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Colocatlon of Geothermal and Heavy-Oil Reservoirs: 

A South Texas Update 

Steven J. Seni and Timothy G. Walter 

Bureau of Economic Geology 

* $**",-. '+a** **. . - \ -r*.* 

The University of Texas at Austin 

ABSTRACT 

In a five-county area of South Texas, geopressured-geothermal reservoirs in the upper Wilcox 

Group are colocated with heavy-oil reservoirs in the overlying Jackson Group. In 1990, research at the 

Bureau of Economic Geology concentrated on evaluating the potential of using geopressured- 

geothermal water for hot-water flooding of heavy-oil reservoirs. Favorable geothermal reservoirs are 

defined by thick deltaic sandstones and growth-fault-bounded compartments. Potential geothermal 

reservoirs are present at a depth of 11,000 ft (3,350 m) to 15,000 ft (4,570 m) and contain water at 

Zi!2C)rp383PF,(1 95:s) in Fandango field, Zapata County. One potential 

geothermal reservoir sandstone in the upper Wilcox (R sandstone) is composed of a continuous sand 

body 100 ft (30 m) to greater than 200 ft (>61 m) thick. Fault blocks average 2 to 4 mi2 (5.2 to 10.4 

km2) in area. 

Both heavyoil (average APIP19) and light-oil (average API=26) resefyoirs in South Texas are 

present in sandstones of the Jackson Group Mirando trend.- The updip pinchout of strikeoriented 

sheet sandstones in the Jackson-Group largely cppols the distribution of Mirandp-trend heavy4 

reservoirs. The lateral continuity of heavydl resewoirs minimizes reservoir compartmentalization, 

which could disrupt4njected-fluid flow paths ...e 

Geologic and engineering researchthatVstilLneeds to be conducted includes (1) studies of the 

chemical compatibility between injected geothermal fluids and clay matrix of heavyoil reservoirs, (2) 
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detailed field studies of geometry and size of geothermal reservoirs, (3) detailed field studies of 

geometry and size of heavy-oil reservoirs, and (4) studies of changes in the temperature and chemistry 

of geothermal fluids when injected into heavy-oil reservoirs. 0 
INTRODUCTION 

The Gulf Coast Geopressured-Geothermal program is part of a kng-Jerm mjerat ive a 
F .~ 

between the U.S. Department of Energy, The University of Texas Center for Petroleum and 

Geosystems Engineering, and the Bureau of Economic Geology. The ultimate goal of the program is to 

demonstrate the economic viability of using geopressured-geothermal water as an alternative energy 

resource. In 1990, research at the Bureau of Economic Geology is concentrating on evaluating the 

potential of using geopressured-geothermal water for hot-water flooding of heavy-oil reservoirs. This 

initial evaluation demonstrates coiocation of geothermal and heavyoil resources in South Texas and 

characterizes the geologic framework that controls the size, location, and distribution of both the 

geothermal and heavy-oil resources. 

In a five-county area of South Texas (Zapata, Webb, Duval, Jim Hogg, and Starr Counties), known 

geopressured-geothermal fairways in the deep upper Wilcox Group lie below the shallow Mirando 

heavy-oil trend (fig. 1). The geothermal fairway is associated withm area of active exploration for 

overpressured gas in the deep upper Wilcox in South Texas. Geu :rarmal waters produced from the 

Wilcox Group could be injected in shallow heavy-oil reservoirs to supply both the heat energy and fluid 

for enhanced oil recovery by steam or hot-water flooding. A schematic flowchart illustrates how hot 

water produced from the hot-water production well would be piped to the surface and injected into a 

shallow heavy-oil reservoir (fig. 2). The vertical production distances within the hot-water produdion 

well wouM be approximately b iva len t  to the distances involved with transport along the surface. 

This novel type of geothermally enhanced oil recovery (GTEOR) would conserve natural resources 

and produce additional oil resources by improving recovery efficiency. GTEOR also preserves water 

resources that otherwise would be used for conventional waterfloods and saves energy that would be 

Ei 
D 

consumed through combustion to generate steam or hot water. 
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J Z A P ~ T A C O  \ 
W E B B  CO / lOmi \ O.. 

JACKSON -YEGUA 
Light -o i l  reservoir-l0MMbbl 

E X P L A N A T I O N  

JACKSON -YEGUA 
Heavy - a i  I reservoir 

WILCOX 
Major gar reservoir WOBcf 

(After Ewing,1983) MMbbl >IO 5-10 1-5 0.5-1 0.1-0.5 <0.1 (After Kortrrr and Hamlin, 1989) 

1-1 .. . . . . . , . Geothermal fairway, Wilcox rondrtone >loo0 f t  ., ::, ..,': 0A15238 

FIGURE 1. Cokcation of geopressured geothermal fairways and Jackson Group heavyoil reservoirs. 
Patterned area of geothermal fairway includes regions where calculated temperature of middle part of 
upper Wilcox exceeds 250°F (121OC) and where thickness of net sandstone in the upper Wilcox 
exceeds 1,000 ft (300 m). Size of circles is relative to the cumulative oil production of heavyoil 
reservoirs through 1988. 
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R sand 
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HEAVY-OIL 
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FIGURE 2. Schematic flowchart illustrating a geothermally enhanced oil-recovery method utilizing 
production of hot water from sandstone reservoirs in the upper Wilcox and subsequent injection into 
shallow heavy-oil reservoirs in the Jackson Group. The Fandango field is a typical deep upper Wilcox 
gas field that contains many potential hot-water reservoirs containing R and T series sandstones. 
Alworth is a small heavy-oil field located near Fandango field. 
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CHARACTERIZATION OF DEEP WlLCOX GEOTHERMAL RESERVOIRS 

In the early 19803, the Bureau of Economic Geology characterized geothermal fairways in the 

deep Wilcox of South Texas (Bebout and others, 1982; Morton and others, 1983). Earlier, Fisher and 

McGowen (1 967) mapped the regional depositional systems of the lower Wilcox Group, and Edwards 

(1981) focused on the depositional systems of the upper Wilcox in South Texas (fig. 3). Since that time, 

extensive exploration has discovered thick reservoir sandstones in areas previously undrilled because 

of extreme depth (Levin, 1983; Kimmell, 1986; Kosters and Hamlin, 1989). Through 1986, the five- 

county area of South Texas (Zapata, Starr, Jim Hogg, Webb, and Duval Counties) was known to 

contain 17 fields in the deep Upper Wilcox, with 28 reservoirs that had cumulative gas production 

greater than 10 Bcf (Kosters and Hamlin, 1989) (table 1). Total cumulative gas production from these 

fields through 1986 was 1.71 Tcf. 

It is important to realize that geothermal reservoirs do not require a structural trap like an oil or gas 

reservoir requires four-way closure. Thus, exploration for geothermal reservoirs must concentrate not 

on structural highs that have four-way closure, but on thick, continuous reservoir sand bodies within 

large fault blocks. 

The current resourcecharacterization study acquired well logs from recent gas-exploration wells. 

Deep well logs useful for investigating reservoirs in the deep upper Wilcox are concentrated in the 
' ~ ,* 

Fandango field, Zapata and Jim Hogg Counties. In the Fandango field, temperatures - of geopressured- 

geothecwl waters_mlly-ceach 500°F (260°C). and the thickness of net sandstone in the Wilcox locally 

exceeds 1,000 ft (300 m). The thickness and distribution of these sandstones are being characterized 

to determine the extent of the geothermal resource. Net sandstone, maximum sandstone (thickest 

sandstone bed), and effective sandstone (cumulative sandstone in beds greater than 30 ft [>70 m] 

thick) are key parameters being mapped to analyze the extent of the geothermal resourc~. 

The Wilcox growth fault zone has a tremendous influence on the distribution and thickness of 

reservoirquality sandstones (fig. 4). Most growth faults are parallel to regional strike and displace 

strata down to the basin. Large regional growth fautts have up to approximately 1,000 ft (300 m) of 
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FIGURE 3. Location of wilmx delta systems. Lower Wilcox deltas after Fisher and McGowen (1967); 
upper Wilcox deltas after Edwards (1981). 
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UPPER WlLCOX GROUP, STRUCTURE 

\JIM HOGG CO .; DUVAL CO . .. - 
y: 
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STRUCTURE (f 1) 
0 <6000 06000 to 8000 t 8000 to 10,000 ~1 >IO,OOO 

FIGURE 4. Structure map of upper Wilcox in Starr, Zapata, Jim Hogg, Webb, and Duval Counties, 
Texas. 
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TABLE 1. Geologic, engineering, and production parameters of major gas reservoirs in South Texas, 
deep upper Wilcox Group. Major gas reservoirs had a cumulative production greater than 10 Bcf 
through 1986 (afler Kosters and Hamlin, 1989). 
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throw at the top of the Wilcox, but throw may exceed 5,000 ft (>1,500 m) at the base of the upper 

Wilcox. The growth fautts may displace a potential reservoir zone below drillable depth within a short 

lateral distance. Concurrent movement of growth faults during deposition resulted in the accumulation 

of greater thicknesses of reservoir-qualrty sandstones in the downthrown block. 

A small number of counterregional faults displace strata up to the basin. Counterregional faults 

are shorter and have less vertical displacement than the major regional growth faults. However, locally 

and in the Fandango field, counterregional faults are important barriers that have localized gas 

reservoirs. 

According to Edwards (1981), depositional systems of the upper Wilcox in South Texas contain 

three delta complexes: the Zapata, Duval, and Live Oak (fig. 5). The deltas are inferred to be wave- 

dominated, shelf-margin deltas on the basis of the widespread distribution of upwardcoarsening sand 

bodies. Sandstones within the delta complex are mostly in the delta-front and shoreface facies. The 

regional distribution of sandstone from the upper Wilcox illustrates both the thickening of sandstones on 

the downthrown side of regional growth faults and the accumlationof two areas of thick net sandstone 

that correspond with the Zapata and Duval delta systems (fig. 6). The areas of thick net sandstone are 

laterally distributed along strike, supporting the interpreted wave-dominated character of the deltas. 

The maximum thickness of individual sandstone bodies illustrates a dip-oriented alignment that may 

reflect thicker sandstone feeder axes related to fluvial systems (fig. 7). 

In the Fandango field, gas is produced from a repetitive series of generally upward-coarsening 

sand bodies that are at a depth of 10,000 to 18,000 ft (3,650 to 5,490 m). These sand bodies include 

several 600- to 800-ft-thick:(180- to 240-m) upwaitlcoarsening sequences separated by uniformly thick 

basal shale (fig. 8, facies 1). Edwards (1981) interpreted these sequences as prodelta shales grading 

upward into delta-front sandstones, which accumulated along a prograding high-energy shoreline. 

These sandstones thicken by a factor of 3 to 7 across growth-fault expansion zones. Local-area 

geologists refer to these sand bodies as the R, T, and U series sandstones (C. Kimmell, personal 

communication). A diporiented cross section in the Fandango fieM illustrates the listric nature of a 

major growth fault (fig. 9). Mapr growth faults sole out into thick sections of highly disturbed shale. 
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FIGURE 5. Characteristic logs from dettas of upper Wilcox in South Texas (after Edwards, 1981). 
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... 3. UPPER WILCOX GROUP, NET SANDSTONE . .  . . I  
I. . 

A 
A 

FIGURE 6. Net sandstone map of upper Wilcox in Starr, Zapata, Jim Hogg, Webb, and Duval Counties, 
Texas. Areas of thick net sandstone greater than 1,000 ft (>300 m) correspond with deltaic 
depocenlers in Duval and Zapata Counties. 



UPPER WlLCOX GROUP 
YAXIYUY SANDSTONE 

FIGURE 7. Maximum sandstone map of upper Wilcox in Starr, Zapata, Jim Hogg, Webb, and Duval 
Counties, Texas. Maximum sandstone is the thickest sandstone body logged in the well. Areas of thick 
maximum sandstones appear dip orienled and may reflect fluvial feeder axes. 
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UPPER WILCOX DIP SECTION 
NW 

I I I 
ZA-162 ZA-176 ZA-174 Z 

FANDANGO FIELD AREA SE 
34 ZA-134 

I 

FANDANGO 
0 l0,OOO ft FIELD u 

454 JH-30 
. DATUM 

rio 

FIGURE 9. Structural diporiented cross section across Fandango field from Zapata to Jim Hogg 
County, Texas. Top and base upper Wiicox are correlated; only top Wilcox is penetrated in downdip 
wells. Within Fandango field, R, T, and U sandstone series are correlated. 
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Reservoir sandstones rollover against the fault plane. A more detailed cross section illustrates the 

structure and variation in sand body thickness associated with the growth faults (fig. 10). 

A dip-oriented cross section across Thompsonville, NE field, Webb and Jim Hogg Counties, also 

illustrates thick sandstones in the upper Wilcox (fig. 11). The main productive reservoir at 

Thompsonville, NE field, is the first Hinnant sandstone. The Hinnant sandstone terminology is carried 

throughout the Thompsonville field and surrounding area (Berg and Tedford, 1977). The R through U 

sandstone terminology is also used farther north around Rosita field (Straccia, 1981). 

R Sandstone Reservoir 

The R sandstone is the thickest laterally continuous sandbody in the Fandango field and 

apparently is equivalent to the tenth Hinnant sandstone, which is well developed in Thompsonville, NE 

field. Thpe-R,sandstone,s,an~~nt,sand=bdy on which to focus attention because it could serve as 

a potential geothermal reservoir on the basis of its moderate depth, high temperature, great thickness, 

and wide distribution. Calculated reservoir temperatures and depth of water samples from individual 

sandstone zones in Fandango and Rosita fields are provided in table 2 (Lundegard, 1985). At a depth 

of 12,000 to 15,000 ft (3,660 to 4,570 m), temperatures of water in the R sandstone range from 350°F 

to 383°F (1 77°C to 195°C). 

Initial characterization of the R sandstone focuses on its depth, thickness, and distribution (table 

3). The geothermal-reservoir size for the R sandstone compares favorably with that calculated for the 

first Hinnant sandstone in the Riddell No. 1 Saldana well (table 4) (Morton and others, 1983). The 

elevation (below sea level) to the top of the R sandstone in the Fandango field area ranges from 

approximately -1 1,000 ft (-3,350 m) in updip fault blocks to greater than -14,000 ft ( ~ 4 , 2 7 0  m) in the 

downdip fault block with the deepest penetrations (fig. 12). The pattern of fault traces is complex, and, 

with the limited well control available, the patterns are poorly constrained. A comparison of variations in 

the fault patterns mapped by Levin (1983), Kimmell (1986), and this study reveals significant variations 

in fault orientation and serves to underscore the difficulty in mapping complex structure without detailed 

three-dimensional seismic data. 
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UPPER WlLCOX GI? FANDANGO SANDS 
Fandango Field, Zapata Co. 
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FIGURE 10. Structural diporiented cross section within Fandango field, Zapata County, Texas. R and 
T series of sandstones are readily identified across field. Major growth fault is a decollement zone that 
soles out in thick basal shales. 
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FIGURE 1 1. Structural diporiented cross section in Thompsonville, NE field. Webb and Jim Hogg 
Counties, Texas. Thick productive sandstones include first and fifth through thirteenth Hinnant 
sandstones in Berry R. Cox and Thompsonville, NE fields. Major gas reservoir at Thompsonville, NE 
field is first Hinnant. 
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FIGURE 12. Structure map of tenth Hinnant, or R sandstone, in Fandango field, Zapata and Jim Hogg 
Counties, Texas. 
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TABLE 2. Calculated temperature and depth of geothermal waters of upper Wilcox from selected wells 
in Fandango and Rosita fields, South Texas (after Lundegard, 1985). 

Well 
Number Field Well 

1 Fandango Shell Hinojosa No. 8 
2 Fandango Shell Gama No. 2 
3 Fandango Shell Zachry A No. 2 
4 Fandando Shell Muzza No. 4 

Sample depth Temperature 
( f t )  (OF) Horizon 

17,057 432 U sand 
14,774 383 R sand 
16,079 408 Ts sand 
14,331 - 374 Tl sand 

m 15,560 399 

5 Rosita Shell Hubbard-Frost No. 169 13,425 387 
6 Rosita Shell Hubbard No. 2 12,110 3 54 
7 Rosita Shell Weathery A No. 2 13,914 394 

352 8 Rosita Shell Travis McGee No. 1 11,890 - 
m 12.835 372 
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TABLE 3. Significant attributes of a favorable geothermal reservoir. 

i UPPER WILCOX - loth HINNANT (R SAND) 

Lr: d l y  productive: - Fandango, Thompsonville, NE fields 

Locally continuous: Multiple fault blocks in Zapata, Jim Hogg, 
and Webb Countfes 

Thick sandstone: Maximum sandstone 50-250 ft thick 

Depth: 11,000-1 5,000 ft 

Te m p e rat u re : 3 0 0-4 0 0 O F 

Qj- 

20 

8. 

QA1484X 

P 



TABLE 4. Comparison of sizes of geothermal reservoirs in upper Wilcox sandstones. Data from Riddle 
No. 2 Saldana (Morton and olhers, 1983). 

- > 

Area Reservoir Area (m12) Thickness (11) VreS (Bcf) Poroslty (%) 

Rlddie %2 . First Hlnnant 3.6 70 7 16 
Saldana 

Fandango loth Hlnnant (R Sd) 4.4 200 24.5 5-1 0 

L > 



The pattern of net thickness for the R sandstone illustrates a large area of thick net sandstone at 

Fandango field and a smaller area of thick net sandstone in updip fault blocks located 10 mi (1 6 km) 

north of Fandango field (fig. 13). Broad areas of low net sandstone bracket the area of thick net 

sandstone around Fandango field. Net sandstone thins along strike to the south and north, and 

downdip to the east. Within individual fault blocks, net sandstone is generally greatest against the updip 

fault. The maximum thickness of an individual sandstone body in the R sandstone more sharply defines 

a dip-oriented feeder (fig. 14). Apparently fluvial systems west and west-northwest of Fandango field 

fed small lobate deltas that prograded across the Fandango field and foundered along the rapidly 

subsiding shelf margin. 
- 

Although the R sandstone has a number of favorable factors, including great thickness and lateral 

extent, its shallow depth relative to underlying sandstones indicates that it will have lower temperatures 

than fluids in underlying reservoir sandstones (table 2). Calculated temperatures for the R sandstone 

range from 35OOF to 383°F (177OC to 195OC). Although the temperatures are respectably hot, 

underlying reservoirs are hotter by 50°F (27OC) to greater than 100OF (>55OC). 

JACKSON GROUP HEAVY-OIL RESERVOIRS 

The five 'rty area of South Texas (Zapata, Starr, Jim Hogg, Webb, and Duval Counties) 

contains both neavy- and light-oil reservoirs that produce from the Jackson Group Mirando trend (tables 

5 and 6). Unlike the deep upper Wilcox trend, the Mirando trend is supermature from an exploration 

standpoint. The major light-oil reservoirs (API gravity greater than or equal to 21) listed in table 4 are 

larger and more continuous than the heavy-oil reservoirs. However, the 20-API cutoff between heavy- 

and light-oil reservoirs is arbitrary, and the light-oil reservoirs as a group are relatively heavy (mean oil 

gravity equals 26 API). In the five-county area of South Texas, 21 heavy-oil fields (API less than or 

equal to 20) with 26 reservoirs, having a miminum cumulative production of 1 Mbbl, are directly above 

the Wilcox faifway, where subsurface temperatures exceed 250°F (1 21 OC) (table 6). Total cumulative 

production from these fields is 33 MMWI. Heavy-oil reservoirs constitute 9 percent of the cumulative 

production of the major light-oil reservoirs in the Mirando trend in the fivecounty area (tables 4 and 5). 

Q 
0 

4 
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0 Contour  l n t e r v o l  5 0  t t  
8 km 

0 1 1 5 2 3 5  

FIGURE 13. Net sandstone map of tenth Hinnant, or R sandstone, in Fandango field, Zapata and Jim 
Hogg Counties, Texas. 
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FIGURE 14. Maximum net sandstone map of tenth Hinnant, or R sandstone, in Fandango field, Zapata 
and Jim Hogg Counties, Texas. Maximum net sandstone is the thickest sandstone logged in the well. 
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TABLE 5. Geologic, engineering, and production parameters of major oil reservoirs in South Texas 
Jackson Group irend. Mapr oil reservoirs had a cumulative production greater than 10 MMbbl through 
1981 (after Galloway and others, 1983). 

DIM 

4 
4 
4 
4 
4 
4 
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4 
4 
4 
4 
4 
4 
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ss 
ss 

, '  ss 
I ss 

ss 
ss 
ss 
ss 
ss 

UPP 
UPP 
NPP 
NPP 
UPP ' 

UPP 
NPP 
UPP 
UPP 
UPP 
NPP 
NPP 
UPP 
NPP 

S G t W O  1700 
SG 2600 

GCE 2800 
SO 1200 

SG+WO 2200 
SG 2300 
SO 2MN) 
SO 2600 

Contlhed 2200 
c.oImhd I600 

SG 2700 
W D + S G  I900 
sG+GcE 3700 
SGIWO 2330 

m 2273 

51 
300 

54 
70 
60 
89 

250 
240 

70 
35 
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65 
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35 250. 
33 1600 
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4 
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4 
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4 
4 
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4 
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TABLE 6. Geologic, engineering, and production parameters of heavy-oil reservoirs in South Texas 
Jackson Group through 1988. 
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However, it is estimated that 70 percent of the heavy oil has not been recovered by primary and 

secondary recovery operations (C. Kimmell, personal communication, 1990). 

The largest reservoirs in the trend (Government Wells with a cumulative production through 1988 

of 97 MMbbl and Lorna Novia, with a cumulative production through 1988 of 55 MMbbl are most 

productive from conventional, low-viscosity reservoirs. Although these reservoirs are a part of the 

Mirando trend, they do not produce heavy oil with API gravities less than or equal to 20. The recovery 

efficiencies of the largest nonheavy-oil reservoirs are also rather low, averaging 38 percent (Galloway 

and others, 1983). Lundell (first Cole) is the largest heavy-oil field (cumulative production 10 MMbbl 

through 1988) whose reservoir produces oil with API gravities less than 20. 

The updip pinch-out of strike-oriented sand bodies in the Jackson Group largely controls the 

distribution of Mirando-trend heavy-oil reservoirs (West, 1963). Four-way closure results from subtle 

structure, small faults, and local variations in strandline orientation. Although as many as 50 separate 

sand bodies are productive, principal producing sands are Government Wells, Loma Novia, Mirando, 

Lopez, Cole, and Pettus. The Cole sandstones, which are near the top of the Jackson Group, have the 

greatest number of reservoirs of heavy oil, whereas the Mirando and equivalent sandstones near the 

base of the Jackson Group have the greatest number of major light-oil reservoirs. 

The linear strike-oriented sandstones characteristic of the Jackson Group are interpreted to 

represent strandplainharrier bar sands (West, 1963; Fisher and others, 1970; Kaiser and others, 1978; 

Kaiser and others, 1980; Hopf, 1986; Schultz, 1986). They form a sand-rich belt 20 to 25 mi (32 to 40 

km) wide bounded by mudstone both updip and downdip. A sand-percent map of the lower part of the 

Jackson Group illustrates the strongly linear strike orientation of the sandstone belt (fig. 15) (Kaiser and 

others, 1980). In addition, the size and distribution of Mirando-trend heavyoil fields are indicated on the 

percent-sand map of the lower Jackson. In Starr and Z e t a  Counties, heavy-oil fields are clearly 

associated with the updip pinch-out of sandstone into lagoonal mudstones, where sandstone 

percentage approaches 15 percent. In Webb and Duval Counties, the heavyoil fields are 

characteristically trapped in updip pinchouts of individual sandstones, in the upper Jackson Cole 

a 
sands, which are not mapped in figure 15. 
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JACKSON GROUP PERCENT SAND AND HEAVY OIL FIELDS 
0 IO mi 

- 2  u 

Modilicd from Kaiser and olhcrr (1980) 
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MMbbl >IO 5 - 0  1-5 0.5-1 0.1-0.5 <0.1 

FIGURE 15. Percentage-sand map of lower part of Jackson Group in Starr, Zapata, Jim Hogg, Webb, 
and Duval Counties, Texas (Kaiser x d  others, 1980). Distribution and size of heavy-oil reservoirs in 
Jackson Group are indicated on percentage-sand map. Most heavy-oil reservoirs produce from the 
Cole sandstone. The Cole sandstones occur in the upper part of the Jackson Group and are not 
represented on the percentage-sand map, which emphasized the distribution of the Mirando sands. 
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The updip pinch-out of Cole sandstones in Zapata County, across Dinn and Richardson fields, is 

represented in figure 16. Production is from first Cole sandstones at a depth of 1,500 to 1,900 ft (457 to 

579 m). Sandstone bodies are of two genetic types: (1) laterally continuous, upward-coarsening barrier- 

bar and shoreface sandstones and (2) laterally discontinuous, upward-fining fluvial or tidal-channel 

sandstone. The Mirando sandstones pinch out farther updip. 

Production from Rancho Solo reservoirs is associated with updip pinch-out of Cole sandstones in 

Duval County (fig. 17). Heavy-oil production from Kohler, NE field is associated with the second 

Mirando sandstone. 

A deep Wilcox log is illustrated on both of the cross sections shown in figures 16 and 17. Upper 

Wilcox sandstones greater than 50 ft (>15 m) thick are present between -12,000 and -14,000 ft (-3,658 

and -4,267 m). Production of-hot waters from such reservoirs would require only short-distance 

transport (intrafield) on the surface. 

Some characteristics of Jackson Group heavy-oil reservoir sands are shown in table 7. Conditions 

of special significance for possible GTEOR include (1) relatively shallow heavy-oil reservoirs, (2) 

excellent porosity and permeability, and (3) thin oil column in thin reservoir sandstones. The relatively 

shallow depths of heavy-oil reservoirs (mean depth of 1,512 ft [461 m]) and low reservoir pressures 

constrain the upper limit of injection pressures to prevent fracture of the reservoir. However, even at 

these relatively low pressures, injected geothermal fluids will still be hot water and not steam. The 

excellent porosity and permeability of the heavyoil reservoirs suggest that the low recovery efficiencies 

of heavy-oil reservoirs result from the high viscosity of the oil and from depleted reservoir energies, not 

from reservoir heterogeneities or b w  permeabilities. iHeavy-oil reservoirs are significantly shallower 

than major lightloil reservoirs (mean depth of 1,512 ft [46l :m] for heavy reservoirs vs. 2,273 ft [693 m] 

for light reservoirs) raising the po 

4 

ility that reservoir depth also influences oil viscosity. 

Mirando-trend heavy-oil reservoirs are characterized by thin, strike-elongate sandstone bodies in 

which the primary trapping mechanism is updip stratigraphic pinch-out of reservoir sandstone. Also, a 

thin oil column in a thin reservoir that pinches out updip is an ideal geometry for favorable sweep 

efficiencies of injected fluids. Although the laterally continuous sand-body geometry of heavy-oil 
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FIGURE 16. Stratigraphic cross section of Jackson Group, Dinn and Richardson fields, Webb and 
Duval Counties, Texas. Datum is top Yegua. Mirando sandstones are continuous across area of 
section. Cole sandstones pinch out toward the northwest near Webb-Jim Hogg county line. Primary 
trapping mechanism in Dinn and Richardson fields is updip pinch-out of baffler barlshoreface 
sandstones. Deep upper Wilcox reservoirs in Dinn Deep field are vertically separated by 8,000 ft (2,438 
m) from heavy-oil reservoirs. 
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JACKSON GI? STRAT SEC., Kohler, NE and Rancho Solo Fields 
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FIGURE 17. Stratigraphic cross section of Jackson Group, Kohler, NE, and Rancho Solo fields, Duval 
County, Texas. Datum is top Yegua. Mirando sandstones are continuous across area of section. Cole 
sandstones pinch out toward the northwest. Primary reservoir in Kohler, NE field, is second Mirando 
sandstone. The reservoirs in Rancho Solo field are the first and second Cole sandstones. 
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TABLE 7. Significant attributes of favorable heavy-oil reservoirs. 
P 
El 

JACKSON GROUP - COLE SAND 

Locally productive: Alworth, Charco Redondo, Cedar Hill, Lundell fields 

Locally continuous: Laterally persistent with updip pinch out 

Thickness: Reservoir 0-50 ft; oil column 0-10 ft 

Depth: Less than 2,000 ft 

Crude: Sweet crude, low gravity 17-20 API 

u 

Reservoir characteristics: Porosity 25-41%; avg. 31% 
Perrneabllity 70-2,800 md; avg. 700 md 

P 
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reservoirs is favorable for minimizing reservoir compartmentalization that could disrupt injected fluid flow 

paths, the thinness of the reservoir is unfavorable because of relatively high rates of heat loss (Martin 

and others, 1968). 

CONCLUSION 

In South Texas, the colocation of geothermal resources below heavy-oil reservoirs and the 

character of the heavy-oil and geothermal energy resources suggest thermally enhanced oil recovery 

could be economically viable (fig. 1). The heavy-oil reservoirs of the Jackson Group--Mirando trend 

have notoriously poor recoveries of oil in place using conventional and secondary recovery 

methodologies, despite favorable characteristics of the reservoir strata. Using geothermal waters as a 

source of hot water to mobilize the oil could greatly improve recovery efficiencies and prevent premature 

abandonment of reservoirs that still have as much as 70 percent oil remaining in place (C. Kimmell, 

personal communication). Major points of comparison between heavy-oil and geothermal reservoirs are 

listed in table 8. The thickness and lateral extent of the geothermal reservoirs appears to be much 

larger than that of the smaller heavy-oil reservoirs. A range of technical issues remains to be resolved, 

including the (1) chemical compatibility of injected fluids and heavy-oil reservoirs, (2) geometry and size 

of hot-water reservoirs that may be determined through detailed field studies, (3) geometry and size of 

heavy-oil reservoirs that may be determined through detailed field studies, and (4) temperature of 

injected fluids into heavy-oil reservoirs. 

The R sandstone has the regional distribution and thickness that would make it an excellent 

candidate for production of geothermal waters (table 4). The area of fault blocks in the vicinity of the 

Fandango field is approximately 4.4 mi2 (1 1.4 km2), an area that is comparable to those of fault blocks 

from other Tertiary units (Morton and others, 1983). The area of fault blocks is poorly constrained and 

is largely dependent on map scale and density of control (Morton and others, 1983). Small faults that 

may create additional smaller compartments within fault blocks are difficult to detect with current density 

of well control. The individual sandstone bodies with thicknesses'greater than 100 ft (>30 m) and with 

continuous lateral distribution indicate that reservoir volume in individual fault blocks ranges from 12 Bcf 
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TABLE 8. Comparison of significant attributes of Wilcox geothermal reservoirs and Jackson heavy-oil 
reservoirs. 

WlLCOX GEOTHERMAL RESERVOIRS JACKSON HEAVY-OIL RESERVOIRS 

Prolific gas reservoirs (1.8 Tcf) Small, heavy-oil reservoirs ( 4 0  MMbbl) 

W 
P 

Reservoirs are deep (1 2,000-1 8,000 ft) 
and hot (up to 5OOOF) 

Reservoirs are thin ( 4 0  ft) and 
shallow (<2,000 ft deep) 

Laterally extensive reservoirs Laterally extensive reservoirs pinch out updip 

Corn plex structure Simple structure 

M14841c 
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(for 100 ft- [30-m] sandstone) to 25 Bcf (for 2004 [6l-m] sandstone). Using a porosity of 19 percent, 

which is the mean porosity for major Wilcox gas reservoirs (table l ) ,  geothermal aquifer volume ranges 

from 2.3 to 4.7 Bcf. The great thickness of the R sandstone increases the probability that the small 

faults, with throws less than the thickness of the R sandstone, would not act as barriers to fluid 

migration. More detailed reservoir characterization requires additional information on porosity, 

permeability, drive mechanism, z factor, temperature, pressure, and other variables. 
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ABSTRACT 

The effectiveness of hot-water flooding as a mechanism for improved recovery in heavy-oil 

reservoirs was investigated through a literature survey. There have been relatively few field applications 

designed to assess the effectiveness of hot-water floods to improve recovery from heavy-oil reservoirs. 

Hot-water flooding of heavysil reservoirs is more effective than conventional isothermal water flooding, 

but markedly less efficient than steam for recovery of heavy oil. Hot water improves recovery of heavy oil 

through a variety of poorly understood displacement mechanisms including (1) thermal expansion, (2) 

viscosity reduction, (3) decreased wettability, and (4) reduced oilhater tension. Improvement in recovery 

of viscous crudes by hot-water floods relative to conventional isothermal water floods may be largely due 

to (1) the improvement of oil mobility through reduction of oil viscosity and (2) reduction in residual oil at 

high temperatures. The economic disadvantages of hot-water flooding would be substantially mitigated if 

an ample supply of relatively inexpensive geopressuredgeothermal waters was located near heavy-oil 

reservoirs. 

INTRODUCTION 

This report is a summary of a literature survey conducted to determine the role of hot-water injection 

in the thermal recovery of heavy oil. There have been relatively few field applications designed to assess 

the effectiveness of hot-water floods to mobilie heavy crude and most of these are not adequately 

documented in the literature. The most important exceptions are the pilot test in the Schoonebeek field, 
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The Netherlands (1957-1966), and the Loco Field in southem Oklahoma (1961-1967). These two tests 

demonstrated that, atthough the process is more complicated than originally anticipated, hot-water 

flooding can both mobilize heavy oil and increase production. H ~ e ~ , = t h e , e - c p n a m f ~ ~ ~ e  

mains unresolved. 
a 

HEAVY OIL 

An excellent summary of heavy-oil resources of the United States has been prepared by Nehring 

and others (1983). These authors estimated that there are 46 to 49 billion barrels of original heavy oil in 

place in the contiguous stares and that gross recovery potential should be at least 20.2 billion barrels. 

With recovery prior to thermal stimulation of 9.1 billion barrels, the gross incremental thermal recovery 

potential is between 11.1 and 16.8 billion barrels. 

Def lnltiona 

"Heavy oil" has many definitions; however, none is universally accepted. Heaviness of an oil can be 

expressed in terms of its density or its viscosity. Generally, any oil with a gravity below 25" API is 

considered heavy. Crude with a density of 10" API or less, a viscosity greater than 100,000 CP 

(centipoise), and which does not permit in situ primary reservoir recovery is called an asphalt, a bitumen, 

or an extra heavy oil (World Oil, 1982). 

HOT-WATER DRIVE 

In its simplest form a hot-water drive involves the flow of only two phases: water and oil. Steam and 

combustion processes always include a third phase: gas. Hot-water flooding is basically a displacement 

process in which oil is displaced by both hot and cold water. Thus, the primary role of the heated water is 

to reduce the oil viscosity and thereby improve the displacement efficiency over that obtainable from 

conventional waterflood. Hot-water floods have many elements in common with conventional floods 

(Craig, 1971). 
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Hot-water flooding has %been a popular thermal recovery process. Only a few field projects and 

commercial-size operations have been described or even mentioned in the literature (Prats, 1986). 

Several of these field applications are discussed below. The Schoonebeek Project has been described 

by Dietz (1 972) and the Loco Pilot Test by Martin and others (1 972). 

Hot-water injection has never proved as efficient as steam. The displacement efficiency of hot water 

is much less than that for steam (fig. 1). Hot water has lower transport capacity than steam and studies 

indicate that it is necessary to inject more than two PV (pore volumes) for the hot water to sweep a unit 

column of the reservoir. Also, the sweep efficiency of hot water is much less than that of steam injection 

(Burger and others, 1985). - 

, Mechanlsms of Displacement 

Hot water injected into a formation cools upon contact with the matrix and in-place fluids. When 

sufficient time has passed it is possible to distinguish three principal zones (Burger and others, 1985) (fig. 

2). 

Zone 1. At each point in this heated zone the temperature increases with time, which generally 

induces a reduction of the residual oil saturation. In addition, the expansion of the fluids and the rock 

matrix leads, for the same saturation, to a reduction of the specific gravity of the oil left in the pore space. 

If the oil is very volatile some light components will be displaced by a vaporizationandenstion process 

and, in fact, a gas phase may exist in a small part of this zone. (After Burger and others, 1985). 

Zone 2. In this zone, the oil is being displaced by water that has cooled down essentially to the 

temperature of the formation; the oil saturation at any point in this zone will decrease with time and under 

certain conditions may reach residual saturation corresponding to the prevailing temperature in this zone. 

Zone 3. This unaffected zone represents reservoir condiions as they exist before the injection of 

the hot fluid. 

In contrast to the threezows that exist during injection of hot water, four zones exist during steam 

injection (Burger and others, 1985) (fig. 3). 
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FIGURE 1. Oil recovery before the breakthrough of water versus the amount of water injected: Curve 
A-conventional isothermal water flood, Curve B--hot-water flood, and Curve C--steam flood. After 
Burger and others (1 985). 
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FIGURE 3. Temperature, steam, and liquid water saturation profiles during onedimensional 
displacement of oil by steam: Zone 1 --steam zone, Zone 2-condensation zone, Zone 3--hot-water 
zone, and Zone 4--unaffected zone. After Burger and others (1985). 
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Zone 1. In the steam zone around the injection wells three fluids coexist; water, liquid hydrocarbon, 

and a gas phase. The temperature is high and reasonably uniform, and the temperature decreases 

slowly away from the injection well but continuously in accordance with the dependence of the saturation 

temperature versus pressure. The liquid oil saturation is also reasonably uniform because the oil has 

been flushed out of this zone by hydrodynamic displacement as well as by vaporization of the more 

volatile compounds. 

Zone 2. In this condensation zone, water and volatile hydrocarbon fractions condense upon contact 

with the cold matrix. On a microscopic scale the temperatures 2re different in the solid phase and the 

liquid phase, and consequently applying the effective thermal cmductivity concept is not rigorously valid. 

Significant local thermal disequilibrium has been shown to exist in a laboratory study of displacement of 

water by steam: a gas-phase saturation has been detected at a local mean temperature, measured with 

the aid of a thermocouple, which is definitely lower than the saturation temperature at test pressure. 

However this phenomenon is considerably enhanced by the conditions of the reported test, namely low 

pressure (close to atmospheric) and high flow rate (310 kg m-2 h-l). 

Zone 3. All the phenomena occurring in this zone are similar to those involved in a hot water 

displacement. However, as the steam zone (zone 1) moves ahead and since the volume per unit mass 

for the vapor is very much greater than that of the hot or cold water, the velocity of the liquid water in this 

zone 3 is considerably higher than what it would have been if liquid water had been injected into the 

formation at the same temperature and with the same mass injection rate. 

Zone 4. This is the zone that has not been affected by heat and essentially contains the original 

fluid saturations. 

Figure 4 shows schematically how (1) thermal expansion, (2) viscosity reduction, (3) wettability, and 

(4) oilhater interfacial tension affect displacement efficiency of crudes of different densities. Qualitatively, 

thermal expansion is more important in light crudes, whereas viscosity reduction and wettability changes 

are more important for heavy crudes (Prats, 1986). 

Burger and others (1 985) recommend that hot-water injection be used when steam injection cannot 

be applied. These conditions are (1) when reservoir contains clays, which may swell and lead to reservoir 
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deterioration in the presence of freshwater, (2) where hot water is preferred to steam in deep reservoirs 

which require high injection pressure, and (3) where, because of increasing pressure, latent heat 

markedly declines. 

The amount of oil displaced in a hot-water drive is always greater than that produced. The oil that is 

displaced but not produced is held in unswept parts of the reservoir. With viscous crudes, the mobility 

ratio between the advancing oil and gas or water in the reservoir is favorable. Mobile oil tends to fill 

regions of the reservoir initially containing free gas and water before it is produced. Where an oil bank 

forms, consideration of these effects permit estimation of the recovery history from estimates of the oil 

displacement history (Prats, 1986). 

Improvement in recovery of viscous crudes by hot-water floods relative to unheated water floods 

may be largely due to (1) the improvement of oil mobility through reduction in oil viscosity and (2) the 

reduction in residual oil at high temperature (Willman and others, 1961). A 500°F (260°C) rise in 

temperature would reduce residual oil saturation by 10 to 30 percent of that at original reservoir 

temperature. Reductions in residual oil with increasing temperature greater than those attributable to 

thermal expansion (up to 50 percent) perhaps are due to changes in surface forces at high temperatures. 

Such surface forces include interfacial ones between oil and water phases, and the forces between 

mineral surfaces and liquids, especially those that may tend to hold comg.-x organic compounds on the 

. mineral surfaces. 

These changes in surface forces do not necessarily reduce the capillary forces because some 

rocklfluid systems become more water wet as temperatures increase. Shifting capillary pressures and 

relative permeabilities toward increases in water wetness and higher temperatures have been reported 

(Sinnokrot and others, 1971; Poston and others, 1970). 

Figure 5 shows examples of calculated saturation and temperature distributions in a hot-water flood. 

In this figure the total amount of cold and hot water is assumed to be the same. Temperature of the hot 

water was 380°F (193°C). Note the reduction in distance between the 0.35 and 0.65 oil saturation 

contours after hot-water flooding. This is considered evidence of improved displacement efficiency 

tending toward more piston-like displacement as temperature increases. Also, note the underrunning of 
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(A) 1/1/57 
5 yrs Cold-water flood 
0.28 Pore volumes injected 

(B) 1/1/61 
9 yrs Cold-water flood 
0.87 Dore volumes injected 

11 Saturation Distribution 
Cold-water injection 

I (C) 1/1/65 '- 

- Oil Saturation and Temperature Distribution w// Hot-water injection 

FIGURE 5. Calculated saturation and temperature distributions. After Prats (1986). 
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the water near the base of the sand even in conventional waterflood. This is the result of buoyancy forces 

between the water and the oil. Because of buoyancy and other factors, the contours of equal temperature 

and saturation are not vertical within the reservoir sand. 

After injection of 0.59 PV of hot water, only about 30 percent of the reservoir shown in cross section 

has been heated, and that the average temperature rise in the heated zone is well below that of the 

injection well. Also, most of the oil already has been displaced. All thermal drives are characterized by the 

presence of large amounts of heat in oil-depleted parts of the reservoir. The latter has prompted 

modifications aimed at scavenging, or recycling the heat to improve the efficiency of the process. For hot- 

water drives some of this heat can be scavenged by injecting unheated water near the end of the project. 

Studies by Combarnous and Pavan (1969) reveal that the higher the temperature of the water the 

earlier the water breakthrough. This suggests that viscous instabilities may grow faster in hot-water floods 

than in conventional waterfloods. This may be true because the part of a water finger that is heated has 

less flow resistance than that of a cold finger. The lowered flow resistance would accentuate the rate of 

growth of the most advanced fingers. 

As oil is heated, however, its reduced viscosity and increased volume enhance displacement of the 

bypassed oil. Thus, although the fraction of the reservoir swept at breakthrough appears slightly less, at 

least some experimental hot-water floods improved displacement of the heated by-passed oil so the 

process has the potential of yielding higher recoveries. 

Where results of multidimensional scaled experiments of the hot-water process have been reported 

(Harmson, 1967) it appears that hot water follows paths created by the instabilities of the preceding cold- 

water flood (fig. 6). Because hot water cools faster in the smaller fingers, the higher temperatures occur 

in the few larger channels from which the intervening spaces are heated slowly. 

Model experiments indicate that coM water does not advance through the reservoir over a wide 

front. Varying degrees of wettability and capillarity lead to development of tongues and fingers that 

protrude from the frontal wall and move forward over the bottom of the reservoir. The thickness and width 

of a t3 

hot-water flood acts much as that of cold water either because of a preceding cold water flood, or 

:e does not influence production. It is the cross-sectional area of a tongue that is important. A 
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FIGURE 6. Cold-water fingers. After Dietz (1972). 
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because hot water, as it is injected, is soon cooled. Water in the smallest tongues cools first. These 

tongues will continue to push forward against cold oil, while the largest hot tongues reduce the resistance 

of heated oil at the front. 

The hot-water tongues are so widely spaced that much of the reservoir remains cold for a long time. 

Locally the full height of the reservoir is heated and rapidly watered out. Widening of the tongues until 

they coalesce theoretically would be a slow process (Dietz, 1972). 

The following conclusions can be drawn about hot-water floods: 

1. There are two recognizable displacement fronts: (a) the leading front (cold-water front) is at 

original reservoir temperature; and (b) the hot-water front, which lags the cold front. 

2. Large volumes of injected hot water may be required to bring the oil saturation to its residual 

value even near an injection well. 

3. Oil is displaced throughout the entire zone swept by the injected water. 

4. The effect of instabilities appears to be quite important even in homogeneous formations. 

Items two through four are expected to be more pronounced the higher the oil viscosity. Also, they are 

not inconsistent with reported field observations (Prats, 1986). 

Examples of Hot-Water Flood Operations 

Hot-water floc. g has not been a popular thermal recovery process. Only a few field pilots and 

commercial-size operations have been described. Some of these field applications are listed below: 

Project Location 

LOCO 
Kern River 
Schoonebeek 
N.E. Butterly 
Emilchheim 
Arlansk 

Oklahoma 
California 
Holland 
Oklahoma 

Germany 
USSR 
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The first four of these projects are reported to be discontinued, and little information is readily 

available on the USSR and German operations (primary units are consistent with those reported). 

c h ~ n n e l i n g ~ h i g h , w a t e r = ~ o i l ~ r ~ ~ ( , ~ ~ ~ ~ s ) ~ w ~ i ~ h ~ a r e = i n d ~ a t i v e = o f = ~ r = ~ . e e p - e f f , ~ i e n c i e s ,  

characterize the first four projects. Heat Cecupeeatl_atioa;by cold-water follow-up has not been reported. At 

the Loco pilot, total thermal recoveiy after the l-year hot-water flood in a previously waterflooded thin 

. -  

sand (12.9 ft net, 1100 bbllacre-ft) amounted to 156 bbl/acre-ft. Heat losses from this thin reservoir were 

reported to be about 60 percent of the injected heat. At the Northeast Butterly Creek Unit, the hot-water 

drive phase of the project lasted atout 4 years and produced less than 150,000 barrels of oil. Most of the 

375,000 barrels of thermal oil produced from the project resulted from cyclic hot-water stimulation, which 

included converting the injector in the original hot-water drive to production. At Kern River, injection of 

2.23 x l o 6  barrels of hot water in about a year at an average temperature of 300°F (149OC) resulted in an 

oil recovery of 40,260 barrels. The pilot was terminated because of its poor performance. (Prats, 1986) 

The Schoonebeek field (fig. 7) is located in the Netherlands close to the German border. Details of 

the hot-water procedure used in the Schoonebeek field were presented by Dietz (1972). 

On January 1, 1957, a small llot water pilot test (HWI-I) was initiated in the Schoonebeek field (fig. 

8). Reservoir data for HWI-I are listed below: 

1. Area: 500 x 550 m3 

2. Sand thickness: 18 m 
3. Average depth to reservoir: 850 rn 

4. Grain size: 60-250 p 
5. Permeability: 3 darcys 
6. Porosity: 0.33 percent 
7. oil in place: 1 .S x 106 m3 
8. Gadoil ratio (GOR): 10 m:3/d 
9. Oil viscosity: 175 CP at 40% 

10. Oil density: 890 K g d  
1 1. Water chemistry 
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I FIGURE 7. Structure map, Schoonebeek field. After Dietz 1972). 

I 
I 

/' 

1 
I 

I 
Q 

FIGURE 8. Local structure map, Schoonebeek field showing well bcations for hot-water injection pilot 
test. After Dietz (1972). 
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Injection originally was 2 x 400 m3 (2,533 bbis) waterjday at 200°C (392OF) bottom hole 

temperature. Water was pumped through two injection wells placed 400 m (1,312 ft) apart; there were 7 

production wells. Simple once-through heaters were used. Injection wells carried no special insulation. 

The annulus was kept dry by a trickle of high-pressure gas. To minimize the risk of clay swelling, 

saltwater from a closed treatment plant was used. Initial boiler problems were overcome by a minor 

adjustment of pH to 7.4-7.5 (at lower values corrosion occurs and at higher values scale is deposited). 

Only rare boiler and injection well cleaning was necessary; producing wells were pumped and gas-lifted 

trouble free. 

For the first year injection was limited to about 500 m3/day (3,167 bbldday) to balance the 

maximum gross product and avoid loss of hot water along the water flank. When, because of higher 

_I 

water cuts and increased temperature, gross capacity increased beyond full injection capacity of 800 

m3/day (5,067 bbls/day) production was limited to this rate to avoid cold water influx. Injectionlproduction 

balance was maintained until January l., 1964; production was increased at that time. 

In about two years, when 15 percent PV had been injected, production temperature began to 

increase and oil rates rose above that extrapolated for cold water drive. This was earlier than anticipated 

assuming that the lateral sweep wculd have been complete. Tracer-tests indicated that travel time to the 

producers was about one year. 

A heat balance equation shows that the heat capacity of the water in the pores being nearly as 

much as that of the matrix, the velocity of a heat wave should be less than half the actual water velocity. 

The measured travel time of thehat  wave and tracer water therefore agrees fairly closely. 

By 1966 other projects had been added to HWI-I so that the total injection capacity had risen to 

15,000 m3/day (95,000 bbUday): In ,1966, folbwing 10 years of operation the oil recovery attributable to 

the hot-water drives was 1.97.x lo5 m (1.25,~ lo6  bbl). This represents an improvement in recovery from 

25 percent for cold water- to 43 percent of STOllP for hot water. 

In summary of this study, Dietz (1972, p. 81-82) stated: 

" . . . traced water has swept through slightly more than half the water present in the formation and 
that the other water has became stagnant. Direct field evidence of possible improved sweep 
efficiency is not yet available." 
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Figure 9 shows the production performances of model and the Schoonebeek field pilot. The curves 

have been plotted against time. Similar data have been used in construction of the cross-sections shown 

in figure 10. Figure 11 shows isotherms along the top and bottom of the formation after injection of 2.1 

PV hot water and seems confirmation of incomplete lateral sweep efficiency. Figure 12 shows the 

isotherms updip at the same moment and figure 13 shows the growth of the 100°C (212OF) isotherm with 

cumulative injection. Figure 14 shows reservoir performance, 1952-1966. (Dietz, 1972) 

Performance Prediction 

There are three essentially diff e r e n t _ a ~ p ~ o . a c ~ e s ~ o ~ e s t i m a t i ~ ~ p ~ o r ~ a ~ ~ o f ~ a ~ h o ~ ~ e r  drixe. 

(Prats, 1986) 

1.  The effect of oil viscosity on isothermal recoveries (VanHeiningen, and Schwartz, 1955). 

The method calls for shifting from one viscosity ratio a w e  to another of bwer value in a manner 

corresponding to the changes in the average temperature of the reservoir (which increases with time). In 

applying this procedure, the oilhater viscosity ratio as a function of temperature and the average 

reservoir temperature as a function of time are the principal items required. The procedure clearly 

considers only viscosity effects, although the effect of thermal expansion of the fluids on the recovery 

could be included easily. 

The procedure is easy to apply fatit it is valid only where recovery curves are representative of the 

formation being considered. This is true of all predidive methods; the recoveries must be reduced to 

account for variation in sweep efficiency resulting from well patterns and for the adverse effect of 

reservoir heterogeneity. 

2. Buckley-Leverett calculations. This approach is also borrowed from waterflood technology and is 

based on the Buckley-Leverett displacement equations (Budkley and Leverett, 1942). Modified forms of 

this equation have been used frequently as a relatively simple way of estimating the recovery 

performance of hot-water drives in linear and radial systems (Jordan and others, 1957; Farouq, 1970). 

The estimate of recoveries from linear and radial flow systems must be reduced to alk: :: well-pattern 

and heterogeneity effects. For cold-water floods, the effed of well patterns can be taken into account by 
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FIGURE 9. Production performances of field pilot and of model projections. After Dietz (1972). 
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FIGURE 10. Flypthetical cmss section of hot-water tongues. -After. Dietz (1972). 

55 



Product ion Product ion 

Temperature OC Injection 

Top - 
Bottom ---- 

FIGURE 1 1 .  Temperature contours after injection of 2.1 pore volumes of hot water. After Dietz (1972). 
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FIGURE 12. Cross section of temperature distribution after injection of 2.1 pore volumes of hot water 
After Dietz (1 972). 
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FIGURE 13. Growth of 100°C iso1:herms with cumulative injection in pore volumes. After Dietz (1972). 
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FIGURE 14. Resenroir performance, Schoonebeek field. After Dietz (1972). 
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applying the Buckley-Leverett di la ement ab the stream chann Is characteristic of the well pattern 

at least for isothermal water floods and a similar approach should work for hot-water floods. 

3. Use of thermal numerical simulators. The simulators are capable of calculating more accurate 

recovery performances than can be achieved by the two simpler methods (above). However, they have 

two limitations: high cost and the quality of the input data. 

Hot-Water Models 

Model experiments designed to find the best way to operate a hot-water flood were discussed by 

Dietz (1 972). A three-dimensional study box 20 x 150 x 400 cm2 was fitted with 1001 thermophiles. The 

box contained a homogeneous sand body and wells with rigid geometric spacing. Tentative conclusions 

b-ased on these experiments follow: 

F. - I 

1) Early sweep efficiency is improved by a preceding cold-water flood, which ensures that the 

entire reservoir is interlaced with low-resistance water channels before the hot-water flood 

starts. The tendency of hot water to flow preferentially through the largest channels will thus be 

enhanced and a more efficient lateral sweep will be assured. 

2) Better distribution of hot channels results with close-spacing between injection wells. 

3) Efficiency of both of the above is limited basically to the downdip half of the reservoir. 

4) Near updip side of reservoir the situation can be improved by closer spacing of producers and 

by forcing gross produdion ratios from them regardless of drawdown. 

CONCLUSIONS 

Generally, hot-water flooding of heavy-oil (but not light oil) reservoirs is more effective than 

conventional water flooding. In hot-water floods, the mobility ratio of the fluids is more favorable than in 

cold-water floods. This results in greater displacement efficiency from the heated tone, and improvement 

in the ultimate recovery. 
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under usual circumstances is not economically competitive with steam. Steam can carry much more heat 

than can hot water in the operating pressure range of most projects. 

There are economic drawbacks to use of steam in thermal recovery projects. Foremost among 

these is that much steam is generated by burning lease crude. More than one-third of the gross recovery 

potential is consumed to produce tlhe steam. Natural gas is also commonly bumed instead of lease 

crude. Burning of the crude is comimonly accompanied by the creation of air pollutants such as sulfur 

compounds and nitrogen oxides. Hlarmful impurities must be removed by scrubbing and other relatively 

expensive techniques. Another disadvantage shared by both steam and hot water is the common 

problem of scale and corrosion. -._- __ _I 

It ~ p ~ s i b ~ ~ ~ h e , ~ e ~ ) ~ ~ d i s - a d v a ~ t ~ e s ~ o f - a  _ -  hot-water flood might be substantially I- 

mitigated if there were an ample supply of naturally heated water available in the vicinity of a heavy-oil 

reservoir. 

. 

Such a situation seems to exxst in South Texas where deeply buried (8,000 to 18,000 ft [2,440 to 

5,490 m]) Wilcox geopressured-geothermal reservoirs directly underlie the heavy-oil fields of the Mirando 

Trend. The heavy-oil reservoirs are mainly in the Jackson and Yegua formations at depths of 100 to 

5,000 ft (30 to 1,524 m). Original-heavy-oil-in-place in the Mirando Trend is about 200 million barrels 

(31.6 million m3), of which about 30 percent has been produced. Water temperatures in the Wilcox 

reservoirs range from about 250°F (121°C) to greater than 350°F (>177"C), pressure gradients are 

typically greater than 0.7 psim (15.83 kPa/m), sandstone porosities range from 9 to 17 percent and pore- 

fluid salinities from 70,000 to 20,000 ppm NaCl (Hamlin and others, 1989). 

In this situation, it first must be ascertained that sufficiently large quantities of naturally heated water 

will sustain a multi-year hot-water project in a designated part of one of the shallow heavy-oil reservoirs. It 

would also be essential to demonstrate that, because of its innate purity or subsequent treatment, the hot 

water will not contain dissolved solids at a level likely to promote scaling or corrosion or otherwise 

contribute to deterioration of reservoir properties, for example through swelling clays. In addition, 1 is 
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crucial that heat loss be minimized in the transfer of water from the Wilcox reservoirs to the heavy-oil 

reservoirs. 

Should such a colocation hot-water project (as described above) prove unfeasible, serious 

consideration might be given to use of the geopressured-geothermal water in a hot-water flood or in a 

preheating role for possible steam flood projects. 
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