 28.00 5.54 0.29 0.09 
2003 8779 26.21 5.57 0.37 0.10 
2004 8708 26.46 5.64 0.41 0.04 
2005 8647 26.91 5.51 0.38 0.00 
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2.2.2 Task 2.2 – PC Piping Coal Flow Control and Balancing System/Testing 

In this task, the five pulverizers were equipped with a coal-flow balancing system consisting of 

the automated coal-balancing dampers on each coal pipe. The automated coal dampers were 

integrated with the coal-flow monitoring system to provide for automatic balancing of all the 

burners over the boiler load range.  The coal flow balancing equipment on ‘C’ pulverizer was 

automated in 2003.  The remaining four pulverizers were automated in 2004.  Figure 56 shows a 

picture of the Air Monitor coal flow measurement instrumentation installed on a coal pipe.  The 

process used to measure coal flow is based on microwave technnology used to measure coal 

density and particle velocity.  The flow data from these sensors were used in conjunction with 

the coal flow balancing valves to balance the flow of coal through each coal pipe on a given mill. 
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Figure 56 – Coal Flow Measurement Instrumentation 

 

Figure 57 shows a screen shot from EtaPro showing how data from the Air Monitor coal flow 

sensors is displayed and how the data is used to evaluate coal flow balance. 
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Figure 57 – EtaPro Screen Displaying Coal Flow Data 

 

Results of the automation of the coal flow balancing system have showed improved balancing of 

coal flow across the coal pipes for each burner elevation.  However, the improved balancing has 

not translated into improved NOX control.  Figure 58 shows a trend of improved coal flow 

distribution with the automated coal flow system in service.  The coal flow balancing dampers 

also created concerns about low coal particle velocity at lower mill loads when the dampers were 

in a throttling position.  To keep velocities above the recommended value of 55 ft/sec, the 

primary air curves were adjusted so that the primary air flow was increased at lower mill loads.  

The primary air flow at full mill load remained the same.  
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Figure 58 – Results of Coal Flow Automation 
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2.2.3 Task 2.3 – Design of OFA Penetrations 

To support implementation of Phase III, this task consisted of the detailed design of an optimum 

overfire air system for this unit.  Design of the SOFA system was completed by GE EER.  The 

system was design to pull secondary air from the existing secondary air ductwork in the plant.  

The number of OFA injectors was changed from six per wall to five per wall to maintain 

structural stability of the front and rear furnace water walls.  The outboard OFA injectors on both 

the front and rear walls were designed larger than the inner injectors based on results of the 

modeling completed in Task 1.1.  The design included control dampers in each of the  
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2.3 Task 3.0 – Phase III – Advanced Separated Overfire Air System 

The objective of this phase of the project was to demonstrate NOX control competitive with SCR 

installations with the addition of an overfire air system coupled with the existing Phase I and II 

modifications to optimize overall system performance. The integration of all three phases of 

these improvements was expected to provide the opportunity to reduce NOX emissions and 

permit improvements in power plant performance and output. 

Based on results of the burner modifications, it was determined that the modifications would not 

work and new burners would need to be incorporated with the SOFA design.  Because of the 

problems encountered trying to utilize existing scanners and ignitors, a determination was also 

made that new scanners and igniters would have to be part of the upgrade package.  An RFP was 

developed to provide new burners and SOFA and sent to several bidders.   

All bids came in significantly higher than the original budget for Phase III.  Some of the reason 

for the increased price was a result of the need for new burners, scanner, and ignitors.  It also 

appeared that the original project budget significantly underestimated what would be required to 

complete the SOFA installation.  The original budget was put together in 2001 with significant 

input from GE EER.  The bid GE EER submitted in 2005 included SOFA equipment at a cost 

that was over $1.3M higher than the budgetary price prepared by GE EER in 2001.  Figure 59 

shows an economic analysis overview.  With the costs overruns experienced, the project will not 

pay for itself within the expected life of the plant. 
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Figure 59 – Economic Analysis 

Project Costs 
    

Item Amount 
Budget Period 1 Costs (Phases 1 and 2) $3,142,201 
Burner Repairs During 2004 Outage $70,000 
Budget Period 2 Costs - Estimate (Phase 3) $5,526,000 
Choke Point Items $246,860 
    
Total Project Cost $8,985,061 
    
    

Project Revenues 
    

Item Amount 
Expected Energy Revenue ($/MWh) $33 
Fuel Cost ($/MWh) $12 
Variable O&M ($/MWh) $4 
    
Revenue Less Variable Cost ($/MWh) $18 
    
Extra Capacity Afforded by Project (MW) 7 
Extra Energy Available (MWh per year) 61320 
Capacity Factor in Upper 7MW Load Range (%) 30 
Extra Energy Utilized (MWh per year) 18396 
    
Revenue from Extra Energy ($/year) $331,128 
    
Assumed Interest Rate 3% 
    
Present Value of Annual Revenue After 10 Years $2,824,589.00  
Present Value of Annual Revenue After 20 Years $4,926,348.50  
Present Value of Annual Revenue After 30 Years $6,490,254.94  
Present Value of Annual Revenue After 40 Years $7,653,948.21  
Present Value of Annual Revenue After 50 Years $8,519,845.30  

 

After evaluating the bids that were received and their impact on the economic analysis of the 

project and factoring in budget constraints, the installation of SOFA and modified burners has 

been deferred until at least 2008.    
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