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Abstract 
 
This paper treats approximate solutions for a self-folding problem of carbon nanotubes.  
It has been observed in the molecular dynamics calculations [1] that a carbon nanotube 
with a large aspect ratio can self-fold due to van der Waals force between the parts of 
the same carbon nanotube.  The main issue in the self-folding problem is to determine 
the minimum threshold length of the carbon nanotube at which it becomes possible for 
the carbon nanotube to self-fold due to the van der Waals force.  An approximate 
mathematical model based on the force method is constructed for the self-folding 
problem of carbon nanotubes, and it is solved exactly as an elastica problem using 
elliptic functions.  Additionally, three other mathematical models are constructed based 
on the energy method.  As a particular example, the lower and upper estimates for the 
critical threshold (minimum) length are determined based on both methods for the (5,5) 
armchair carbon nanotube. 
 
 
1. Introduction 
 
Since the discovery of carbon nanotubes [2,3], an enormous amount of studies has 
been conducted on their structural properties and behaviors [e.g., 1,4-9].  However, the 
self-folding and unfolding of carbon nanotubes has been investigated only recently [1].  
Since the carbon nanotubes are used in many areas of nanotechnology such as nano-
composites, nano-electronic devices, to genetic probes [10], and one of their unique 
characteristics is their structural flexibility [4,8], it is important to know the large 
deformation behavior of carbon nanotubes.  Buehler et. al. [9] have studied the self-
folding and unfolding of carbon nanotubes using atomistic simulations.  In this paper, 
the self-folding of carbon nanotubes is studied using a continuum mechanics approach.   
 
The main focus of the self-folding problem is to determine the minimum threshold length 
of the carbon nanotube at which it becomes possible for the carbon nanotube to self-
fold due to van der Waals force between the two parts of the same carbon nanotube. In 
this paper, the van der Waals force is modeled by the Lennard-Jones potential. It is the 
simplest kind of molecular interaction model, but it seems to work relatively well for the 
carbon nanotube, when we are primarily interested in the van der Waals interaction 
between the carbon nanotubes, not in the inter-atomic interactions of the carbons that 
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composes the carbon nanotube [1]. The carbon nanotube is modeled as a beam, and 
the self-folding problem is formulated as an elastica problem. The main result of this 
paper is a determination of the critical threshold (minimum) length for the self-folding of 
the carbon nanotube as a function of geometry, material parameters, and force field 
parameters for the Lennard-Jones potential. 
 
In the following, the problem definition is given in Section 2, the mathematical 
formulation in Section 3, Lennard-Jones potential and the force field in Section 4, an 
alternative approach based on the energy method in Section 5, the numerical results 
and discussion in Section 6, and finally, the conclusion is given in Section 7. 
 
 
2. Problem Statement 
 
The carbon nanotube folded by the van der Waals force is shown in Fig. 1.  The length 
of the contact region is denoted by lq, and the van der Waals force per unit length, q, is 
considered to be constant over the entire contact region.  This problem can be 
approximated as a large deformation problem of a slender beam as shown in Fig. 2, 
where the half of the original problem is shown.  To simplify the original problem, the 
effect of the distributed van der Waals force, q, is replaced by the concentrated force P, 
where 
 
 P = qlq          (1) 
 
There is also a reaction force due to the self-folding contact along the contact region.  
The actual contact force distribution would be very difficult to calculate.  Here as a 
simplest approximation, the net contact force is modeled as a concentrated force R, 
where 
 
 R = αP          (2) 
 
α is the ratio between the van der Waals force and the reaction force, whose value is 
unknown, but is believed to be between ½ and 1.  To further simplify the analysis, we 
assume that the net concentrated force of P – R is acting on a slender cantilever at the 
end of the contact region as shown in Fig. 3.  This is an elastica problem, and the 
governing equation is given by 
 

 
2

2
2 sin 0d b

ds
θ θ+ =          (3) 

 
where 
 

 cosdx
ds

θ=   sindy
ds

θ=        (4) 
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 P Rb
EI
−

=           (5) 

 
The boundary conditions of the problem are given by 
 

 (0) 0d
ds
θ

=   ( ) 0lθ =        (6) 

 
Where l + lq is the half length of the original problem, and lq is the contact length of the 
self-folding carbon nanotube.  As a parameter of the problem, we have  
 
 0(0)θ θ=           (7) 
 
Since the carbon nanotube is self-folding, we have 
 
 ( ) 0x l =           (8) 
 
It should be mentioned here that the above condition is a rather simplified condition for 
the self-folding, since the more precise condition is given by 
 
 ( ) 0x l =           (9-1) 
 
and 
 
 ( ) 0x s =  for [ ,0]qs l∀ ∈ −        (9-2) 
 
It is assumed in our analysis that the distributed reaction force will bring back the part of 
the beam in [ ,0]qs l∈ −  to the position such that the condition (9-2) is approximately 
satisfied.  Eqs. (1) through (8) represent an approximate mathematical modeling of the 
self-folding problem.  Our objective is to obtain the minimum value of ql l+  for a given 
value of q such that the solution will satisfy the boundary conditions (6) and (8).  α is an 
internal parameter, which is part of the solution to the original problem.  However, since 
we are not incorporating α explicitly in the mathematical modeling, we will deal with the 
influence of α on the solution by conducting a parametric study in α in a later section. 
 
 
3. Mathematical Formulation 
 
The nonlinear differential equation (3) can be solved using an elliptic function, which is a 
standard approach [11,12].  From the boundary condition (6-1), we obtain 
 

 1 ( )K k l
b

=           (10) 
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where K(k) is the complete elliptic integral of the first kind, and 
 

 0sin
2

k θ
=           (11) 

 
From the other boundary condition (6-2), we obtain 
 

 2 ( ) 0E k l
b

− =           (12) 

 
where E(k) is the complete elliptic integral of the second kind.  The complete elliptic 
integrals K(k) and E(k) are given by 
 

 2
2 20

( )
1 sin

dK k
k

π θ

θ
=

−
∫  

            (13) 

 2 22
0

( ) 1 sinE k k d
π

θ θ= −∫  

 
Eqs. (10) and (12) together with (5) constitute a pair of transcendental equations.  The 
unknowns are l, lq and k, and l is considered as a given parameter.  Our objective is to 
obtain the minimum value of ql l+  under the conditions of (10) and (12).  From (10) and 
(12), we have 
 
 ( ) 2 ( ) 0K k E k− =          (14) 
 
Solving (14) for k, we obtain 
 
 0.908909k =           (15) 
 
Then we have 
 
 ( ) 2.32105K k =          (16) 
 
Substituting (5) into (10), we obtain 
 

 
(1 )

( ) 1q q
T

T

ql l
K k l

EI l
α− ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

        (17) 

 
where (1) and (2) are used, and 
 
 T ql l l= +           (18) 
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Eq. (17) can be rewritten as 
 

 ( )(1 )
1

K kx x
s α

− =
−

         (19) 

 
where 
 

 q

T

l
x

l
=   T

T
qls l
EI

=         (20) 

 
The left hand side of (19) is a function of x only, and we can rewrite (19) as 
 

 ( ) ( )
1

K k f x
s α

=
−

  (0 < x < 1)      (21) 

 
where 
 
 ( ) (1 )f x x x= −          (22) 
 
It is easy to see that 
 

 
0 1

2 3( )
9x

Max f x
< <

=  at  1
3

x =        (23) 

 
From (21) and (23), we have 
 

 9 ( )
2 3 1

K ks
α

≥
−

         (24) 

 
From (20) and (24), we obtain 
 

 
2
33 3

27 [ ( )]
4 (1 )T

EIl K k
qα

≥
−

        (25) 

 
Substituting (16) into (25), we have 
 

 33.31302
(1 )T

EIl
qα

≥
−

        (26) 

 
The total length ltot of the carbon nanotube is given by 
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 2tot Tl l=           (27) 
 
From (26) and (27), the critical threshold (minimum) length lcr for the self-folding of the 
carbon nanotube is given by 
 

 36.62604
(1 )cr

EIl
qα

=
−

        (28) 

 
for given values of q and α. 
 
 
4. Lennard-Jones Potential and Force Field 
 
In order to estimate the distributed attractive force q (N/m), we use the Lennard-Jones 
potential.  The Lennard-Jones potential u(r) is given by 
 

 
12 6

( ) 4 Bu r E
r r
σ σ⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
        (29) 

 
where r is the distance between the carbon nanotubes, EB (J/m) is the binding energy of 
the carbon nanotubes per unit length, and 
 

 
6 2

eqr
σ =           (30) 

 
Here req (m) is the equilibrium distance between the carbon nanotubes.  The force field 
f(r) per unit length is given by 
 

 
13 748 1( )

2
BEuf r

r r r
σ σ

σ
⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

      (31) 

 
where the sign convention is that the plus is repulsive, and the minus is attractive.  It is 
easy to show that 
 

 
1 1
6 6

0

504 7 504 7( ) 2.6899
169 26 169 13

B B B

x
eq eq

E E EMin f x
r rσ<

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 at  
1
626

7
r σ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

            (32) 
where Eq. (30) has been used.  From the above equation (32), the distributed attractive 
force q (N/m) can be estimated as 
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 2.6899 B

eq

Eq
rβ

=  (β > 1)        (33) 

 
where β is an attractive force reduction factor, which takes into account the following 
two facts.  First, 2.6899 EB/req is the maximum attractive force, and secondly, the 
distance between the contacting regions of self-folding carbon nanotube cannot be 
constant in reality due to the complex interaction between the attractive force and the 
deformation of the carbon nanotube.  Therefore, the (average) distributed attractive 
force q (N/m) should be somewhat reduced from the maximum attractive force.  
Substituting (33) into (28), we finally obtain 
 

 34.76441
1

cr

eq

l x
r

β
α

=
−

         (34) 

 
where 
 

 2
B eq

EIx
E r

=           (35) 

 
 
5. Alternative Approach: Energy Method 
 
The energy method for our problem is based on the following logic. 
 

LJU E> ∆  → folded state energetically unfavorable 
 

LJU E< ∆  → folded state energetically favorable 
 
where U is a strain energy of the self-folded carbon nanotube, and LJE∆  is the energy 
gain (decrease of energy) of the contacting region of the carbon nanotube as given by 
the Lennard-Jones potential.  Here the comparison is made between the initial state 
(i.e., a straight line) and the folded state.  Therefore, the above logic does not capture 
the possibility of the folded state, which is energetically unfavorable (globally), but is still 
realizable based on the force balance.  Thus our force method described in the previous 
sections is considered more accurate if the calculation is carried out exactly.  Since our 
calculations based on the force method are not exact, we will also consider the energy 
method in this section.  From this discussion, it is more likely that the critical threshold 
length obtained by the energy method is larger than the critical threshold length 
obtained by the force method described earlier, if the calculations are carried out exactly 
for both methods.  Based on the above logic, the critical threshold length of the carbon 
nanotube can be derived from the following equation. 
 

LJU E= ∆           (36) 
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If the exact deformation of the carbon nanotube of the folded state is known, the left-
hand side of Eq. (36) can be calculated exactly. Since we don’t know the exact 
deformation (shape) of the self-folded carbon nanotube, the calculations of the strain 
energy given below are approximate.  For the calculation of the strain energy, three 
different approximate deformations are used.  They are (1) a circle and a straight line 
(Fig. 4), (2) two circles (Fig. 5), and (3) an elliptic function and a straight line (Fig. 6).  
The analysis for each case will be discussed in the following sub-sections. 
 
 
5-1. Circle and a Straight Line 
 
Assume that the originally straight beam is bent to form the configuration shown in Fig. 
4.  This is a model for the half of the self-folded carbon nanotube.  The straight section 
is the contact region.  The kink, which exists at the intersection of the semi-circle and 
the straight section, is created by a localized bending moment, but this bending moment 
is ignored in the calculation.  The inclusion of this bending moment is carried out in the 
next sub-section.  The bending moment, M, in the semi-circle is constant, and is given 
by 
 

 EIM
l

π=           (37) 

 
where l is the length of the non-contact region.  Then the strain energy of the self-folded 
carbon nanotube, U, is obtained as 
 

 
2 2

2 2
M lU EI

EI l
π

= =          (38) 

 
Substituting (38) into (36), we have 
 

 
2

2 B qEI E l
l

π
=           (39) 

 
where EB and lq are the binding energy of the carbon nanotube, and the length of the 
contact region, respectively.  From (39), we have 
 

 
2 1

2q
B

EIl
E l

π
=           (40) 

 
The half-length of the carbon nanotube is given by 
 
 T ql l l= +           (41) 
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From (40) and (41), we obtain 
 

 
2 21 1 22

2 2T
B B B

EI EI EIl l l
E l E l E

π π π= + ≥ =       (42) 

 
From (42), the critical threshold length of the carbon nanotube, lcr, is calculated as  
 

 22 2 2 8.88577cr eq eq
B

EIl r x r x
E

π π= = =      (43) 

 
where req is the equilibrium distance between the carbon nanotubes, and x is defined in 
(35).   
 
 
5-2. Two Circles and a Straight Line 
 
Instead of one semi-circle, we now have two circular arcs and a straight segment as 
shown in Fig. 5.  This shape is mechanistically possible if we place concentrated 
bending moments appropriately at the intersections of the large circle and the small 
circle, and of the small circle and the straight section.  The bending moments in the 
large circle and the small circle are constant, and they are denoted as M1 and M2, 
respectively.  Then we have 
 

 1 1
1

EIM EI
r

κ= =   2 2
2

EIM EI
r

κ= =      (44) 

 
where κ1 and κ2 are the curvature of the large circle and the small circle, and r1 and r2 
are the radii of the large circle and the small circle, respectively.  Let us denote the 
angles subtended by the large and small arcs as φ1 and φ2, respectively.  Then we have 
 

 1
1

1

lr
φ

=   2
2

2

lr
φ

=         (45) 

 
Substituting (45) into (44), we have 
 

 1
1

1

EIM
r
φ

=   2
2

2

EIM
r
φ

=        (46) 

 
The strain energies in the large and the small circular arcs are given by 
 

 
2

21 1
1 1

12 2
M l EIU

EI l
φ= =   

2
22 2

2 2
22 2

M l EIU
EI l

φ= =      (47) 
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Substituting (47) into (36), we obtain 
 

 
2 2

1 2

1 22 B q
EI E l

l l
φ φ⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

         (48) 

 
From (48), we have 
 

 
2 2

1 2

1 22q
B

EIl
E l l

φ φ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
         (49) 

 
From the geometry, we have 
 

 2 1 2
πφ φ= −  

            (50) 
 1 1 2 2sin (1 cos )r rφ φ= −  
 
From (50) and (45), we obtain 
 

 1 1 1
2 2 2 1 2 1

1 1 1

sin sin( )
1 sin 2 1 sin

ll r rφ φπφ φ φ
φ φ φ

= = = −
− −

     (51) 

 
Using (49), (50), and (51), we obtain 
 

 
21 1 1

1 1
1 2 1 1

11 1 1
1

1

( )sin 2 2
sin1 sin 2

1 sin

T q
B

EIl l l l l l
E l l

π πφ φ φφ φ
φφ φ

φ

⎛ ⎞
− −⎜ ⎟

⎜ ⎟= + + = + + +
− ⎜ ⎟

⎜ ⎟−⎝ ⎠

 

 

 
1 1 1

21
1 1

11 1 1

1

( )sin 12 21 sin1 sin 2
1 sin

B

EIl
E l

π πφ φ φφ φ φφ φ
φ

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎜ ⎟= + + +⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

 

 
1 1 1

21
1

11 1

1

( )sin 2 22 1 sin2 1 sin
1 sin

B

EI
E

π πφ φ φφ φ φφ φ
φ

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎜ ⎟≥ + +⎜ ⎟− ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
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1 1

1 1
1

1 1 1 1

sin 1 sin2 22
2 1 sin sinB

EI
E

π πφ φφ φφ
φ φ φ φ

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟−
= + +⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

     (52) 

 
where lT is the half-length of the self-folded carbon nanotube.  From (52), the critical 
threshold length of the carbon nanotube, lcr, is calculated as 
 

 
2

2 2 ( )cr
B

EIl Min f
E π φ π

φ
< <

=         (53) 

 
where 
 

 sin 1 sin2 2( )
1 sin sin

f

π πφ φφ φφ φ
φ φ φ φ

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟−
= + +⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

     (54) 

 
It can be easily shown that 
 
 

2

( ) 3.36218Min f
π φ π

φ
< <

=   at  φ = 2.2784     (55) 

 
Substituting (55) into (53), we obtain 
 
 9.50968cr eql r x=          (56) 
 
where req is the equilibrium distance between the carbon nanotubes, and x is defined in 
(35).   
 
 
5-3. Elliptic Function and a Straight Line 
 
The deformed shape of the self-folded of the carbon nanotube is shown in Fig. 6.  This 
shape is considered more accurate than the deformed shape used in Sub-Section 5-1, 
since the elliptic function used in modeling the deformed shape is an exact solution of 
an elastica problem, which is considered a more accurate representation of the original 
self-folding problem than a concentrated bending moment problem, from which the 
circular shape used in 5-1 was derived.  As before, the concentrated bending moment 
needed for creating the kink at the intersection of the elliptic function and the straight 
section is ignored in the calculation.  It can be shown that the exact solution of the 
boundary value problem defined by (3) and (6) is given by 
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 sin [ ( ) ]
2

sn K k bsθ
= −          (57) 

 
where sn is a Jacobian elliptic function, and b, k, and K(k) are defined by (5), (11) and 
(13), respectively.  Differentiating (57), we have 
 

 2 [ ( )]d kbcn bs K k
ds
θ

= +         (58) 

 
By using (58), the bending moment M(s) is obtained as 
 

 ( ) 2 [ ( )]dM s EI kbEI cn bs K k
ds
θ

= = +       (59) 

 
where cn also a Jacobian elliptic function.  The strain energy of the non-contact region 
is given by 
 

 2 2 2 2

0 0

1 ( ) 2 [ ( )]
2

l l
U M s ds k b EI cn bs K k ds

EI
= = +∫ ∫      (60) 

 
The integral on the right hand side of (60) is evaluated in the Appendix.  Using the result 
in the Appendix, we obtain 
 

 
2

2
2

[ ( )] 1 ( ) ( )2 1
( )

K k K k E kU k EI
l k K k

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦
      (61) 

 
Substituting (61) into (36), we have 
 

 
2

2
2

[ ( )] 1 ( ) ( )2 1
( ) B q

K k K k E kk EI E l
l k K k

⎡ ⎤−
− =⎢ ⎥

⎣ ⎦
      (62) 

 
Using (62), we obtain 
 

 2T q
cl l l l c
l

= + = + ≥         (63) 

 
where lT is the half-length of the self-folded carbon nanotube, and 
 

 2 2
2

1 ( ) ( )2 [ ( )] 1
( )B

EI K k E kc k K k
E k K k

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦
      (64) 

 
From (63) and (64), the critical threshold length of the carbon nanotube, lcr, is calculated 
as 
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 2

1 ( ) ( )4 2 ( ) 1
( )cr eq

K k E kl kK k r x
k K k

−
= −       (65) 

 
where req is the equilibrium distance between the carbon nanotubes, and x is defined in 
(35).  Substituting (15) and (16) into (65), we obtain 
 
 7.49799cr eql r x=          (66) 
 
 
6. Numerical Results and Discussion 
 
Let us rewrite (34) as 
 

 
1
3cr

eq

l cx
r

=           (67) 

 
where 
 

 34.76441
1

c β
α

=
−

         (68) 

 
Since the above equation contains two parameters, α and β, which cannot be uniquely 
determined from the present theory, we conduct a parametric study.   
 

Table1. Coefficient c in the critical threshold length formula 
 

 Case1 Case2 Case3 Case4 Case5 Case6 

α 0.5 0.7 0.8 0.9 0.95 0.99 

β 1 2 2 2 2 2 

c 6.00278 8.96696 10.2646 12.9326 16.294 27.8624 
 
The Table 1 is the results of the parametric study for the coefficient c in the critical 
threshold length formula (67) for different cases.  Since the reaction force ratio α is 
believed to be between 0.5 and 1, the parametric study was conducted in this range.  
Even though c → ∞ as α → ∞, the growth is rather slow until about α = 0.95.  The 
attractive force reduction factor β is changed between 1 and 2.  However, in reality, the 
reduction factor β could be larger than 2.  The graphs of lcr/req are plotted as a function 
of x for different cases in Fig. 7.  Even though there is no rational way to single out a 
“true” solution from the above cases, let us use Case 1 and Case 5 as our lower and 
upper estimates, respectively.  A more rational approach can only come from 
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developing a mathematical model that will explicitly incorporate a “distributed” nature of 
the attractive forces. 
 
Let us now calculate the estimates of the critical threshold length for the (5,5) armchair 
carbon nanotube.  The diameter of a general (m,n) carbon nanotube is given by [13] 
 

 2 2( , ) cd m n m n mn
π

= + +         (69) 

 

where c = 2.49 A
o

 [13].  By using (67), the diameter of (5,5) armchair carbon nanotube 
is calculated as 
 

 5 3(5,5) 2.49 6.864Ad
π

= × =
o

       (70) 

 
The schematic of the cross section of a single-walled carbon nanotube is shown in Fig. 
8.  The data used for the calculations are as follows [1,13]. 
 

 3.432A
2
dr = =

o

 3.35At =
o

 

 5.107A
2
ta r= + =

o

  1.757A
2
ta r= − =

o

 

 4 4 38 4( ) 5.2678 10 ( )
4

I a b mπ −= − = ×        (71) 

 12 21000 1.0 10 ( / )E GPa N m= = ×  

 1011A 11 10 ( )eqr m−= = ×
o

 

 118.65 10 ( / )BE J m−= ×  
 
Using the above data, we can calculate the non-dimensional parameter x as 
 

 2 503.301
B eq

EIx
E r

= =          (72) 

 
The corresponding critical threshold length can be calculated from (67) and Table1.  
The results are given in Table 2. 
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Table 2. Estimates of the critical threshold length by the force method 
 

 Case1 Case2 Case3 Case4 Case5 Case6 

lcr/req 47.7487 71.3271 81.6492 102.871 129.61 221.63 

lcr ( A
o

) 525.236 784.598 898.14 1131.58 1425.71 2437.93 
 
From the above calculations, the lower and upper estimates for the critical threshold 
length of the (5,5) armchair carbon nanotube are obtained based on the force method 
as follows. 
 

 , 525.236AL f
crl =

o

 , 1425.71AU f
crl =

o

      (73) 
 
It should be emphasized here that we have decided to use Case 1 and Case 5 as our 
“lower” and “upper” estimates, and these are the minimum length for the self-folding to 
occur.  Therefore, the threshold length observed in reality is expected to be much larger 
than these lengths.   
 
Let us now turn our attention to the results obtained by the energy method.  Eqs. (43), 
(56), and (66) can be rewritten as 
 

 8.88577cr

eq

l x
r

=   (a circle and a straight line)   (74) 

 

 9.50968cr

eq

l x
r

=   (two circles and a straight line)   (75) 

 

 7.49799cr

eq

l x
r

=   (an elliptic function and a straight line)  (76) 

 
Let us first note that in deriving the above formulas, we did not have to specify the 
reaction force ratio, α,  or the attractive force reduction factor, β.  All what was needed 
was to supply an approximate deformed shape of the self-folded carbon nanotube.  
Comparing the result, (67), obtained by the force method, and the results, (74)-(76), 
obtained by the energy method, it is noticed that the major difference is the functional 
dependence of the normalized critical threshold length, lcr/req, on the non-dimensional 
parameter x.  In the force method, the normalized critical threshold length is proportional 

to 
1
3x , whereas in the energy method, the normalized critical threshold length is 

proportional to x .  It can be seen from (74) and (75) that the inclusion of the kink 
bending moment in the model discussed in 5-1 makes the result (75) about 7% higher 
than the result (74).  It can be also seen from (74) and (76) that the result obtained from 
an elliptic function, which is considered more accurate, is about 16% lower than the 
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result obtained from a circle.  The graphs of lcr/req are plotted as a function of x for Case 
1 and Case 5 of the force method, and for three different cases of the energy method in 
Fig. 9.  It can be seen from Fig. 9 that the difference of the results based on a circle and 
two circles are relatively small, and the results obtained by the force method is generally 
lower than the results obtained by the energy method, as was anticipated from the 
earlier discussion in Section 5.  The results for the critical threshold length calculated by 
the force method and the energy method for the (5,5) carbon nanotube are summarized 
in Table 3. 
 

Table 3. Estimates of the critical threshold length  
by the force method and the energy method 

 

 Case1 Case5 Circle Two circle Elliptic 
function 

lcr/req 47.7487 129.61 199.347 213.344 168.213 

lcr ( A
o

) 525.236 1425.71 2192.81 2346.78 1850.34 
 
From the above calculations, the lower and upper estimates for the critical threshold 
length of the (5,5) armchair carbon nanotube are obtained based on the energy method 
as follows. 
 

 , 1850.34AL e
crl =

o

 , 2346.78AU e
crl =

o

      (77) 
 
It is noticed from (73) that the difference between the lower and upper estimates is 
smaller for the results based on the energy method than the results based on the force 
method.  It is likely that in reality the (5,5) carbon nanotube may not start to self-fold 
until crl  reaches somewhere between the lower and upper estimates based on the 
energy method.  But the “true” critical threshold length is probably a little smaller than 
that, and that is probably a little closer to the estimates given by the force method. 
 
 
7. Conclusion 
 
Approximate solutions for a self-folding problem of carbon nanotubes have been treated 
in this paper.  The main issue in the self-folding problem is to determine the minimum 
threshold length of the carbon nanotube at which it becomes possible for the carbon 
nanotube to self-fold due to the van der Waals force.  Approximate solutions for the 
critical threshold length of a carbon nanotube have been obtained using both the force 
method and the energy method.  It was found that in the force method, the normalized 

critical threshold length is proportional to 
1
3x , whereas in the energy method, the 

normalized critical threshold length is proportional to x , where x is a non-dimensional 
parameter defined by geometrical and material parameters of the carbon nanotube.  As 
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a particular example, the lower and upper estimates for the critical threshold (minimum) 
length are determined based on both methods for the (5,5) armchair carbon nanotube. 
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Appendix: Evaluation of the integral 
 
Let us set 
 
 2

0
( ( ))

l
J cn bs K k ds= +∫         (A-1) 

 
We have 
 
 2

0
[1 ( ( ))]

l
J sn bs K k ds l I= − + = −∫        (A-2) 

 
where 
 
 2

0
( ( ))

l
I sn bs K k ds= +∫         (A-3) 

 
Thus, we first evaluate I to evaluate J.  Let us perform the following change of variables. 
 

 ( )u bs K k= + ,  1ds du
b

=        (A-4) 

 
Substituting (A-4) into (A-3), we have 
 

 
2( ) ( )2 2

20 ( ) ( )

1 1 1( ( ))
l bl K k bl K k

K k K k

dn uI sn bs K k ds sn udu du
b b k

+ + −
= + = =∫ ∫ ∫  

 

 2

1 [ ( ( )) ( ( ))]bl E bl K k E K k
bk

= − + +        (A-5) 

 
where the incomplete elliptic integral of the second kind, E(u), is defined as 
 
 2

0
( )

u
E u dn udu= ∫          (A-6) 

 
which is also equivalent to 
 
 2 2

0
( ) ( , ) 1 sinE u E k k d

φ
φ θ θ= = −∫   with sinsnu φ=    (A-7) 

 
Substituting (A-5) into (A-2), we obtain 
 

 2 2

1 1(1 ) [ ( ( )) ( ( ))]J l E bl K k E K k
k bk

= − + + −       (A-8) 

 
From (10), we have 
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 ( )K kb
l

=           (A-9) 

 
Substituting (A-7) into (A-8), we finally obtain 
 

 2 2 2 2

1 1(1 ) [ (2 ( )) ( ( ))] (1 ) ( ( ))
( ) ( )

l lJ l E K k E K k l E K k
k k K k k k K k

= − + − = − +  

    2

1 ( ) ( )1
( )

K k E kl
k K k

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦
        (A-10) 

 
where E(K(k)) (=E(k)) is a complete elliptic integral of the second kind. 
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Figures and Figure Captions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Carbon nanotube folded by the Van der Waals force 
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Fig. 2 Approximate half model for the self-folded carbon nanotube 
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Fig. 3 Elastica problem along with the coordinate system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Half model for the self-folded carbon nanotube 
(circle and a straight line) 

 

P-R θ0 x 

y



 24

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Half model for the self-folded carbon nanotube 
(two circles and a straight line) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Half model for the self-folded carbon nanotube  
(elliptic function and a straight line) 
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Fig. 7 Critical threshold length lcr/req as a function of x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Cross section of a single-walled carbon nanotube 
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Fig. 9 Critical threshold length lcr/req as a function of x 
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