SANDIA REPORT

SAND2006-4056
Unlimited Release
Printed October 2006

DAKOTA, A Multilevel Parallel
Object-Oriented Framework for
Design Optimization, Parameter
Estimation, Uncertainty
Quantification, and Sensitivity
Analysis

Version 4.0 Developers Manual

Michael S. Eldred, Anthony A. Giunta, Shannon L. Brown, Brian M. Adams,
Daniel M. Dunlavy, John P. Eddy, David M. Gay, Josh D. Griffin, William E. Hart,
Patty D. Hough, Tammy G. Kolda, Monica L. Martinez-Canales, Laura P. Swiler,
Jean-Paul Watson, Pamela J. Williams

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2006-4056
Unlimited Release
Printed October 2006

DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis

Version 4.0 Developers Manual

Michael S. Eldred, Shannon L. Brown, Brian M. Adams, Daniel M. Dunlavy,
David M. Gay, Laura P. Swiler
Optimization and Uncertainty Estimation Department

Anthony A. Giunta
Validation and Uncertainty Quantification Processes Department

William E. Hart, Jean-Paul Watson
Discrete Algorithms and Math Department

John P. Eddy
System Sustainment and Readiness Technologies Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Josh D. Griffin, Patty D. Hough, Tammy G. Kolda, Monica L. Martinez-Canales,
Pamela J. Williams
Computational Sciences and Mathematics Research Department

Sandia National Laboratories
P.O. Box 969
Livermore, CA 94551



Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit
provides a flexible and extensible interface between simulation codes and iterative analysis
methods. DAKOTA contains algorithms for optimization with gradient and nongradient-
based methods; uncertainty quantification with sampling, reliability, and stochastic finite
element methods; parameter estimation with nonlinear least squares methods; and sensi-
tivity /variance analysis with design of experiments and parameter study methods. These
capabilities may be used on their own or as components within advanced strategies such
as surrogate-based optimization, mixed integer nonlinear programming, or optimization
under uncertainty. By employing object-oriented design to implement abstractions of the
key components required for iterative systems analyses, the DAKOTA toolkit provides a
flexible and extensible problem-solving environment for design and performance analysis of
computational models on high performance computers.

This report serves as a developers manual for the DAKOTA software and describes the
DAKOTA class hierarchies and their interrelationships. It derives directly from annotation
of the actual source code and provides detailed class documentation, including all member
functions and attributes.



Contents

1 DAKOTA Developers Manual
1.1 Introduction . . . . . . . . 0 e e e e e e e e e e e
1.2 Overview of DAKOTA . . . . . . . . e
1.3 Services . . . . . o . e e e

1.4 Additional Resources . . . . . . . . . .. e e

2 DAKOTA Directory Hierarchy
2.1 DAKOTADIIeCtOries . . . . . v v v vttt e ettt e e e e e e e e

3 DAKOTA Namespace Index
3.1 DAKOTA Namespace List . . . . . . . . . . o

4 DAKOTA Hierarchical Index
4.1 DAKOTA Class Hierarchy . . . . . . . . . . . st

5 DAKOTA Class Index
5.1 DAKOTA Class List . . . . . . . e e e e e e e

6 DAKOTA File Index
6.1 DAKOTAFile List . . . . . . . . . e

7 DAKOTA Page Index
7.1 DAKOTA Related Pages . . . . . . . . . e

8 DAKOTA Directory Documentation
8.1 /home/mseldre/dev/Dakota/src/ Directory Reference . . . . . . . . . ... ... ... ... ...

9 DAKOTA Namespace Documentation

13
13

15
15

17
17



6 CONTENTS
9.1 Dakota Namespace Reference . . . . .. .. ... .. ... . ... o 35
9.2 SIM Namespace Reference . . . . . . . . .. ... ... 62

10 DAKOTA Class Documentation 63
10.1 ActiveSet Class Reference . . . . . . . . . . . .. ... 63
10.2 AllConstraints Class Reference . . . . . . . . . . . . . . . 66
10.3 AllVariables Class Reference . . . . . . . . . . .. . ... . 69
10.4 AnalysisCode Class Reference . . . . . . . . . . .. . ... . 73
10.5 Analyzer Class Reference . . . . . . . . . . . . . . . e 77
10.6 ApplicationInterface Class Reference . . . . . . . .. . . . ... ... ... .. ... . ..., 81
10.7 Approximation Class Reference . . . . . . ... ... ... ... ... o o .. 92
10.8 ApproximationInterface Class Reference . . . . . . . . . . . ... ... ... .. ... ...... 99
10.9 Array Class Template Reference . . . . . .. . ... ... . ... ... ... 102
10.10BaseConstructor Struct Reference . . . . . . . . . .. .. .. L 106
10.11BaseVector Class Template Reference . . . . . . . . .. . .. ... ... ... . ... ...... 107
10.12BiStream Class Reference . . . . . . . . . . . . e 111
10.13BoStream Class Reference . . . . . . . . . . . . . . 115
10.14COLINApplication Class Reference . . . . . . . . .. ... ... ... . ... .. ... 118
10.15COLINOptimizer Class Template Reference . . . . . . . . . .. .. ... ... ... ... .... 121
10.16ColinPoint Class Reference . . . . . . . . . . . . ... . 124
10.17CommandLineHandler Class Reference . . . . . . .. .. ... ... ... . . . ......... 125
10.18CommandShell Class Reference . . . . . . . . . .. .. .. . 127
10.19ConcurrentStrategy Class Reference . . . . . . . . .. . . . .. .. . . .. 129
10.20CONMINOptimizer Class Reference . . . . . . . . . . . . . .. .. .. .. 132
10.21Constraints Class Reference . . . . . . . . . . . ... 140
10.22CtelRegexp Class Reference . . . . . . . . . . . . . . e 147
10.23DataFitSurrModel Class Reference . . . . . . . . . . . .. ... ... .. ... 149
10.24Datalnterface Class Reference . . . . . . . . . . ... .. . . 155
10.25DataMethod Class Reference . . . . . . . . . . . . . ... . 159
10.26DataModel Class Reference . . . . . . . . . . . . . 169
10.27DataResponses Class Reference . . . . . . . . . . . . . . L 173
10.28DataStrategy Class Reference . . . . . . . . . . . . . . . e 177
10.29DataVariables Class Reference . . . . . . . . . . .. . . . . L 181
10.30DDACEDesignCompExp Class Reference . . . . . . . .. ... ... ... . .. ... ..... 188

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



CONTENTS 7

10.31DirectFnApplicInterface Class Reference . . . . . . . .. .. ... ... . ... ... .. ... 191
10.32DirectFnApplicnterface Class Reference . . . . . . . . . . .. ... .. ... .. .. 196
10.33DistinctConstraints Class Reference . . . . . . ... ... ... ... o o ... 198
10.34DistinctVariables Class Reference . . . . . . . . . .. .. . ... L . 202
10.35DOTOptimizer Class Reference . . . . . . . . . . .. . 207
10.36ErrorTable Struct Reference . . . . . . . . . . .. L 212
10.37ForkAnalysisCode Class Reference . . . . . . . . . . ... . ... ... 213
10.38ForkApplicInterface Class Reference . . . . . . . . . . . . ... ... L . 215
10.39FSUDesignCompExp Class Reference . . . . . . . .. .. ... .. ... .. ... ... .... 218
10.40FunctionCompare Class Template Reference . . . . . . . . .. . ... ... ... ... .. ... 222
10.41GaussProcApproximation Class Reference . . . . . . . . . .. .. ... .. ... ... ... . 223
10.42GetLongOpt Class Reference . . . . . . . . . . . . . . e 228
10.43Graphics Class Reference . . . . . . . . . . . . . . . 232
10.44GridApplicInterface Class Reference . . . . . . . . .. .. ... ... o o 236
10.45HermiteApproximation Class Reference . . . . . . . ... . ... ... ... .. . . ... 239
10.46HierarchSurrModel Class Reference . . . . . . .. . ... . ... ... ... . . . ... 241
10.47IDRProblemDescDB Class Reference . . . . . . . . . . .. .. .. .. .. . 245
10.48Interface Class Reference . . . . . . . . . . . . . ... 248
10.491terator Class Reference . . . . . . . . . . . .. . . 257
10.50JEGAEvaluator Class Reference . . . . . .. ... .. . .. .. .. ... ... . . . ..., 267
10.51JEGAOptimizer Class Reference . . . . . . . . . . . . . . . 275
10.52JEGAOptimizer::EvalCreator Class Reference . . . . . . . .. ... ... .. ... ... ... 280
10.53JEGAOptimizer::JEGAProbDescDB Class Reference . . . . . . .. ... ... ... ... .... 282
10.54LeastSq Class Reference . . . . . . . . . . . . L 287
10.55List Class Template Reference . . . . . . . . . . . . . . . 289
10.56Matrix Class Template Reference . . . . . . . . . . . . . . . ... .. . 294
10.57MergedConstraints Class Reference . . . . . . ... ... ... .. ... ... 297
10.58MergedVariables Class Reference . . . . . . . ... ... . ... ... .. 300
10.59Minimizer Class Reference . . . . . . . . . . . . . 304
10.60Model Class Reference . . . . . . . . . . .. . e 311
10.61MPIPackBuffer Class Reference . . . . . . . . . . .. . . ... .. 337
10.62MPIUnpackBuffer Class Reference . . . . . . . . . . . .. ... ... L . 340
10.63MultilevelOptStrategy Class Reference . . . . . . . . . . . ... ... . ... 343
10.64NestedModel Class Reference . . . . . . .. . ... . .. . ... ... .. 346

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



CONTENTS

10.65NI2Misc Struct Reference . . . . . . . . . . . . L 352
10.66NL2SOLLeastSq Class Reference . . . . . . . . . . . . . o i 353
10.67NLPQLPOptimizer Class Reference . . . . . . . . .. . .. ... . . ... ... 356
10.68NLSSOLLeastSq Class Reference . . . . . . . .. .. ... . ... . ... ...... 362
10.69NoDBBaseConstructor Struct Reference . . . . . . . . .. .. ... ... oL 0. 364
10.70NonD Class Reference . . . . . . . . . . .. . 365
10.71NonDEvidence Class Reference . . . . . . . . . .. .. .. . ... .. 369
10.72NonDLHSSampling Class Reference . . . . . . . . . . . . . . ... ... ... .. 374
10.73NonDPCESampling Class Reference . . . . . . . . . . . . ... ... .. . .. ..., 377
10.74NonDReliability Class Reference . . . . . . . . ... ... . ... ... o .. 379
10.75NonDSampling Class Reference . . . . . . . . . . . . . . .. . . . . e 395
10.76NPSOLOptimizer Class Reference . . . . . . . . . . . . . . . .. .. . . .. 400
10.770ptimizer Class Reference . . . . . . . . . . . . . . . . 403
10.78ParallelConfiguration Class Reference . . . . . . . ... . ... ... ... . ... ... 406
10.79ParallelLevel Class Reference . . . . . . . . . . . ... . 408
10.80ParallelLibrary Class Reference . . . . . . . . . . . . . . . ... 411
10.81ParamResponsePair Class Reference . . . . . . . . .. .. ... ... . L . 422
10.82ParamStudy Class Reference . . . . . . . . . . . . . ... L 426
10.83ProblemDescDB Class Reference . . . . . . . ... ... ... ... o o .. 429
10.84PStudyDACE Class Reference . . . . . . . . . . . . . . 437
10.85Response Class Reference . . . . . . . . . . . . . . e 440
10.86ResponseRep Class Reference . . . . . . . . . . . .. . . . 444
10.87SingleMethodStrategy Class Reference . . . . . . . . .. .. ... ... . ... .. 450
10.88SingleModel Class Reference . . . . . . . . . . . .. . .. 452
10.89SNLLBase Class Reference . . . . . . . . . . . . .. e 455
10.90SNLLLeastSq Class Reference . . . . . . . . . . . . . . . . e i e 458
10.91SNLLOptimizer Class Reference . . . . . . . . ... .. .. .. ... 462
10.92SOLBase Class Reference . . . . . . . . . . . . . . . . 468
10.93SortCompare Class Template Reference . . . . . . . ... . ... ... ... ... .. ...... 471
10.94Strategy Class Reference . . . . . . . . . . . . . L 472
10.95String Class Reference . . . . . . . . . . . . . L e 477
10.96SurfpackApproximation Class Reference . . . . . . . . .. ... ... ... ... ... 480
10.97SurrBasedOptStrategy Class Reference . . . . . . . . . . .. ... ... L . 484
10.98SurrogateDataPoint Class Reference . . . . . . ... ... . ... ... ... . . .. ... 494

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



CONTENTS 9
10.99SurrogateDataPointRep Class Reference . . . . . . . . .. ... ... ... . ... ... .. .. 496
10.108urrogateModel Class Reference . . . . . . . . . . . ... . 498
10.108ysCallAnalysisCode Class Reference . . . . . . . . . . . . . ... . .. .. ... 504
10.108ysCallApplicInterface Class Reference . . . . . . . . . . .. ... ... . .. ... . ... 506
10.10FANA3Approximation Class Reference . . . . . . . . .. .. ... ... ... . 509
10.10ZaylorApproximation Class Reference . . . . . . . . . . . .. . ... .. ... .. 512
10.10¥ariables Class Reference . . . . . . . . . . . . . o . 514
10.10¥ariablesUtil Class Reference . . . . . . . . . . . . . . . i 523
10.10¥ector Class Template Reference . . . . . . . . . . . . .. . .. 525

11 DAKOTA File Documentation 529
11.1 JEGAEvaluator.CFile Reference . . . . . . . ... .. ... ... ... ... ... . . . . ... 529
11.2 JEGAEvaluatorH File Reference . . . . . . . ... .. ... ... ... ... . . . ... 530
11.3 JEGAOptimizer.C File Reference . . . . . . . . . . . . . . . ... .. . 531
11.4 JEGAOptimizerH File Reference . . . . .. ... .. ... ... ... ... ... ... ..., 532
11.5 keywordtable.C File Reference . . . . . . . . . . .. .. . ... . 533
11.6 main.CFile Reference . . . . .. .. .. .. .. . . . . 534
11.7 restart_utilL,C File Reference . . . . . . . . . . .. .. .. .. 535

12 Recommended Practices for DAKOTA Development 539
12.1 Introduction . . . . . . . . . e e e 539
12.2 Style Guidelines . . . . . . . . . .. 539
12.3 File Naming Conventions . . . . . . . . . . . oot v i vttt e e e e e 542
12.4 Class Documentation Conventions . . . . . . . . . . . . . i vt v it 542

13 Instructions for Modifying DAKOTA’s Input Specification 545
13.1 Modify dakota.input.Spec . . . . . . . . . . . e e e e e e e e e 545
13.2 Rebuild IDR . . . . . o 546
13.3 Update keywordtable.C in $DAKOTA/SIC . . . . . . . . . . et e 546
13.4 Update IDRProblemDescDB.C in $DAKOTA/SIC . . . . . .« v v v i v i i e e e 546
13.5 Update ProblemDescDB.C in $DAKOTA/SIC . . . . . . o v v v it i e e e e 548
13.6 Update Corresponding Data Classes . . . . . . . . . . . i it i it i it i 549
13.7 Use get_<data_type>()Functions . . . . . ... ... ... .. .. ... ... 550
13.8 Update the Documentation . . . . . . . . . . . . .. e 550

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10

CONTENTS

14 Interfacing with DAKOTA as a Library

15 Performing Function Evaluations

14.1 Introduction
14.2 Problem database populated through input file parsing
14.3 Problem database populated through external means
14.4 Instantiating the strategy
14.5 Defining the direct application interface
14.6 Executing the strategy

14.7 Retrieving data after a run

14.8 Summary

15.1 Synchronous function evaluations
15.2 Asynchronous function evaluations

15.3 Analyses within each function evaluation

15.4 Todo List

553

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 1

DAKOTA Developers Manual

Author:
Michael S. Eldred, Anthony A. Giunta, Shannon L. Brown, Brian M. Adams, Daniel M. Dunlavy, John
P. Eddy, David M. Gay, Josh D. Griffin, William E. Hart, Patty D. Hough, Tamara G. Kolda, Monica L.
Martinez-Canales, Laura P. Swiler, Jean-Paul Watson, Pamela J. Williams

1.1 Introduction

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible, ex-
tensible interface between analysis codes and iteration methods. DAKOTA contains algorithms for optimization
with gradient and nongradient-based methods, uncertainty quantification with sampling, reliability, and stochastic
finite element methods, parameter estimation with nonlinear least squares methods, and sensitivity/variance analy-
sis with design of experiments and parameter study capabilities. These capabilities may be used on their own or as
components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear program-
ming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the
key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible problem-solving
environment as well as a platform for rapid prototyping of new solution approaches.

The Developers Manual focuses on documentation of the class structures used by the DAKOTA system. It de-
rives directly from annotation of the actual source code. For information on input command syntax, refer to the
Ref erence Manual , and for a tour of DAKOTA features and capabilities, refer to the Users Manual.

1.2 Overview of DAKOTA

In the DAKOTA system, the strategy creates and manages iterators and models. In the simplest case, the strategy
creates a single iterator and a single model and executes the iterator on the model to perform a single study. In a
more advanced case, a hybrid optimization strategy might manage a global optimizer operating on a low-fidelity



12 DAKOTA Developers Manual

model in coordination with a local optimizer operating on a high-fidelity model. And on the high end, a surrogate-
based optimization under uncertainty strategy would employ an uncertainty quantification iterator nested within
an optimization iterator and would employ truth models layered within surrogate models. Thus, iterators and
models provide both stand-alone capabilities as well as building blocks for more sophisticated studies.

A model contains a set of variables, an interface, and a set of responses, and the iterator operates on the model to
map the variables into responses using the interface. Each of these components is a flexible abstraction with a vari-
ety of specializations for supporting different types of iterative studies. In a DAKOTA input file, the user specifies
these components through strategy, method, model, variables, interface, and responses keyword specifications.

The use of class hierarchies provides a mechanism for extensibility in DAKOTA components. In each of the
various class hierarchies, adding a new capability typically involves deriving a new class and providing a small
number of virtual function redefinitions. These redefinitions define the coding portions specific to the new derived
class, with the common portions already defined at the base class. Thus, with a small amount of new code, the
existing facilities can be extended, reused, and leveraged for new purposes.

The software components are presented in the following sections using a top-down order.

1.2.1 Strategies

Class hierarchy: Strategy.

Strategies provide a control layer for creation and management of iterators and models. Specific strategies include:

o SingleMethodStrategy: the simplest strategy. A single iterator is run on a single model to perform a single
study.

e MultilevelOptStrategy: hybrid optimization using a succession of iterators employing a succession of mod-
els of varying fidelity. The best results obtained are passed from one iterator to the next.

e SurrBasedOptStrategy: surrogate-based optimization. Employs a single iterator with a SurrogateModel
(either data fit or hierarchical). A sequence of approximate optimizations is performed, each of which
involves build, optimize, and verify steps.

e ConcurrentStrategy: two similar algorithms are available: (1) multi-start iteration from several different
starting points, and (2) pareto set optimization for several different multiobjective weightings. Employs
a single iterator with a single model, but runs multiple instances of the iterator concurrently for different
settings within the model.

1.2.2 lterators

Class hierarchy: Iterator.

The iterator hierarchy contains a variety of iterative algorithms for optimization, uncertainty quantification, non-
linear least squares, design of experiments, and parameter studies. The hierarchy is divided into Minimizer and
Analyzer branches. The Minimizer classes include:

e Optimization:  Optimizer provides a base class for the DOTOptimizer, CONMINOptimizer,
NPSOLOptimizer, NLPQLPOptimizer, and SNLLOptimizer gradient-based optimization libraries and the
COLINOptimizer and JEGAOptimizer nongradient-based optimization libraries.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



1.2 Overview of DAKOTA 13

e Parameter estimation: LeastSq provides a base class for NL2SOLLeastSq, a least-squares solver based
on NL2SOL, SNLLLeastSq, a Gauss-Newton least-squares solver, and NLSSOLLeastSq, an SQP-based
least-squares solver.

and the Analyzer classes include:

e Uncertainty quantification: NonD provides a base class for NonDReliability (reliability analysis),
NonDEvidence (Dempster-Shafer Theory of Evidence), and NonDSampling. NonDSampling is further
specialized with the NonDLHSSampling class for latin hypercube and Monte Carlo sampling and the
NonDPCESampling class for polynomial chaos expansions.

e Parameter studies and design of experiments: PStudyDACE provides a base class for ParamStudy,
which provides capabilities for directed parameter space interrogation, and DDACEDesignCompExp and
FSUDesignCompExp, which provide for parameter space exploration through design and analysis of com-
puter experiments. NonDLHSSampling from the uncertainty quantification branch also supports a design
of experiments mode.

1.2.3 Models

Class hierarchy: Model.

The model classes are responsible for mapping variables into responses when an iterator makes a function eval-
uation request. There are several types of models, some supporting sub-iterators and sub-models for enabling
layered and nested relationships. When sub-models are used, they may be of arbitrary type so that a variety of
recursions are supported.

e SingleModel: variables are mapped into responses using a single Interface object. No sub-iterators or
sub-models are used.

e SurrogateModel: variables are mapped into responses using an approximation. The approximation is built
and/or corrected using data from a sub-model (the truth model) and the data may be obtained using a sub-
iterator (a design of experiments iterator). SurrogateModel has two derived classes: DataFitSurrModel
for data fit surrogates and HierarchSurrModel for hierarchical models of varying fidelity. The relationship
of the sub-iterators and sub-models is considered to be "layered" since they are not used as part of every
response evaluation on the top level model, but rather used periodically in surrogate update and verification
steps.

e NestedModel: variables are mapped into responses using a combination of an optional Interface and a sub-
iterator/sub-model pair. The relationship of the sub-iterators and sub-models is considered to be "nested"
since they are used to perform a complete iterative study as part of every response evaluation on the top
level model.

1.2.4 Variables

Class hierarchy: Variables.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



14 DAKOTA Developers Manual

The Variables class hierarchy manages design, uncertain, and state variable types for continuous and discrete
domain types. This hierarchy is specialized according to various views of the data.

e DistinctVariables: both variable and domain type distinctions are retained, i.e. separate arrays for design,
uncertain, and state variables types and for continuous and discrete domains.

e AllVariables: variable types are combined and domain type distinction is retained, i.e. design, uncertain,
and state variable types combined into a single continuous variables array and a single discrete variables
array.

e MergedVariables: variable type distinction is retained and domain types are combined, i.e. continuous
and discrete variables merged into continuous arrays (integrality is relaxed) for design, uncertain, and state
variable types.

The variables view that is chosen depends on the type of iterative study. For design optimization and uncertainty
quantification, for example, variable and domain type distinctions are important and a DistinctVariables view is
used. For parameter studies and design of experiments, however, the variable type distinctions can be ignored and
an AllVariables view is used.

The Constraints hierarchy manages bound, linear, and nonlinear constraints and utilizes the same specializations
for managing bounds on the variables (see DistinctConstraints, AllConstraints, and MergedConstraints).

1.2.5 Interfaces

Class hierarchy: Interface.

Interfaces provide access to simulation codes or, conversely, approximations based on simulation code data. In the
simulation case, an Applicationlnterface is used. ApplicationInterface is specialized according to the simulation
invocation mechanism, for which the following nonintrusive approaches

e SysCallApplicInterface: the simulation is invoked using a system call (the C function syst en() ). Asyn-
chronous invocation utilizes a background system call. Utilizes the SysCallAnalysisCode class to de-
fine syntax for input filter, analysis code, output filter, or combined spawning, which in turn utilize the
CommandShell utility.

e ForkApplicInterface: the simulation is invoked using a fork (the f or k/ exec/ wai t family of functions).
Asynchronous invocation utilizes a nonblocking fork. Utilizes the ForkAnalysisCode class for lower level
fork operations.

e GridApplicInterface: the simulation is invoked using distributed resource facilities. This capability is ex-
perimental and still under development. The design is evolving into the use of Condor and/or Globus tools.

and the following semi-intrusive approach

e DirectFnApplicInterface: the simulation is linked into the DAKOTA executable and is invoked using a
procedure call. Asynchronous invocations will utilize nonblocking threads (capability not yet available).

are supported. Scheduling of jobs for asynchronous local, message passing, and hybrid parallelism approaches
is performed in the ApplicationInterface class, with job initiation and job capture specifics implemented in the
derived classes.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



1.3 Services 15

In the data fit approximation case, global, multipoint, or local approximations to simulation code response data can
be built and used as surrogates for the actual, expensive simulation. The interface class providing this capability
is

e ApproximationInterface: builds an approximation using data from a truth model and then employs the
approximation for mapping variables to responses. This class contains an array of Approximation objects,
one per response function, which permits the mixing of approximation types (using the Approximation
derived classes: SurfpackApproximation (provides kriging, neural network, MARS, polynomial regression,
and radial basis functions), GaussProcApproximation, Hermite Approximation, TANA3Approximation, and
TaylorApproximation).

Note: in the data fit approximation case, DataFitSurrModel provides the bulk of the surrogate management logic.
It contains an ApproximationlInterface object which provides the approximate parameter to response mappings.
In the hierarchical approximation case, an ApproximationInterface object is not used since HierarchSurrModel
uses low and high fidelity models to manage surrogate construction/usage.

1.2.6 Responses

Class: Response.

The Response class provides an abstract data representation of response functions and their first and second
derivatives (gradient vectors and Hessian matrices). These response functions can be interpreted as an objective
function and constraints (optimization data set), residual functions and constraints (least squares data set), or
generic response functions (uncertainty quantification data set). This class is not currently part of a class hierarchy,
since the abstraction has been sufficiently general and has not required specialization.

1.3 Services

A variety of services are provided in DAKOTA for parallel computing, failure capturing, restart, graphics, etc. An
overview of the classes and member functions involved in performing these services is included below.

e Multilevel parallel computing: DAKOTA supports multiple levels of nested parallelism. A strategy can
manage concurrent iterators, each of which manages concurrent function evaluations, each of which man-
ages concurrent analyses executing on multiple processors. Partitioning of these levels with MPI communi-
cators is managed in ParallelLibrary and scheduling routines for the levels are part of ConcurrentStrategy,
Applicationlnterface, and ForkAppliclnterface.

e Parsing: DAKOTA employs the Input Deck Reader (IDR) parser to retrieve information from
user input files. Parsing options are processed in CommandLineHandler and parsing occurs in
ProblemDescDB::manage_inputs() called from main.C. IDR uses the keyword handlers in the
IDRProblemDescDB derived class to populate data within the ProblemDescDB base class, which main-
tains a DataStrategy specification and lists of DataMethod, DataModel, DataVariables, Datalnterface,
and DataResponses specifications. Procedures for modifying the parsing subsystem are described in
Instructions for Modifying DAKOTA’s Input Specification.

e Failure capturing: Simulation failures can be trapped and managed using exception handling in
ApplicationInterface and its derived classes.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



16

DAKOTA Developers Manual

14

Restart: DAKOTA maintains a record of all function evaluations both in memory (for captur-
ing any duplication) and on the file system (for restarting runs).  Restart options are pro-
cessed in CommandLineHandler and retrieved in ParallelLibrary::specify_outputs_restart(), restart file
management occurs in ParallelLibrary::manage_outputs_restart(), and restart file insertions occur in
ApplicationInterface. The dakota_restart _util executable, built from restart_util.C, provides a
variety of services for interrogating, converting, repairing, concatenating, and post-processing restart files.

Memory management: DAKOTA employs the techniques of reference counting and representation sharing
through the use of letter-envelope and handle-body idioms (Coplien, "Advanced C++"). The former idiom
provides for memory efficiency and enhanced polymorphism in the following class hierarchies: Strategy,
Iterator, Model, Variables, Constraints, Interface, ProblemDescDB, and Approximation. The latter idiom
provides for memory efficiency in data-intensive classes which do not involve a class hierarchy. Currently,
only the Response class uses this idiom. When managing reference-counted data containers (e.g., Variables
or Response objects), it is important to properly manage shallow and deep copies, to allow for both effi-
ciency and data independence as needed in a particular context.

Graphics: DAKOTA provides 2D iteration history graphics using Motif widgets and 3D surface plotting
graphics from the PLPLOT package. Graphics data can also be catalogued in a tabular data file for post-
processing with 3rd party tools such as Matlab, Tecplot, etc. All of these capabilities are encapsulated
within the Graphics class.

Additional Resources

Additional development resources include:

Recommended Practices for DAKOTA Development
Instructions for Modifying DAKOTA’s Input Specification

In addition to its normal usage as a stand-alone application, DAKOTA may be interfaced as an algorithm
library as described in Interfacing with DAKOTA as a Library.

The execution of function evaluations is a core component of DAKOTA involving several class hierarchies.
An overview of the classes and member functions involved in performing these evaluations is provided in
Performing Function Evaluations.

Project web pages are maintained at ht t p: / / endo. sandi a. gov/ DAKOTAwith software specifics and
documentation pointers provided at ht t p: / / endo. sandi a. gov/ DAKOTA/ sof t war e. ht i, and
a list of publications provided at ht t p: / / endo. sandi a. gov/ DAKOTA/ r ef er ences. ht n

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 2

DAKQOTA Directory Hierarchy

2.1 DAKOTA Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:



18

DAKOTA Directory Hierarchy

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 3

DAKOTA Namespace I ndex

3.1 DAKOTA NamespaceList

Here is a list of all documented namespaces with brief descriptions:

Dakota (The primary namespace for DAKOTA ) . . . . . . . . . . .. . .. 35
SIM (A sample namespace for derived classes that use assign_rep() to plug facilities into DAKOTA ) . . 62



20

DAKOTA Namespace Index

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 4

DAKOTA Hierarchical I ndex

4.1 DAKOTA ClassHierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ACHIVESEt . . . . e
AnalysisCode . . . . . . . e e e e
ForkAnalysisCode . . . . . . . . . . . . . e
SysCallAnalysisCode . . . . . . . . . . . . e
APProximation . . . . . . ... e e e e e e e e
GaussProcApproximation . . . . . . . . . ... e
HermiteApproximation . . . . . . . . . . . . L e e e e e e e
Surfpack Approximation. . . . . . . . ... .o e e e e e e e e e
TANA3APProxXimation . . . . . . . . .o v v vttt e e e e
TaylorApproXimation . . . . . . . . . . ... e e e e
ATTAY . L o e e e
BaseConstructor . . . . . . . .. e e e e e
BaseVector . . . . . . e e
VECIOT . . . . o o e e e
BaseVector< BaseVector<<T > > . . . . . . . . .. L e
MAatriX . . . o e e e e e e e e e e e e
BiStream . . . . . L e
BoStream . . . . . e
COLINApplication . . . . . . . . . e e e e e e e e e e e e e
ColinPoint . . . . . . . . . e e
CommandShell . . . . . . . . . e
ConStraints . . . . . . . . e e e e e e e e e e e e e e e e e e
AlCOoNStraints . . . . . . . . L e e e e
DistinctConstraints . . . . . . . . ... e e e e e e e e e e e e e e
MergedConstraints . . . . . . . . ... e e e e
CtelReZeXP . -« o ¢ o o e e
Datalnterface . . . . . . . . ..
DataMethod . . . . . . . . ..



DAKOTA Hierarchical Index

DataModel . . . . . . . . e e e e 169
DataResponses . . . . . . . ..o e 173
DataStrategy . . . . . . . . . e e 177
DataVariables . . . . . . . . . 181
ErrorTable . . . . . . . e e e e 212
FunctionCompare . . . . . . . . . . e e e e e 222
GetLongOpt . . . . . . L e 228
CommandLineHandler . . . . . ... ... . e 125
GraphiCs . . . . . . . e 232
Interface . . . . . . . . L 248
ApplicationInterface . . . . . . . ... 81
DirectFnApplicInterface . . . . . . . . .. 191
DirectFnApplicInterface . . . . . . . . . . . 196
ForkApplicInterface . . . . . . . . . . . e e 215
GridAppliclnterface . . . . . . . . . . L 236
SysCallApplicInterface . . . . . . . . . . . . . 506
Approximationlnterface . . . . . . .. ... 99
Tterator . . . . . . e e e e e 257
Analyzer . . . .. e e e e 77
NonD . . . . 365
NonDEvidence . . . . . .. . . .. . . 369
NonDReliability . . . . . . . . . . e 379
NonDSampling . . . . . . . . . e 395
NonDLHSSampling . . . . . . . . . ... ... e 374
NonDPCESampling . . . . . . . . . . ... e 377

PStudyDACE . . . . . . 437
DDACEDesignCompEXp . . . . . . . . . . . e 188
FSUDesignCompEXp . . . . . . . . . . . e e e 218
ParamStudy . . . . . . e 426
MInimizer . . . . . . . . . e e e e e 304
LeastSq . . . . . o e e 287
NL2SOLLeastSq . . . v v v v e e e e e e e e e e e e 353
NLSSOLLeastSq . . . .« v v o e e e e e e e 362
SNLLLEastSq . . .« v v v o e e e e e e e e e e e e e e e e e 458

OpHMIZET . . . . . . o e e e e e e e e e 403
COLINOPHMIZEr . . . . . v v vt e e e e e e e e e e e e e e e e e 121
CONMINODHMIZEr . . . . . . o o o et e e e e e e e e e e e 132
DOTOptimizer . . . . . . . . o o e e e e e e 207
JEGAODHMIZET . . . . . . o i e e e e e e e e e e e e e e e e e e e e e 275
NLPQLPOPHtMIzZer . . . . . . . o ot e e e e e e e e e e e e e e 356
NPSOLOPtMIzer . . . . . . . oot o e e e e e e e e e e e e e e 400
SNLLOptimizer . . . . . . . . . . ot e e 462
JEGAEvaluator . . . . . . . . e e e e e e 267
JEGAOptimizer::EvalCreator . . . . . . . . . . . . . ... e 280
JEGAOptimizer::JEGAProbDescDB . . . . . . . . . . .. 282
List . . 289
Model . . . . 311
NestedModel . . . . . . . . . e e 346

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



4.1 DAKOTA Class Hierarchy 23

SingleModel . . . . . . . 452
SurrogateModel . . . . . . L 498
DataFitSurrModel . . . . . . . . . L 149
HierarchSurrModel . . . . . . . . . . L 241
MPIPackBuffer . . . . . . . . 337
MPIUnpackBuffer. . . . . . . . . . e 340
NI2ZMISC . . . o v e e e e e e 352
NoDBBaseConStruCtor . . . . . . . . v v it e e e e e e e e e e e e e e e e e e e 364
ParallelConfiguration . . . . . . . . . . L e e e e 406
Parallellevel . . . . . . . . . e e e e e e e e e e 408
ParallelLibrary . . . . . . . . . e 411
ParamResponsePair . . . . . . . .. e e 422
ProblemDescDB . . . . . .. e e e 429
IDRProblemDescDB . . . . . . . . . e e e e 245
Response . . . . . L e e 440
ResponseRep . . . . . . . L e e e e e 444
SNLLBASE . . . . . o o e e e e e e e e e 455
SNLLLEAStSq . . . ¢ v v v o e e e e e e e e e e e e e e e e e e e e e 458
SNLLOPHMIZET . . . . . o o v v o e e e e e e e e e e e e e e e e e e e e e e e e e e 462
SOLBASE . . . . . o o e e e e 468
NLSSOLLEastSq . . . . v v v o i e e e e e e e e e e 362
NPSOLOPHtMIZEr . . . . . . o ottt e e e e e e e e 400
SortCompare . . . . . ... L e e e 471
Strategy . . . . . 472
ConcurrentStrategy . . . . . . . . e e e e e e e e e e e e e 129
MultilevelOptStrategy . . . . . . . . . . .. 343
SingleMethodStrategy . . . . . . . . . L e e e 450
SurrBasedOptStrategy . . . . . . . . . e e e e e e e 484
Sting . . . . o e 477
SurrogateDataPoint . . . . . . . . L L e e e e 494
SurrogateDataPointRep . . . . . . . . . L 496
Variables . . . . . . . L e e 514
AllVariables . . . . . . . . . e e e e e 69
DistinctVariables . . . . . . . . L. e e e e e e 202
MergedVariables . . . . . . . L e e e e 300
VariablesUtil . . . . . . . . e e e e e e e e 523
ANICONSLIAINES . . . . . o o vt e e e e e e e e e e e e e e e e e e e e e e 66
AllVariables . . . . . . . . e e e 69
DistinctConstraints . . . . . . . ... e e e e e e e e e e e e 198
DistinctVariables . . . . . . . . .. e e e e e 202
MergedConstraints . . . . . . . . ... L e 297
MergedVariables . . . . . .. 300

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



24

DAKOTA Hierarchical Index

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 5

DAKOTA Class | ndex

5.1 DAKOTA ClassList

Here are the classes, structs, unions and interfaces with brief descriptions:

ActiveSet (Container class for active set tracking information. Contains the active set request vector and
the derivative variables vector ) . . . . . . . . . . . . ...
AllConstraints (Derived class within the Constraints hierarchy which employs the all data view ) . . . .
AllVariables (Derived class within the Variables hierarchy which employs the all data view ) . . . . . .
AnalysisCode (Base class providing common functionality for derived classes (SysCallAnalysisCode
and ForkAnalysisCode) which spawn separate processes for managing simulations ) . . . . . .
Analyzer (Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy ) . . .. ..
ApplicationInterface (Derived class within the interface class hierarchy for supporting interfaces to
simulationcodes ) . . . . . . .. L e e e
Approximation (Base class for the approximation class hierarchy ) . . . . . ... ... ... ... ...
ApproximationInterface (Derived class within the interface class hierarchy for supporting approxima-
tions to simulation-based results ) . . . . . . .. ...
Array (Template class for the Dakota bookkeepingarray ) . . . . . . ... . ... .. ... .. .....
BaseConstructor (Dummy struct for overloading letter-envelope constructors ) . . . . . . . . .. .. ..
BaseVector (Base class for the Dakota::Matrix and Dakota::Vectorclasses ) . . . .. ... ... ....
BiStream (The binary input stream class. Overloads the >> operator for all datatypes) . . . . . . . ..
BoStream (The binary output stream class. Overloads the << operator for all datatypes) . . . . . . . .
COLINApplication . . . . . . . . . e e e e e e e e e e e e e e e
COLINOptimizer (Wrapper class for optimizers defined using COLIN ) . . . . .. ... ... ... ..
ColinPoint . . . . . . . L
CommandLineHandler (Utility class for managing command line inputs to DAKOTA) . . .. ... ..
CommandShell (Utility class which defines convenience operators for spawning processes with system
calls ) . . . e e e e e
ConcurrentStrategy (Strategy for multi-start iteration or pareto set optimization) . . . . . . . .. . . ..
CONMINOptimizer (Wrapper class for the CONMIN optimization library ) . . . . . .. . ... .. ..
Constraints (Base class for the variable constraints class hierarchy ). . . . . ... .. ... ... .. ..
CtelRegexXp . . . . o o o e
DataFitSurrModel (Derived model class within the surrogate model branch for managing data fit surro-
gates (globaland local) ) . . . . . . . . ..



DAKOTA Class Index

Datalnterface (Container class for interface specificationdata) . . . . . . .. .. ... .. ... .... 155
DataMethod (Container class for method specificationdata) . . . . ... .. ... ... ... ..... 159
DataModel (Container class for model specificationdata) . . . . . . . ... ... .. ... ... ... 169
DataResponses (Container class for responses specificationdata) . . . . . . . .. ... ... ... ... 173
DataStrategy (Container class for strategy specificationdata) . . . . . . . . ... .. ... ... .... 177
DataVariables (Container class for variables specificationdata) . . . . . . . ... .. ... ... .... 181
DDACEDesignCompExp (Wrapper class for the DDACE design of experiments library ) . . . . . . .. 188
DirectFnApplicInterface (Derived application interface class which spawns simulation codes and testers

using direct procedurecalls ) . . . . . . . ... 191
DirectFnApplicInterface (Sample derived interface class for testing plug-ins using assign_rep() ) . . . . 196
DistinctConstraints (Derived class within the Constraints hierarchy which employs the default data view

(no variable or domain type array merging) ) . . . . . . ... o e e e e 198
DistinctVariables (Derived class within the Variables hierarchy which employs the default data view (no

variable or domain type array merging) ) . . . . . . ... ..o i e e 202
DOTOptimizer (Wrapper class for the DOT optimization library ) . . . . . . .. ... ... ... ... 207
ErrorTable (Data structure tohold errors ) . . . . . . . . . . . . . .. ... 212
ForkAnalysisCode (Derived class in the AnalysisCode class hierarchy which spawns simulations using

forksS ) . . . e e 213
ForkApplicInterface (Derived application interface class which spawns simulation codes using forks ) . 215
FSUDesignCompExp (Wrapper class for the FSUDace QMC/CVT library ) . . . . ... ... .. ... 218
FunctionCompare . . . . . . . . . . e e e e e e e e e e 222
GaussProcApproximation (Derived approximation class for Gaussian Process implementation ) . . . . . 223
GetLongOpt (GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer

Research Institute, Lyon, France) ) . . . . . . . . . . ... o 228
Graphics (Single interface to 2D (motif) and 3D (PLPLOT) graphics as well as tabular cataloguing of

data for post-processing with Matlab, Tecplot,etc) . . . . . .. ... ... ... ... .... 232
GridApplicInterface (Derived application interface class which spawns simulation codes using grid ser-

vices suchas CondororGlobus ) . . . . . . . . . . . . . . . ... e 236

HermiteApproximation (Derived approximation class for Hermite polynomials (global approximation) ) 239
HierarchSurrModel (Derived model class within the surrogate model branch for managing hierarchical

surrogates (models of varying fidelity) ) . . . . . . . . .. .. ... oL 241
IDRProblemDescDB (The derived input file database utilizing the IDR parser) . . ... ... ... .. 245
Interface (Base class for the interface class hierarchy ) . . . . . . .. ... ... ... ... .. ..... 248
Iterator (Base class for the iterator class hierarchy ) . . . . . . ... ... . ... ... ... ..... 257
JEGAEvaluator (This evaluator uses Sandia National Laboratories Dakota software ) . . .. .. .. .. 267
JEGAOptimizer (Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms) . . . . . . 275
JEGAOptimizer::EvalCreator (A specialization of the JEGA::FrontEnd::EvaluatorCreator that creates a

new instance of a JEGAEvaluator) . . . . . . . . . . ... ... 280
JEGAOptimizer::JEGAProbDescDB (A specialization of the JEGA::Utilities::ParameterDatabase that

wraps and retrieves data from a Dakota::ProblemDescDB ) . . . . . ... ... ... ... .. 282
LeastSq (Base class for the nonlinear least squares branch of the iterator hierarchy ) . . . . . . . .. .. 287
List (Template class for the Dakota bookkeepinglist) . . . . . ... ... ... ... .. ........ 289
Matrix (Template class for the Dakota numerical matrix ) . . . . . . . ... ... ... ... ... ... 294

MergedConstraints (Derived class within the Constraints hierarchy which employs the merged data view )297
MergedVariables (Derived class within the Variables hierarchy which employs the merged data view ) . 300

Minimizer (Base class for the optimizer and least squares branches of the iterator hierarchy ) . . . . . . 304
Model (Base class for the model class hierarchy ) . . . . . . .. ... ... ... ... ... ... 311
MPIPackBuffer (Class for packing MPI message buffers ) . . . . . . . ... ... .. ... ... ... 337
MPIUnpackBuffer (Class for unpacking MPI message buffers) . . . . . . . ... ... ... .. ... 340

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



5.1 DAKOTA Class List 27

MultilevelOptStrategy (Strategy for hybrid optimization using multiple optimizers on multiple models

of varying fidelity ) . . . . . . . . . L 343
NestedModel (Derived model class which performs a complete sub-iterator execution within every eval-

uationof themodel ) . . . . . . . . . . .. 346
NI2Misc (Auxiliary information passed to calcrand calcj viaur) . . . . . . . .. .. ... ... ... 352
NL2SOLLeastSq (Wrapper class for the NL2SOL nonlinear least squares library ) . . . . . . ... ... 353
NLPQLPOptimizer (Wrapper class for the NLPQLP optimization library, Version2.0) . . . .. .. .. 356
NLSSOLLeastSq (Wrapper class for the NLSSOL nonlinear least squares library ) . . . . ... .. .. 362
NoDBBaseConstructor (Dummy struct for overloading constructors used in on-the-fly instantiations ) . 364
NonD (Base class for all nondetermistic iterators (the DAKOTA/UQbranch) ) . . . .. ... ... ... 365
NonDEvidence (Class for the Dempster-Shafer Evidence Theory methods within DAKOTA/UQ ). . . . 369
NonDLHSSampling (Performs LHS and Monte Carlo sampling for uncertainty quantification) . . . . . 374
NonDPCESampling (Stochastic finite element approach to uncertainty quantification using polynomial

chaos eXpansions ) . . . . . . ... e e e e e 377
NonDReliability (Class for the reliability methods within DAKOTA/UQ) . . .. ... ... ... ... 379
NonDSampling (Base class for common code between NonDLHSSampling and NonDPCESampling ) . 395
NPSOLOptimizer (Wrapper class for the NPSOL optimization library ) . . . . . . ... ... ... .. 400
Optimizer (Base class for the optimizer branch of the iterator hierarchy ) . . . . . . . ... ... .. .. 403
ParallelConfiguration (Container class for a set of ParallelLevel list iterators that collectively identify a

particular multilevel parallel configuration) . . . . . . . . . ... ... L. 406

ParallelLevel (Container class for the data associated with a single level of communicator partitioning ) 408
ParallelLibrary (Class for partitioning multiple levels of parallelism and managing message passing

within theselevels ) . . . . . . . . . . . e 411
ParamResponsePair (Container class for a variables object, a response object, and an evaluationid ) . . 422
ParamStudy (Class for vector, list, centered, and multidimensional parameter studies ) . . . . . . . . . . 426
ProblemDescDB (The database containing information parsed from the DAKOTA inputfile) . . . . . . 429
PStudyDACE (Base class for managing common aspects of parameter studies and design of experiments

methods ) . . . . . . . e e e 437
Response (Container class for response functions and their derivatives. Response provides the handle

Class ) . .. . e e e e 440
ResponseRep (Container class for response functions and their derivatives. ResponseRep provides the

bodyclass ) . . . . . . e e e 444
SingleMethodStrategy (Simple fall-through strategy for running a single iterator on a single model ) . . 450
SingleModel (Derived model class which utilizes a single interface to map variables into responses ) . . 452
SNLLBase (Base class for OPT++ optimization and least squares methods ) . . . . . .. ... ... .. 455
SNLLLeastSq (Wrapper class for the OPT++ optimization library ) . . . . . . . . ... ... ... ... 458
SNLLOptimizer (Wrapper class for the OPT++ optimization library ) . . . . . . . ... .. ... ... 462
SOLBase (Base class for Stanford SOL software ) . . . . . . . . .. . ... .. .. ... ........ 468
SortCompare . . . . . .o e e e e e e e e e e e e 471
Strategy (Base class for the strategy class hierarchy ) . . . . .. .. . ... ... ... ... ... . 472
String (Dakota::String class, used as main string class for Dakota) . . . . ... ... ... ... .... 477
SurfpackApproximation (Derived approximation class for Surfpack approximation classes. Interface

between Surfpackand Dakota ) . . . . . . . . ... oL oL 480
SurrBasedOptStrategy (Strategy for provably-convergent surrogate-based optimization ) . . . . . . . . . 484
SurrogateDataPoint (Container class encapsulating basic parameter and response data for defining a

"truth" data point) . . . . .. L. e e e 494
SurrogateDataPointRep (The representation of a surrogate data point. This representation, or body, may

be shared by multiple SurrogateDataPoint handle instances ) . . . . . . . ... .. ... ... 496
SurrogateModel (Base class for surrogate models (DataFitSurrModel and HierarchSurrModel) ) . . . . 498

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



28 DAKOTA Class Index

SysCallAnalysisCode (Derived class in the AnalysisCode class hierarchy which spawns simulations

using systemcalls ) . . . . . .. 504
SysCallApplicInterface (Derived application interface class which spawns simulation codes using sys-
temecalls) . . . . . e e e e e 506
TANA3Approximation (Derived approximation class for TANA-3 two-point exponential approximation
(amultipoint approximation) ) . . . . . . . . ... 509
TaylorApproximation (Derived approximation class for first- or second-order Taylor series (a local ap-
PrOXimation) ) . . . . . . . o oL e e e e e e e e 512
Variables (Base class for the variables class hierarchy ) . . . . ... ... ... ... ... ... ... 514

VariablesUtil (Utility class for the Variables and Constraints hierarchies which provides convenience
functions for variable vectors and label arrays for combining design, uncertain, and state vari-
able types and merging continuous and discrete variable domains ) . . . . . .. ... ... .. 523
Vector (Template class for the Dakota numerical vector) . . . . . . ... . ... .. ... ....... 525

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 6

DAKOTA FileIndex

6.1 DAKOTA FileList

Here is a list of all documented files with brief descriptions:

JEGAEvaluator.C (Contains the implementation of the JEGAEvaluatorclass) . . . ... ... ... .. 529
JEGAEvaluator.H (Contains the definition of the JEGAEvaluatorclass) . . . .. ... ... ...... 530
JEGAOptimizer.C (Contains the implementation of the JEGAOptimizerclass ). . . . . . .. ... ... 531
JEGAOptimizer.H (Contains the definition of the JEGAOptimizerclass ) . . . . . .. .. .. ... ... 532
keywordtable.C (File containing keywords for the strategy, method, model, variables, interface, and
responses input specifications from dakota.input.spec) . . . ... ... ... ... 533
main.C (File containing the main program for DAKOTA ) . . . . . . . . ... ... .. ... ..., 534

restart_util.C (File containing the DAKOTA restart utility main program ) . . . . . . . ... ... ... 535



30

DAKOTA File Index

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 7

DAKOTA Page | ndex

7.1 DAKOTA Related Pages

Here is a list of all related documentation pages:

Recommended Practices for DAKOTA Development . . . . . ... ... .. ... ........... 539
Instructions for Modifying DAKOTA'’s Input Specification . . . . . . ... ... ... .. ....... 545
Interfacing with DAKOTA asaLibrary . . . . . . . . . . . . s 553
Performing Function Evaluations . . . . . . . . . ... ... L o 561

Todo List . . . . . . e 563



32

DAKOTA Page Index

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 8

DAKQOTA Directory Documentation

8.1 /home/mseldre/dev/Dakota/src/ Directory Reference

Files

file AllConstraints.C

file AllConstraints.H

file AllVariables.C

file AllVariables.H

file AnalysisCode.C

file AnalysisCode.H

file Applicationinterface.C
file ApplicationlInterface.H
file Approximationinterface.C
file Approximationlnterface.H
file COLINApplication.C

file COLINApplication.H

file COLINOptimizer.H

file CommandLineHandler.C
file CommandLineHandler.H
file CommandShell.C

file CommandShell.H

file ConcurrentStrategy.C
file ConcurrentStrategy.H
file CONMINOptimizer.C
file CONMINOptimizer.H
file CtelRegEXxp.C

file CtelRegExp.H

file DakotaActiveSet.C



34

DAKOTA Directory Documentation

file DakotaActiveSet.H
file DakotaAnalyzer.C
file DakotaAnalyzer.H

file DakotaApproximation.C
file DakotaApproximation.H

file DakotaArray.H

file DakotaBaseVector.H
file DakotaBinStream.C
file DakotaBinStream.H
file DakotaConstraints.C
file DakotaConstraints.H
file DakotaGraphics.C
file DakotaGraphics.H
file Dakotalnterface.C
file Dakotalnterface.H
file Dakotalterator.C

file Dakotalterator.H

file Dakotal eastSq.C
file Dakotal eastSq.H
file DakotaList.H

file DakotaMatrix.H

file DakotaMinimizer.C
file DakotaMinimizer.H
file DakotaModel.C

file DakotaModel.H

file DakotaNonD.C

file DakotaNonD.H

file DakotaOptimizer.C
file DakotaOptimizer.H
file DakotaPStudyDACE.C
file DakotaPStudyDACE.H
file DakotaResponse.C
file DakotaResponse.H
file DakotaStrategy.C
file DakotaStrategy.H
file DakotaString.C

file DakotaString.H

file DakotaVariables.C
file DakotaVariables.H
file DakotaVector.H

file data_types.C

file data_types.h

file DataFitSurrModel.C
file DataFitSurrModel.H
file Datalnterface.C

file Datalnterface.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



8.1 /home/mseldre/dev/Dakota/src/ Directory Reference

file DataMethod.C

file DataMethod.H

file DataModel.C

file DataModel.H

file DataResponses.C

file DataResponses.H

file DataStrategy.C

file DataStrategy.H

file DataVariables.C

file DataVariables.H

file DDACEDesignCompExp.C
file DDACEDesignCompExp.H
file DirectFnAppliclnterface.C
file DirectFnAppliclnterface.H
file DistinctConstraints.C

file DistinctConstraints.H

file DistinctVariables.C

file DistinctVariables.H

file DOTOptimizer.C

file DOTOptimizer.H

file ForkAnalysisCode.C

file ForkAnalysisCode.H

file ForkApplicinterface.C

file ForkAppliclnterface.H

file FSUDesignCompExp.C
file FSUDesignCompExp.H
file GaussProcApproximation.C
file GaussProcApproximation.H
file global_defs.C

file global_defs.h

file GridApplicinterface.C

file GridAppliclnterface.H

file HermiteApproximation.C
file HermiteApproximation.H
file HermiteChaos.C

file HermiteChaos.H

file HierarchSurrModel.C

file HierarchSurrModel.H

file IDRProblemDescDB.C

file IDRProblemDescDB.H

file JEGAEvaluator.C

Contains the implementation of the JEGAEvaluator class.

e file JEGAEvaluator.H
Contains the definition of the JEGAEvaluator class.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



36

DAKOTA Directory Documentation

file JEGAOptimizer.C

Contains the implementation of the JEGAOptimizer class.

file JEGAOptimizer.H
Contains the definition of the JEGAOptimizer class.

file keywordtable.C

file containing keywords for the strategy, method, model, variables, interface, and responses input specifications

from dakota.input.spec

file LatinHypercube.C
file LatinHypercube.H
file LHSInput.C

file LHSInput.H

file main.C

file containing the main program for DAKOTA

file MergedConstraints.C
file MergedConstraints.H
file MergedVariables.C
file MergedVariables.H
file MPIPackBuffer.C

file MPIPackBuffer.H

file MultilevelOptStrategy.C
file MultilevelOptStrategy.H
file NestedModel.C

file NestedModel.H

file NL2SOL LeastSg.C
file NL2SOL LeastSq.H
file NLPQLPOptimizer.C
file NLPQLPOptimizer.H
file NLSSOL LeastSq.C
file NLSSOL LeastSq.H
file NonDEvidence.C

file NonDEvidence.H

file NonDLHSSampling.C
file NonDLHSSampling.H
file NonDPCESampling.C
file NonDPCESampling.H
file NonDReliability.C

file NonDReliability.H

file NonDSampling.C

file NonDSampling.H

file NPSOLOptimizer.C
file NPSOLOptimizer.H
file ParallelLibrary.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



8.1 /home/mseldre/dev/Dakota/src/ Directory Reference

37

file ParallelLibrary.H

file ParamResponsePair.C

file ParamResponsePair.H

file ParamStudy.C

file ParamStudy.H

file PluginDirectFnApplicinterface.C
file PluginDirectFnApplicinterface.H
file ProblemDescDB.C

file ProblemDescDB.H

file regexp.h

file restart_util.C

file containing the DAKOTA restart utility main program

file SingleMethodStrategy.C
file SingleMethodStrategy.H
file SingleModel.C

file SingleModel.H

file SNLLBase.C

file SNLLBase.H

file SNLLLeastSq.C

file SNLL LeastSq.H

file SNLLOptimizer.C

file SNLLOptimizer.H

file SOLBase.C

file SOLBase.H

file SurfpackApproximation.C
file SurfpackApproximation.H
file SurrBasedOptStrategy.C
file SurrBasedOptStrategy.H
file SurrogateModel.C

file SurrogateModel . H

file SysCallAnalysisCode.C
file SysCallAnalysisCode.H
file SysCallAppliclnterface.C
file SysCallAppliclnterface.H
file system_defs.h

file TANA3Approximation.C
file TANA3Approximation.H
file TaylorApproximation.C
file TaylorApproximation.H
file template_defs.h

file VariablesUtil.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



38

DAKOTA Directory Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 9

DAKOTA Namespace Documentation

9.1 Dakota Namespace Reference

The primary namespace for DAKOTA.

Classes

e class AllConstraints

Derived class within the Constraints hierarchy which employs the all data view.

e class AllVariables

Derived class within the Variables hierarchy which employs the all data view.

e class AnalysisCode

Base class providing common functionality for derived classes (SysCallAnalysisCode and ForkAnalysisCode) which
spawn separate processes for managing simulations.

e class ApplicationInterface
Derived class within the interface class hierarchy for supporting interfaces to simulation codes.

e class ApproximationInterface
Derived class within the interface class hierarchy for supporting approximations to simulation-based results.

e class COLINApplication
e class COLINOptimizer

Wrapper class for optimizers defined using COLIN.

o class GetLongOpt



40

DAKOTA Namespace Documentation

GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer Research Institute, Lyon,
France).

class CommandLineHandler
Utility class for managing command line inputs to DAKOTA.

class CommandShell
Utility class which defines convenience operators for spawning processes with system calls.

class ConcurrentStrategy
Strategy for multi-start iteration or pareto set optimization.

class CONMINOptimizer
Wrapper class for the CONMIN optimization library.

class ActiveSet

Container class for active set tracking information. Contains the active set request vector and the derivative vari-
ables vector.

class Analyzer
Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy.

class SurrogateDataPoint
Container class encapsulating basic parameter and response data for defining a "truth™ data point.

class SurrogateDataPointRep

The representation of a surrogate data point. This representation, or body, may be shared by multiple
SurrogateDataPoint handle instances.

class Approximation

Base class for the approximation class hierarchy.

class Array

Template class for the Dakota bookkeeping array.

class BaseVector
Base class for the Dakota::Matrix and Dakota::Vector classes.

class BiStream
The binary input stream class. Overloads the >> operator for all data types.

class BoStream

The binary output stream class. Overloads the << operator for all data types.

class Constraints

Base class for the variable constraints class hierarchy.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 41

class Graphics

The Graphics class provides a single interface to 2D (motif) and 3D (PLPLQOT) graphics as well as tabular cata-
loguing of data for post-processing with Matlab, Tecplot, etc.

class Interface

Base class for the interface class hierarchy.

class Iterator
Base class for the iterator class hierarchy.

class LeastSq

Base class for the nonlinear least squares branch of the iterator hierarchy.

class List

Template class for the Dakota bookkeeping list.

e class FunctionCompare
e class SortCompare

class Matrix
Template class for the Dakota numerical matrix.

class Minimizer

Base class for the optimizer and least squares branches of the iterator hierarchy.

class Model

Base class for the model class hierarchy.

class NonD
Base class for all nondetermistic iterators (the DAKOTA/UQ branch).

class Optimizer

Base class for the optimizer branch of the iterator hierarchy.

class PStudyDACE

Base class for managing common aspects of parameter studies and design of experiments methods.

class Response

Container class for response functions and their derivatives. Response provides the handle class.

class ResponseRep
Container class for response functions and their derivatives. ResponseRep provides the body class.

class Strategy
Base class for the strategy class hierarchy.

class String

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



42 DAKOTA Namespace Documentation

Dakota::String class, used as main string class for Dakota.

e class Variables

Base class for the variables class hierarchy.

e class Vector

Template class for the Dakota numerical vector.

e class DataFitSurrModel
Derived model class within the surrogate model branch for managing data fit surrogates (global and local).

e class Datalnterface

Container class for interface specification data.

e class DataMethod
Container class for method specification data.

e class DataModel
Container class for model specification data.

e class DataResponses

Container class for responses specification data.

e class DataStrategy
Container class for strategy specification data.

e class DataVariables
Container class for variables specification data.

o class DDACEDesignCompExp
Wrapper class for the DDACE design of experiments library.

e class DirectFnAppliclnterface

Derived application interface class which spawns simulation codes and testers using direct procedure calls.

e class DistinctConstraints

Derived class within the Constraints hierarchy which employs the default data view (no variable or domain type
array merging).

e class DistinctVariables

Derived class within the Variables hierarchy which employs the default data view (no variable or domain type array
merging).

e class DOTOptimizer
Wrapper class for the DOT optimization library.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 43

class ForkAnalysisCode
Derived class in the AnalysisCode class hierarchy which spawns simulations using forks.

class ForkAppliclInterface
Derived application interface class which spawns simulation codes using forks.

class FSUDesignCompExp
Wrapper class for the FSUDace QMC/CVT library.

class GaussProcApproximation

Derived approximation class for Gaussian Process implementation.

struct BaseConstructor
Dummy struct for overloading letter-envelope constructors.

struct NoDBBaseConstructor

Dummy struct for overloading constructors used in on-the-fly instantiations.

class GridApplicInterface

Derived application interface class which spawns simulation codes using grid services such as Condor or Globus.

class Hermite Approximation

Derived approximation class for Hermite polynomials (global approximation).

class HierarchSurrModel

Derived model class within the surrogate model branch for managing hierarchical surrogates (models of varying
fidelity).

class IDRProblemDescDB
The derived input file database utilizing the IDR parser.

class JEGAEvaluator
This evaluator uses Sandia National Laboratories Dakota software.

class JEGAOptimizer

Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms.

class MergedConstraints

Derived class within the Constraints hierarchy which employs the merged data view.

class MergedVariables

Derived class within the Variables hierarchy which employs the merged data view.

class MPIPackBuffer
Class for packing MPI message buffers.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



44

DAKOTA Namespace Documentation

class MPIUnpackBuffer
Class for unpacking MPI message buffers.

class MultilevelOptStrategy
Strategy for hybrid optimization using multiple optimizers on multiple models of varying fidelity.

class NestedModel
Derived model class which performs a complete sub-iterator execution within every evaluation of the model.

struct NI2Misc
Auxiliary information passed to calcr and calcj via ur.

class NL2SOLLeastSq
Wrapper class for the NL2SOL nonlinear least squares library.

class NLPQLPOptimizer
Wrapper class for the NLPQLP optimization library, Version 2.0.

class NLSSOLLeastSq

Wrapper class for the NLSSOL nonlinear least squares library.

class NonDEvidence
Class for the Dempster-Shafer Evidence Theory methods within DAKOTA/UQ.

class NonDLHSSampling
Performs LHS and Monte Carlo sampling for uncertainty quantification.

class NonDPCESampling

Stochastic finite element approach to uncertainty quantification using polynomial chaos expansions.

class NonDReliability
Class for the reliability methods within DAKOTA/UQ.

class NonDSampling
Base class for common code between NonDLHSSampling and NonDPCESampling.

class NPSOLOptimizer
Wrapper class for the NPSOL optimization library.

class ParallelLevel

Container class for the data associated with a single level of communicator partitioning.

class ParallelConfiguration

Container class for a set of ParallelLevel list iterators that collectively identify a particular multilevel parallel
configuration.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference

class ParallelLibrary
Class for partitioning multiple levels of parallelism and managing message passing within these levels.

e class ParamResponsePair

Container class for a variables object, a response object, and an evaluation id.

e class ParamStudy
Class for vector, list, centered, and multidimensional parameter studies.

e class ProblemDescDB
The database containing information parsed from the DAKOTA input file.

e class SingleMethodStrategy
Simple fall-through strategy for running a single iterator on a single model.

e class SingleModel

Derived model class which utilizes a single interface to map variables into responses.

e class SNLLBase

Base class for OPT++ optimization and least squares methods.

o class SNLLLeastSq
Wrapper class for the OPT++ optimization library.

e class SNLLOptimizer
Wrapper class for the OPT++ optimization library.

e class SOLBase
Base class for Stanford SOL software.

o class SurfpackApproximation

Derived approximation class for Surfpack approximation classes. Interface between Surfpack and Dakota.

e class SurrBasedOptStrategy

Strategy for provably-convergent surrogate-based optimization.

e class SurrogateModel

Base class for surrogate models (DataFitSurrModel and HierarchSurrModel).

o class SysCallAnalysisCode
Derived class in the AnalysisCode class hierarchy which spawns simulations using system calls.

e class SysCallApplicInterface
Derived application interface class which spawns simulation codes using system calls.

class TANA3 Approximation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



46 DAKOTA Namespace Documentation

Derived approximation class for TANA-3 two-point exponential approximation (a multipoint approximation).

e class TaylorApproximation
Derived approximation class for first- or second-order Taylor series (a local approximation).

e class VariablesUtil

Utility class for the Variables and Constraints hierarchies which provides convenience functions for variable vectors
and label arrays for combining design, uncertain, and state variable types and merging continuous and discrete
variable domains.

Typedefs

typedef Vector< Real > RealVector

typedef Vector< int > IntVector

typedef BaseVector< Real > RealBaseVector
typedef Matrix< Real > RealMatrix

typedef Matrix< int > IntMatrix

typedef Array< Real > RealArray

typedef Array< int > IntArray

typedef Array< size_t > SizetArray

typedef Array< String > StringArray

typedef Array< StringArray > String2DArray
typedef Array< RealVector > RealVectorArray
typedef Array< RealVectorArray > RealVector2DArray
typedef Array< RealBaseVector > RealBaseVectorArray
typedef Array< RealMatrix > RealMatrixArray
typedef Array< Variables > VariablesArray
typedef Array< Response > ResponseArray
typedef Array< Model > ModelArray

typedef Array< Iterator > IteratorArray
typedef Array< ParamResponsePair > PRPArray
typedef List< bool > BoolList

typedef List< int > IntList

typedef List< size_t > SizetList

typedef List< Real > RealList

typedef List< String > StringL.ist

typedef List< RealVector > RealVectorList
typedef List< Variables > VariablesList

typedef List< Interface > InterfaceL.ist

typedef List< Response > ResponseL.ist
typedef List< Model > ModelList

typedef List< Iterator > IteratorList

typedef List< ParamResponsePair > PRPList
typedef std::set< int > IntSet

typedef std::map< int, short > IntShortMap

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 47

typedef std::map< int, RealVector > IntRealVectorMap
typedef std::map< int, Response > IntResponseMap
typedef IntList::iterator ILIter

typedef IntList::const_iterator ILClter

typedef SizetList::iterator StLI1ter

typedef SizetList::const_iterator StLClter

typedef RealList::iterator RLIter

typedef RealList::const_iterator RLClter

typedef StringList::iterator StringLIter

typedef StringList::const_iterator StringLClter

typedef Real VectorList::iterator RVLIter

typedef Real VectorList::const_iterator RVLClter
typedef VariablesList::iterator VarsLIter

typedef InterfaceList::iterator InterfLIter

typedef ResponseList::iterator RespLIter

typedef ModelList::iterator ModelLlIter

typedef IteratorList::iterator IterLIter

typedef PRPList::iterator PRPLIter

typedef List< ParallelLevel >::iterator ParLevLIter
typedef List< ParallelConfiguration >::iterator ParConfigLIter
typedef IntSet::iterator 1SIter

typedef IntShortMap::iterator IntShMIter

typedef IntReal VectorMap::iterator INtRVM Iter

typedef IntResponseMap::iterator IntRespMlter

typedef IntResponseMap::const_iterator IntRespMClter

typedef int(x start_grid_computing_t )(char *analysis_driver_script, char xparams_file, char *results_-
file)

typedef int(x perform_analysis_t )(char *iteration_num)
typedef int x(x get_jobs_completed_t)()

typedef int(x stop_grid_computing_t )()

typedef unsigned char u_char

typedef unsigned short u_short

typedef unsigned int u_int

typedef unsigned long u_long

typedef long long long_long

typedef void(x Calcrj )(int *n, int xp, Real *x, int *nf, Real xr, int *ui, void *ur, Vf vf)
typedef void(x Vf)()

Enumerations

e enum LHSNames {
NORMAL, LOGNORMAL, UNIFORM, LOGUNIFORM,
WEIBULL, CONSTANT, USERDEFINED }

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



48

DAKOTA Namespace Documentation

enum {

N_MEAN, N_STD_DEV, N_LWR_BND, N_UPR_BND,
LN_MEAN, LN_STD_DEV, LN_ERR_FACT, LN_LWR_BND,
LN_UPR_BND, U_LWR_BND, U_UPR_BND, LU_LWR_BND,
LU_UPR_BND, T_MODE, T_LWR_BND, T_UPR_BND,
B_ALPHA, B_BETA,B_LWR_BND, B_UPR_BND,
GA_ALPHA, GA_BETA, GU_ALPHA, GU_BETA,
F_ALPHA, F_BETA, W_ALPHA, W_BETA }

enum {

NORMAL, LOGNORMAL, UNIFORM, LOGUNIFORM,
TRIANGULAR, BETA, GAMMA, GUMBEL,

FRECHET, WEIBULL }

enum {

MV, AMV_X, AMV_U, AMV_PLUS X,

AMV_PLUS_U, TANA_X, TANA_U, NO_APPROX}

enum EvalType { NLFEvaluator, CONEvaluator }

enum { NONE = 0, HOMOTOPY =1, COMPOSITE_STEP =2}

enum { BASIC_PENALTY, ADAPTIVE_PENALTY, BASIC_LAGRANGIAN, AUGMENTED._-
LAGRANGIAN }

enum { FILTER, TR_RATIO }
enum {

EMPTY, MERGED_ALL, MIXED_ALL, MERGED_DISTINCT_DESIGN,

MERGED_DISTINCT_UNCERTAIN, MERGED_DISTINCT_STATE, MIXED_DISTINCT_-
DESIGN, MIXED_DISTINCT_UNCERTAIN,

MIXED_DISTINCT_STATE }

Functions

bool operator== (const AllVariables &vars1, const AllVariables &vars2)

equality operator

template<> void COLINOptimizer< coliny::DIRECT >::set_method_parameters (void)

Section 3

template <> void COLINOptimizer< coliny::Cobyla >::set_method_parameters (void)
template <> void COLINOptimizer< coliny::APPS >::set_method_parameters (void)
template <> void COLINOptimizer< coliny::PatternSearch >::set_runtime_parameters ()
template <> void COLINOptimizer< coliny::PatternSearch >::set_method_parameters (void)
template <> void COLINOptimizer< coliny::SolisWets >::set_method_parameters (void)
template <> void COLINOptimizer< coliny::EAminlp >::set_method_parameters (void)
CommandShell & flush (CommandShell &shell)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 49

convenient shell manipulator function to "flush™ the shell

e bool operator== (const ActiveSet &setl, const ActiveSet &set2)
equality operator

e istream & operator>> (istream &s, ActiveSet &set)
istream extraction operator for ActiveSet. Calls read(istream&).

e ostream & operator<< (ostream &s, const ActiveSet &set)

ostream insertion operator for ActiveSet. Calls write(istream&).

e BiStream & operator>> (BiStream &s, ActiveSet &set)
BiStream extraction operator for ActiveSet. Calls read(BiStreamé&).

e BoStream & operator< < (BoStream &s, const ActiveSet &set)
BoStream insertion operator for ActiveSet. Calls write(BoStream&).

e MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, ActiveSet &set)
MPIUnpackBuffer extraction operator for ActiveSet. Calls read(MPIUnpackBuffer&).

e MPIPackBuffer & operator< < (MPIPackBuffer &s, const ActiveSet &set)
MPI1PackBuffer insertion operator for ActiveSet. Calls write(MPIPackBuffer&).

e bool operator!= (const ActiveSet &setl, const ActiveSet &set2)
inequality operator

e template<<class T> istream & operator>> (istream &s, Array< T > &data)
global istream extraction operator for Vector

e template<class T> ostream & operator< < (ostream &s, const Array< T > &data)

global ostream insertion operator for Array

e template<class T> BiStream & operator>> (BiStream &s, Array< T > &data)
global BiStream extraction operator for Array

o template<class T> BoStream & operator< < (BoStream &s, const Array< T > &data)
global BoStream insertion operator for Array

e template<class T> MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, Array< T > &data)

global MPIUnpackBuffer extraction operator for Array

o template<class T> MPIPackBuffer & operator< < (MPIPackBuffer &s, const Array< T > &data)
global MPIPackBuffer insertion operator for Array

e istream & operator>> (istream &s, Constraints &con)
istream extraction operator for Constraints

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



50

DAKOTA Namespace Documentation

ostream & operator< < (ostream &s, const Constraints &con)

ostream insertion operator for Constraints

bool interface_id_compare (const Interface &interface, const void *id)

global comparison function for Interface

bool method_id_compare (const Iterator &iterator, const void *id)
global comparison function for Iterator

template<class T> ostream & operator< < (ostream &s, const List< T > &data)
global ostream insertion operator for List

template<class T> MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, List< T > &data)

global MPIUnpackBuffer extraction operator for List

template<class T> MPIPackBuffer & operator< < (MPIPackBuffer &s, const List< T > &data)

global MPIPackBuffer insertion operator for List

template<class T> istream & operator>> (istream &s, Matrix< T > &data)
global istream extraction operator for Matrix

template<class T> ostream & operator< < (ostream &s, const Matrix< T > &data)
global ostream insertion operator for Matrix

template<class T> MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, Matrix< T > &data)
global MPIUnpackBuffer extraction operator for Matrix

template<class T> MPIPackBuffer & operator< < (MPIPackBuffer &s, const Matrix< T > &data)
global MPIPackBuffer insertion operator for Matrix

bool model_id_compare (const Model &model, const void *id)
global comparison function for Model

bool operator== (const ResponseRep &repl, const ResponseRep &rep2)

equality operator

bool responses_id_compare (const Response &resp, const void *id)

global comparison function for Response

istream & operator>>> (istream &s, Response &response)

istream extraction operator for Response. Calls read(istream&).

ostream & operator<< (ostream &s, const Response &response)

ostream insertion operator for Response. Calls write(istream&).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference

51

BiStream & operator>> (BiStream &s, Response &response)
BiStream extraction operator for Response. Calls read(BiStream&).

BoStream & operator< < (BoStream &s, const Response &response)

BoStream insertion operator for Response. Calls write(BoStream&).

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, Response &response)
MPIUnpackBuffer extraction operator for Response. Calls read(MPIUnpackBuffer&).

MPIPackBuffer & operator< < (MPIPackBuffer &s, const Response &response)
MPIPackBuffer insertion operator for Response. Calls write(MPIPackBuffer&).

bool operator== (const Response &respl, const Response &resp2)
equality operator

bool operator!= (const Response &respl, const Response &resp2)

inequality operator

MPIPackBuffer & operator< < (MPIPackBuffer &s, const String &data)

Reads String from buffer.

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, String &data)
Writes String to buffer.

String operator+ (const String &s1, const String &s2)
Concatenate two Strings and return the resulting String.

String operator+ (const char *s1, const String &s2)
Append a String to a charx and return the resulting String.

String operator+ (const String &s1, const char *s2)

Append a charx to a String and return the resulting String.

String operator+ (const DAKOTA_BASE_STRING &sl, const String &s2)
Append a String to a DAKOTA_BASE_STRING and return the resulting String.

String operator+ (const String &s1, const DAKOTA_BASE_STRING &s2)
Append a DAKOTA_BASE_STRING to a String and return the resulting String.

String toUpper (const String &str)
Returns a String converted to upper case. Calls String::upper().

String toLower (const String &str)
Returns a String converted to lower case. Calls String::lower().

bool operator== (const Variables &varsl, const Variables &vars2)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



52

DAKOTA Namespace Documentation

equality operator

bool variables_id_compare (const Variables &vars, const void *id)
global comparison function for Variables

istream & operator>> (istream &s, Variables &vars)
istream extraction operator for Variables.

ostream & operator<< (ostream &s, const Variables &vars)

ostream insertion operator for Variables.

BiStream & operator>> (BiStream &s, Variables &vars)
BiStream extraction operator for Variables.

BoStream & operator< < (BoStream &s, const Variables &vars)

BoStream insertion operator for Variables.

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, Variables &vars)
MPIUnpackBuffer extraction operator for Variables.

MPIPackBuffer & operator< < (MPIPackBuffer &s, const Variables &vars)
MPI1PackBuffer insertion operator for Variables.

bool operator!= (const Variables &vars1, const Variables &vars2)
inequality operator

template<class T> istream & operator>> (istream &s, Vector< T > &data)
global istream extraction operator for Vector

template<class T> ostream & operator<< (ostream &s, const Vector< T > &data)

global ostream insertion operator for Vector

template<class T> MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, Vector< T > &data)
global MPIUnpackBuffer extraction operator for Vector

template<class T> MPIPackBuffer & operator< < (MPIPackBuffer &s, const Vector< T > &data)
global MPIPackBuffer insertion operator for Vector

bool operator== (const Real Vector &drv1, const RealVector &drv2)

equality operator for RealVector

bool operator== (const IntVector &div1, const IntVector &div2)
equality operator for IntVector

bool operator== (const IntArray &dial, const IntArray &dia2)
equality operator for IntArray

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 53

bool operator== (const RealMatrix &drml, const RealMatrix &drm?2)
equality operator for RealMatrix

bool operator== (const RealMatrixArray &drmal, const RealMatrixArray &drma2)
equality operator for RealMatrixArray

bool operator== (const StringArray &dsal, const StringArray &dsa2)
equality operator for StringArray

void copy_data (const NEWMAT::Column Vector &cv, RealBaseVector &drbv)
copy NEWMAT::ColumnVector to RealBaseVector

void copy_data (const RealBaseVector &drbv, NEWMAT::ColumnVector &cv)
copy RealBaseVector to NEWMAT::ColumnVector

void copy_data (const RealArray &dra, NEWMAT::ColumnVector &cv)
copy RealArray to NEWMAT::ColumnVector

void copy_data (const RealMatrix &drm, NEWMAT::SymmetricMatrix &sm)
copy RealMatrix to NEWMAT::SymmetricMatrix

void copy_data (const RealMatrix &drm, NEWMAT::Matrix &m)
copy RealMatrix to NEWMAT::Matrix

void copy_data (const Epetra_SerialDense Vector &psdv, Real Vector &drv)
copy Epetra_SerialDenseVector to RealVector

void copy_data (const Epetra_SerialDenseVector &psdv, RealBaseVector &drbv)
copy Epetra_SerialDenseVector to RealBaseVector

void copy_data (const Epetra_SerialDenseMatrix &psdm, RealMatrix &drm)
copy Epetra_SerialDenseMatrix to RealMatrix

void copy_data (const Epetra_SerialSymDenseMatrix &pssdm, RealMatrix &drm)

copy Epetra_SerialSymDenseMatrix to RealMatrix

void copy_data (const Real Vector &drv, Epetra_SerialDense Vector &psdv)
copy RealVector to Epetra_SerialDenseVector

void copy_data (const RealArray &dra, Epetra_SerialDenseVector &psdv)
copy RealArray to Epetra_SerialDenseVector

void copy_data (const RealBaseVector &drbv, Epetra_SerialDenseVector &psdv)
copy RealBaseVector to Epetra_SerialDenseVector

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



54

DAKOTA Namespace Documentation

void copy_data (const Real *ptr, const int ptr_len, Epetra_SerialDense Vector &psdv)

copy Realx to Epetra_SerialDenseVector

void copy_data (const RealMatrix &drm, Epetra_SerialDenseMatrix &psdm)

copy RealMatrix to Epetra_SerialDenseMatrix

void copy_data (const RealMatrix &drm, Epetra_SerialSymDenseMatrix &pssdm)
copy RealMatrix to Epetra_SerialSymDenseMatrix

void copy_data (const RealMatrixArray &drma, Array< Epetra_SerialSymDenseMatrix > &pssdma)
copy RealMatrixArray to Array<Epetra_SerialSymDenseMatrix>

void copy_data (const NEWMAT::ColumnVector &cv, Epetra_SerialDenseVector &psdv)
copy NEWMAT::ColumnVector to Epetra_SerialDenseVector

void copy_data (const std::vector< DDaceSamplePoint > &dspa, RealVectorArray &drva)
copy DDACE Array to RealVectorArray

void copy_data (const std::vector< DDaceSamplePoint > &dspa, Real *ptr, const int ptr_len)
copy DDACE Array to RealVectorArray

bool operator!= (const Real Vector &drv1, const Real Vector &drv2)
inequality operator for RealVector

bool operator!= (const IntVector &div1, const IntVector &div2)

inequality operator for IntVector

bool operator!= (const IntArray &dial, const IntArray &dia2)

inequality operator for IntArray

bool operator!= (const RealMatrix &drm1, const RealMatrix &drm?2)

inequality operator for RealMatrix

bool operator!= (const RealMatrixArray &drmal, const RealMatrixArray &drma2)

inequality operator for RealMatrixArray

bool operator!= (const StringArray &dsal, const StringArray &dsa2)
inequality operator for StringArray

void build_label (String &label, const String &root_label, size_t tag)
create a label by appending a numerical tag to the root_label

void build_labels (StringArray &label_array, const String &root_label)
create an array of labels by tagging root_label for each entry in label_array. Uses build_label().

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 55

void build_labels_partial (StringArray &label_array, const String &root_label, size_t start_index, size_t
num_items)

create a partial array of labels by tagging root_label for a subset of entries in label_array. Uses build_label().

template<class T> void copy_data (const T xptr, const int ptr_len, Vector< T > &dv)
copy Tx to Vector<T>

template<class T> void copy_data (const T *ptr, const int ptr_len, BaseVector< T > &dbv)
copy Tx to BaseVector<T>

template<class T> void copy_data (const T xptr, const int ptr_len, const String &ptr_type, Matrix< T >
&dm, size_t nr, size_t nc)

copy Tx to Matrix<T>

template<class T> void copy_data (const T *ptr, const int ptr_len, const String &ptr_type, Array<
Vector< T > > &dva, size_t num_vec, size_t vec_len)

copy Tx* to Array<Vector<T> >

template<class T> void copy_data (const Vector< T > &dv, T *ptr, const int ptr_len)
copy Vector<T> to Tx

template <class T> void copy_data (const Matrix< T > &dm, T *ptr, const int ptr_len, const String &ptr_-
type)
copy Matrix<T> to Tsx

template<class T> void copy_data (const Vector< T > &dv, Matrix< T > &dm, size_t nr, size_t nc)
copy Vector<T> to Matrix<T>

template<class T> void copy_data (const Vector< T > &dv, Array< Vector< T > > &dva, size_t num_-
vec, size_t vec_len)

copy Vector<T> to Array<Vector<T> >

template<class T> void copy_data (const Array< T > &da, Vector< T > &dv)
copy Array<T> to Vector<T>

template<class T> void copy_data (const BaseVector< T > &dbv, Vector< T > &dv)
copy BaseVector<T> to Vector<T>

template<class T> void copy_data (const List< T > &dl, Array< T > &da)
copy List<T> to Array<T>

template<class T> void copy_data (const List< T > &dl, Array< Array< T > > &d2a, size_t num_a,
size_t a_len)

copy List<T> to Array<Array<T> >

template<class T> void copy_data (const Array< Array< T > > &d2a, Array< T > &da)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



56

DAKOTA Namespace Documentation

copy Array<Array<T> > to Array<T> (unroll 2D array into 1D array)

template<class T> void copy_data (const utilib::NumArray< T > &na, Vector< T > &dv)
copy utilib::NumArray<T> to Vector<T>

template<class T> void copy_data (const Vector< T > &dv, utilib::NumArray< T > &na)
copy Vector<T> to utilib::NumArray<T>

template<class T> void copy_data (const utilib::NumArray< T > &na, Array< T > &da)
copy utilib::NumArray<T> to Array<T>

template<class T> void copy_data (const List< T > &dl, utilib::NumArray< T > &na)
copy List<T> to utilib::NumArray<T>

template<class T> void copy_data (const TNT::Vector< T > &tntv, Vector< T > &dv)
copy TNT::Vector<T> to Vector<T>

template<class T> void copy_data (const Vector< T > &dv, TNT::Vector< T > &tntv)
copy Vector<T> to TNT::Vector<T>

template<class T> void copy_data (const T #ptr, const int ptr_len, TNT::Vector< T > &tntv)
copy T to TNT::Vector<T>

template<class T> void copy_data (const Matrix< T > &dm, TNT::Matrix< T > &tntm)
copy Matrix<T> to TNT::Matrix<T>

bool data_interface_id_compare (const Datalnterface &di, const void *id)
global comparison function for Datalnterface

MPIPackBuffer & operator< < (MPIPackBuffer &s, const Datalnterface &data)

MPI1PackBuffer insertion operator for Datalnterface.

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, Datalnterface &data)
MPIUnpackBuffer extraction operator for Datalnterface.

ostream & operator< < (ostream &s, const Datalnterface &data)

ostream insertion operator for Datalnterface

bool data_method_id_compare (const DataMethod &dm, const void *id)

global comparison function for DataMethod

MPIPackBuffer & operator< < (MPIPackBuffer &s, const DataMethod &data)
MPIPackBuffer insertion operator for DataMethod.

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, DataMethod &data)
MPIUnpackBuffer extraction operator for DataMethod.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 57

e ostream & operator<< (ostream &s, const DataMethod &data)
ostream insertion operator for DataMethod

e Dbool data_model_id_compare (const DataModel &dm, const void *id)

global comparison function for DataModel

e MPIPackBuffer & operator< < (MPIPackBuffer &s, const DataModel &data)
MPI1PackBuffer insertion operator for DataModel.

e MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, DataModel &data)
MPIUnpackBuffer extraction operator for DataModel.

e ostream & operator<< (ostream &s, const DataModel &data)

ostream insertion operator for DataModel

e Dbool data_responses_id_compare (const DataResponses &dr, const void *id)

global comparison function for DataResponses

o MPIPackBuffer & operator< < (MPIPackBuffer &s, const DataResponses &data)
MPIPackBuffer insertion operator for DataResponses.

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, DataResponses &data)
MPI1UnpackBuffer extraction operator for DataResponses.

e ostream & operator<< (ostream &s, const DataResponses &data)
ostream insertion operator for DataResponses

o MPIPackBuffer & operator< < (MPIPackBuffer &s, const DataStrategy &data)
MPI1PackBuffer insertion operator for DataStrategy.

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, DataStrategy &data)
MPIUnpackBuffer extraction operator for DataStrategy.

e ostream & operator<< (ostream &s, const DataStrategy &data)

ostream insertion operator for DataStrategy

e bool data_variables_id_compare (const DataVariables &dv, const void *id)

global comparison function for DataVariables

o MPIPackBuffer & operator< < (MPIPackBuffer &s, const DataVariables &data)
MPIPackBuffer insertion operator for DataVariables.

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, DataVariables &data)
MPIUnpackBuffer extraction operator for DataVariables.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



58

DAKOTA Namespace Documentation

ostream & operator< < (ostream &s, const DataVariables &data)

ostream insertion operator for DataVariables

int salinas_main (int argc, char sxargv[ ], MPI_Comm scomm)
subroutine interface to SALINAS simulation code

bool operator== (const DistinctVariables &vars1, const DistinctVariables &vars2)
equality operator

ParallelLibrary dummy_lib (0)

dummy ParallelLibrary object used for mandatory reference initialization when a real ParallelLibrary instance is
unavailable

ProblemDescDB dummy_db (dummy_lib)

dummy ProblemDescDB object used for mandatory reference initialization when a real ProblemDescDB instance
is unavailable

void abort_handler (int code)

global function which handles serial or parallel aborts

int start_grid_computing (char *analysis_driver_script, char xparams_file, char xresults_file)
int stop_grid_computing ()

int perform_analysis (char xiteration_num)

template<typename T>> string asstring (const T &val)

Creates a string from the argument "val" using an ostringstream.

bool operator== (const Merged Variables &vars1, const Merged Variables &vars2)
equality operator

PACKBUF (int, MPI_INT)

UNPACKBUF (int, MPI_INT)

PACKSIZE (int, MPI_INT)

MPIPackBuffer & operator< < (MPIPackBuffer &buff, const int &data)

insert an int

MPIPackBuffer & operator< < (MPIPackBuffer &buff, const u_int &data)

insert a u_int

MPIPackBuffer & operator< < (MPIPackBuffer &buff, const long &data)

insert a long

MPIPackBuffer & operator< < (MPIPackBuffer &buff, const u_long &data)
insert a u_long

MPIPackBuffer & operator< < (MPIPackBuffer &buff, const short &data)
insert a short

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 59

o MPIPackBuffer & operator< < (MPIPackBuffer &buff, const u_short &data)
insert a u_short

o MPIPackBuffer & operator< < (MPIPackBuffer &buff, const char &data)
insert a char

o MPIPackBuffer & operator< < (MPIPackBuffer &buff, const u_char &data)
insert a u_char

o MPIPackBuffer & operator< < (MPIPackBuffer &buff, const double &data)
insert a double

o MPIPackBuffer & operator< < (MPIPackBuffer &buff, const float &data)
insert a float

o MPIPackBuffer & operator< < (MPIPackBuffer &buff, const bool &data)
insert a bool

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, int &data)
extract an int

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, u_int &data)

extracta u_int

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, long &data)
extract a long

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, u_long &data)
extracta u_long

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, short &data)
extract a short

e MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, u_short &data)

extract a u_short

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, char &data)
extract a char

o MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, u_char &data)
extract a u_char

e MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, double &data)
extract a double

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



60

DAKOTA Namespace Documentation

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, float &data)
extract a float

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &buff, bool &data)
extract a bool

int MPIPackSize (const int &data, const int num=1)
return packed size of an int

int MPIPackSize (const u_int &data, const int num=1)

return packed size of a u_int

int MPIPackSize (const long &data, const int num=1)

return packed size of a long

int MPIPackSize (const u_long &data, const int num=1)

return packed size of a u_long

int MPIPackSize (const short &data, const int num=1)

return packed size of a short

int MPIPackSize (const u_short &data, const int num=1)
return packed size of a u_short

int MPIPackSize (const char &data, const int num=1)

return packed size of a char

int MPIPackSize (const u_char &data, const int num=1)

return packed size of a u_char

int MPIPackSize (const double &data, const int num=1)
return packed size of a double

int MPIPackSize (const float &data, const int num=1)

return packed size of a float

int MPIPackSize (const bool &data, const int num=1)
return packed size of a bool

void dn2f_ (int *n, int xp, Real xx, Calcrj, int xiv, int *liv, int lv, Real *v, int *ui, void *ur, Vf)

void dn2fb_ (int *n, int *p, Real xx, Real xb, Calcrj, int *iv, int *liv, int xlv, Real *v, int *ui, void *ur, Vf)
void dn2g_ (int *n, int xp, Real xx, Calcrj, Calcrj, int iv, int liv, int xlv, Real *v, int xui, void *ur, Vf)
void dn2gb_ (int *n, int xp, Real xx, Real *b, Calcrj, Calcrj, int iv, int liv, int xlv, Real *v, int xui, void
sur, Vi)

void divset_ (int *, int %, int *, int *, Real *)

double dr7mdc_ (int x)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 61

double rnuml (void)
double rnum2 (void)
bool operator== (const ParamResponsePair &pairl, const ParamResponsePair &pair2)

equality operator

bool vars_set_compare (const ParamResponsePair &database_pr, const void *search_pr)
search function for a particular ParamResponsePair within a List

bool eval_id_compare (const ParamResponsePair &pair, const void *id)
search function for a particular ParamResponsePair within a List

bool eval_id_sort_fn (const ParamResponsePair &prl, const ParamResponsePair &pr2)

sort function for ParamResponsePair

istream & operator>> (istream &s, ParamResponsePair &pair)

istream extraction operator for ParamResponsePair

ostream & operator< < (ostream &s, const ParamResponsePair &pair)
ostream insertion operator for ParamResponsePair

BiStream & operator>> (BiStream &s, ParamResponsePair &pair)
BiStream extraction operator for ParamResponsePair.

BoStream & operator< < (BoStream &s, const ParamResponsePair &pair)

BoStream insertion operator for ParamResponsePair.

MPIUnpackBuffer & operator>> (MPIUnpackBuffer &s, ParamResponsePair &pair)
MPIUnpackBuffer extraction operator for ParamResponsePair.

MPIPackBuffer & operator< < (MPIPackBuffer &s, const ParamResponsePair &pair)

MPI1PackBuffer insertion operator for ParamResponsePair.

bool operator!= (const ParamResponsePair &pairl, const ParamResponsePair &pair2)
inequality operator

void print_restart (int argc, char sxargv, String print_dest)

print a restart file

void print_restart_tabular (int argc, char *xargv, String print_dest)

print a restart file (tabular format)

void read_neutral (int argc, char *xargv)
read a restart file (neutral file format)

void repair_restart (int argc, char s*argv, String identifier_type)
repair a restart file by removing corrupted evaluations

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



62

DAKOTA Namespace Documentation

e void concatenate_restart (int argc, char **argv)

concatenate multiple restart files

Variables

e ProblemDescDB dummy_db

dummy ProblemDescDB object used for mandatory reference initialization when a real ProblemDescDB instance
is unavailable

Model dummy_model

dummy Model object used for mandatory reference initialization or default virtual function return by reference
when a real Model instance is unavailable

ParallelLibrary dummy_lib

dummy ParallelLibrary object used for mandatory reference initialization when a real ParallelLibrary instance is
unavailable

Graphics dakota_graphics

the global Dakota::Graphics object used by strategies, models, and approximations

Interface dummy_interface

dummy Interface object used for mandatory reference initialization or default virtual function return by reference
when a real Interface instance is unavailable

Iterator dummy_iterator

dummy Iterator object used for mandatory reference initialization or default virtual function return by reference
when a real Iterator instance is unavailable

class class class class class class class typedef double Real
ostream * dakota_cout = &cout

DAKOTA stdout initially points to cout, but may be redirected to a tagged ofstream if there are concurrent iterators.

ostream * dakota_cerr = &cerr

DAKOTA stderr initially points to cerr, but may be redirected to a tagged ofstream if there are concurrent iterators.

PRPList data_pairs

list of all parameter/response pairs.

BoStream write_restart

the restart binary output stream (doesn’t really need to be global anymore except for abort_handler()).

int write_precision = 10
used in ostream data output functions (restart_util.C overrides this default value)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 63

e int mc_ptr_int=0

global pointer for ModelCenter API

e FILE x yyin

e constint MAXPOSDEF = 10

e constint NONRANDOM =0

e constint RANDOM =1

e Dakota::GSL_Singleton GSL_RNG
e constint LARGE_SCALE =100

e const size_t _NPOS = ~(size_t)0

special value returned by index() when entry not found

9.1.1 Detailed Description

The primary namespace for DAKOTA.

The Dakota namespace encapsulates the core classes of the DAKOTA framework and prevents name clashes
with third-party libraries from VendorOptimizers and VendorPackages. The C++ source files defining these core
classes reside in Dakota/src as *.[CH].

9.1.2 Function Documentation

9.1.2.1 void COLINOptimizer< coliny::DIRECT >::set_method_parameters (void)

Section 3

specialization of set_method_parameters() for DIRECT

9.1.2.2 void COLINOptimizer< coliny::Cobyla >::set_method_parameters (void)

specialization of set_method_parameters() for Cobyla

9.1.2.3 void COLINOptimizer< coliny::APPS >::set_method_parameters (void)

specialization of set_method_parameters() for APPS

9.1.2.4 void COLINOptimizer< coliny::PatternSearch >::set_runtime_parameters ()

specialization of set_runtime_parameters() for PatternSearch

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



64 DAKOTA Namespace Documentation

9.1.2.5 void COLINOptimizer< coliny::PatternSearch >::set_method_parameters (void)

specialization of set_method_parameters() for PatternSearch

9.1.2.6 void COLINOptimizer< coliny::SolisWets >::set_method_parameters (void)

specialization of set_method_parameters() for SolisWets

9.1.2.7 void COLINOptimizer< coliny::EAminlp >::set_method_parameters (void)

specialization of set_method_parameters() for EAminlp

9.1.2.8 CommandsShell & flush (CommandShell & shell)

convenient shell manipulator function to "flush" the shell

global convenience function for manipulating the shell; invokes the class member flush function.

9.1.2.9 bool operator== (const DistinctVariables & varsl, const DistinctVariables & vars2)

equality operator

Checks each array using operator== from data_types.C. Labels are ignored.

9.1.2.10 bool vars_set_compare (const ParamResponsePair & database_pr, const void * search_pr)
[inline]
search function for a particular ParamResponsePair within a List

a global function to compare the parameter values, ASV, & interface id of a particular database_pr (presumed to
be in the global history list) with a passed in set of parameters, ASV, & interface id provided by search_pr.

9.1.2.11 bool eval_id_compare (const ParamResponsePair & pair, const void = id) [i nl i ne]

search function for a particular ParamResponsePair within a List

a global function to compare the evalld of a particular ParamResponsePair (from a List) with a passed in evaluation
id. *((intx)id) construct casts voidx to intx and then dereferences.

9.1.2.12 bool eval_id_sort_fn (const ParamResponsePair & prl, const ParamResponsePair & pr2)
[inline]

sort function for ParamResponsePair

a global function used to sort a PRPList by evalld’s.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



9.1 Dakota Namespace Reference 65

9.1.2.13 void print_restart (int argc, char == argv, String print_dest)

print a restart file
Usage: "dakota_restart_util print dakota.rst"
"dakota_restart_util to_neutral dakota.rst dakota.neu"

Prints all evals. in full precision to either stdout or a neutral file. The former is useful for ensuring that duplicate
detection is successful in a restarted run (e.g., starting a new method from the previous best), and the latter is used
for translating binary files between platforms.

9.1.2.14 wvoid print_restart_tabular (int argc, char *x argv, String print_dest)

print a restart file (tabular format)
Usage: "dakota_restart_util to_pdb dakota.rst dakota.pdb"
"dakota_restart_util to_tabular dakota.rst dakota.txt"

Unrolls all data associated with a particular tag for all evaluations and then writes this data in a tabular format
(e.g., to a PDB database or MATLAB/TECPLOT data file).

9.1.2.15 void read_neutral (int argc, char xx argv)

read a restart file (neutral file format)
Usage: "dakota_restart_util from_neutral dakota.neu dakota.rst"

Reads evaluations from a neutral file. This is used for translating binary files between platforms.

9.1.2.16 void repair_restart (int argc, char x argv, String identifier_type)

repair a restart file by removing corrupted evaluations
Usage: "dakota_restart_util remove 0.0 dakota_old.rst dakota_new.rst"
"dakota_restart_util remove_ids 2 7 13 dakota_old.rst dakota_new.rst"

Repairs a restart file by removing corrupted evaluations. The identifier for evaluation removal can be either a
double precision number (all evaluations having a matching response function value are removed) or a list of
integers (all evaluations with matching evaluation ids are removed).

9.1.2.17 void concatenate_restart (int argc, char xx argv)

concatenate multiple restart files
Usage: "dakota_restart_util cat dakota_1.rst ... dakota_n.rst dakota_new.rst"

Combines multiple restart files into a single restart database.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



66 DAKOTA Namespace Documentation

9.2 SIM Namespace Reference

A sample namespace for derived classes that use assign_rep() to plug facilities into DAKOTA.

Classes

e class DirectFnApplicInterface
Sample derived interface class for testing plug-ins using assign_rep().

9.2.1 Detailed Description

A sample namespace for derived classes that use assign_rep() to plug facilities into DAKOTA.

A typical use of plug-ins with assign_rep() is to publish a simulation interface for use in library mode See
Interfacing with DAKOTA as a Library for more information.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 10

DAKOTA Class Documentation

10.1 ActiveSet Class Reference

Container class for active set tracking information. Contains the active set request vector and the derivative
variables vector.
Public Member Functions

e ActiveSet ()
default constructor

e ActiveSet (size_t num_fns, size_t num_deriv_vars)

standard constructor

e ActiveSet (const ActiveSet &set)
copy constructor

o ~ActiveSet ()

destructor

e ActiveSet & operator= (const ActiveSet &set)

assignment operator

e void reshape (size_t num_fns, size_t num_deriv_vars)

reshape requestVector and derivVarsVector

e const IntArray & request_vector () const

return the request vector



68 DAKOTA Class Documentation

e void request_vector (const IntArray &rv)

set the request vector

e void request_values (const int rv_val)

set all request vector values

e void request_value (const size_t index, const int rv_val)

set the value of an entry in the request vector

e const IntArray & derivative_vector () const

return the derivative variables vector

e void derivative_vector (const IntArray &dvv)

set the derivative variables vector

e void derivative_start_value (const int dvv_start_val)
set the derivative variables vector values

e void read (istream &s)
read an active set object from an istream

e void write (ostream &s) const
write an active set object to an ostream

e void write_annotated (ostream &s) const

write an active set object to an ostream in annotated format

e void read (BiStream &s)
read an active set object from the binary restart stream

e void write (BoStream &s) const

write an active set object to the binary restart stream

e void read (MPIUnpackBuffer &s)
read an active set object from a packed MPI buffer

e void write (MPIPackBuffer &s) const
write an active set object to a packed MPI buffer

Private Attributes

e IntArray requestVector

the vector of response requests

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.1 ActiveSet Class Reference 69

e IntArray derivVarsVector

the vector of variable ids used for computing derivatives

Friends

e bool operator== (const ActiveSet &setl, const ActiveSet &set2)

equality operator

e bool operator!= (const ActiveSet &setl, const ActiveSet &set2)

inequality operator

10.1.1 Detailed Description

Container class for active set tracking information. Contains the active set request vector and the derivative
variables vector.

The ActiveSet class is a small class whose initial design function is to avoid having to pass the ASV and DVV
separately. It is not part of a class hierarchy and does not employ reference-counting/ representation-sharing
idioms (e.g., handle-body).

10.1.2 Member Data Documentation

10.1.2.1 IntArray requestVector [ pri vate]

the vector of response requests

It uses a O value for inactive functions and sums 1 (value), 2 (gradient), and 4 (Hessian) for active functions.
10.1.2.2 IntArray derivVarsVector [ pri vat e]

the vector of variable ids used for computing derivatives
These ids will generally identify either the active continuous variables or the inactive continuous variables.

The documentation for this class was generated from the following files:

e DakotaActiveSet.H
e DakotaActiveSet.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



70

DAKOTA Class Documentation

10.2 AllConstraints Class Reference

Derived class within the Constraints hierarchy which employs the all data view.

Inheritance diagram for AllConstraints::

| Constraints | | VariablesUtil |
T T

AllConstraints

Public Member Functions

AllConstraints ()
default constructor

AllConstraints (const ProblemDescDB &problem_db, const pair< short, short > &view)
standard constructor

~AllConstraints ()
destructor

const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

void continuous_lower_bounds (const RealVector &c_I_bnds)
set the active continuous variable lower bounds

const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

void continuous_upper_bounds (const Real Vector &c_u_bnds)
set the active continuous variable upper bounds

const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds

void discrete_lower_bounds (const IntVector &d_I1_bnds)
set the active discrete variable lower bounds

const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.2 AllConstraints Class Reference 71

e void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds

e RealVector all_continuous_lower_bounds () const
returns a single array with all continuous lower bounds

e RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

e IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

e IntVector all_discrete_upper_bounds () const

returns a single array with all discrete upper bounds

e void write (ostream &s) const

write a variable constraints object to an ostream

e void read (istream &s)

read a variable constraints object from an istream

Private Attributes

e RealVector allContinuousLowerBnds

a continuous lower bounds array combining continuous design, uncertain, and continuous state variable types (all
view).

e RealVector allContinuousUpperBnds

a continuous upper bounds array combining continuous design, uncertain, and continuous state variable types (all
view).

e IntVector allDiscreteLowerBnds

a discrete lower bounds array combining discrete design and discrete state variable types (all view).

e IntVector allDiscreteUpperBnds

a discrete upper bounds array combining discrete design and discrete state variable types (all view).

e size_t numCDV
number of continuous design variables

e size t numDDV
number of discrete design variables

e size t numUV

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



72 DAKOTA Class Documentation

number of uncertain variables

e size t numCSV
number of continuous state variables

e size t numDSV
number of discrete state variables

10.2.1 Detailed Description

Derived class within the Constraints hierarchy which employs the all data view.

Derived variable constraints classes take different views of the design, uncertain, and state variable types and
the continuous and discrete domain types. The AllConstraints derived class combines design, uncertain, and
state variable types but separates continuous and discrete domain types. The result is combined continuous
bounds arrays (allContinuousLowerBnds, allContinuousUpperBnds) and combined discrete bounds arrays (all-
DiscreteLowerBnds, allDiscreteUpperBnds). Parameter and DACE studies currently use this approach (see
Variables::get_variables(problem_db) for variables view selection; variables view is passed to the Constraints
constructor in Model).

10.2.2 Constructor & Destructor Documentation

10.2.2.1  AllConstraints (const ProblemDescDB & problem_db, const pair< short, short > & view)

standard constructor

In this class, the all data approach (design, uncertain, and state types are combined) is used. Iterators/strategies
which use this class include: parameter studies, dace, and nond_sampling in all_variables mode. Extract fun-
damental lower and upper bounds and combine them into allContinuousLowerBnds, allContinuousUpperBnds,
allDiscreteLowerBnds, and allDiscreteUpperBnds using utilities from VariablesUTtil.

The documentation for this class was generated from the following files:

o AllConstraints.H
e AllConstraints.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.3 AllVariables Class Reference

73

10.3 AllVariables Class Reference

Derived class within the Variables hierarchy which employs the all data view.

Inheritance diagram for AllVariables::

| Variables ||VariabI%UtiI|

AllVariables

Public Member Functions

e AllVariables ()
default constructor

AllVariables (const ProblemDescDB &problem_db, const pair< short, short > &view)
standard constructor

e ~AllVariables ()
destructor

e size_t tv () const

Returns total number of vars.

e const RealVector & continuous_variables () const
return the active continuous variables

e void continuous_variables (const RealVector &c_vars)

set the active continuous variables

e const IntVector & discrete_variables () const
return the active discrete variables

e void discrete_variables (const IntVector &d_vars)

set the active discrete variables

e const StringArray & continuous_variable_labels () const
return the active continuous variable labels

e void continuous_variable_labels (const StringArray &cv_labels)

set the active continuous variable labels

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



74

DAKOTA Class Documentation

const StringArray & discrete_variable_labels () const

return the active discrete variable labels

void discrete_variable_labels (const StringArray &dv_labels)
set the active discrete variable labels

size_t acv () const

returns total number of continuous vars

size_t adv () const

returns total number of discrete vars

RealVector all_continuous_variables () const

returns a single array with all continuous variables

void all_continuous_variables (const Real Vector &a_c_vars)

sets all continuous variables using a single array

IntVector all_discrete_variables () const

returns a single array with all discrete variables

void all_discrete_variables (const IntVector &a_d_vars)

sets all discrete variables using a single array

StringArray all_continuous_variable_labels () const
returns a single array with all continuous variable labels

StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

StringArray all_variable_labels () const
returns a single array with all variable labels

void read (istream &s)

read a variables object from an istream

void write (ostream &s) const

write a variables object to an ostream

void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

void read_annotated (istream &s)

read a variables object in annotated format from an istream

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.3 AllVariables Class Reference

75

e void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

e void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

e void read (BiStream &s)
read a variables object from the binary restart stream

e void write (BoStream &s) const

write a variables object to the binary restart stream

e void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

e void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

Private Member Functions

e void copy_rep (const Variables xvars_rep)

Used by copy() to copy the contents of a letter class.

Private Attributes

e RealVector allContinuousVars

a continuous array combining all of the continuous variables (design, uncertain, and state).

e IntVector allDiscreteVars

a discrete array combining all of the discrete variables (design and state).

e StringArray allContinuousLabels

a label array combining all of the continuous variable labels (design, uncertain, and state).

e StringArray allDiscreteLabels
a label array combining all of the discrete variable labels (design and state).

e size t numCDV

number of continuous design variables

e size t numDDV

number of discrete design variables

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



76 DAKOTA Class Documentation

e size tnumUV

number of uncertain variables

e size t numCSV
number of continuous state variables

e size t numDSV
number of discrete state variables

Friends

e bool operator== (const AllVariables &varsl, const AllVariables &vars2)

equality operator

10.3.1 Detailed Description

Derived class within the Variables hierarchy which employs the all data view.

Derived variables classes take different views of the design, uncertain, and state variable types and the continuous
and discrete domain types. The AllVariables derived class combines design, uncertain, and state variable types
but separates continuous and discrete domain types. The result is a single array of continuous variables (all-
ContinuousVars) and a single array of discrete variables (allDiscreteVars). Parameter and DACE studies currently
use this approach (see Variables::get_variables(problem_db)).

10.3.2 Constructor & Destructor Documentation

10.3.2.1 AllVariables (const ProblemDescDB & problem_db, const pair< short, short > & view)

standard constructor

In this class, the all data approach (design, uncertain, and state types are combined) is used. Iterators/strategies
which use this class include: parameter studies, DACE, and the all_variables mode of nond_sampling. Extract
fundamental variable types and labels and combine them into allContinuousVars, allDiscreteVars, allContinuous-
Labels, and allDiscreteLabels using utilities from VariablesUtil.

The documentation for this class was generated from the following files:

e AllVariables.H
e AllVariables.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.4 AnalysisCode Class Reference 77

10.4 AnalysisCode Class Reference

Base class providing common functionality for derived classes (SysCallAnalysisCode and ForkAnalysisCode)
which spawn separate processes for managing simulations.

Inheritance diagram for AnalysisCode::

| AnalysisCode |
I f
ForkAnalysisCode | |SysCaIIAnaIysisCode

Public Member Functions

e void define_filenames (const int id)

define modified filenames from user input by handling Unix temp file and tagging options

e void write_parameters_files (const Variables &vars, const ActiveSet &set, const int id)

write the parameters data and response request data to one or more parameters files (using one or more invocations
of write_parameters_file()) in either standard or aprepro format

e void read_results_files (Response &response, const int id)
read the response object from one or more results files

e const StringArray & program_names () const

return programNames

e const String & input_filter_name () const
return iFilterName

e const String & output_filter_name () const
return oFilterName

e const String & parameters_filename () const

return paramsFileName

e const String & results_filename () const

return resultsFileName

e const String & results_filename (const int id)

return the results filename entry in fileNameMap corresponding to id

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



78 DAKOTA Class Documentation

e void suppress_output_flag (const bool flag)
set suppressOutputFlag

e Dbool suppress_output_flag () const

return suppressOutputFlag

e Dbool multiple_parameters_filenames () const
return multipleParamsFiles

Protected Member Functions

e AnalysisCode (const ProblemDescDB &problem_db)
constructor

e virtual ~AnalysisCode ()
destructor

Protected Attributes

e bool suppressOutputFlag

flag set by master processor to suppress output from slave processors

e bool verboseFlag

flag for additional analysis code output if method verbosity is set

e bool fileTagFlag
flags tagging of parameter/results files

e bool fileSaveFlag
flags retention of parameter/results files

e Dbool apreproFlag
flags use of the APREPRO (the Sandia "A PRE PROcessor" utility) format for parameter files

e bool multipleParamsFiles

flag indicating the need for separate parameters files for multiple analysis drivers

e String iFilterName

the name of the input filter (input_filter user specification)

e String oFilterName

the name of the output filter (output_filter user specification)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.4 AnalysisCode Class Reference 79

StringArray programNames

the names of the analysis code programs (analysis_drivers user specification)

e size_t numPrograms
the number of analysis code programs (length of programNames)

e String specifiedParamsFileName
the name of the parameters file from user specification

e String paramsFileName

the parameters file name actually used (modified with tagging or temp files)

e String specifiedResultsFileName
the name of the results file from user specification

e String resultsFileName

the results file name actually used (modified with tagging or temp files)

e map< int, pair< String, String > > fileNameMap

stores parameters and results file names used in spawning function evaluations. Map key is the function evaluation
identifier.

Private Member Functions

e void write_parameters_file (const Variables &vars, const ActiveSet &set, const StringArray &an_comps,
const String &params_fname)

write the variables, active set vector, derivative variables vector, and analysis components to the specified parame-
ters file in either standard or aprepro format

Private Attributes

e ParallelLibrary & parallelLib
reference to the ParallelLibrary object. Used in define_filenames().

e String2DArray analysisComponents

the set of optional analysis components used by the analysis drivers (from the analysis_components interface spec-
ification)

10.4.1 Detailed Description

Base class providing common functionality for derived classes (SysCallAnalysisCode and ForkAnalysisCode)
which spawn separate processes for managing simulations.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



80 DAKOTA Class Documentation

The AnalysisCode class hierarchy provides simulation spawning services for ApplicationlInterface derived classes
and alleviates these classes of some of the specifics of simulation code management. The hierarchy does not
employ the letter-envelope technique since the ApplicationInterface derived classes instantiate the appropriate
derived AnalysisCode class directly.

The documentation for this class was generated from the following files:

e AnalysisCode.H
e AnalysisCode.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.5 Analyzer Class Reference

81

10.5 Analyzer Class Reference

Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy.

Inheritance diagram for Analyzer::

NonDEvidence | [ NonDReliability | | NonDS‘ampIing ||DDACEDes"gnCompExp|| FSUDesignCompExp | | ParamStudy
[ NonDLHsSampling | [ NonDPCESampling

Public Member Functions

e const VariablesArray & all_variables () const

return the complete set of evaluated variables

e const RealVectorArray & all_c_variables () const

return the complete set of evaluated continuous variables

e const ResponseArray & all_responses () const
return the complete set of computed responses

e const RealVectorArray & all_fn_responses () const
return the complete set of computed function responses

Protected Member Functions

e Analyzer ()
default constructor

e Analyzer (Model &model)
standard constructor

e Analyzer (NoDBBaseConstructor, Model &model)
alternate constructor for instantiations "on the fly"

e ~Analyzer ()
destructor

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



82 DAKOTA Class Documentation

virtual void update_best (const Real Vector &vars, const Response &response, const int eval_num)
compares current evaluation to best evaluation and updates best

virtual void vary_pattern (bool pattern_flag)

sets varyPattern in derived classes that support it

virtual void get_parameter_sets ()

Returns one block of samples (ndim *« num_samples).

void evaluate_parameter_sets (bool vars_flag, bool resp_flag, bool fns_{flag, bool best_flag)

perform function evaluations to map parameter sets (allVariables/allCVariables/allDVariables) into response sets
(allResponses/allFnResponses/allGradResponses)

void var_based_decomp (const int ndim, const int num_samples)
void volumetric_quality (int ndim, int num_samples, double *sample_points)

Calculation of volumetric quality measures.

e void print_vbd (ostream &s, const RealVector &S, const RealVector &T) const

Printing of VBD results.

Protected Attributes

e VariablesArray allVariables
array of all variables evaluated

e RealVectorArray allCVariables
array of all continuous variables evaluated (subset of allVariables)

e ResponseArray allResponses
array of all responses computed

e RealVectorArray allFnResponses
array of all function responses computed (subset of allResponses)

e StringArray allHeaders
array of headers to insert into output while evaluating allCVariables

e bool qualityFlag
flag to indicated if quality metrics were calculated

e double chiMeas

quality measures

e double dMeas

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.5 Analyzer Class Reference 83

quality measures

e double hMeas
quality measures

e double tauMeas
quality measures

10.5.1 Detailed Description

Base class for NonD, DACE, and ParamStudy branches of the iterator hierarchy.

The Analyzer class provides common data and functionality for various types of systems analysis, including
nondeterministic analysis, design of experiments, and parameter studies.

10.5.2 Member Function Documentation

10.5.2.1 void evaluate_parameter_sets (bool vars_flag, bool resp_flag, bool fns_flag, bool best_flag)
[ protected]

perform function evaluations to map parameter sets (allVariables/allCVariables/allDVariables) into response sets
(allResponses/allFnResponses/allGradResponses)

Convenience function for derived classes with sets of function evaluations to perform (e.g., NonDSampling,
DDACEDesignCompExp, FSUDesignCompExp, ParamStudy).

10.5.2.2 void var_based_decomp (const int ndim, const int num_samples) [ pr ot ect ed]
Calculation of sensitivity indices obtained by variance based decomposition. These indices are obtained by the

Saltelli version of the Sobol’ VBD which uses (K+2)*N function evaluations, where K is the number of dimen-
sions (uncertain vars) and N is the number of samples.

10.5.2.3 void volumetric_quality (int ndim, int num_samples, double « sample_points) [ prot ect ed]

Calculation of volumetric quality measures.

Calculation of volumetric quality measures developed by FSU.

10.5.2.4 void print_vbd (ostream & s, const RealVector & S, const RealVector & T) const
[ protected]

Printing of VBD results.

printing of variance based decomposition indices.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



84 DAKOTA Class Documentation

The documentation for this class was generated from the following files:

e DakotaAnalyzer.H
e DakotaAnalyzer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.6 Applicationinterface Class Reference 85

10.6 Applicationlnterface Class Reference

Derived class within the interface class hierarchy for supporting interfaces to simulation codes.

Inheritance diagram for ApplicationInterface::

| Interface |

T

| Applicationinterface |

t
[ [

|DirectFnAppIicInterface| | ForkAppliclnterface | | GridAppliclnterface | | SysCallAppliclnterface

| DirectFnApplicinterface |

Public Member Functions

e Applicationlnterface (const ProblemDescDB &problem_db)
constructor

e ~ApplicationInterface ()

destructor

Protected Member Functions

e void init_communicators (const IntArray &message_lengths, const int &max_iterator_concurrency)

allocate communicator partitions for concurrent evaluations within an iterator and concurrent multiprocessor anal-
yses within an evaluation.

e void reset_communicators (const IntArray &message_lengths)
reset the local parallel partition data for an interface (the partitions are already allocated in ParallelLibrary).

e void free_communicators ()

deallocate communicator partitions for concurrent evaluations within an iterator and concurrent multiprocessor
analyses within an evaluation.

void init_serial ()
int asynch_local_evaluation_concurrency () const

return asynchLocalEvalConcurrency

e String interface_synchronization () const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



86 DAKOTA Class Documentation
return interfaceSynchronization
e void map (const Variables &vars, const ActiveSet &set, Response &response, const bool asynch_-
flag=false)
Provides a "mapping" of variables to responses using a simulation. Protected due to Interface letter-envelope
idiom.
e void manage_failure (const Variables &vars, const ActiveSet &set, Response &response, int failed_eval_-
id)
manages a simulation failure using abort/retry/recover/continuation
e const ResponseArray & synch ()
executes a blocking schedule for asynchronous evaluations in the beforeSynchCorePRPList queue and returns all
jobs
e const IntResponseMap & synch_nowait ()
executes a nonblocking schedule for asynchronous evaluations in the beforeSynchCorePRPList queue and returns
a partial list of completed jobs
e void serve_evaluations ()
run on evaluation servers to serve the iterator master
e void stop_evaluation_servers ()
used by the iterator master to terminate evaluation servers
e virtual void derived_map (const Variables &vars, const ActiveSet &set, Response &response, int fn_eval_-
id)
Called by map() and other functions to execute the simulation in synchronous mode. The portion of performing an
evaluation that is specific to a derived class.
e virtual void derived_map_asynch (const ParamResponsePair &pair)
Called by map() and other functions to execute the simulation in asynchronous mode. The portion of performing
an asynchronous evaluation that is specific to a derived class.
e virtual void derived_synch (PRPList &prp_list)
For asynchronous function evaluations, this method is used to detect completion of jobs and process their results.
It provides the processing code that is specific to derived classes. This version waits for at least one completion.
e virtual void derived_synch_nowait (PRPList &prp_list)
For asynchronous function evaluations, this method is used to detect completion of jobs and process their results. It
provides the processing code that is specific to derived classes. This version is nonblocking and will return without
any completions if none are immediately available.
e void self_schedule_analyses ()
blocking self-schedule of all analyses within a function evaluation using message passing
e void serve_analyses_synch ()

serve the master analysis scheduler and manage one synchronous analysis job at a time

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.6 Applicationinterface Class Reference 87

e virtual int derived_synchronous_local_analysis (const int &analysis_id)

Execute a particular analysis (identified by analysis_id) synchronously on the local processor. Used for the derived
class specifics within Applicationinterface::serve_analyses_synch().

Protected Attributes

e ParallelLibrary & parallelLib

reference to the ParallelLibrary object used to manage MPI partitions for the concurrent evaluations and concur-
rent analyses parallelism levels

e Dbool suppressOutput
flag for suppressing output on slave processors

e int evalCommSize

size of evalComm

e int evalCommRank

processor rank within evalComm

e int evalServerld
evaluation server identifier

e bool eaDedMasterFlag
flag for dedicated master partitioning at ea level

e int analysisCommSize

size of analysisComm

e int analysisCommRank

processor rank within analysisComm

e int analysisServerld

analysis server identifier

e int numAnalysisServers

number of analysis servers

e bool multiProcAnalysisFlag
flag for multiprocessor analysis partitions

e bool asynchLocalAnalysisFlag
flag for asynchronous local parallelism of analyses

e int asynchLocalAnalysisConcurrency

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



88 DAKOTA Class Documentation

limits the number of concurrent analyses in asynchronous local scheduling and specifies hybrid concurrency when
message passing

e int numAnalysisDrivers
the number of analysis drivers used for each function evaluation (from the analysis_drivers interface specification)

o IntSet completionSet
the set of completed fn_eval_id’s populated by derived_synch() and derived_synch_nowait()

Private Member Functions

e bool duplication_detect (const Variables &vars, Response &response, const bool asynch_flag)

checks data_pairs and beforeSynchCorePRPList to see if the current evaluation request has already been performed
or queued

e void self_schedule_evaluations ()

blocking self-schedule of all evaluations in beforeSynchCorePRPList using message passing; executes on iterator-
Comm master

e void static_schedule_evaluations ()

blocking static schedule of all evaluations in beforeSynchCorePRPList using message passing; executes on iterator-
Comm master

e void asynchronous_local_evaluations (PRPList &prp_list)
perform all jobs in prp_list using asynchronous approaches on the local processor

e void synchronous_local_evaluations (PRPList &prp_list)
perform all jobs in prp_list using synchronous approaches on the local processor

e void asynchronous_local_evaluations_nowait (PRPList &prp_list)

launch new jobs in prp_list asynchronously (if capacity is available), perform nonblocking query of all running
jobs, and process any completed jobs

e void serve_evaluations_synch ()

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time

e void serve_evaluations_asynch ()

serve the evaluation message passing schedulers and manage multiple asynchronous evaluations

e void serve_evaluations_peer ()

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time as part of the
1st peer

void reset_evaluation_communicators (const IntArray &message_lengths)

convenience function for updating the local evaluation partition data  following
ParallelLibrary::init_evaluation_communicators().

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.6 Applicationinterface Class Reference 89

e void reset_analysis_communicators ()

convenience function for updating the local analysis partition data following
ParallelLibrary::init_analysis_communicators().

e const ParamResponsePair & get_source_pair (const Variables &target_vars)

convenience function for the continuation approach in manage_failure() for finding the nearest successful "source"
evaluation to the failed "target"”

e void continuation (const Variables &target_vars, const ActiveSet &set, Response &response, const
ParamResponsePair &source_pair, int failed_eval_id)

performs a Oth order continuation method to step from a successful "source" evaluation to the failed "target".
Invoked by manage_failure() for failAction == "continuation”.

e void common_input_filtering (const Variables &vars)

common input filtering operations, e.g. mesh movement with DDRIV

e void common_output_filtering (Response &response)

common output filtering operations, e.g. data filtering

Private Attributes

e int worldSize
size of MPI_COMM_WORLD

e int worldRank
processor rank within MPI_COMM_WORLD

e int iteratorCommSize

size of iteratorComm

e int iteratorCommRank

processor rank within iteratorComm

e bool ieMessagePass

flag for message passing at ie scheduling level

e int numEvalServers

number of evaluation servers

e bool eaMessagePass
flag for message passing at ea scheduling level

e int procsPerAnalysis

processors per analysis servers

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



90

DAKOTA Class Documentation

int lenVarsMessage

length of a MPIPackBuffer containing a Variables object; computed in Model::init_communicators()

int lenVarsActSetMessage

length of a MPIPackBuffer containing a Variables object and an ActiveSet object; computed in
Model::init_communicators()

int lenResponseMessage

length of a MPIPackBuffer containing a Response object; computed in Model::init_communicators()

int lenPRPairMessage
length of a MPIPackBuffer containing a ParamResponsePair object; computed in Model::init_communicators()

String evalScheduling

user specification of evaluation scheduling algorithm (self, static, or no spec). Used for manual overrides of the
auto-configure logic in ParallelLibrary::resolve_inputs().

String analysisScheduling

user specification of analysis scheduling algorithm (self, static, or no spec). Used for manual overrides of the
auto-configure logic in ParallelLibrary::resolve_inputs().

int asynchLocalEvalConcurrency

limits the number of concurrent evaluations in asynchronous local scheduling and specifies hybrid concurrency
when message passing

String interfaceSynchronization
interface synchronization specification: synchronous (default) or asynchronous

bool headerFlag

used by synch_nowait to manage output frequency (since this function may be called many times prior to any
completions)

bool asvControlFlag

used to manage a user request to deactivate the active set vector control. true = modify the ASV each evaluation as
appropriate (default); false = ASV values are static so that the user need not check them on each evaluation.

bool evalCacheFlag

used to manage a user request to deactivate the function evaluation cache (i.e., queries and insertions using the
data_pairs list).

bool restartFileFlag
used to manage a user request to deactivate the restart file (i.e., insertions into write_restart).

IntArray defaultASV
the static ASV values used when the user has selected asvControl = off

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.6 Applicationinterface Class Reference 91

String failAction
mitigation action for captured simulation failures: abort, retry, recover, or continuation

int failRetryLimit
limit on the number of retries for the retry failAction

RealVector failRecoveryFnVals
the dummy function values used for the recover failAction

IntList beforeSynchIdList
bookkeeps fnEvalld’s of _all_ asynchronous evaluations (new & duplicate)

IntResponseMap historyDuplicateMap

used to bookkeep asynchronous evaluations which duplicate data_pairs evaluations. Map key is fnEvalld, mad data
is corresponding response.

std::map< int, pair< size_t, Response > > beforeSynchDuplicateMap

used to bookkeep fnEvalld, beforeSynchCorePRPList index, and response of asynchronous evaluations which du-
plicate queued beforeSynchCorePRPList evaluations

PRPList beforeSynchCorePRPList

used to bookkeep vars/set/response of nonduplicate asynchronous core evaluations. This is the queue of jobs popu-
lated by asynchronous map() that is later scheduled in synch() or synch_nowait().

PRPList beforeSynchAlgPRPList

used to bookkeep vars/set/response of asynchronous algebraic evaluations. This is the queue of algebraic jobs
populated by asynchronous map() that is later evaluated in synch() or synch_nowait().

ResponseList beforeSynchTotalRespList

used to bookkeep total response of asynchronous evaluations with algebraic components but no core mapping
components. This is populated by asynchronous map() and later used in synch() or synch_nowait().

IntSet runningSet
used by asynchronous_local_nowait to bookkeep which jobs are running

10.6.1 Detailed Description

Derived class within the interface class hierarchy for supporting interfaces to simulation codes.

Applicationlnterface provides an interface class for performing parameter to response mappings using simulation
code(s). It provides common functionality for a number of derived classes and contains the majority of all of
the scheduling algorithms in DAKOTA. The derived classes provide the specifics for managing code invocations
using system calls, forks, direct procedure calls, or distributed resource facilities.

10.6.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



92 DAKOTA Class Documentation

10.6.2.1 void init_serial ) [inline, protected, virtual]

Datalnterface.C defaults of 0 servers are needed to distinguish an explicit user request for 1 server (se-
rialization of a parallelism level) from no user request (use parallel auto-config). This default causes
problems when init_communicators() is not called for an interface object (e.g., static scheduling fails in
DirectFnApplicInterface::derived_map() for NestedModel::optionallnterface). This is the reason for this func-
tion: to reset certain defaults for interface objects that are used serially.

Reimplemented from Interface.

10.6.2.2 void map (const Variables & vars, const ActiveSet & set, Response & response, const bool
asynch flag=fal se) [protected, virtual]

Provides a "mapping" of variables to responses using a simulation. Protected due to Interface letter-envelope
idiom.

The function evaluator for application interfaces. Called from derived_compute_response() and derived_asynch_-
compute_response() in derived Model classes. If asynch_flag is not set, perform a blocking evaluation (us-
ing derived_map()). If asynch_flag is set, add the job to the beforeSynchCorePRPList queue for execution by
one of the scheduler routines in synch() or synch_nowait(). Duplicate function evaluations are detected with
duplication_detect().

Reimplemented from Interface.

10.6.2.3 const ResponseArray & synch () [ protected, virtual]

executes a blocking schedule for asynchronous evaluations in the beforeSynchCorePRPList queue and returns all
jobs

This function provides blocking synchronization for all cases of asynchronous evaluations, including the local
asynchronous case (background system call, nonblocking fork, & multithreads), the message passing case, and
the hybrid case. Called from derived_synchronize() in derived Model classes.

Reimplemented from Interface.

10.6.2.4 const IntResponseMap & synch_nowait () [ protected, virtual]
executes a nonblocking schedule for asynchronous evaluations in the beforeSynchCorePRPList queue and returns
a partial list of completed jobs

This function will eventually provide nonblocking synchronization for all cases of asynchronous evaluations,
however it currently supports only the local asynchronous case since nonblocking message passing schedulers
have not yet been implemented. Called from derived_synchronize_nowait() in derived Model classes.

Reimplemented from Interface.

10.6.2.5 void serve_evaluations () [protected, virtual]

run on evaluation servers to serve the iterator master

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.6 Applicationinterface Class Reference 93

Invoked by the serve() function in derived Model classes. Passes control to serve_evaluations_asynch(),
serve_evaluations_peer(), or serve_evaluations_synch() according to specified concurrency and self/static sched-
uler configuration.

Reimplemented from Interface.

10.6.2.6 void stop_evaluation_servers() [protected, virtual]

used by the iterator master to terminate evaluation servers

This code is executed on the iteratorComm rank O processor when iteration on a particular model is complete. It
sends a termination signal (tag = 0 instead of a valid fn_eval_id) to each of the slave analysis servers. NOTE: This
function is called from the Strategy layer even when in serial mode. Therefore, use iteratorCommSize to provide
appropriate fall through behavior.

Reimplemented from Interface.

10.6.2.7 void self_schedule_analyses () [ pr ot ect ed]

blocking self-schedule of all analyses within a function evaluation using message passing

This code is called from derived classes to provide the master portion of a master-slave algorithm for the dynamic
self-scheduling of analyses among slave servers. It is patterned after self_schedule_evaluations(). It performs
no analyses locally and matches either serve_analyses_synch() or serve_analyses_asynch() on the slave servers,
depending on the value of asynchLocalAnalysisConcurrency. Self-scheduling approach assigns jobs in 2 passes.
The 1st pass gives each server the same number of jobs (equal to asynchLocalAnalysisConcurrency). The 2nd
pass assigns the remaining jobs to slave servers as previous jobs are completed. Single- and multilevel par-
allel use intra- and inter-communicators, respectively, for send/receive. Specific syntax is encapsulated within
ParallelLibrary.

10.6.2.8 void serve_analyses_synch () [ prot ect ed]

serve the master analysis scheduler and manage one synchronous analysis job at a time

This code is called from derived classes to run synchronous analyses on slave processors. The slaves receive
requests (blocking receive), do local derived_map_ac’s, and return codes. This is done continuously until a
termination signal is received from the master. It is patterned after serve_evaluations_synch().

10.6.2.9 bool duplication_detect (const Variables & vars, Response & response, const bool asynch_flag)
[ private]

checks data_pairs and beforeSynchCorePRPList to see if the current evaluation request has already been per-
formed or queued

Called from map() to check incoming evaluation request for duplication with content of data_pairs and before-
SynchCorePRPList. If duplication is detected, return true, else return false. Manage bookkeeping with history-
DuplicateMap and beforeSynchDuplicateMap. Note that the list searches can get very expensive if a long list is
searched on every new function evaluation (either from a large number of previous jobs, a large number of pending
jobs, or both). For this reason, a user request for deactivation of the evaluation cache results in a complete bypass

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



94 DAKOTA Class Documentation

of duplication_detect(), even though a beforeSynchCorePRPList search would still be meaningful. Since the
intent of this request is to streamline operations, both list searches are bypassed.

10.6.2.10 void self_schedule_evaluations () [ pri vat e]

blocking self-schedule of all evaluations in beforeSynchCorePRPList using message passing; executes on iterator-
Comm master

This code is called from synch() to provide the master portion of a master-slave algorithm for the dynamic
self-scheduling of evaluations among slave servers. It performs no evaluations locally and matches either
serve_evaluations_synch() or serve_evaluations_asynch() on the slave servers, depending on the value of asynch-
LocalEvalConcurrency. Self-scheduling approach assigns jobs in 2 passes. The 1st pass gives each server the same
number of jobs (equal to asynchLocalEvalConcurrency). The 2nd pass assigns the remaining jobs to slave servers
as previous jobs are completed. Single- and multilevel parallel use intra- and inter-communicators, respectively,
for send/receive. Specific syntax is encapsulated within ParallelLibrary.

10.6.2.11 void static_schedule_evaluations () [ pri vat e]

blocking static schedule of all evaluations in beforeSynchCorePRPList using message passing; executes on
iteratorComm master

This code runs on the iteratorCommRank O processor (the iterator) and is called from synch() in order to as-
sign a static schedule. It matches serve_evaluations_peer() for any other processors within the 1st evaluation
partition and serve_evaluations_synch()/serve_evaluations_asynch() for all other evaluation partitions (depending
on asynchLocalEvalConcurrency). It performs function evaluations locally for its portion of the static schedule
using either asynchronous_local_evaluations() or synchronous_local_evaluations(). Single-level and multilevel
parallel use intra- and inter-communicators, respectively, for send/receive. Specific syntax is encapsulated within
ParallelLibrary. The iteratorCommRank 0 processor assigns the static schedule since it is the only processor with
access to beforeSynchCorePRPList (it runs the iterator and calls synchronize). The alternate design of each peer
selecting its own jobs using the modulus operator would be applicable if execution of this function (and therefore
the job list) were distributed.

10.6.2.12 void asynchronous_local_evaluations (PRPList & prp_list) [ pri vat e]

perform all jobs in prp_list using asynchronous approaches on the local processor

This function provides blocking synchronization for the local asynch case (background system call, non-
blocking fork, or threads). It can be called from synch() for a complete local scheduling of all asyn-
chronous jobs or from static_schedule_evaluations() to perform a local portion of the total job set. It uses the
derived_map_asynch() to initiate asynchronous evaluations and derived_synch() to capture completed jobs, and
mirrors the self_schedule_evaluations() message passing scheduler as much as possible (derived_synch() is mod-
eled after MPI_Waitsome()).

10.6.2.13 void synchronous_local_evaluations (PRPList & prp_list) [ pri vat e]

perform all jobs in prp_list using synchronous approaches on the local processor

This function provides blocking synchronization for the local synchronous case (foreground system call, blocking
fork, or procedure call from derived_map()). It is called from static_schedule_evaluations() to perform a local

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.6 Applicationinterface Class Reference 95

portion of the total job set.

10.6.2.14 void asynchronous_local_evaluations_nowait (PRPList & prp_list) [ pri vat e]

launch new jobs in prp_list asynchronously (if capacity is available), perform nonblocking query of all running
jobs, and process any completed jobs

This function provides nonblocking synchronization for the local asynch case (background system call, non-
blocking fork, or threads). It is called from synch_nowait() and passed the complete set of all asyn-
chronous jobs (beforeSynchCorePRPList). It uses derived_map_asynch() to initiate asynchronous evaluations
and derived_synch_nowait() to capture completed jobs in nonblocking mode. It mirrors a nonblocking message
passing scheduler as much as possible (derived_synch_nowait() modeled after MPI_Testsome()). The result of
this function is rawResponseMap, which uses fn_eval_id as a key. It is assumed that the incoming prp_list contains
only active and new jobs - i.e., all completed jobs are cleared by synch_nowait().

10.6.2.15 void serve_evaluations_synch () [ pri vat e]

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time

This code is invoked by serve_evaluations() to perform one synchronous job at a time on each slave/peer server.
The servers receive requests (blocking receive), do local synchronous maps, and return results. This is done
continuously until a termination signal is received from the master (sent via stop_evaluation_servers()).

10.6.2.16 void serve_evaluations_asynch () [ private]

serve the evaluation message passing schedulers and manage multiple asynchronous evaluations

This code is invoked by serve_evaluations() to perform multiple asynchronous jobs on each slave/peer server. The
servers test for any incoming jobs, launch any new jobs, process any completed jobs, and return any results. Each
of these components is nonblocking, although the server loop continues until a termination signal is received from
the master (sent via stop_evaluation_servers()). In the master-slave case, the master maintains the correct number
of jobs on each slave. In the static scheduling case, each server is responsible for limiting concurrency (since the
entire static schedule is sent to the peers at start up).

10.6.2.17 void serve_evaluations_peer () [ pri vate]

serve the evaluation message passing schedulers and perform one synchronous evaluation at a time as part of the
Ist peer

This code is invoked by serve_evaluations() to perform a synchronous evaluation in coordination with the
iteratorCommRank O processor (the iterator) for static schedules. The bcast() matches either the bcast() in
synchronous_local_evaluations(), which is invoked by static_schedule_evaluations()), or the bcast() in map().

The documentation for this class was generated from the following files:

e Applicationlnterface.H
e ApplicationInterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



96 DAKOTA Class Documentation

10.7 Approximation Class Reference

Base class for the approximation class hierarchy.

Inheritance diagram for Approximation::

| Approximation |

T
I I | I

]
GaUSProcApproximationl | HermiteApproximation | | SurfpackApproximation | | TANA3Approximation | | TaylorApproximation

Public Member Functions

e Approximation ()
default constructor

e Approximation (ProblemDescDB &problem_db, const size_t &num_acv)

standard constructor for envelope

Approximation (const String &approx_type, const size_t &num_acv)

alternate constructor

Approximation (const Approximation &approx)
copy constructor

virtual ~Approximation ()
destructor

e Approximation operator= (const Approximation &approx)

assignment operator

e virtual const Real & get_value (const RealVector &x)

retrieve the approximate function value for a given parameter vector

e virtual const RealBaseVector & get_gradient (const Real Vector &x)

retrieve the approximate function gradient for a given parameter vector

e virtual const RealMatrix & get_hessian (const Real Vector &x)
retrieve the approximate function Hessian for a given parameter vector

e virtual const RealVector & approximation_coefficients ()

return the coefficient array computed by find_coefficients()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.7 Approximation Class Reference 97

virtual int num_ coefficients () const

return the minimum number of samples required to build the derived class approximation type in numVars dimen-
sions

virtual int num_constraints () const
return the number of constraints to be enforced via anchorPoint

virtual void clear_current ()

clear current build data in preparation for next build

virtual void second_order_flag (bool flag)
set the Approximation’s secondOrderFlag, if present

int required_samples (bool constraint_flag) const

return the minimum number of samples required to build the approximation type in numVars dimensions. Uses
num_coefficients() and num_constraints().

int num_variables () const

return the number of variables used in the approximation

void update (const RealVectorArray &c_vars_samples, const ResponseArray &resp_samples, const int
&fn_index)

populates currentPoints

void update (const RealVector &c_vars, const Response &response, const int &fn_index)

populates anchorPoint

void update (const RealVector &c_vars, const Real &fn_val, const RealBaseVector &fn_grad, const
RealMatrix &fn_hess)

populates anchorPoint

void append (const RealVector &c_vars, const Response &response, const int &fn_index)

appends one additional entry to currentPoints

void append (const RealVector &c_vars, const Real &fn_val, const RealBaseVector &fn_grad, const
RealMatrix &fn_hess)

appends one additional entry to currentPoints

void build ()
builds the approximation by invoking find_coefficients().

bool anchor () const
queries the status of anchorPoint

void clear_all ()

clear all build data (current and history) to restore original state.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



98 DAKOTA Class Documentation

e void set_bounds (const RealVector &lower, const RealVector &upper)

set approximation lower and upper bounds (currently only used by graphics)

e void draw_surface ()

render the approximate surface using the 3D graphics (2 variable problems only).

Protected Member Functions

e Approximation (BaseConstructor, ProblemDescDB &problem_db, const size_t &num_acv)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

e virtual void find_coefficients ()

calculate the data fit coefficients using currentPoints and anchorPoint

Protected Attributes

e bool useGradsFlag

flag signaling the use of gradient data in global approximation builds as indicated by the user’suse_gr adi ent s
specification. This setting cannot be inferred from the responses spec., since we may need gradient support for
evaluating gradients at a single point (e.g., the center of a trust region), but not require gradient evaluations at
every point.

e bool verboseFlag

flag for verbose approximation output

e int numVars

number of variables in the approximation

e String approxType
approximation type identifier

e Real approxValue

value of the approximation returned by get_value()

e RealBaseVector approxGradient

gradient of the approximation returned by get_gradient()

e RealMatrix approxHessian

Hessian of the approximation returned by get_hessian().

e List< SurrogateDataPoint > currentPoints

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.7 Approximation Class Reference 99

list of samples used to build the approximation. These sample points may be fit approximately (based on a least
squares regression).

e SurrogateDataPoint anchorPoint

a special sample (often at the center of the approximation region) for which exact matching is enforced (e.g., using
equality-constrained least squares)

Private Member Functions

e Approximation * get_approx (ProblemDescDB &problem_db, const size_t &num_acv)

Used only by the standard envelope constructor to initialize approxRep to the appropriate derived type.

e Approximation * get_approx (const String &approx_type, const size_t &num_acv)

Used only by the alternate envelope constructor to initialize approxRep to the appropriate derived type.

void add (const Real Vector &c_vars, const Response &response, const int &fn_index, bool anchor_flag)

add a new data point by either appending to currentPoints or assigning to anchorPoint, as dictated by anchor_flag.
Uses add_point() and add_anchor ().

e void add_point (const RealVector &x, const Real &fn_val, const RealBaseVector &fn_grad, const
RealMatrix &fn_hess)

add a new data point by appending to currentPoints

void add_anchor (const RealVector &x, const Real &fn_val, const RealBaseVector &fn_grad, const
RealMatrix &fn_hess)

add a new data point by assigning to anchorPoint

Private Attributes

e RealVector approxLowerBounds

approximation lower bounds (used only by 3D graphics)

e RealVector approxUpperBounds
approximation upper bounds (used only by 3D graphics)

e Approximation * approxRep

pointer to the letter (initialized only for the envelope)

e int referenceCount

number of objects sharing approxRep

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



100 DAKOTA Class Documentation

10.7.1 Detailed Description

Base class for the approximation class hierarchy.

The Approximation class is the base class for the data fit surrogate class hierarchy in DAKOTA. One instance
of an Approximation must be created for each function to be approximated (a vector of Approximations is
contained in Approximationlnterface). For memory efficiency and enhanced polymorphism, the approxima-
tion hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the base
class (Approximation) serves as the envelope and one of the derived classes (selected in Approximation::get_-
approximation()) serves as the letter.

10.7.2 Constructor & Destructor Documentation

10.7.2.1 Approximation ()

default constructor

The default constructor is used in List< Approximation>> instantiations and by the alternate envelope constructor.
approxRep is NULL in this case (problem_db is needed to build a meaningful Model object). This makes it
necessary to check for NULL in the copy constructor, assignment operator, and destructor.

10.7.2.2  Approximation (ProblemDescDB & problem_db, const size_t & num_acv)

standard constructor for envelope

Envelope constructor only needs to extract enough data to properly execute get_approx, since
Approximation(BaseConstructor, problem_db) builds the actual base class data for the derived approximations.

10.7.2.3 Approximation (const String & approx_type, const size_t & num_acv)

alternate constructor

This is the alternate envelope constructor for instantiations on the fly. Since it does not have access to problem_-
db, the letter class is not fully populated. This constructor executes get_approx(type), which invokes the default
constructor of the derived letter class, which in turn invokes the default constructor of the base class.

10.7.2.4 Approximation (const Approximation & approx)

copy constructor

Copy constructor manages sharing of approxRep and incrementing of referenceCount.
10.7.25 ~Approximation () [virtual]

destructor

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.7 Approximation Class Reference 101

Destructor decrements referenceCount and only deletes approxRep when referenceCount reaches zero.

10.7.2.6  Approximation (BaseConstructor, ProblemDescDB & problem_db, const size_t & num_acv)
[ protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all derived classes. get_approx() instantiates a
derived class letter and the derived constructor selects this base class constructor in its initialization list (to avoid
recursion in the base class constructor calling get_approx() again). Since the letter IS the representation, its rep
pointer is set to NULL (an uninitialized pointer causes problems in ~Approximation).

10.7.3 Member Function Documentation

10.7.3.1 Approximation operator= (const Approximation & approx)

assignment operator

Assignment operator decrements referenceCount for old approxRep, assigns new approxRep, and increments
referenceCount for new approxRep.
10.7.3.2 void clear_current () [virtual]

clear current build data in preparation for next build
Redefined by TANA3Approximation to clear current data but preserve history.
Reimplemented in TANA3Approximation.

10.7.3.3 void second_order_flag (bool flag) [ vi rtual ]

set the Approximation’s secondOrderFlag, if present
Redefined by TaylorApproximation to set secondOrderFlag.

Reimplemented in TaylorApproximation.

10.7.3.4 void clear_all ()

clear all build data (current and history) to restore original state.

Clears out any history (e.g., TANA3Approximation use for a different response function in NonDReliability).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



102 DAKOTA Class Documentation

10.7.3.5 Approximation x get_approx (ProblemDescDB & problem_db, const size_t & num_acv)
[ private]
Used only by the standard envelope constructor to initialize approxRep to the appropriate derived type.

Used only by the envelope constructor to initialize approxRep to the appropriate derived type.

10.7.3.6 Approximation * get_approx (const String & approx_type, const size_t & num_acv)

[ private]
Used only by the alternate envelope constructor to initialize approxRep to the appropriate derived type.
Used only by the envelope constructor to initialize approxRep to the appropriate derived type.

The documentation for this class was generated from the following files:

e DakotaApproximation.H
e DakotaApproximation.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.8 Approximationinterface Class Reference 103

10.8 Approximationlnterface Class Reference

Derived class within the interface class hierarchy for supporting approximations to simulation-based results.

Inheritance diagram for Approximationlnterface::

| Interface |

T

| Approximationlnterface |

Public Member Functions

e ApproximationInterface (ProblemDescDB &problem_db, const size_t &num_acv, const size_t &num_fns)

constructor

e ~ApproximationInterface ()
destructor

Protected Member Functions

e void map (const Variables &vars, const ActiveSet &set, Response &response, const bool asynch_-
flag=false)

the function evaluator: provides an approximate "mapping" from the variables to the responses using function-
Surfaces

e int minimum_samples (bool constraint_flag) const
returns the minimum number of samples required to build the functionSurfaces

void update_approximation (const Real VectorArray &all_variables, const ResponseArray &all_responses)

passes multiple points to an approximation for building a surrogate

void update_approximation (const RealVector &c_variables, const Response &response)
void build_approximation (const RealVector &lower_bnds, const Real Vector &upper_bnds)
void append_approximation (const Real Vector &c_variables, const Response &response)

updates an existing global approximation with new data

void clear ()
clears all data from an approximation interface

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



104 DAKOTA Class Documentation

e bool anchor () const

queries the presence of an anchorPoint within an approximation interface

e const RealVectorArray & approximation_coefficients ()

retrieve the approximation coefficients from each Approximation within an Approximationinterface

e const ResponseArray & synch ()

recovers data from a series of asynchronous evaluations (blocking)

e const IntResponseMap & synch_nowait ()

recovers data from a series of asynchronous evaluations (nonblocking)

Private Attributes

e bool complete ApproxSet

flag for complete approximation set (no mixture of truth/approx responses at Model level)

IntArray approxFnlds

for incomplete approximation sets, this array specifies the response function subset that is approximated

Array< Approximation > functionSurfaces

list of approximations, one per response function

RealVectorArray functionSurfaceCoeffs

array of approximation coefficient vectors, one vector per response function

bool graphicsFlag

controls 3D graphics of approximation surfaces

IntResponseMap beforeSynchResponseMap

bookkeeping map to catalogue responses generated in map() for use in synch() and synch_nowait(). This supports
pseudo-asynchronous operations (approximate responses are always computed synchronously, but asynchronous
virtual functions are supported through bookkeeping).

10.8.1 Detailed Description

Derived class within the interface class hierarchy for supporting approximations to simulation-based results.

Approximationlnterface provides an interface class for building a set of global/local/multipoint approximations
and performing approximate function evaluations using them. It contains a list of Approximation objects, one for
each response function.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.8 Approximationinterface Class Reference 105

10.8.2 Member Function Documentation

10.8.2.1 void update_approximation (const RealVector & c_variables, const Response & response)
[ protected, virtual]

Evaluate values, gradients, and possibly Hessians at the current point for building a local approximation.

Reimplemented from Interface.

10.8.2.2 void build_approximation (const RealVector & lower_bnds, const RealVector & upper_bnds)
[ protected, virtual]

Evaluate values, gradients, and possibly Hessians at the current point for building a local approximation.

Reimplemented from Interface.

10.8.3 Member Data Documentation

10.8.3.1 Array<Approximation> functionSurfaces [ pri vat e]

list of approximations, one per response function

This formulation allows the use of mixed approximations (i.e., different approximations used for different re-
sponse functions), although the input specification is not currently general enough to support it.

The documentation for this class was generated from the following files:

e ApproximationInterface.H
e ApproximationInterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



106 DAKOTA Class Documentation

10.9 Array Class Template Reference

Template class for the Dakota bookkeeping array.

Public Member Functions

e Array ()
Default constructor.

Array (size_t size)

Constructor which takes an initial size.

Array (size_t size, const T &initial_val)

Constructor which takes an initial size and an initial value.

Array (const Array< T > &a)

Copy constructor.

Array (const T *p, size_t size)
Constructor which copies size entries from Tsx.

~Array ()
Destructor.

Array< T > & operator= (const Array< T > &a)

Normal const assignment operator.

Array< T > & operator= (Array< T > &a)
Normal assignment operator.

e Array< T > & operator= (const T &ival)
Sets all elements in self to the value ival.

operator T * () const

Converts the Array to a standard C-style array. Use with care!

T & operator[ ] (int 1)

alternate bounds-checked indexing operator for int indices

const T & operator[ | (int i) const
alternate bounds-checked const indexing operator for int indices

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.9 Array Class Template Reference

107

T & operator| | (size_t 1)
Index operator, returns the ith value of the array.

const T & operator| | (size_t i) const

Index operator const, returns the ith value of the array.

T & operator() (size_t i)
Index operator, not bounds checked.

const T & operator() (size_t i) const

Index operator const, not bounds checked.

e void read (istream &s)
Reads an Array from an istream.

e void write (ostream &s) const

Writes an Array to an output stream.

e void write (ostream &s, const Array< String > &label_array) const

Writes an Array and associated label array to an output stream.

e void write_aprepro (ostream &s, const Array< String > &label_array) const

Writes an Array and associated label array to an output stream in aprepro format.

e void write_annotated (ostream &s, bool write_len) const

Writes an Array to an output stream in annotated format.

e void read (BiStream &s)
Reads an Array from a binary input stream.

e void write (BoStream &s) const

Writes an Array to a binary output stream.

e void read (MPIUnpackBuffer &s)

Reads an Array from a buffer after an MPI receive.

e void write (MPIPackBuffer &s) const

Writes an Array to a buffer prior to an MPI send.

e size_tlength () const

Returns size of array.

e void reshape (size_t sz)

Resizes array to size sz.

e size_t index (const T &a) const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



108 DAKOTA Class Documentation

Returns the index of the first array item which matches the object a.

e bool contains (const T &a) const

Checks if the array contains an object which matches the object a.

e size_t count (const T &a) const

Returns the number of items in the array matching the object a.

e const T x data () const

Returns pointer Tx to continuous data.

10.9.1 Detailed Description
template<class T> class Dakota::Array< T >

Template class for the Dakota bookkeeping array.

An array class template that provides additional functionality that is specific to Dakota’s needs. The Array class
adds additional functionality needed by Dakota to the inherited base array class. The Array class can inherite
from either the STL or RW vector classes.

10.9.2 Constructor & Destructor Documentation

10.9.2.1 Array (const T x p, size_tsize) [inli ne]

Constructor which copies size entries from Tx.

Assigns size values from p into array.

10.9.3 Member Function Documentation

10.9.3.1 Array< T > & operator=(const T & ival) [inline]

Sets all elements in self to the value ival.

Assigns all values of array to the value passed in as ival. For the Rogue Wave case, utilizes base class opera-
tor=(ival), while for the ANSI case, uses the STL assign() method.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.9 Array Class Template Reference 109

10.9.3.2 operator T x () const [inline]

Converts the Array to a standard C-style array. Use with care!

The operator() returns a c style pointer to the data within the array. Calls the data() method. USE WITH CARE.

10.9.3.3 ]

T & operator[ ] (size_ti) [i nli ne]
Index operator, returns the ith value of the array.

Index operator; calls the STL method at() which is bounds checked. Mimics the RW vector class. Note: the at()
method is not supported by the _ GNUC__ STL implementation or by builds omitting exceptions (e.g., SIERRA).

10.9.3.4 ]

const T & operator[ ] (size_ti) const [i nli ne]
Index operator const, returns the ith value of the array.

A const version of the index operator; calls the STL method at() which is bounds checked. Mimics the RW
vector class. Note: the at() method is not supported by the _ GNUC__ STL implementation or by builds omitting
exceptions (e.g., SIERRA).

10.9.3.5 T & operator() (size_ti) [inli ne]

Index operator, not bounds checked.

Non bounds check index operator, calls the STL operator[] which is not bounds checked. Needed to mimic the
RW vector class

10.9.3.6 const T & operator() (size_ti)const [i nli ne]

Index operator const, not bounds checked.

A const version of the non-bounds check index operator, calls the STL operator[] which is not bounds checked.
Needed to mimic the RW vector class

10.9.3.7 constT x data () const [i nline]

Returns pointer T to continuous data.

Returns a C style pointer to the data within the array. USE WITH CARE. Needed to mimic RW vector class, is
used in the operator(). Uses the STL front method.

The documentation for this class was generated from the following file:

e DakotaArray.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



110 DAKOTA Class Documentation

10.10 BaseConstructor Struct Reference

Dummy struct for overloading letter-envelope constructors.

Public Member Functions

e BaseConstructor (int=0)
C++ structs can have constructors.

10.10.1 Detailed Description

Dummy struct for overloading letter-envelope constructors.

BaseConstructor is used to overload the constructor for the base class portion of letter objects. It avoids infinite
recursion (Coplien p.139) in the letter-envelope idiom by preventing the letter from instantiating another envelope.
Putting this struct here avoids circular dependencies.

The documentation for this struct was generated from the following file:

e global_defs.h

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.11 BaseVector Class Template Reference

111

10.11 BaseVector Class Template Reference

Base class for the Dakota::Matrix and Dakota::Vector classes.

Inheritance diagram for BaseVector::

BaseV ector

V ector

Public Member Functions

e BaseVector ()
Default constructor.

BaseVector (size_t size)
Constructor, creates vector of size.

e BaseVector (size_t size, const T &initial_val)

Constructor, creates vector of size with initial value of initial_val.

e ~BaseVector ()

Destructor.

e BaseVector (const BaseVector< T > &a)
Copy constructor.

e BaseVector< T > & operator= (const BaseVector< T > &a)
Normal assignment operator.

e BaseVector< T > & operator= (const T &ival)
Assigns all values of vector to ival.

o T & operator[] (int i)
alternate bounds-checked indexing operator for int indices

e const T & operator[ ] (int i) const
alternate bounds-checked const indexing operator for int indices

T & operator| | (size_t 1)
Returns the object at index i, (can use as Ivalue).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



112 DAKOTA Class Documentation

e const T & operator]| | (size_t 1) const
Returns the object at index i, const (can’t use as Ivalue).

e T & operator() (size_t 1)
Index operator, not bounds checked.

e const T & operator() (size_t i) const
Index operator const , not bounds checked.

e size_t length () const
Returns size of vector.

e void reshape (size_t sz)

Resizes vector to size sz.

e const T x data () const
Returns const pointer to standard C array. Use with care.

Protected Member Functions

e T x array () const
Returns pointer to standard C array. Use with care.

10.11.1 Detailed Description
template<class T> class Dakota::BaseVector< T >

Base class for the Dakota::Matrix and Dakota:: Vector classes.

The Dakota::BaseVector class is the base class for the Dakota::Matrix class. It is used to define a common vector
interface for both the STL and RW vector classes. If the STL version is based on the valarray class then some
basic vector operations such as + , * are available.

10.11.2 Constructor & Destructor Documentation

10.11.2.1 BaseVector (size_tsize, const T & initial val) [i nl i ne]

Constructor, creates vector of size with initial value of initial_val.

Constructor which takes an initial size and an initial value, allocates an area of initial size and initializes it with
input value. Calls base class constructor

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.11 BaseVector Class Template Reference 113

10.11.3 Member Function Documentation

10.11.3.1 ]

T & operator[ ] (size_ti) [i nline]
Returns the object at index i, (can use as lvalue).

Index operator, calls the STL method at() which is bounds checked. Mimics the RW vector class. Note: the at()
method is not supported by the _ GNUC__ STL implementation or by builds omitting exceptions (e.g., SIERRA).

10.11.3.2 ]

const T & operator[ ] (size_ti) const [i nli ne]
Returns the object at index i, const (can’t use as lvalue).

Const versions of the index operator calls the STL method at() which is bounds checked. Mimics the RW vector
class. Note: the at() method is not supported by the _ GNUC__ STL implementation or by builds omitting
exceptions (e.g., SIERRA).

10.11.3.3 T & operator() (size_ti) [i nli ne]

Index operator, not bounds checked.

Non bounds check index operator, calls the STL operator[] which is not bounds checked. Needed to mimic the
RW vector class

10.11.3.4 const T & operator() (size_ti)const [inli ne]

Index operator const , not bounds checked.

Const version of the non-bounds check index operator, calls the STL operator[] which is not bounds checked.
Needed to mimic the RW vector class

10.11.3.5 size_tlength () const [i nli ne]

Returns size of vector.

Returns the length of the array by calling the STL size method. Needed to mimic the RW vector class
10.11.3.6 void reshape (size_tsz) [inli ne]

Resizes vector to size sz.

Resizes the array to size sz by calling the STL resize method. Needed to mimic the RW vector class

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



114 DAKOTA Class Documentation

10.11.3.7 const T xdata () const [inline]

Returns const pointer to standard C array. Use with care.

Returns a const pointer to the data within the array. USE WITH CARE. Needed to mimic RW vector class.
10.11.3.8 T=xarray()const [inline, protected]

Returns pointer to standard C array. Use with care.
Returns a non-const pointer to the data within the array. Non-const version of data() used by derived classes.

The documentation for this class was generated from the following file:

e DakotaBaseVector.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.12 BiStream Class Reference 115

10.12 BiStream Class Reference

The binary input stream class. Overloads the >>> operator for all data types.

Public Member Functions

e BiStream ()
Default constructor, need to open.

BiStream (const char xs)

Constructor takes name of input file.

BiStream (const char xs, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

BiStream (const char *s, int mode)

Constructor takes name of input file, mode.

~BiStream ()
Destructor, calls xdr_destroy to delete xdr stream.

BiStream & operator>> (String &ds)
Binary Input stream operator>>.

BiStream & operator>> (char *s)

Input operator, reads charx from binary stream BiStream.

e BiStream & operator>> (char &c)
Input operator, reads char from binary stream BiStream.

e BiStream & operator>> (int &i)
Input operator, reads int« from binary stream BiStream.

e BiStream & operator>> (long &1)
Input operator, reads long from binary stream BiStream.

e BiStream & operator>> (short &s)
Input operator, reads short from binary stream BiStream.

e BiStream & operator>> (bool &b)
Input operator, reads bool from binary stream BiStream.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



116

DAKOTA Class Documentation

BiStream & operator>> (double &d)

Input operator, reads double from binary stream BiStream.

BiStream & operator>> (float &f)

Input operator, reads float from binary stream BiStream.

BiStream & operator>> (unsigned char &c)

Input operator, reads unsigned charx from binary stream BiStream.

BiStream & operator>> (unsigned int &i)

Input operator, reads unsigned int from binary stream BiStream.

BiStream & operator>> (unsigned long &1)

Input operator, reads unsigned long from binary stream BiStream.

BiStream & operator>> (unsigned short &s)

Input operator, reads unsigned short from binary stream BiStream.

Private Attributes

e XDR xdrInBuf

XDR input stream buffer.

e char inBuf [MAX_NETOBJ_SZ]

Buffer to hold data as it is read in.

10.12.1 Detailed Description

The binary input stream class. Overloads the >> operator for all data types.

The Dakota::BiStream class is a binary input class which overloads the >> operator for all standard data types
(int, char, float, etc). The class relies on the methods within the ifstream base class. The Dakota::BiStream class
inherits from the ifstream class. If available, the class utilize rpc/xdr to construct machine independent binary
files. These Dakota restart files can be moved from host to host. The motivation to develop these classes was to

replace the Rogue wave classes which Dakota historically used for binary 1/O.

10.12.2 Constructor & Destructor Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.12 BiStream Class Reference 117

10.12.2.1 BiStream ()

Default constructor, need to open.

Default constructor, allocates xdr stream , but does not call the open method. The open method must be called
before stream can be read.

10.12.2.2 BiStream (const char * s)

Constructor takes name of input file.

Constructor which takes a charx filename. Calls the base class open method with the filename and no other
arguments. Also allocates the xdr stream.

10.12.2.3 BiStream (const char * s, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

Constructor which takes a charx filename and int flags. Calls the base class open method with the filename and
flags as arguments. Also allocates xdr stream.

10.12.2.4 ~BiStream ()

Destructor, calls xdr_destroy to delete xdr stream.

Destructor, destroys the xdr stream allocated in constructor

10.12.3 Member Function Documentation

10.12.3.1 BiStream & operator>> (String & ds)

Binary Input stream operator>>.

The String input operator must first read both the xdr buffer size and the size of the string written. Once these our
read it can then read and convert the String correctly.

10.12.3.2 BiStream & operator>> (char * s)

Input operator, reads charx from binary stream BiStream.

Reading char array is a special case. The method has no way of knowing if the length to the input array is large
enough, it assumes it is one char longer than actual string, (Null terminator added). As with the String the size of
the xdr buffer as well as the char array size written must be read from the stream prior to reading and converting
the char array.

The documentation for this class was generated from the following files:

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



118 DAKOTA Class Documentation

e DakotaBinStream.H
e DakotaBinStream.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.13 BoStream Class Reference 119

10.13 BoStream Class Reference

The binary output stream class. Overloads the << operator for all data types.

Public Member Functions

e BoStream ()
Default constructor, need to open.

BoStream (const char *s)

Constructor takes name of input file.

BoStream (const char s, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

BoStream (const char xs, int mode)

Constructor takes name of input file, mode.

~BoStream ()
Destructor, calls xdr_destroy to delete xdr stream.

BoStream & operator<< (const String &ds)
Binary Output stream operator< <.

BoStream & operator<< (const char *s)

Output operator, writes charx TO binary stream BoStream.

e BoStream & operator<< (const char &c)
Output operator, writes char to binary stream BoStream.

e BoStream & operator< < (const int &i)
Output operator, writes int to binary stream BoStream.

e BoStream & operator< < (const long &1)

Output operator, writes long to binary stream BoStream.

e BoStream & operator< < (const short &s)

Output operator, writes short to binary stream BoStream.

e BoStream & operator< < (const bool &b)
Output operator, writes bool to binary stream BoStream.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



120 DAKOTA Class Documentation

e BoStream & operator<< (const double &d)

Output operator, writes double to binary stream BoStream.

e BoStream & operator<< (const float &f)

Output operator, writes float to binary stream BoStream.

e BoStream & operator< < (const unsigned char &c)

Output operator, writes unsigned char to binary stream BoStream.

e BoStream & operator<< (const unsigned int &i)

Output operator, writes unsigned int to binary stream BoStream.

e BoStream & operator< < (const unsigned long &I)

Output operator, writes unsigned long to binary stream BoStream.

e BoStream & operator< < (const unsigned short &s)

Output operator, writes unsigned short to binary stream BoStream.

Private Attributes

e XDR xdrOutBuf

XDR output stream buffer.

e char outBuf [MAX_NETOBJ_SZ]

Buffer to hold converted data before it is written.

10.13.1 Detailed Description

The binary output stream class. Overloads the << operator for all data types.

The Dakota::BoStream class is a binary output classes which overloads the < < operator for all standard data types
(int, char, float, etc). The class relies on the built in write methods within the ostream base classes. Dakota::Bo-
Stream inherits from the ofstream class. The motivation to develop this class was to replace the Rogue wave
class which Dakota historically used for binary I/O. If available, the class utilize rpc/xdr to construct machine
independent binary files. These Dakota restart files can be moved between hosts.

10.13.2 Constructor & Destructor Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.13 BoStream Class Reference 121

10.13.2.1 BoStream ()

Default constructor, need to open.

Default constructor allocates the xdr stream but does not call the open() method. The open() method must be
called before stream can be written to.

10.13.2.2 BoStream (const char x s)

Constructor takes name of input file.

Constructor, takes char « filename as argument. Calls base class open method with filename and no other argu-
ments. Also allocates xdr stream

10.13.2.3 BoStream (const char x s, std::ios_base::openmode mode)

Constructor takes name of input file, mode.

Constructor, takes char * filename and int flags as arguments. Calls base class open method with filename and
flags as arguments. Also allocates xdr stream. Note : If no rpc/xdr support xdr calls are #ifdef’d out.

10.13.3 Member Function Documentation

10.13.3.1 BoStream & operator<< (const String & ds)

Binary Output stream operator<<.

The String operator<< must first write the xdr buffer size and the original string size to the stream. The input
operator needs this information to be able to correctly read and convert the String.

10.13.3.2 BoStream & operator<< (const char x s)

Output operator, writes charx TO binary stream BoStream.

The output of charx is the same as the output of the String. The size of the xdr buffer and the size of the string
must be written first, then the string itself.

The documentation for this class was generated from the following files:

e DakotaBinStream.H
e DakotaBinStream.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



122 DAKOTA Class Documentation

10.14 COLINApplication Class Reference

Public Member Functions

e COLINApplication (Model &model, Optimizer *opt_)

constructor

~COLINApplication ()
destructor

void DoEval (ColinPoint &point, int &priority, ColinResponse xresponse, bool synch_flag)
launch a function evaluation either synchronously or asynchronously

e unsigned int num_evaluation_servers ()

The number of ’slave’ processors that can perform evaluations. The value "0’ indicates that this is a sequential
application.

void synchronize ()
blocking retrieval of all pending jobs

int next_eval ()

nonblocking query and retrieval of a job if completed

e void dakota_asynch_flag (const bool &asynch_flag)
This function publishes the iterator’s asynchFlag at run time (asynchFlag not initialized properly at construction).

Private Member Functions

e void map_response (ColinResponse &colin_response, const Response &dakota_response)

utility function for mapping a DAKOTA response to a COLIN response

Private Attributes

e Model & userDefinedModel
reference to the COLINOptimizer’s model passed in the constructor

e ActiveSet activeSet

copy/conversion of the COLIN request vector

e bool dakotaModelAsynchFlag

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.14 COLINApplication Class Reference 123

a flag for asynchronous DAKOTA evaluations

e bool blockingSynch

flag for user specification of ""synchronization blocking"

e IntResponseMap dakotaResponseMap

map of DAKOTA responses returned by synchronize_nowait()

e size_t numObjFns

number of objective functions

e size t numNonlinCons

number of nonlinear constraints

e Optimizer * opt

pointer to the DAKOTA Optimizer hierarchy passed through the COLINApplication constructor. This is needed for
accessing Optimizer functions (e.g., multi_objective_modify()) needed by COLINApplication.

e int num_real_params

number of continuous design variables

e int num_integer_params

number of discrete design variables

e int synchronization_state

tracks the state of asynchronous evaluations

e std::list< int > requested_async_id

tracks COLIN response ids from DoEval() to next_eval()

10.14.1 Detailed Description

COLINApplication is a DAKOTA class that is derived from COLIN’s OptApplication hierarchy. It redefines a
variety of virtual COLIN functions to use the corresponding DAKOTA functions. This is a more flexible algorithm
library interfacing approach than can be obtained with the function pointer approaches used by NPSOLOptimizer
and SNLLOptimizer.

10.14.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



124 DAKOTA Class Documentation

10.14.2.1 void DoEval (ColinPoint & pt, int & priority, ColinResponse * prob_response, bool synch_flag)

launch a function evaluation either synchronously or asynchronously

Converts the ColinPoint variables and request vector to DAKOTA variables and active set vector, performs a
DAKOTA function evaluation with synchronization governed by synch_flag, and then copies the Response data
to the ColinResponse response (synchronous) or bookkeeps the response object (asynchronous).

10.14.2.2 void synchronize ()

blocking retrieval of all pending jobs

Blocking synchronize of asynchronous DAKOTA jobs followed by conversion of the Response objects to Colin-
Response response objects.

10.14.2.3 int next_eval ()

nonblocking query and retrieval of a job if completed

Nonblocking job retrieval. Finds a completion (if available), populates the COLIN response, and sets id to the
completed job’s id. Else set id = -1.

10.14.2.4 void map_response (ColinResponse & colin_response, const Response & dakota_response)
[ private]

utility function for mapping a DAKOTA response to a COLIN response

map_response Maps a Response object into a ColinResponse class that is compatable with COLIN.

The documentation for this class was generated from the following files:

e COLINApplication.H
e COLINApplication.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.15 COLINOptimizer Class Template Reference 125

10.15 COLINOptimizer Class Template Reference

Wrapper class for optimizers defined using COLIN.
Inheritance diagram for COLINOptimizer::

| Iterator |

T

| Minimizer |

T

| Optimizer |

| COLINOptimizer |

Public Member Functions

e COLINOptimizer (Model &model)

Section 2

o ~COLINOptimizer ()
destructor

e void find_optimum (void)
Performs the iterations to determine the optimal solution.

Protected Member Functions

e virtual void set_rng (void)

sets up the random number generator for stochastic methods

e virtual void set_initial_point (ColinPoint &pt)
sets the iteration starting point prior to minimization

e virtual void get_min_point (ColinPoint &pt)
retrieves the final solution after minimization

e virtual void set_method_parameters (void)

sets options for specific methods based on user specifications (called at construction time)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



126 DAKOTA Class Documentation

e void set_standard_method_parameters (void)
sets the standard method parameters shared by all methods

e virtual void set_runtime_parameters (void)
sets method parameters for specific methods using data that is not available until run time

Protected Attributes

e OptimizerT * optimizer

Pointer to COLIN base optimizer object.

e COLINApplication * application
Pointer to the COLINApplication object.

e OptProblem< ColinPoint > problem
the COLIN problem object

o utilib::RNG * rng
RNG ptr.

e String evalSynch
the synchr oni zat i on setting (bl ocki ng or nonbl ocki ng)

10.15.1 Detailed Description
template<class OptimizerT> class Dakota::COLINOptimizer< OptimizerT >

Wrapper class for optimizers defined using COLIN.

The COLINOptimizer class provides a templated wrapper for COLIN, a Sandia-developed C++ optimization in-
terface library. A variety of COLIN optimizers are defined in the COLINY optimization library, which contains the
optimization components from the old SGOPT library. COLINY contains optimizers such as genetic algorithms,
pattern search methods, and other nongradient-based techniques. COLINOptimizer uses a COLINApplication
object to perform the function evaluations.

The user input mappings are as follows: max_iterations, max_function_eval uations,
convergence_t ol erance, sol uti on_accuracy and max_cpu_ti me are mapped into COLIN’s
max_iters, max_neval, ftol, accuracy, and max_ti ne data attributes. An out put setting of
ver bose is passed to COLIN’s set_output() function and a setting of debug activates output of method ini-
tialization and sets the COLIN debug attribute to 10000. COLIN methods assume asynchronous operations
whenever the algorithm has independent evaluations which can be performed simultaneously (implicit paral-
lelism). Therefore, parallel configuration is not mapped into the method, rather it is used in COLINApplication to
control whether or not an asynchronous evaluation request from the method is honored by the model (exception:
pattern search exploratory moves is set to best _al | for parallel function evaluations). Refer to [Hart, W.E.,
1997] for additional information on COLIN objects and controls.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.15 COLINOptimizer Class Template Reference 127

10.15.2 Member Function Documentation

10.15.2.1 void find_optimum (void) [virtual ]

Performs the iterations to determine the optimal solution.

find_optimum redefines the Optimizer virtual function to perform the optimization using COLIN. It first sets up
the problem data, then executes minimize() on the COLIN optimizer, and finally catalogues the results.

Implements Optimizer.
10.15.2.2 void set_standard_method_parameters (void) [ pr ot ect ed]

sets the standard method parameters shared by all methods
set_standard_method_parameters propagates standard DAKOTA user input to the optimizer.

The documentation for this class was generated from the following file:

e COLINOptimizer.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



128 DAKOTA Class Documentation

10.16 ColinPoint Class Reference

Public Attributes

e vector< double > rvec

continuous parameter values

e vector< int > ivec

discrete parameter values

10.16.1 Detailed Description

A class containing a vector of doubles and integers.

The documentation for this class was generated from the following file:

e COLINApplication.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.17 CommandLineHandler Class Reference 129

10.17 CommandLineHandler Class Reference

Utility class for managing command line inputs to DAKOTA.

Inheritance diagram for CommandLineHandler::

| GetLongOpt |

T

| CommandLineHandler |

Public Member Functions

e CommandLineHandler ()

default constructor, requires check_usage() call for parsing

e CommandLineHandler (int argc, char *xargv)

constructor with parsing

e ~CommandLineHandler ()

destructor

e void check_usage (int argc, char *xargv)

Verifies that DAKOTA is called with the correct command usage. Prints a descriptive message and exits the program
if incorrect.

e int read_restart_evals () const

Returns the number of evaluations to be read from the restart file (as specified on the DAKOTA command line) as
an integer instead of a const chars.

Private Member Functions

e void initialize_options ()

enrolls the supported command line inputs.

e void output_version (ostream &s) const

outputs the DAKQOTA version

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



130 DAKOTA Class Documentation

10.17.1 Detailed Description

Utility class for managing command line inputs to DAKOTA.

CommandLineHandler provides additional functionality that is specific to DAKOTA’s needs for the definition and
parsing of command line options. Inheritance is used to allow the class to have all the functionality of the base
class, GetLongOpt.

The documentation for this class was generated from the following files:

e CommandLineHandler.H
e CommandLineHandler.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.18 CommandShell Class Reference 131

10.18 CommandShell Class Reference

Utility class which defines convenience operators for spawning processes with system calls.

Public Member Functions

e CommandShell ()
constructor

o ~CommandShell ()
destructor

CommandShell & operator< < (const char *string)

adds string to unixCommand

e CommandShell & operator<< (CommandShell &(xf)(CommandShell &))
allows passing of the flush function to the shell using <<

e CommandShell & flush ()
"flushes" the shell; i.e. executes the unixCommand

void asynch_flag (const bool flag)
set the asynchFlag

bool asynch_flag () const
get the asynchFlag

void suppress_output_flag (const bool flag)
set the suppressOutputFlag

bool suppress_output_flag () const
get the suppressOutputFlag

Private Attributes

e String unixCommand

the command string that is constructed through one or more << insertions and then executed by flush

e Dbool asynchFlag
flags nonblocking operation (background system calls)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



132 DAKOTA Class Documentation

e Dbool suppressOutputFlag
flags suppression of shell output (no command echo)

10.18.1 Detailed Description

Utility class which defines convenience operators for spawning processes with system calls.

The CommandShell class wraps the C system() utility and defines convenience operators for building a command
string and then passing it to the shell.

10.18.2 Member Function Documentation

10.18.2.1 CommandShell & flush ()

"flushes" the shell; i.e. executes the unixCommand

Executes the unixCommand by passing it to system(). Appends an "&" if asynchFlag is set (background system
call) and echos the unixCommand to Cout if suppressOutputFlag is not set.

The documentation for this class was generated from the following files:

e CommandShell. H
e CommandShell.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.19 ConcurrentStrategy Class Reference 133

10.19 ConcurrentStrategy Class Reference

Strategy for multi-start iteration or pareto set optimization.

Inheritance diagram for ConcurrentStrategy::

Strategy

ConcurrentStrategy

Public Member Functions

e ConcurrentStrategy (ProblemDescDB &problem_db)

constructor

o ~ConcurrentStrategy ()

destructor

e void run_strategy ()

Performs the concurrent strategy by executing selectedlterator on userDefinedModel multiple times in parallel for
different settings within the iterator or model.

Private Member Functions

e void self_schedule_iterators ()

executed by the strategy master to self-schedule iterator jobs among slave iterator servers (called by run_strategy())

e void serve_iterators ()

executed on the slave iterator servers to perform iterator jobs assigned by the strategy master (called by
run_strategy())

e void static_schedule_iterators ()

executed on iterator peers to statically schedule iterator jobs (called by run_strategy())

e void print_results ()

prints the concurrent iteration results summary (called by run_strategy())

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



134 DAKOTA Class Documentation

Private Attributes

e Model userDefinedModel
the model used by the iterator

e Iterator selectedlterator
the iterator used by the concurrent strategy

e int numlteratorServers

number of concurrent iterator partitions

e int numlteratorJobs

total number of iterator executions to schedule over the servers

e RealVectorArray parameterSets

an array of parameter set vectors (either multistart variable sets or pareto multiobjective weighting sets) to be
performed.

o PRPArray prpResults
an array of results corresponding to the parameter set vectors.

e bool multiStartFlag
distinguishes multi-start from Pareto-set

e bool strategyDedicatedMasterFlag
signals ded. master partitioning

e int iteratorServerld
identifier for an iterator server

e int drvMsgLen
length of an MPI buffer containing a RealVector from parameterSets

10.19.1 Detailed Description

Strategy for multi-start iteration or pareto set optimization.

This strategy maintains two concurrent iterator capabilities. First, a general capability for running an iterator
multiple times from different starting points is provided (often used for multi-start optimization, but not restricted
to optimization). Second, a simple capability for mapping the "pareto frontier" (the set of optimal solutions in
mutiobjective formulations) is provided. This pareto set is mapped through running an optimizer multiple times
for different sets of multiobjective weightings.

10.19.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.19 ConcurrentStrategy Class Reference 135

10.19.2.1 void self_schedule_iterators() [ pri vate]
executed by the strategy master to self-schedule iterator jobs among slave iterator servers (called by

run_strategy())

This function is adapted from ApplicationInterface::self_schedule_evaluations().

10.19.2.2 void serve_iterators() [ pri vate]

executed on the slave iterator servers to perform iterator jobs assigned by the strategy master (called by
run_strategy())

This function is similar in structure to ApplicationInterface::serve_evaluations_synch().

The documentation for this class was generated from the following files:

e ConcurrentStrategy.H
e ConcurrentStrategy.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



136 DAKOTA Class Documentation

10.20 CONMINOptimizer Class Reference

Wrapper class for the CONMIN optimization library.
Inheritance diagram for CONMINOptimizer::

| Iterator |

T

| Minimizer |

T

| Optimizer |

T

| CONMINOptimizer |

Public Member Functions

o CONMINOptimizer (Model &model)
constructor

o ~CONMINOptimizer ()
destructor

e void find_optimum ()

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual function
for the optimizer branch.

Protected Member Functions

e virtual void derived_pre_run ()

performs run-time set up

e virtual void derived_post_run ()

performs final solution processing

Private Member Functions

e void allocate_workspace ()

Allocates workspace for the optimizer.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.20 CONMINOptimizer Class Reference 137

e void deallocate_workspace ()

Releases workspace memory.

e void allocate_constraints ()

Allocates constraint mappings.

Private Attributes

e int conminInfo
INFO from CONMIN manual.

o int printControl
IPRINT from CONMIN manual (controls output verbosity).

e int optimizationType
MINMAX from DOT manual (minimize or maximize).

e Real objFnValue
value of the objective function passed to CONMIN

e RealVector constraintValues

array of nonlinear constraint values passed to CONMIN

o SizetList constraintMappingIndices
a list of indices for referencing the corresponding Response constraints used in computing the CONMIN constraints.

e RealList constraintMappingMultipliers
a list of multipliers for mapping the Response constraints to the CONMIN constraints.

e RealList constraintMappingOffsets
a list of offsets for mapping the Response constraints to the CONMIN constraints.

e int N1
Size variable for CONMIN arrays. See CONMIN manual.

e int N2
Size variable for CONMIN arrays. See CONMIN manual.

e int N3
Size variable for CONMIN arrays. See CONMIN manual.

e int N4
Size variable for CONMIN arrays. See CONMIN manual.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



138 DAKOTA Class Documentation

int N5
Size variable for CONMIN arrays. See CONMIN manual.

e int NFDG
Finite difference flag.

e int [PRINT
Flag to control amount of output data.

e int [ITMAX
Flag to specify the maximum number of iterations.

e double FDCH
Relative finite difference step size.

double FDCHM

Absolute finite difference step size.

double CT

Constraint thickness parameter.

double CTMIN
Minimum absolute value of CT used during optimization.

e double CTL
Constraint thickness parameter for linear and side constraints.

e double CTLMIN
Minimum value of CTL used during optimization.

e double DELFUN
Relative convergence criterion threshold.

e double DABFUN

Absolute convergence criterion threshold.

e double x conminDesVars
Array of design variables used by CONMIN (length N1 = numdv+2).

e double * conminLowerBnds
Array of lower bounds used by CONMIN (length N1 = numdv+2).

e double * conminUpperBnds
Array of upper bounds used by CONMIN (length N1 = numdv+2).

double * S

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.20 CONMINOptimizer Class Reference 139

Internal CONMIN array.

e double * G1
Internal CONMIN array.

e double x G2
Internal CONMIN array.

e double * B
Internal CONMIN array.

e double x C
Internal CONMIN array.

e int x MS1
Internal CONMIN array.

e double * SCAL
Internal CONMIN array.

e double * DF
Internal CONMIN array.

e double x A
Internal CONMIN array.

e int x ISC
Internal CONMIN array.

e int x [C
Internal CONMIN array.

10.20.1 Detailed Description

Wrapper class for the CONMIN optimization library.

The CONMINOptimizer class provides a wrapper for CONMIN, a Public-domain Fortran 77 optimization library
written by Gary Vanderplaats under contract to NASA Ames Research Center. The CONMIN User’s Manual
is contained in NASA Technical Memorandum X-62282, 1978. CONMIN uses a reverse communication mode,
which avoids the static member function issues that arise with function pointer designs (see NPSOLOptimizer
and SNLLOptimizer).

The user input mappings are as follows: max_i t er ati ons is mapped into CONMIN’s | TMAX parameter,
max_functi on_eval uati ons is implemented directly in the find_optimum() loop since there is no CON-
MIN parameter equivalent, conver gence_t ol er ance is mapped into CONMIN’s DELFUN and DABFUN
parameters, out put verbosity is mapped into CONMIN’s | PRI NT parameter (verbose: | PRI NT = 4; quiet:

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



140 DAKOTA Class Documentation

| PRI NT = 2), gradient mode is mapped into CONMIN’s NFDG parameter, and finite difference step size is
mapped into CONMIN’s FDCH and FDCHMparameters. Refer to [Vanderplaats, 1978] for additional information
on CONMIN parameters.

10.20.2 Member Data Documentation

10.20.2.1 intconmininfo [ pri vate]

INFO from CONMIN manual.

Information requested by CONMIN: 1 = evaluate objective and constraints, 2 = evaluate gradients of objective
and constraints.

10.20.2.2 int printControl [ pri vat e]

IPRINT from CONMIN manual (controls output verbosity).

Values range from 0 (nothing) to 4 (most output). O = nothing, 1 = initial and final function information, 2 = all of
#1 plus function value and design vars at each iteration, 3 = all of #2 plus constraint values and direction vectors,
4 = all of #3 plus gradients of the objective function and constraints, 5 = all of #4 plus proposed design vector,
plus objective and constraint functions from the 1-D search

10.20.2.3 int optimizationType [ pri vate]

MINMAX from DOT manual (minimize or maximize).

Values of 0 or -1 (minimize) or 1 (maximize).

10.20.2.4 RealVector constraintValues [ pri vat e]

array of nonlinear constraint values passed to CONMIN

This array must be of nonzero length and must contain only one-sided inequality constraints which are <= 0
(which requires a transformation from 2-sided inequalities and equalities).

10.20.2.5 SizetList constraintMappinglIndices [ pri vat e]

a list of indices for referencing the corresponding Response constraints used in computing the CONMIN con-
straints.

The length of the list corresponds to the number of CONMIN constraints, and each entry in the list points to the
corresponding DAKOTA constraint.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.20 CONMINOptimizer Class Reference 141

10.20.2.6 RealList constraintMappingMultipliers [ pri vat e]

a list of multipliers for mapping the Response constraints to the CONMIN constraints.

The length of the list corresponds to the number of CONMIN constraints, and each entry in the list contains a
multiplier for the DAKOTA constraint identified with constraintMappingIndices. These multipliers are currently
+lor-1.

10.20.2.7 RealList constraintMappingOffsets [ pri vat e]

a list of offsets for mapping the Response constraints to the CONMIN constraints.

The length of the list corresponds to the number of CONMIN constraints, and each entry in the list contains
an offset for the DAKOTA constraint identified with constraintMappingIndices. These offsets involve inequality
bounds or equality targets, since CONMIN assumes constraint allowables = 0.

10.20.2.8 intN1 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N1 = number of variables + 2

10.20.2.9 intN2 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N2 = number of constraints + 2:x(number of variables)

10.20.2.10 intN3 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N3 = Maximum possible number of active constraints.

10.20.2.11 intN4 [private]

Size variable for CONMIN arrays. See CONMIN manual.

N4 = Maximum(N3,number of variables)

10.20.2.12 intN5 [private]

Size variable for CONMIN arrays. See CONMIN manual.
N5 =2%(N4)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



142

DAKOTA Class Documentation

10.20.2.13 double CT [private]

Constraint thickness parameter.

The value of CT decreases in magnitude during optimization.

10.20.2.14 doublex S [pri vat e]

Internal CONMIN array.

Move direction in N-dimensional space.

10.20.2.15 doublex G1 [private]

Internal CONMIN array.

Temporary storage of constraint values.

10.20.2.16 doublex G2 [ pri vat e]

Internal CONMIN array.

Temporary storage of constraint values.

10.20.2.17 doublex B [ pri vat €]

Internal CONMIN array.

Temporary storage for computations involving array S.

10.20.2.18 doublex C [ pri vate]

Internal CONMIN array.

Temporary storage for use with arrays B and S.

10.20.2.19 int« MS1 [ pri vat e]

Internal CONMIN array.

Temporary storage for use with arrays B and S.

10.20.2.20 doublex SCAL [ pri vate]

Internal CONMIN array.

Vector of scaling parameters for design parameter values.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.20 CONMINOptimizer Class Reference

143

10.20.2.21 doublex DF [ pri vat e]

Internal CONMIN array.

Temporary storage for analytic gradient data.

10.20.2.22 doublex A [ private]

Internal CONMIN array.

Temporary 2-D array for storage of constraint gradients.

10.20.2.23 int« ISC [private]

Internal CONMIN array.

Array of flags to identify linear constraints. (not used in this implementation of CONMIN)
10.20.2.24 intx IC [pri vate]

Internal CONMIN array.
Array of flags to identify active and violated constraints

The documentation for this class was generated from the following files:

o CONMINOptimizer.H
o CONMINOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



144 DAKOTA Class Documentation

10.21 Constraints Class Reference

Base class for the variable constraints class hierarchy.

Inheritance diagram for Constraints::

| Congtraints |
i
[ l
AllConstraints | | DistinctConstrai nts| | MergedConstraints

Public Member Functions

e Constraints ()

default constructor

Constraints (const ProblemDescDB &problem_db, const pair< short, short > &view)
standard constructor

e Constraints (const Constraints &con)

copy constructor

virtual ~Constraints ()

destructor

e Constraints operator= (const Constraints &con)
assignment operator

e virtual const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

e virtual void continuous_lower_bounds (const Real Vector &c_1_bnds)
set the active continuous variable lower bounds

e virtual const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

e virtual void continuous_upper_bounds (const Real Vector &c_u_bnds)
set the active continuous variable upper bounds

e virtual const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.21 Constraints Class Reference 145

e virtual void discrete_lower_bounds (const IntVector &d_1_bnds)

set the active discrete variable lower bounds

e virtual const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds

e virtual void discrete_upper_bounds (const IntVector &d_u_bnds)
set the active discrete variable upper bounds

e virtual const RealVector & inactive_continuous_lower_bounds () const

return the inactive continuous lower bounds

e virtual void inactive_continuous_lower_bounds (const Real Vector &i_c_1_bnds)
set the inactive continuous lower bounds

e virtual const RealVector & inactive_continuous_upper_bounds () const

return the inactive continuous upper bounds

e virtual void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)

set the inactive continuous upper bounds

e virtual const IntVector & inactive_discrete_lower_bounds () const

return the inactive discrete lower bounds

e virtual void inactive_discrete_lower_bounds (const IntVector &i_d_1_bnds)
set the inactive discrete lower bounds

e virtual const IntVector & inactive_discrete_upper_bounds () const

return the inactive discrete upper bounds

e virtual void inactive_discrete_upper_bounds (const IntVector &i_d_u_bnds)
set the inactive discrete upper bounds

e virtual RealVector all_continuous_lower_bounds () const

returns a single array with all continuous lower bounds

e virtual RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

e virtual IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

e virtual IntVector all_discrete_upper_bounds () const

returns a single array with all discrete upper bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



146 DAKOTA Class Documentation

e virtual void write (ostream &s) const

write a variable constraints object to an ostream

e virtual void read (istream &s)

read a variable constraints object from an istream

e size_t num_linear_ineq_constraints () const

return the number of linear inequality constraints

e size_t num_linear_eq_constraints () const

return the number of linear equality constraints

e const RealMatrix & linear_ineq_constraint_coeffs () const
return the linear inequality constraint coefficients

e void linear_ineq_constraint_coeffs (const RealMatrix &lin_ineq_coeffs)
set the linear inequality constraint coefficients

e const RealVector & linear_ineq_constraint_lower_bounds () const
return the linear inequality constraint lower bounds

e void linear_ineq_constraint_lower_bounds (const RealVector &lin_ineq_I_bnds)

set the linear inequality constraint lower bounds

e const RealVector & linear_ineq_constraint_upper_bounds () const

return the linear inequality constraint upper bounds

e void linear_ineq_constraint_upper_bounds (const RealVector &lin_ineq_u_bnds)

set the linear inequality constraint upper bounds

e const RealMatrix & linear_eq_constraint_coeffs () const

return the linear equality constraint coefficients

e void linear_eq_constraint_coeffs (const RealMatrix &lin_eq_coeffs)
set the linear equality constraint coefficients

e const RealVector & linear_eq_constraint_targets () const
return the linear equality constraint targets

e void linear_eq_constraint_targets (const Real Vector &lin_eq_targets)

set the linear equality constraint targets

e size_t num_nonlinear_ineq_constraints () const

return the number of nonlinear inequality constraints

e size_t num_nonlinear_eq_constraints () const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.21 Constraints Class Reference 147

return the number of nonlinear equality constraints

e const RealVector & nonlinear_ineq_constraint_lower_bounds () const

return the nonlinear inequality constraint lower bounds

e void nonlinear_ineq_constraint_lower_bounds (const Real Vector &nln_ineq_1_bnds)

set the nonlinear inequality constraint lower bounds

e const RealVector & nonlinear_ineq_constraint_upper_bounds () const

return the nonlinear inequality constraint upper bounds

e void nonlinear_ineq_constraint_upper_bounds (const Real Vector &nln_ineq_u_bnds)

set the nonlinear inequality constraint upper bounds

e const RealVector & nonlinear_eq_constraint_targets () const

return the nonlinear equality constraint targets

e void nonlinear_eq_constraint_targets (const RealVector &nln_eq_targets)

set the nonlinear equality constraint targets

Protected Member Functions

e Constraints (BaseConstructor, const ProblemDescDB &problem_db, const pair< short, short > &view)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

e void manage_linear_constraints (const ProblemDescDB &problem_db)

perform checks on user input, convert linear constraint coefficient input to matrices, and assign defaults

Protected Attributes

e pair< short, short > variablesView

the variables view pair containing active (first) and inactive (second) view enumerations

e size_t numNonlinearIneqCons

number of nonlinear inequality constraints

e size_t numNonlinearEqCons

number of nonlinear equality constraints

e RealVector nonlinearIneqConLowerBnds

nonlinear inequality constraint lower bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



148 DAKOTA Class Documentation

e RealVector nonlinearlneqConUpperBnds

nonlinear inequality constraint upper bounds

e RealVector nonlinearEqConTargets

nonlinear equality constraint targets

e size_t numLinearlneqCons

number of linear inequality constraints

e size_t numLinearEqCons

number of linear equality constraints

e RealMatrix linearIneqConCoeffs

linear inequality constraint coefficients

e RealMatrix linearEqConCoeffs

linear equality constraint coefficients

e RealVector linearlneqConLowerBnds

linear inequality constraint lower bounds

e RealVector linearlneqConUpperBnds
linear inequality constraint upper bounds

e RealVector linearEqConTargets
linear equality constraint targets

e RealVector emptyReal Vector

an empty real vector returned in get functions when there are no variable constraints corresponding to the request

e IntVector emptylntVector

an empty int vector returned in get functions when there are no variable constraints corresponding to the request

Private Member Functions

e Constraints * get_constraints (const ProblemDescDB &problem_db, const pair< short, short > &view)

Used only by the constructor to initialize constraintsRep to the appropriate derived type.

Private Attributes

e Constraints * constraintsRep

pointer to the letter (initialized only for the envelope)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.21 Constraints Class Reference 149

e int referenceCount

number of objects sharing constraintsRep

10.21.1 Detailed Description

Base class for the variable constraints class hierarchy.

The Constraints class is the base class for the class hierarchy managing bound, linear, and nonlinear constraints.
Using the variable lower and upper bounds arrays from the input specification, different derived classes define
different views of this data. The linear and nonlinear constraint data is consistent in all views and is managed at the
base class level. For memory efficiency and enhanced polymorphism, the variable constraints hierarchy employs
the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the base class (Constraints) serves
as the envelope and one of the derived classes (selected in Constraints::get_constraints()) serves as the letter.

10.21.2 Constructor & Destructor Documentation

10.21.2.1 Constraints ()

default constructor

The default constructor: constraintsRep is NULL in this case (a populated problem_db is needed to build a
meaningful Constraints object). This makes it necessary to check for NULL in the copy constructor, assignment
operator, and destructor.

10.21.2.2 Constraints (const ProblemDescDB & problem_db, const pair< short, short > & view)

standard constructor

The envelope constructor only needs to extract enough data to properly execute get_constraints, since the con-
structor overloaded with BaseConstructor builds the actual base class data inherited by the derived classes.

10.21.2.3 Constraints (const Constraints & con)

copy constructor

Copy constructor manages sharing of constraintsRep and incrementing of referenceCount.
10.21.2.4 ~Constraints () [virtual]

destructor

Destructor decrements referenceCount and only deletes constraintsRep when referenceCount reaches zero.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



150 DAKOTA Class Documentation

10.21.2.5 Constraints (BaseConstructor, const ProblemDescDB & problem_db, const pair< short, short
> & view) [ protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all derived classes. get_constraints() instanti-
ates a derived class letter and the derived constructor selects this base class constructor in its initialization list (to
avoid recursion in the base class constructor calling get_constraints() again). Since the letter IS the representation,
its rep pointer is set to NULL (an uninitialized pointer causes problems in ~Constraints).

10.21.3 Member Function Documentation

10.21.3.1 Constraints operator= (const Constraints & con)

assignment operator

Assignment operator decrements referenceCount for old constraintsRep, assigns new constraintsRep, and incre-
ments referenceCount for new constraintsRep.

10.21.3.2 void manage_linear_constraints (const ProblemDescDB & problem_db) [ pr ot ect ed]

perform checks on user input, convert linear constraint coefficient input to matrices, and assign defaults

Convenience function called from derived class constructors. The number of variables active for applying linear
constraints is currently defined to be the number of active continuous variables plus the number of active discrete
variables (the most general case), even though very few optimizers can currently support mixed variable linear
constraints.

10.21.3.3 Constraints * get_constraints (const ProblemDescDB & problem_db, const pair< short, short
> &view) [private]

Used only by the constructor to initialize constraintsRep to the appropriate derived type.

Initializes constraintsRep to the appropriate derived type, as given by the variables view.

The documentation for this class was generated from the following files:

e DakotaConstraints.H
e DakotaConstraints.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.22 CtelRegexp Class Reference 151

10.22 CtelRegexp Class Reference

Public Types

e enum RStatus {
GOOD =0, EXP_TOO_BIG, OUT_OF_MEM, TOO_MANY_PAR,
UNMATCH_PAR, STARPLUS_EMPTY, STARPLUS_NESTED, INDEX_RANGE,
INDEX_MATCH, STARPLUS_NOTHING, TRAILING, INT_ERROR,
BAD_PARAM, BAD_OPCODE }
Error codes reported by the engine - Most of these codes never really occurs with this implementation.

Public Member Functions

o CtelRegexp (const std::string &pattern)
Constructor - compile a regular expression.

o ~CtelRegexp ()
Destructor.

e bool compile (const std::string &pattern)
Compile a new regular expression.

e std::string match (const std::string &str)
matches a particular string; this method returns a string that is a sub-string matching with the regular expression

e bool match (const std::string &str, size_t *start, size_t *size)

another form of matching; returns the indexes of the maching

e RStatus getStatus ()
Get status.

e const std::string & getStatusMsg ()
Get status message.

e void clearErrors ()

Clear all errors.

e const std::string & getRe ()
Return regular expression pattern.

e bool split (const std::string &str, std::vector< std::string > &all_matches)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



152

DAKOTA Class Documentation

Split.

Private Member Functions

e CtelRegexp (const CtelRegexp &)
Private copy constructor.

o CtelRegexp & operator= (const CtelRegexp &)
Private assignment operator.

Private Attributes

e std::string strPattern
STL string to hold pattern.

® regexp *r

Pointer to regexp.

e RStatus status
Return status, enumerated type.

o std::string statusMsg
STL string to hold status message.

10.22.1 Detailed Description

DESCRIPTION: Wrapper for the Regular Expression engine( regexp ) released by Henry Spencer of the Univer-

sity of Toronto.

The documentation for this class was generated from the following files:

o CtelRegExp.H
e CtelRegExp.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.23 DataFitSurrModel Class Reference 153

10.23 DataFitSurr M odel Class Reference

Derived model class within the surrogate model branch for managing data fit surrogates (global and local).

Inheritance diagram for DataFitSurrModel::

| Model |

|

| SurrogateM odel |

T

| DataFitSurrModel |

Public Member Functions

e DataFitSurrModel (ProblemDescDB &problem_db)
constructor

e ~DataFitSurrModel ()
destructor

Protected Member Functions

e void derived_compute_response (const ActiveSet &set)

portion of compute_response() specific to DataFitSurrModel

void derived_asynch_compute_response (const ActiveSet &set)
portion of asynch_compute_response() specific to DataFitSurrModel

const ResponseArray & derived_synchronize ()

portion of synchronize() specific to DataFitSurrModel

e const IntResponseMap & derived_synchronize_nowait ()

portion of synchronize_nowait() specific to DataFitSurrModel

Iterator & subordinate_iterator ()
return dacelterator

Model & surrogate_model ()
return this model instance

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



154

DAKOTA Class Documentation

Model & truth_model ()
return actualModel

void derived_subordinate_models (ModelList &ml, bool recurse_flag)

return actualModel (and optionally its sub-models)

Interface & interface ()

return approxinterface

void surrogate_bypass (bool bypass_flag)

set surrogateBypass flag and pass request on to actualModel for any lower-level surrogates.

void build_approximation ()

Builds the local/multipoint/global approximation using dacelterator/actualModel.

bool build_approximation (const Real Vector &c_vars, const Response &response)

Builds the local/multipoint/global approximation using dacelterator/actualModel to generate new data that aug-
ments the ¢_vars/response anchor point.

void update_approximation (const RealVector &c_vars, const Response &response)

Adds a point to a global approximation and rebuilds it (requests forwarded to approxinterface).

const RealVectorArray & approximation_coefficients ()

return the approximation coefficients from each Approximation (request forwarded to approxinterface)

void component_parallel_mode (int mode)

update component parallel mode for supporting parallelism in actualModel

void derived_init_communicators (const int &max_iterator_concurrency)

set up actualModel for parallel operations

void derived_init_serial ()

set up actualModel for serial operations.

void derived_set_communicators (const int &max_iterator_concurrency)

set active parallel configuration within actualModel

void reset_communicators ()

reset communicator partitions for the DataFitSurrModel (request forwarded to actualModel)

void derived_free_communicators (const int &max_iterator_concurrency)

deallocate communicator partitions for the DataFitSurrModel (request forwarded to actualModel)

void serve ()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.23 DataFitSurrModel Class Reference 155

Service actualModel job requests received from the master. Completes when a termination message is received
from stop_servers().

e void stop_servers ()

Executed by the master to terminate actualModel server operations when DataFitSurrModel iteration is complete.

int evaluation_id () const
return the current evaluation id for the DataFitSurrModel

void set_evaluation_reference ()

set the evaluation counter reference points for the DataFitSurrModel (request forwarded to approxInterface and
actualModel)

e void print_evaluation_summary (ostream &s, bool minimal_header=false, bool relative_count=true) const

print the evaluation summary for the DataFitSurrModel (request forwarded to approxinterface and actualModel)

Private Member Functions

e void update_actual_model ()

update actualModel with current variable values/bounds/labels

void update_global ()
Updates fit arrays for global approximations.

void update_local_multipoint ()
Updates fit arrays for local or multipoint approximations.

void build_global ()
Builds a global approximation using dacelterator.

void build_local_multipoint ()

Builds a local or multipoint approximation using actualModel.

e void asv_mapping (const IntArray &orig_asv, IntArray &actual_asv, IntArray &approx_asv, bool build_-
flag)
distributes the incoming orig_asv among actual_asv and approx_asv

Private Attributes

e int surrModelEvals

number of calls to derived_compute_response()/ derived_asynch_compute_response()

e String sampleReuse

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



156 DAKOTA Class Documentation

user selection of type of sample reuse for approximation builds: all, region, file, or none (default)

e String sampleReuseFile

file name for sampleReuse == "file"
e Interface approxInterface

manages the building and subsequent evaluation of the approximations (required for both global and local)
e String actualModelPointer

string identifier for the actual model from the local/multipoint approximation specification; used to build actual-
Model.

e Model actualModel

the truth model which provides evaluations for building the surrogate (optional for global, required for local)

String daceMethodPointer

string identifier for the dace method from the global approximation specification; used in building dacelterator and
actualModel for global approximations (optional for global since restart data may also be used)

e [terator dacelterator

selects parameter sets on which to evaluate actualModel in order to generate the necessary data for building global
approximations (optional for global since restart data may also be used)

10.23.1 Detailed Description

Derived model class within the surrogate model branch for managing data fit surrogates (global and local).

The DataFitSurrModel class manages global or local approximations (surrogates that involve data fits) that are
used in place of an expensive model. The class contains an approxInterface (required for both global and local)
which manages the approximate function evaluations, an actualModel (optional for global, required for local)
which provides truth evaluations for building the surrogate, and a dacelterator (optional for global, not used for
local) which selects parameter sets on which to evaluate actualModel in order to generate the necessary data for
building global approximations.

10.23.2 Member Function Documentation

10.23.2.1 void derived_compute_response (const ActiveSet & set) [ protected, virtual]

portion of compute_response() specific to DataFitSurrModel

Build the approximation (if needed), evaluate the approximate response using approxInterface, and, if correction
is active, correct the results.

Reimplemented from Model.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.23 DataFitSurrModel Class Reference 157

10.23.2.2 void derived_asynch_compute_response (const ActiveSet & set) [ protected, virtual]

portion of asynch_compute_response() specific to DataFitSurrModel

Build the approximation (if needed) and evaluate the approximate response using approxInterface in a quasi-
asynchronous approach (ApproximationInterface::map() performs the map synchronously and bookkeeps the re-
sults for return in derived_synchronize() below).

Reimplemented from Model.

10.23.2.3 const ResponseArray & derived_synchronize () [ protected, virtual]

portion of synchronize() specific to DataFitSurrModel

Retrieve quasi-asynchronous evaluations from approxInterface and, if correction is active, apply correction to
each response in the array.

Reimplemented from Model.

10.23.2.4 const IntResponseMap & derived_synchronize_nowait () [ protected, virtual]

portion of synchronize_nowait() specific to DataFitSurrModel

Retrieve quasi-asynchronous evaluations from approxInterface and, if correction is active, apply correction to
each response in the map.

Reimplemented from Model.

10.23.2.5 void derived_init_communicators (const int & max_iterator_concurrency) [i nli ne,
protected, virtual]

set up actualModel for parallel operations

asynchronous flags need to be initialized for the sub-models. In addition, max_iterator_concurrency is the outer
level iterator concurrency, not the DACE concurrency that actualModel will see, and recomputing the message_-
lengths on the sub-model is probably not a bad idea either. Therefore, recompute everything on actualModel using
init_communicators.

Reimplemented from Model.

10.23.2.6 intevaluation_id () const [inline, protected, virtual]

return the current evaluation id for the DataFitSurrModel

return the DataFitSurrModel evaluation count. Due to possibly intermittent use of surrogate bypass, this is not the
same as either the approxInterface or actualModel model evaluation counts. It also does not distinguish duplicate
evals.

Reimplemented from Model.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



158 DAKOTA Class Documentation

10.23.2.7 void update_actual_model () [ pri vate]

update actualModel with current variable values/bounds/labels

Update variables and constraints data within actualModel using values and labels from currentVariables and
bound/linear/nonlinear constraints from userDefinedConstraints.

10.23.2.8 void build_global () [ pri vat €]

Builds a global approximation using dacelterator.

Determine sample points to use in building the approximation and then evaluate them on actualModel us-
ing dacelterator. Any changes to the bounds should be performed by setting them at a higher level (e.g.,
SurrBasedOptStrategy).

10.23.2.9 void build_local_multipoint () [ pri vat e]

Builds a local or multipoint approximation using actualModel.

Evaluate the value, gradient, and possibly Hessian needed for a local or multipoint approximation using actual-
Model.

10.23.3 Member Data Documentation

10.23.3.1 String actualModelPointer [ pri vat e]
string identifier for the actual model from the local/multipoint approximation specification; used to build actual-
Model.

Specification is used only for local/multipoint approximations, since the dace_method_pointer in the global ap-
proximation specification is responsible for identifying all actualModel components.

10.23.3.2 Model actualModel [ pri vat e]

the truth model which provides evaluations for building the surrogate (optional for global, required for local)
actualModel is unrestricted in type; arbitrary nestings are possible.

The documentation for this class was generated from the following files:

e DataFitSurrModel. H
e DataFitSurrModel.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.24 Datalnterface Class Reference 159

10.24 Datal nterface Class Reference

Container class for interface specification data.

Public Member Functions

e Datalnterface ()

constructor

e Datalnterface (const Datalnterface &)

copy constructor

e ~Datalnterface ()
destructor

e Datalnterface & operator= (const Datalnterface &)

assignment operator

e Dbool operator== (const Datalnterface &)

equality operator

e void write (ostream &s) const
write a Datalnterface object to an ostream

e void read (MPIUnpackBuffer &s)

read a Datalnterface object from a packed MPI buffer

e void write (MPIPackBuffer &s) const

write a Datalnterface object to a packed MPI buffer

Public Attributes

o String idInterface

string identifier for an interface specification data set (from the id_interface specification in InterflndControl)

o String interfaceType
the interface selection: system, fork, direct, or grid

e String algebraicMappings

defines the subset of the parameter to response mapping that is explicit and algebraic. This is typically a stub.nl
filename (AMPL format) from JAGUAR.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



160

DAKOTA Class Documentation

StringArray analysisDrivers

the set of analysis drivers for a simulation-based interface (from the anal ysi s_dri ver s specification in I nterf-
IndControl)

String2DArray analysisComponents

the set of analysis components for a simulation-based interface (from the anal ysi s_conponent s specification
in InterfiIndControl)

String inputFilter

the input filter for a simulation-based interface (from the i nput _fi | t er specification in InterfindControl)

String outputFilter

the output filter for a simulation-based interface (from the out put _fi | t er specification in InterfindControl)

String parametersFile

the parameters file for system call and fork interfaces (from the par amet ers_fi | e specification in Interf-
ApplicSC and InterfApplicF)

String resultsFile

the results file for system call and fork interfaces (from the r esul t s_f i | e specification in InterfApplicSC and
InterfApplicF)

String analysisUsage

the analysis command usage string for a system call interface (from the anal ysi s_usage specification in I nterf-
ApplicSC)

bool apreproFormatFlag

the flag for aprepro format usage in the parameters file for system call and fork interfaces (from the apr epr o
specification in InterfApplicSC and InterfApplicF)

bool fileTagFlag

the flag for file tagging of parameters and results files for system call and fork interfaces (from the fi | e_t ag
specification in InterfApplicSC and InterfApplicF)

bool fileSaveFlag

the flag for saving of parameters and results files for system call and fork interfaces (from the f i | e_save speci-
fication in InterfApplicSC and I nterfApplicF)

int procsPerAnalysis

processors per parallel analysis for a direct interface (from the pr ocessor s_per _anal ysi s specification in
InterfApplicDF)

StringArray gridHostNames

WEH - not currently used for grid computing names of host machines for a grid interface (from the host nanes
specification in InterfApplicG).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.24 Datalnterface Class Reference 161

IntArray gridProcsPerHost

processors per host machine for a grid interface (from the pr ocessors_per _host specification in Interf-
ApplicG)

String interfaceSynchronization

parallel mode for a simulation-based interface: synchronous or asynchronous (from the asynchr onous specifi-
cation in InterfindControl)

int asynchLocalEvalConcurrency

evaluation concurrency for asynchronous simulation-based interfaces (from the eval uati on_concurrency
specification in InterfindControl)

int asynchLocalAnalysisConcurrency

analysis concurrency for asynchronous simulation-based interfaces (from the anal ysi s_concur r ency speci-
fication in InterflndControl)

int evalServers

number of evaluation servers to be used in the parallel configuration (from the eval uati on_ser ver s specifi-
cation in InterflndControl)

String evalScheduling

the scheduling approach to be used for concurrent evaluations within an iterator (from the eval uati on_sel f _-
schedul i ng and evaluation_static_scheduling specifications in I nterflndControl)

int analysisServers

number of analysis servers to be used in the parallel configuration (from the anal ysi s_ser ver s specification
in InterfIndControl)

String analysisScheduling

the scheduling approach to be used for concurrent analyses within a function evaluation (from the anal ysi s_-
sel f _schedul i ng and anal ysi s_st ati c_schedul i ng specifications in I nterflndControl)

String failAction

the selected action upon capture of a simulation failure: abort, retry, recover, or continuation (from the
fai | ure_capt ur e specification in InterfindControl)

int retryLimit

the limit on retries for captured simulation failures (from the r et r y specification in InterflndControl)

RealVector recoveryFnVals

the function values to be returned in a recovery operation for captured simulation failures (from the r ecover
specification in InterfindControl)

bool activeSetVectorFlag

active set vector: 1=active (ASV control on), O=inactive (ASV control off) (from the deacti vate acti ve_-
set _vect or specification in InterflndControl)

bool evalCacheFlag

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



162 DAKOTA Class Documentation

function evaluation cache: 1=active (all new evaluations checked against existing cache and then added to cache),
O=inactive (cache neither queried nor augmented) (from the deact i vat e eval uat i on_cache specification
in InterflndControl)

e Dbool restartFileFlag

function evaluation cache: 1=active (all new evaluations written to restart), O=inactive (no records written to
restart) (from the deacti vaterestart _fi | e specification in InterfindControl)

Private Member Functions

e void assign (const Datalnterface &data_interface)

convenience function for setting this objects attributes equal to the attributes of the incoming data_interface object
(used by copy constructor and assignment operator)

10.24.1 Detailed Description

Container class for interface specification data.

The Datalnterface class is used to contain the data from an interface keyword specification. It is populated by
ProblemDescDB::interface_kwhandler() and is queried by the ProblemDescDB::get_<datatype>() functions. A
list of Datalnterface objects is maintained in ProblemDescDB::interfaceList, one for each interface specification
in an input file. Default values are managed in the Datalnterface constructor. Data is public to avoid maintaining
set/get functions, but is still encapsulated within ProblemDescDB since ProblemDescDB::interfaceList is private
(a similar model is used with SurrogateDataPoint objects contained in Dakota::Approximation).

The documentation for this class was generated from the following files:

e Datalnterface.H
e Datalnterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.25 DataMethod Class Reference 163

10.25 DataM ethod Class Reference

Container class for method specification data.

Public Member Functions

e DataMethod ()

constructor

e DataMethod (const DataMethod &)

copy constructor

e ~DataMethod ()
destructor

e DataMethod & operator= (const DataMethod &)

assignment operator

e bool operator== (const DataMethod &)
equality operator

e void write (ostream &s) const

write a DataMethod object to an ostream

e void read (MPIUnpackBuffer &s)
read a DataMethod object from a packed MPI buffer

e void write (MPIPackBuffer &s) const
write a DataMethod object to a packed MPI buffer

Public Attributes

e String idMethod

string identifier for the method specification data set (from the i d_rmet hod specification in M ethodIndControl)

e String modelPointer

string pointer to the model specification to be used by this method (from the nodel _poi nt er specification in
M ethodIndControl)

e String methodOutput

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



164

DAKOTA Class Documentation

method verbosity control: quiet, verbose, debug, or normal (default) (from the out put specification in M ethod-
IndControl)

int maxIterations

maximum number of iterations allowed for the method (from the max_i t er at i ons specification in M ethodlnd-
Control)

int maxFunctionEvaluations

maximum number of function evaluations allowed for the method (from the max_f uncti on_eval uati ons
specification in M ethodIndControl)

bool speculativeFlag

flag for use of speculative gradient approaches for maintaining parallel load balance during the line search portion
of optimization algorithms (from the specul at i ve specification in M ethodIndControl)

Real convergenceTolerance

iteration convergence tolerance for the method (from the conver gence_t ol er ance specification in M ethod-
IndControl)

Real constraintTolerance

tolerance for controlling the amount of infeasibility that is allowed before an active constraint is considered to be
violated (from the const r ai nt _t ol er ance specification in M ethodl ndControl)

bool methodScaling

flag indicating scaling status (from the scal i ng specification in M ethodl ndControl)

RealVector linearIneqConstraintCoeffs

coefficient matrix for the linear inequality constraints (from the | i near _i nequal ity_constraint_-
mat r i x specification in M ethodI ndControl)

RealVector linearIneqLowerBnds

lower bounds for the linear inequality constraints (from the | i near _i nequal i ty_| ower _bounds specifi-
cation in MethodlndControl)

RealVector linearlneqUpperBnds

upper bounds for the linear inequality constraints (from the | i near _i nequal i ty_upper _bounds specifi-
cation in MethodlndControl)

RealVector linearlneqScales

scaling factors for the linear inequality constraints (from the | i near _i nequal i t y_scal es specification in
M ethodIndControl)

RealVector linearEqConstraintCoeffs

coefficient matrix for the linear equality constraints (from the | i near _equal ity_constraint _matri x
specification in M ethodlndContral)

RealVector linearEqTargets

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.25 DataMethod Class Reference 165

targets for the linear equality constraints (fromthe | i near _equal i t y_t ar get s specification in M ethodl nd-
Contral)

e RealVector linearEqScales

scaling factors for the linear equality constraints (from the | i near _equal i ty_scal es specification in
MethodIndControl)

e String methodName

the method selection: one of the optimizer, least squares, nond, dace, or parameter study methods

e String minMaxType
the opt i m zati on_t ype specification in MethodDOTDC

e int verifyLevel
theveri fy_I evel specification in MethodNPSOLDC

e Real functionPrecision

the f unct i on_pr eci si on specification in MethodNPSOLDC

o Real lineSearchTolerance

the l i nesear ch_t ol er ance specification in MethodNPSOLDC

e Real absConvTol

absolute function convergence tolerance

e Real xConvTol

X-convergence tolerance

e Real singConvTol

singular convergence tolerance

e Real singRadius

radius for singular convergence test

e Real falseConvTol

false-convergence tolerance

e Real initTRRadius

initial trust radius

e int covarianceType
kind of covariance required

e bool regressDiag
whether to print the regression diagnostic vector

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



166

DAKOTA Class Documentation

String searchMethod
the sear ch_net hod specification for Newton and nonlinear interior-point methods in MethodOPTPPDC

Real gradientTolerance
the gr adi ent _t ol er ance specification in MethodOPTPPDC

Real maxStep
the max_st ep specification in M ethodOPTPPDC

String meritFn

the meri t _f unct i on specification for nonlinear interior-point methods in MethodOPTPPDC

String centralPath
the cent r al _pat h specification for nonlinear interior-point methods in MethodOPTPPDC

Real stepLenToBoundary
the st epl engt h_t o_boundar y specification for nonlinear interior-point methods in MethodOPTPPDC

Real centeringParam

the cent eri ng_par anet er specification for nonlinear interior-point methods in MethodOPTPPDC

int searchSchemeSize
the sear ch_schene_si ze specification for PDS methods in MethodOPTPPDC

String evalSynchronization

the synchroni zati on setting for parallel pattern search methods in MethodCOLINYPS and Method-
COLINYAPPS

Real constraintPenalty

the initial constrai nt _penal ty for COLINY methods in MethodCOL INYAPPS, MethodCOLINYDIR,
MethodCOLINYPS, MethodCOLINY SW and MethodCOLINYEA

bool constantPenalty
the const ant _penal t y flag for COLINY methods in MethodCOLINYPSand MethodCOLINY SW

Real globalBalanceParam
the gl obal _bal ance_par anet er for the DIRECT method in MethodCOLINYDIR

Real localBalanceParam
the | ocal _bal ance_par anet er for the DIRECT method in MethodCOLINYDIR

Real maxBoxSize
the max_boxsi ze_| i m t for the DIRECT method in MethodCOLINYDIR

Real minBoxSize
the mi n_boxsi ze_l i m t for the DIRECT method in MethodCOLINYDIR

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.25 DataMethod Class Reference 167

e String boxDivision

the di vi si on setting (maj or _di nensi on or al | _di nensi ons) for the DIRECT method in Method-
COLINYDIR

e bool mutationAdaptive

the non_adapt i ve specification for the coliny_ea method in MethodCOLINYEA

e bool showMiscOptions

the show_mi sc_opt i ons specification in MethodCOLINYDC

e StringArray miscOptions
the m sc_opt i ons specification in MethodCOLINYDC

e Real solnAccuracy
the sol ut i on_accur acy specification in MethodCOLINYDC

e Real crossoverRate
the cr ossover _r at e specification for EA methods in MethodCOLINYEA

e Real mutationRate
the mut at i on_r at e specification for EA methods in MethodCOLINYEA

e Real mutationScale
the mut at i on_scal e specification for EA methods in MethodCOLINYEA

e Real mutationMinScale
the mi n_scal e specification for mutation in EA methods in MethodCOLINYEA

e Real initDelta

the i nitial _del t a specification for APPS/COBYLA/PS/SW methods in MethodCOLINYAPPS, Method-
COLINYCOB, MethodCOLINYPS, and MethodCOLINY SW

e Real threshDelta

the t hr eshol d_del t a specification for APPS/COBYLA/PS/SW methods in MethodCOL INYAPPS, M ethod-
COLINYCOB, MethodCOLINYPS, and MethodCOLINY SW

e Real contractFactor

the contraction_factor specification for APPS/PS/SW methods in MethodCOLINYAPPS, Method-
COLINYPS, and MethodCOLINY SW

e int newSolnsGenerated
the new_sol uti ons_gener at ed specification for GA/EPSA methods in MethodCOLINYEA

e int numberRetained

the integer assignment to random, chc, or elitist in the r epl acenent _t ype specification for GA/EPSA methods
in MethodCOLINYEA

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



168

DAKOTA Class Documentation

bool expansionFlag

the no_expansi on specification for APPS/PS/SW methods in MethodCOLINYAPPS, MethodCOLINYPS,
and MethodCOLINY SW

int expandAfterSuccess

the expand_after_success specification for PS/SW methods in MethodCOLINYPS and Method-
COLINYSW

int contractAfterFail
the cont ract _aft er _f ai | ur e specification for the SW method in MethodCOLINY SW

int mutationRange

the mut at i on_r ange specification for the pga_int method in MethodCOL INY EA

int totalPatternSize
thet ot al _patt er n_si ze specification for PS methods in M ethodCOLINY PS

bool randomizeOrderFlag
the st ochast i ¢ specification for the PS method in MethodCOLINYPS

String selectionPressure
the fi t ness_t ype specification for EA methods in Method COLINYEA

String replacementType
the r epl acenent _t ype specification for EA methods in MethodCOL INYEA

String crossoverType
the cr ossover _t ype specification for EA methods in M ethodCOLINYEA

String mutationType
the mut at i on_t ype specification for EA methods in MethodCOLINYEA

String exploratoryMoves

the expl or at or y_noves specification for the PS method in M ethodCOL INY PS

String patternBasis
the pat t er n_basi s specification for APPS/PS methods in M ethodCOLINYAPPSand MethodCOLINYPS

size_t numCrossPoints

The number of crossover points or multi-point schemes.

size_t numParents

The number of parents to use in a crossover operation.

size_t numOffspring

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.25 DataMethod Class Reference 169

The number of children to produce in a crossover operation.

o String fitnessType

the fitness assessment operator to use.

e String convergenceType
The means by which this JEGA should converge.

e Real percentChange

The minimum percent change before convergence for a fitness tracker converger.

e size t numGenerations

The number of generations over which a fitness tracker converger should track.

e Real fitnessLimit

The cutoff value for survival in fitness limiting selectors (e.g., below_limit selector).

e Real shrinkagePercent

The minimum percentage of the requested number of selections that must take place on each call to the selector (0,
1).

e String nichingType
The niching type.

e RealVector nicheVector

The discretization percentage along each objective.

e String initializationType
The means by which the JEGA should initialize the population.

e String flatFile

The filename to use for initialization.

e String logFile

The filename to use for logging.

e int populationSize
the popul at i on_si ze specification for GA methods in MethodCOLINYEA

e bool printPopFlag

The pri nt _each_pop flag to set the printing of the population at each generation.

e String daceMethod

the dace method selection: grid, random, oas, Ihs, oa_lhs, box_behnken, or central_composite (from the dace
specification in M ethodDDACE)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



170

DAKOTA Class Documentation

int numSymbols

the synbol s specification for DACE methods

bool mainEffectsFlag
the mai n_ef f ect s specification for sampling methods in M ethodDDACE)

bool latinizeFlag
the | at i ni ze specification for FSU QMC and CVT methods in M ethodFSUDACE

bool volQualityFlag

the quality_netrics specification for sampling methods (FSU QMC and CVT methods in Method-
FSUDACE)

bool varBasedDecompFlag

the var _based_deconp specification for sampling methods (FSU QMC and CVT methods in Method-
FSUDACE)

IntVector sequenceStart
the sequenceSt art specification in MethodFSUDACE

IntVector sequenceleap
the sequenceleap specification in MethodFSUDACE

IntVector primeBase
the pr i neBase specification in MethodFSUDACE

int numTrials
the numTr i al s specification in MethodFSUDACE

String trialType
thet ri al _t ype specification in M ethodFSUDACE

int randomSeed
the seed specification for COLINY, NonD, & DACE methods

int numSamples

the sanpl es specification for NonD & DACE methods

bool fixedSeedFlag

flag for fixing the value of the seed among different NonD/DACE sample sets. This results in the use of the same
sampling stencil/pattern throughout a strategy with repeated sampling.

bool fixedSequenceFlag

flag for fixing the sequence for Halton or Hammersley QMC sample sets. This results in the use of the same
sampling stencil/pattern throughout a strategy with repeated sampling.

int expansionTerms

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.25 DataMethod Class Reference 171

the expansi on_t er ns specification in M ethodNonDPCE

e int expansionOrder
the expansi on_or der specification in M ethodNonDPCE

e String sampleType
the sanpl e_t ype specification in MethodNonDM C and M ethodNonDPCE

e String reliabilitySearchType

the type of MPP search as specified by x_t ayl or _nmean, x_t ayl or _npp,u_t ayl or _nean,u_t ayl or _-
npp, or no_appr ox in MethodNonDRel

e String reliabilitySearchAlgorithm
the algorithm selection used for computing the MPP as specified by sqp or ni p in MethodNonDRe

e String reliabilityIntegration

thefirst_order/second_order integration selectionin MethodNonDRel

e String distributionType

the di stribution cunul ative or conpl enent ary specification in MethodNonDMC, M ethodNon-
DPCE, and M ethodNonDRel

e String responseLevelMappingType

the conput e probabilitiesorreliabilities specification in MethodNonDM C, M ethodNonDPCE,
and MethodNonDRel

e RealVectorArray responseLevels
ther esponse_| evel s specification in MethodNonDM C, M ethodNonDPCE, and M ethodNonDRel

e RealVectorArray probabilityLevels
the pr obabi I i ty_| evel s specification in MethodNonDM C, M ethodNonDPCE, and M ethodNonDRél

e RealVectorArray reliabilityLevels
thereliability_| evel s specification in MethodNonDM C, MethodNonDPCE, and M ethodNonDRel

e bool allVarsFlag
the al | _vari abl es specification in MethodNonDM C

e int paramStudyType
the type of parameter study: list(-1), vector(1, 2, or 3), centered(4), or multidim(5)

e RealVector finalPoint
the f i nal _poi nt specification in M ethodPSVPS

e RealVector stepVector
the st ep_vect or specification in M ethodPSVPS

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



172 DAKOTA Class Documentation

e Real stepLength
the st ep_| engt h specification in M ethodPSVPS

e int numSteps

the num_st eps specification in MethodPSVPS

e RealVector listOfPoints
thel i st _of _poi nt s specification in MethodPSL PS

e Real percentDelta
the per cent _del t a specification in MethodPSCPS

e int deltasPerVariable

the del t as_per _vari abl e specification in M ethodPSCPS

e IntArray varPartitions
the par ti ti ons specification for PStudy method in M ethodPSM PS

Private Member Functions

e void assign (const DataMethod &data_method)

convenience function for setting this objects attributes equal to the attributes of the incoming data_method object
(used by copy constructor and assignment operator)

10.25.1 Detailed Description

Container class for method specification data.

The DataMethod class is used to contain the data from a method keyword specification. It is populated by
ProblemDescDB::method_kwhandler() and is queried by the ProblemDescDB::get_<datatype>() functions. A
list of DataMethod objects is maintained in ProblemDescDB::methodList, one for each method specification in
an input file. Default values are managed in the DataMethod constructor. Data is public to avoid maintaining
set/get functions, but is still encapsulated within ProblemDescDB since ProblemDescDB::methodList is private
(a similar model is used with SurrogateDataPoint objects contained in Dakota::Approximation).

The documentation for this class was generated from the following files:

e DataMethod.H
e DataMethod.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.26 DataModel Class Reference 173

10.26 DataM odel Class Reference

Container class for model specification data.

Public Member Functions

e DataModel ()
constructor

e DataModel (const DataModel &)
copy constructor

e ~DataModel ()
destructor

e DataModel & operator= (const DataModel &)
assignment operator

e bool operator== (const DataModel &)
equality operator

e void write (ostream &s) const
write a DataModel object to an ostream

e void read (MPIUnpackBuffer &s)
read a DataModel object from a packed MPI buffer

e void write (MPIPackBuffer &s) const
write a DataModel object to a packed MPI buffer

Public Attributes

e String idModel

string identifier for the model specification data set (from the i d_nodel specification in M odellndControl)

e String modelType
model type selection: single, surrogate, or nested (from the model type specification in M odellndControl)

e String variablesPointer

string pointer to the variables specification to be used by this model (from the var i abl es_poi nt er specifica-
tion in ModellndControl)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



174

DAKOTA Class Documentation

String interfacePointer

string pointer to the interface specification to be used by this model (fromthe i nt er f ace_poi nt er specification
in ModelSingleand the opt i onal _i nt er f ace_poi nt er specification in M odelNested)

String responsesPointer

string pointer to the responses specification to be used by this model (from the r esponses_poi nt er specifica-
tion in ModellndControl)

IntArray surrogateFnlds

array specifying the response function set that is approximated

String approxType

the selected approximation type: local_taylor, multipoint_tana, global_(neural_-
network,mars,hermite,gaussian,polynomial kriging), or hierarchical

String actualModelPtr

pointer to the interface specification for constructing the truth model used in building local and multipoint approx-
imations (from the act ual _nodel _poi nt er specification in ModelSurrL and ModelSurrM P)

String lowFidelityModelPtr

pointer to the low fidelity model specification used in hierarchical approximations (from the | ow fidelity_-
nodel _poi nt er specification in ModelSurrH)

String highFidelityModelPtr

pointer to the high fidelity model specification used in hierarchical approximations (fromthe hi gh_fidelity_-
nodel _poi nt er specification in ModelSurrH)

String approxDaceMethodPtr

pointer to the design of experiments method used in building global approximations (from the dace_net hod_ -
poi nt er specification in ModelSurrG)

String approxSampleReuse

sample reuse selection for building global approximations: none, all, region, or file (from the r euse_sanpl es
specification in M odelSurr G)

String approxSampleReuseFile

the file name for the "file" setting for the r euse_sanpl es specification in Model SurrG

String approxCorrectionType

correction type for global and hierarchical approximations: additive or multiplicative (from the correcti on
specification in ModelSurrG and ModelSurrH)

short approxCorrectionOrder

correction order for global and hierarchical approximations: 0, 1, or 2 (from the cor r ect i on specification in
ModelSurrG and ModelSurrH)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.26 DataModel Class Reference 175

e Dbool approxGradUsageFlag

flags the use of gradients in building global approximations (from the use_gr adi ent s specification in M odel-
SurrG)

e RealVector krigingCorrelations

vector of correlations used in building a kriging approximation (from the cor r el at i ons specification in M odel-
SurrG)

e short polynomialOrder

scalar integer indicating the order of the polynomial approximation (1=linear, 2=quadratic, 3=cubic; from the
pol ynomi al specification in ModelSurrG)

e String optionallnterfRespPointer

string pointer to the responses specification used by the optional interface in nested models (from the opt i onal _-
i nterface_responses_poi nt er specification in M odelNested)

e String subMethodPointer

string pointer to the sub-iterator used by nested models (from the sub_net hod_poi nt er specification in
M odelNested)

e StringArray primary VarMaps

the primary variable mappings used in nested models for identifying the lower level variable targets for inserting
top level variable values (from the pri mary_vari abl e_mappi ng specification in M odelNested)

e StringArray secondaryVarMaps

the secondary variable mappings used in nested models for identifying the (distribution) parameter targets within
the lower level variables for inserting top level variable values (from the secondary_vari abl e_nappi ng
specification in M odelNested)

e RealVector primaryRespCoeffs

the primary response mapping matrix used in nested models for weighting contributions from the sub-iterator re-
sponses in the top level (objective) functions (from the pri mary_r esponse_mappi ng specification in M odel-
Nested)

e RealVector secondaryRespCoeffs

the secondary response mapping matrix used in nested models for weighting contributions from the sub-iterator
responses in the top level (constraint) functions (from the secondar y_r esponse_mappi ng specification in
M odelNested)

Private Member Functions

e void assign (const DataModel &data_model)

convenience function for setting this objects attributes equal to the attributes of the incoming data_model object
(used by copy constructor and assignment operator)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



176 DAKOTA Class Documentation

10.26.1 Detailed Description

Container class for model specification data.

The DataModel class is used to contain the data from a model keyword specification. It is populated by Problem-
DescDB::model_kwhandler() and is queried by the ProblemDescDB::get_<datatype>() functions. A list of
DataModel objects is maintained in ProblemDescDB::modelList, one for each model specification in an input
file. Default values are managed in the DataModel constructor. Data is public to avoid maintaining set/get func-
tions, but is still encapsulated within ProblemDescDB since ProblemDescDB::modelList is private (a similar
model is used with SurrogateDataPoint objects contained in Dakota::Approximation).

The documentation for this class was generated from the following files:

e DataModel. H
e DataModel.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.27 DataResponses Class Reference

177

10.27 DataResponses Class Reference

Container class for responses specification data.

Public Member Functions

e DataResponses ()

constructor

e DataResponses (const DataResponses &)

copy constructor

e ~DataResponses ()

destructor

e DataResponses & operator= (const DataResponses &)

assignment operator

e Dbool operator== (const DataResponses &)

equality operator

e void write (ostream &s) const

write a DataResponses object to an ostream

e void read (MPIUnpackBuffer &s)

read a DataResponses object from a packed MPI buffer

e void write (MPIPackBuffer &s) const

write a DataResponses object to a packed MPI buffer

Public Attributes

e size_t numObjectiveFunctions

number of objective functions (from the num obj ect i ve_f unct i ons specification in RespFnOpt)

e size_t numNonlinearIneqConstraints

number of nonlinear inequality constraints (from the num_nonl i near _i nequal i ty_const r ai nt s speci-

fication in RespFnOpt)

e size_t numNonlinearEqConstraints

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



178

DAKOTA Class Documentation

number of nonlinear equality constraints (from the num_nonl i near _equal i t y_const r ai nt s specification
in RespFnOpt)

size_t numLeastSqTerms

number of least squares terms (from the num_| east _squar es_t er s specification in RespFnL S)

size_t numResponseFunctions
number of generic response functions (from the num r esponse_f unct i ons specification in RespFnGen)

RealVector objectiveFunctionScales

vector of objective function scaling factors (from the obj ecti ve_f uncti on_scal es specification in Resp-
FnOpt)

RealVector multiObjectiveWeights
vector of multiobjective weightings (from the mul t i _obj ect i ve_wei ght s specification in RespFnOpt)

RealVector leastSqTermScales

vector of least squares term scaling factors (from the | east _squar es_t er m_scal es specification in Resp-
FnOpt)

RealVector nonlinearIneqLowerBnds

vector of nonlinear inequality constraint lower bounds (from the nonl i near _i nequal i ty_| ower _bounds
specification in RespFnOpt)

RealVector nonlinearIneqUpperBnds

vector of nonlinear inequality constraint upper bounds (from the nonl i near _i nequal i t y_upper _bounds
specification in RespFnOpt)

RealVector nonlinearIneqScales

vector of nonlinear inequality constraint scaling factors (from the nonl i near _i nequal i t y_scal es specifi-
cation in RespFnOpt)

RealVector nonlinearEqTargets

vector of nonlinear equality constraint targets (from the nonl i near _equal i ty_t ar get s specification in
RespFnOpt)

RealVector nonlinearEqScales

vector of nonlinear equality constraint scaling factors (from the nonl i near _equal i t y_scal es specification
in RespFnOpt)

String gradientType

gradient type: none, numerical, analytic, or mixed (from the no_gr adi ents, nuneri cal _gradi ents,
anal yti c_gradi ent s,and m xed_gr adi ent s specifications in RespGrad)

String hessianType

Hessian type: none, numerical, quasi, analytic, or mixed (from the no_hessi ans, nuneri cal _hessi ans,
quasi _hessi ans, anal yti c_hessi ans,and ni xed_hessi ans specifications in RespHess).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.27 DataResponses Class Reference 179

e String quasiHessianType
quasi-Hessian type: bfgs, damped_bfgs, or srl (from the bf gs and sr 1 specifications in RespHess)

e String methodSource

numerical gradient method source: dakota or vendor (from the met hod_sour ce specification in RespGradNum
and RespGradMixed)

e String intervalType

numerical gradient interval type: forward or central (fromthe i nt er val _t ype specification in RespGradNum
and RespGradMixed)

e RealVector fdGradStepSize

vector of finite difference step sizes for numerical gradients, one step size per active continuous variable, used
in computing 1st-order forward or central differences (from the f d_gr adi ent _st ep_si ze specification in
RespGradNum and RespGradM ixed)

e RealVector fdHessStepSize

vector of finite difference step sizes for numerical Hessians, one step size per active continuous variable, used
in computing 1st-order gradient-based differences and 2nd-order function-based differences (from the fd_-
hessi an_st ep_si ze specification in RespHessNum and RespHessM ixed)

o IntList idNumericalGrads

mixed gradient numerical identifiers (from the i d_nuneri cal _gr adi ent s specification in RespGradM ixed)

o IntList idAnalyticGrads
mixed gradient analytic identifiers (from the i d_anal yti c_gr adi ent s specification in RespGradMixed)

e IntList idNumericalHessians

mixed Hessian numerical identifiers (from the i d_nuneri cal _hessi ans specification in RespHessM ixed)

e IntList idQuasiHessians

mixed Hessian quasi identifiers (from the i d_quasi _hessi ans specification in RespHessM ixed)

e IntList idAnalyticHessians

mixed Hessian analytic identifiers (from the i d_anal yt i c_hessi ans specification in RespHessM ixed)

e String idResponses

string identifier for the responses specification data set (from the i d_r esponses specification in RespSet| d)

e StringArray responselLabels

the response labels array (from the r esponse_descr i pt or s specification in RespL abels)

Private Member Functions

e void assign (const DataResponses &data_responses)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



180 DAKOTA Class Documentation

convenience function for setting this objects attributes equal to the attributes of the incoming data_responses object
(used by copy constructor and assignment operator)

10.27.1 Detailed Description

Container class for responses specification data.

The DataResponses class is used to contain the data from a responses keyword specification. It is populated by
ProblemDescDB::responses_kwhandler() and is queried by the ProblemDescDB::get_<datatype>() functions. A
list of DataResponses objects is maintained in ProblemDescDB::responsesList, one for each responses specifi-
cation in an input file. Default values are managed in the DataResponses constructor. Data is public to avoid
maintaining set/get functions, but is still encapsulated within ProblemDescDB since ProblemDescDB::responses-
List is private (a similar model is used with SurrogateDataPoint objects contained in Dakota:: Approximation).

The documentation for this class was generated from the following files:

e DataResponses.H
e DataResponses.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.28 DataStrategy Class Reference 181

10.28 DataStrategy Class Reference

Container class for strategy specification data.

Public Member Functions

e DataStrategy ()

constructor

e DataStrategy (const DataStrategy &)

copy constructor

e ~DataStrategy ()
destructor

e DataStrategy & operator= (const DataStrategy &)

assignment operator

e void write (ostream &s) const

write a DataStrategy object to an ostream

e void read (MPIUnpackBuffer &s)
read a DataStrategy object from a packed MPI buffer

e void write (MPIPackBuffer &s) const
write a DataStrategy object to a packed MPI buffer

Public Attributes

e String strategyType

the strategy selection: multi_level, surrogate_based_opt, branch_and_bound, multi_start, pareto_set, or single_-
method

e Dbool graphicsFlag
flags use of graphics by the strategy (from the graphics specification in StratlndControl)

e bool tabularDataFlag
flags tabular data collection by the strategy (from the tabular_graphics_data specification in StratlndControl)

e String tabularDataFile

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



182

DAKOTA Class Documentation

the filename used for tabular data collection by the strategy (from the tabular_graphics_file specification in Strat-
IndControl)

int iteratorServers

number of servers for concurrent iterator parallelism (from the iterator_servers specification in StratlndControl)

String iteratorScheduling

type of scheduling (self or static) used in concurrent iterator parallelism (from the iterator_self_scheduling and
iterator_static_scheduling specifications in StratlndControl)

String methodPointer

method identifier for the strategy (from the opt_method_pointer specifications in StratSBO and StratParetoSet
and method_pointer specifications in StratSingle and StratM ultiStart)

StringArray multilevelMethodList
array of methods for the multilevel hybrid optimization strategy (from the method_list specification in StratML)

String multilevel Type

the type of multilevel hybrid optimization strategy: uncoupled, uncoupled_adaptive, or coupled (from the uncou-
pled, adaptive, and coupled specifications in StratM L)

Real multilevelProgThresh

progress threshold for uncoupled_adaptive multilevel hybrids (from the progress_threshold specification in Strat-
ML)

String multilevelGlobalMethodPointer
global method pointer for coupled multilevel hybrids (from the global_method_pointer specification in StratML)

String multilevelLocalMethodPointer

local method pointer for coupled multilevel hybrids (from the local_method_pointer specification in StratML)

Real multilevel LSProb

local search probability for coupled multilevel hybrids (from the local_search_probability specification in Strat-
ML)

int surrBasedOptMaxIterations

maximum number of iterations in the surrogate-based optimization strategy (from the max_iterations specification
in StratSBO)

Real surrBasedOptConvTol

convergence tolerance in the surrogate-based optimization strategy (from the convergence_tolerance specification
in StratSBO)

int surrBasedOptSoftConvLimit

number of consecutive iterations with change less than surrBasedOptConvTol required to trigger convergence
within the surrogate-based optimization strategy (from the soft_convergence_limit specification in StratSBO)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.28 DataStrategy Class Reference 183

e Dbool surrBasedOptLayerBypass
flag to indicate user-specification of a bypass of any/all layerings in evaluating truth response values in SBO.

e Real surrBasedOptTRInitSize

initial trust region size in the surrogate-based optimization strategy (from the initial_size specification in Strat-
SBO) note: this is a relative value, e.g., 0.1 = 10% of global bounds distance (upper bound - lower bound) for each
variable

e Real surrBasedOptTRMinSize

minimum trust region size in the surrogate-based optimization strategy (from the minimum_size specification in
StratSBO), if the trust region size falls below this threshold the SBO iterations are terminated (note: if kriging is
used with SBO, the min trust region size is set to 1.0e-3 in attempt to avoid ill-conditioned matrixes that arise in
kriging over small trust regions)

e Real surrBasedOptTRContractTrigger

trust region minimum improvement level (ratio of actual to predicted decrease in objective fcn) in the surrogate-
based optimization strategy (from the contract _t hreshol d specification in StratSBO), the trust region
shrinks or is rejected if the ratio is below this value ("eta_1" in the Conn-Gould-Toint trust region book)

e Real surrBasedOptTRExpandTrigger

trust region sufficient improvement level (ratio of actual to predicted decrease in objective fn) in the surrogate-based
optimization strategy (from the expand_t hr eshol d specification in StratSBO), the trust region expands if the
ratio is above this value ("eta_2" in the Conn-Gould-Toint trust region book)

e Real surrBasedOptTRContract

trust region contraction factor in the surrogate-based optimization strategy (from the contraction_factor specifica-
tion in StratSBO)

o Real surrBasedOptTRExpand

trust region expansion factor in the surrogate-based optimization strategy (from the expansion_factor specification
in StratSBO)

e bool surrBasedOptTRConstraintRelax
flag to use trust region constraint relaxation for infeasible points

e int surrBasedOptTRConstraintRelaxMethod
trust region constraint relaxation method (currently implements: homotopy)

e int concurrentRandomJobs

number of random jobs to perform in the concurrent strategy (from the random_starts and random_weight_sets
specifications in StratMultiStart and StratPar etoSet)

e int concurrentSeed

seed for the selected random jobs within the concurrent strategy (from the seed specification in StratMultiStart
and StratParetoSet)

e RealVector concurrentParameterSets

user-specified (i.e., nonrandom) parameter sets to evaluate in the concurrent strategy (from the starting_points and
multi_objective_weight_sets specifications in StratM ultiStart and StratPar etoSet)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



184 DAKOTA Class Documentation

Private Member Functions

e void assign (const DataStrategy &data_strategy)

convenience function for setting this objects attributes equal to the attributes of the incoming data_strategy object
(used by copy constructor and assignment operator)

10.28.1 Detailed Description

Container class for strategy specification data.

The DataStrategy class is used to contain the data from a strategy keyword specification. It is populated by
ProblemDescDB::strategy_kwhandler() and is queried by the ProblemDescDB::get_<datatype>() functions. De-
fault values are managed in the DataStrategy constructor. Data is public to avoid maintaining set/get functions,
but is still encapsulated within ProblemDescDB since ProblemDescDB::strategySpec is private (a similar model
is used with SurrogateDataPoint objects contained in Dakota:: Approximation).

The documentation for this class was generated from the following files:

e DataStrategy.H
o DataStrategy.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.29 DataVariables Class Reference 185

10.29 DataVariables Class Reference

Container class for variables specification data.

Public Member Functions

e DataVariables ()

constructor

e DataVariables (const DataVariables &)
copy constructor

e ~DataVariables ()
destructor

e DataVariables & operator= (const DataVariables &)

assignment operator

e bool operator== (const DataVariables &)
equality operator

e void write (ostream &s) const
write a DataVariables object to an ostream

e void read (MPIUnpackBuffer &s)

read a DataVariables object from a packed MPI buffer

e void write (MPIPackBuffer &s) const
write a DataVariables object to a packed MPI buffer

e size_t design ()

return total number of design variables

e size_t uncertain ()

return total number of uncertain variables

e size_t state ()

return total number of state variables

e size_t num_continuous_variables ()

return total number of continuous variables

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



186 DAKOTA Class Documentation

e size_t num_discrete_variables ()

return total number of discrete variables

e size_t num_variables ()

return total number of variables

Public Attributes

e String idVariables
string identifier for the variables specification data set (from the i d_var i abl es specification in Var Setld)

e size t numContinuousDesVars

number of continuous design variables (from the cont i nuous_desi gn specification in VarDV)

e size t numDiscreteDesVars

number of discrete design variables (from the di scr et e_desi gn specification in VarDV)

e size_t numNormalUncVars

number of normal uncertain variables (from the nor mal _uncer t ai n specification in VarUV)

e size_t numLognormalUncVars

number of lognormal uncertain variables (from the | ognor mal _uncer t ai n specification in VarUV)

e size t numUniformUncVars

number of uniform uncertain variables (from the uni f or m_uncer t ai n specification in VarUV)

e size_t numLoguniformUncVars

number of loguniform uncertain variables (from the | oguni f or m_uncert ai n specification in VarUV)

e size_t numTriangularUncVars

number of triangular uncertain variables (from the t ri angul ar _uncert ai n specification in VarUV)

e size t numWeibullUncVars

number of weibull uncertain variables (from the wei bul | _uncer t ai n specification in VarUV)

e size t numBetaUncVars

number of beta uncertain variables (from the bet a_uncer t ai n specification in VarUV)

e size_t numGammaUncVars

number of gamma uncertain variables (from the ganma_uncer t ai n specification in Var UV)

e size t numFrechetUncVars
number of frechet uncertain variables (from the f r echet _uncert ai n specification in Var UV)

o size t numGumbelUncVars

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.29 DataVariables Class Reference 187

number of gumbel uncertain variables (from the gunbel _uncer t ai n specification in Var UV)

size_t numHistogramUncVars
number of histogram uncertain variables (from the hi st ogr am uncer t ai n specification in VarUV)

size_t numIntervalUncVars

number of interval uncertain variables (from the i nt er val _uncer t ai n specification in VarUV)

size_t numContinuousState Vars
number of continuous state variables (from the cont i nuous_st at e specification in Var SV)

size_t numDiscreteState Vars

number of discrete state variables (from the di scr et e_st at e specification in Var SV)

RealVector continuousDesignVars

initial values for the continuous design variables array (from the cdv_i ni ti al _poi nt specification in VarDV)

RealVector continuousDesignL.owerBnds
the continuous design lower bounds array (from the cdv_| ower _bounds specification in VarDV)

RealVector continuousDesignUpperBnds
the continuous design upper bounds array (from the cdv_upper _bounds specification in Var DV)

RealVector continuousDesignScales
the continuous design scales array (from the cdv_scal es specification in VarDV)

IntVector discreteDesignVars
initial values for the discrete design variables array (from the ddv_i ni ti al _poi nt specification in VarDV)

IntVector discreteDesignL.owerBnds
the discrete design lower bounds array (from the ddv_| ower _bounds specification in VarDV)

IntVector discreteDesignUpperBnds
the discrete design upper bounds array (from the ddv_upper _bounds specification in VarDV)

StringArray continuousDesignLabels

the continuous design labels array (from the cdv_descr i pt or s specification in VarDV)

StringArray discreteDesignLabels

the discrete design labels array (from the ddv_descr i pt or s specification in VarDV)

RealVector normalUncMeans
means of the normal uncertain variables (from the nuv_neans specification in VarUV)

Real Vector normalUncStdDevs

standard deviations of the normal uncertain variables (from the nuv_st d_devi at i ons specification in Var UV)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



188

DAKOTA Class Documentation

Real Vector normalUncLowerBnds

distribution lower bounds for the normal uncertain variables (from the nuv_| ower _bounds specification in
VarUV)

RealVector normalUncUpperBnds

distribution upper bounds for the normal uncertain variables (from the nuv_upper _bounds specification in
VarUV)

RealVector lognormalUncMeans

means of the lognormal uncertain variables (from the | nuv_rneans specification in VarUV)

RealVector lognormalUncStdDevs

standard deviations of the lognormal uncertain variables (from the | nuv_st d_devi at i ons specification in
VarUV)

RealVector lognormalUncErrFacts

error factors for the lognormal uncertain variables (from the | nuv_err or _f act or s specification in VarUV)

RealVector lognormalUncLowerBnds

distribution lower bounds for the lognormal uncertain variables (from the | nuv_| ower _bounds specification
in VaruvV)

RealVector lognormalUncUpperBnds

distribution upper bounds for the lognormal uncertain variables (from the | nuv_upper _bounds specification
in VaruvV)

RealVector uniformUncLowerBnds

distribution lower bounds for the uniform uncertain variables (from the uuv_| ower _bounds specification in
VarUV)

RealVector uniformUncUpperBnds

distribution upper bounds for the uniform uncertain variables (from the uuv_upper _bounds specification in
VarUV)

RealVector loguniformUncLowerBnds

distribution lower bounds for the loguniform uncertain variables (from the | uuv_I| ower _bounds specification
in VaruUvV)

RealVector loguniformUncUpperBnds

distribution upper bounds for the loguniform uncertain variables (from the | uuv_upper _bounds specification
in VaruUvV)

RealVector triangularUncModes
modes of the triangular uncertain variables (from the t uv_nodes specification in VarUV)

RealVector triangularUncLowerBnds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.29 DataVariables Class Reference 189

distribution lower bounds for the triangular uncertain variables (from the t uv_I| ower _bounds specification in
VarUV)

RealVector triangularUncUpperBnds

distribution upper bounds for the triangular uncertain variables (from the t uv_upper _bounds specification in
VarUV)

RealVector betaUncAlphas
alpha factors for the beta uncertain variables (from the buv_means specification in Var UV)

RealVector betaUncBetas
beta factors for the beta uncertain variables (from the buv_st d_devi at i ons specification in VarUV)

Real Vector betaUncLowerBnds

distribution lower bounds for the beta uncertain variables (from the buv_| ower _bounds specification in Var-
uv)

RealVector betaUncUpperBnds

distribution upper bounds for the beta uncertain variables (from the buv_upper _bounds specification in Var-
uv)

RealVector gammaUncAlphas

alpha factors for the gamma uncertain variables (from the gauv_al phas specification in VarUV)

RealVector gammaUncBetas

beta factors for the gamma uncertain variables (from the gauv_bet as specification in Var UV)

RealVector gumbelUncAlphas
alpha factors for the gumbel uncertain variables (from the guuv_al phas specification in Var UV)

RealVector gumbelUncBetas
beta factors for of the gumbel uncertain variables (from the guuv_bet as specification in Var UV)

RealVector frechetUncAlphas

alpha factors for the frechet uncertain variables (from the f uv_al phas specification in VarUV)

RealVector frechetUncBetas
beta factors for the frechet uncertain variables (from the f uv_bet as specification in Var UV)

RealVector weibullUncAlphas
alpha factors for the weibull uncertain variables (from the wuv_al phas specification in VarUV)

Real Vector weibullUncBetas

beta factors for the weibull uncertain variables (from the wuv_bet as specification in Var UV)

RealVectorArray histogramUncBinPairs

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



190

DAKOTA Class Documentation

an array containing a vector of (x,y) pairs for each bin-based histogram uncertain variable (see continuous linear
histogram in LHS manual; from the huv_num _bi n_pai r s and huv_bi n_pai r s specifications in VarUV)

RealVectorArray histogramUncPointPairs

an array containing a vector of (x,y) pairs for each point-based histogram uncertain variable (see discrete his-
togram in LHS manual; from the huv_num _poi nt _pai r s and huv_poi nt _pai r s specifications in Var UV)

IntVector intervalUncNumlntervals

number of intervals per interval uncertain variables (from the i uv_num_i nt er val s specification in VarUV)

RealVector intervalUncProbValues
Probability values per interval uncertain variables (from the i uv_i nt er val _pr obs specification in Var UV).

RealVector intervalUncIntervalBounds
Interval Bounds per interval uncertain variables (from the i uv_i nt er val _bounds specification in VarUV).

RealMatrix uncertainCorrelations

correlation matrix for all uncertain variables (from the uncertai n_correl ati on_mat ri x specification in
VarUV). This matrix specifies rank correlations for sampling methods (i.e., LHS) and correlation coefficients (rho_-
ij = normalized covariance matrix) for analytic reliability methods.

RealVector uncertainVars
array of values for all uncertain variables (built and initialized in ProblemDescDB::variables_kwhandler())

Real Vector uncertainLowerBnds

distribution lower bounds for all uncertain variables (collected from nuv_I| ower _bounds, | nuv_I ower _-
bounds, uuv_| ower _bounds, |uuv_| ower_bounds, tuv_Il ower_bounds, and buv_| ower_-
bounds specifications in VarUV, and derived for gamma, gumbel, frechet, weibull and histogram specifications)

RealVector uncertainUpperBnds

distribution upper bounds for all uncertain variables (collected from nuv_upper _bounds, | nuv_upper _-
bounds, uuv_upper _bounds, | uuv_upper_bounds, tuv_I| ower_bounds, and buv_upper_-
bounds specifications in VarUV, and derived for gamma, gumbel, frechet, weibull and histogram specifications)

StringArray uncertainLabels

labels for all uncertain variables (collected from nuv_descriptors, | nuv_descriptors, uuv_-
descriptors, luuv_descriptors, tuv_descriptors, buv_descriptors, gauv_-
descriptors, gquuv_descriptors, fuv_descriptors, wiv_descriptors, and huv_-
descri pt or s specifications in Var UV)

RealVector continuousStateVars
initial values for the continuous state variables array (from the csv_i ni ti al _st at e specification in Var SV)

RealVector continuousStateLowerBnds
the continuous state lower bounds array (from the csv_I| ower _bounds specification in Var SV)

RealVector continuousStateUpperBnds
the continuous state upper bounds array (from the csv_upper _bounds specification in Var SV)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.29 DataVariables Class Reference 191

e IntVector discreteStateVars

initial values for the discrete state variables array (from the dsv_i ni ti al _st at e specification in Var SV)

e IntVector discreteStateLowerBnds
the discrete state lower bounds array (from the dsv_I| ower _bounds specification in Var SV)

o IntVector discreteStateUpperBnds
the discrete state upper bounds array (from the dsv_upper _bounds specification in Var SV)

e StringArray continuousStateLabels

the continuous state labels array (from the csv_descr i pt or s specification in Var SV)

e StringArray discreteStateLabels
the discrete state labels array (from the dsv_descr i pt or s specification in Var SV)

Private Member Functions

e void assign (const DataVariables &data_variables)

convenience function for setting this objects attributes equal to the attributes of the incoming data_variables object
(used by copy constructor and assignment operator)

10.29.1 Detailed Description

Container class for variables specification data.

The DataVariables class is used to contain the data from a variables keyword specification. It is populated by
ProblemDescDB::variables_kwhandler() and is queried by the ProblemDescDB::get_<datatype>() functions. A
list of DataVariables objects is maintained in ProblemDescDB::variablesList, one for each variables specification
in an input file. Default values are managed in the DataVariables constructor. Data is public to avoid maintaining
set/get functions, but is still encapsulated within ProblemDescDB since ProblemDescDB::variablesList is private
(a similar model is used with SurrogateDataPoint objects contained in Dakota:: Approximation).

The documentation for this class was generated from the following files:

e DataVariables.H
e DataVariables.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



192 DAKOTA Class Documentation

10.30 DDACEDesignCompExp Class Reference

Wrapper class for the DDACE design of experiments library.
Inheritance diagram for DDACEDesignCompExp::

| Iterator |

T

| Analyzer |

T

| PStudyDACE |

| DDA CEDesignCompEXxp |

Public Member Functions

o DDACEDesignCompExp (Model &model)

primary constructor for building a standard DACE iterator

o ~DDACEDesignCompExp ()

destructor

e void extract_trends ()

Redefines the run_iterator virtual function for the PStudy/DACE branch.

e void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

reset sampling iterator

e const String & sampling_scheme () const

return sampling name

e void vary_pattern (bool pattern_flag)

sets varyPattern in derived classes that support it

e void get_parameter_sets ()

Returns one block of samples (ndim x num_samples).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.30 DDACEDesignCompExp Class Reference 193

Private Member Functions

e void compute_main_effects ()
builds a DDaceMainEffects::OneWayANOVA if mainEffectsFlag is set

e void resolve_samples_symbols ()

convenience function for resolving number of samples and number of symbols from input.

Private Attributes

e String daceMethod

oas, lhs, oa_lhs, random, box_behnken, central_composite, or grid

e int samplesSpec

user specification of number of samples

e int numSamples

number of samples to be evaluated

e int numSymbols

number of symbols to be used in generating the sample set (inversely related to number of replications)

e const int originalSeed

the user seed specification for the random number generator (allows repeatable results)

e int randomSeed

current seed for the random number generator

e bool allDataFlag

flag which triggers the update of allVars/allResponses for wuse by Iterator::all_variables() and
Iterator::all_responses()

o size_t numDACERuns

counter for number of run() executions for this object

e Dbool varyPattern

flag for continuing the random number sequence from a previous run() execution (e.g., for surrogate-based opti-
mization) so that multiple executions are repeatable but not correlated.

e Dbool volQualityFlag

flag which specifies evaluating the volumetric quality measures

e Dbool varBasedDecompFlag
flag which specifies variance based decomposition

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



194 DAKOTA Class Documentation

e Dbool mainEffectsFlag
flag which specifies main effects

e std::vector< std::vector< int > > symbolMapping
mapping of symbols for main effects calculations

10.30.1 Detailed Description

Wrapper class for the DDACE design of experiments library.

The DDACEDesignCompExp class provides a wrapper for DDACE, a C++ design of experiments library from
the Computational Sciences and Mathematics Research (CSMR) department at Sandia’s Livermore CA site. This
class uses design and analysis of computer experiments (DACE) methods to sample the design space spanned by
the bounds of a Model. It returns all generated samples and their corresponding responses as well as the best
sample found.

10.30.2 Constructor & Destructor Documentation

10.30.2.1 DDACEDesignCompExp (Model & model)

primary constructor for building a standard DACE iterator

This constructor is called for a standard iterator built with data from probDescDB.

10.30.3 Member Function Documentation

10.30.3.1 void resolve_samples_symbols () [ pri vat e]

convenience function for resolving number of samples and number of symbols from input.

This function must define a combination of samples and symbols that is acceptable for a particular sampling
algorithm. Users provide requests for these quantities, but this function must enforce any restrictions imposed by
the sampling algorithms.

The documentation for this class was generated from the following files:

o DDACEDesignCompExp.H
o DDACEDesignCompExp.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.31 DirectFnAppliclnterface Class Reference 195

10.31 DirectFnAppliclnterface Class Reference

Derived application interface class which spawns simulation codes and testers using direct procedure calls.

Inheritance diagram for DirectFnApplicInterface::

| Interface |

T

| Applicationlnterface |

T

| DirectFnAppliclnterface |

T

| DirectFnAppliclnterface |

Public Member Functions

e DirectFnApplicInterface (const ProblemDescDB &problem_db)
constructor

e ~DirectFnAppliclnterface ()
destructor

e void derived_map (const Variables &vars, const ActiveSet &set, Response &response, int fn_eval_id)

Called by map() and other functions to execute the simulation in synchronous mode. The portion of performing an
evaluation that is specific to a derived class.

e void derived_map_asynch (const ParamResponsePair &pair)

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of performing
an asynchronous evaluation that is specific to a derived class.

e void derived_synch (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their results.
It provides the processing code that is specific to derived classes. This version waits for at least one completion.

e void derived_synch_nowait (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their results. It
provides the processing code that is specific to derived classes. This version is nonblocking and will return without
any completions if none are immediately available.

int derived_synchronous_local_analysis (const int &analysis_id)

const StringArray & analysis_drivers () const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



196

DAKOTA Class Documentation

retrieve the analysis drivers specification for application interfaces

Protected Member Functions

virtual int derived_map_if (const String &if_name)

execute the input filter portion of a direct evaluation invocation

virtual int derived_map_ac (const String &ac_name)

execute an analysis code portion of a direct evaluation invocation

virtual int derived_map_of (const String &of_name)

execute the output filter portion of a direct evaluation invocation

void set_local_data (const Variables &vars, const ActiveSet &set, const Response &response)

convenience function for local test simulators which sets variable attributes and zeros response data

void overlay_response (Response &response)

convenience function for local test simulators which overlays response contributions from multiple analyses using

MPI_Reduce

Protected Attributes

String iFilterName
name of the direct function input filter

String oFilterName

name of the direct function output filter

bool gradFlag

signals use of fnGrads in direct simulator functions

bool hessFlag

signals use of fnHessians in direct simulator functions

size_t numFns

number of functions in fnVals

size_t numVars

total number of continuous and discrete variables

size_t numACV
total number of continuous variables

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.31 DirectFnAppliclnterface Class Reference 197

e size t numADV

total number of discete variables

e size t numDerivVars
number of active derivative variables

e RealVector xC

continuous variables used within direct simulator fns

e IntVector xD
discrete variables used within direct simulator fns

e StringArray xCLabels
continuous variable labels

e StringArray xDLabels
discrete variable labels

e IntArray directFnASV

class scope active set vector

e IntArray directFnDVV

class scope derivative variables vector

e RealVector fnVals
response fn values within direct simulator fns

o RealMatrix fnGrads

response fn gradients w/i direct simulator fns

e RealMatrixArray fnHessians

response fn Hessians w/i direct simulator fns

e StringArray fnLabels
response function labels

e StringArray analysisDrivers
the set of analyses within each function evaluation (from the analysis_drivers interface specification)

e size_t analysisDriverIndex
the index of the active analysis driver within analysisDrivers

o String2DArray analysisComponents

the set of optional analysis components used by the analysis drivers (from the analysis_components interface spec-
ification)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



198 DAKOTA Class Documentation

e engine * matlabEngine

pointer to the MATLAB engine used for direct evaluations

Private Member Functions

e int cantilever ()
the cantilever UQ/OUU test function

e intcyl_head ()

the cylinder head constrained optimization test fn

e int rosenbrock ()

the rosenbrock optimization and least squares test fn

e int text_book ()

the text_book constrained optimization test function

e int text_bookl ()
portion of text_book() evaluating the objective fn

e int text_book?2 ()

portion of text_book() evaluating constraint 1

e int text_book3 ()
portion of text_book() evaluating constraint 2

e int text_book_ouu ()

the text_book_ouu OUU test function

e int log_ratio ()

the log_ratio UQ test function

e int short_column ()

the short_column UQ/OUU test function

e int salinas ()

direct interface to the SALINAS structural dynamics code

e int mc_api_run ()
direct interface to ModelCenter via API, HKIM 4/3/03

e int matlab_engine_run ()
direct interface to Matlab via API, BMA 11/28/05

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.31 DirectFnAppliclnterface Class Reference 199

10.31.1 Detailed Description

Derived application interface class which spawns simulation codes and testers using direct procedure calls.

DirectFnApplicInterface uses a few linkable simulation codes and several internal member functions to perform
parameter to response mappings.

10.31.2 Member Function Documentation

10.31.2.1 int derived_synchronous_local_analysis (const int & analysis_id) [inline, virtual]

This code provides the derived function used by ApplicationInterface::serve_analyses_synch().

Reimplemented from ApplicationInterface.

10.31.2.2 int derived_map_ac (const String & ac_name) [ protected, virtual]

execute an analysis code portion of a direct evaluation invocation

When a direct analysis/filter is a member function, the (vars,set,response) data does not need to be passed through
the API. If, however, non-member analysis/filter functions are added, then pass (vars,set,response) through to the
non-member fns:

/1 APl declaration
int sin(const Variables& vars, const ActiveSet& set, Response& response);
/1 use of APl within derived_nap_ac()
if (ac_name == "sint)
fail _code = sim(directFnVars, directFnActSet, directFnResponse);

The documentation for this class was generated from the following files:

e DirectFnApplicInterface.H
o DirectFnAppliclnterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



200 DAKOTA Class Documentation

10.32 DirectFnAppliclnterface Class Reference

Sample derived interface class for testing plug-ins using assign_rep().

Inheritance diagram for DirectFnApplicInterface::

| Interface |

T

| Applicationlnterface |

| DirectFnAppliclnterface |

| DirectFnAppliclnterface |

Public Member Functions

e DirectFnApplicInterface (const Dakota::ProblemDescDB &problem_db)

constructor

e ~DirectFnAppliclnterface ()

destructor

Protected Member Functions

e int derived_map_ac (const Dakota::String &ac_name)

execute an analysis code portion of a direct evaluation invocation

10.32.1 Detailed Description

Sample derived interface class for testing plug-ins using assign_rep().

The plug-in DirectFnApplicInterface resides in namespace SIM and uses a copy of rosenbrock() to perform pa-
rameter to response mappings. It may be activated by uncommenting the LIBRARY_MODE_DEBUG define in
main.C (which activates the plug-in code block within that file) and uncommenting the PLUGIN_S/PLUGIN_O
declarations at the top of the Dakota/src Makefile (which add this class to the build). Test input files should then
use an analysis_driver of "plugin_rosenbrock".

The documentation for this class was generated from the following files:

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.32 DirectFnAppliclnterface Class Reference 201

e PluginDirectFnApplicInterface.H
e PluginDirectFnApplicInterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



202

DAKOTA Class Documentation

10.33 DistinctConstraints Class Reference

Derived class within the Constraints hierarchy which employs the default data view (no variable or domain type
array merging).

Inheritance diagram for DistinctConstraints::

| Constraints || VariablesUtil |

t i
l

| DistinctConstraints |

Public Member Functions

DistinctConstraints ()
default constructor

DistinctConstraints (const ProblemDescDB &problem_db, const pair< short, short > &view)
standard constructor

~DistinctConstraints ()

destructor

const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

void continuous_lower_bounds (const RealVector &c_1_bnds)

set the active continuous variable lower bounds

const RealVector & continuous_upper_bounds () const
return the active continuous variable upper bounds

void continuous_upper_bounds (const Real Vector &c_u_bnds)

set the active continuous variable upper bounds

const IntVector & discrete_lower_bounds () const
return the active discrete variable lower bounds

void discrete_lower_bounds (const IntVector &d_1_bnds)

set the active discrete variable lower bounds

const IntVector & discrete_upper_bounds () const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.33 DistinctConstraints Class Reference 203

return the active discrete variable upper bounds

e void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds

e const RealVector & inactive_continuous_lower_bounds () const
return the inactive continuous lower bounds

e void inactive_continuous_lower_bounds (const RealVector &i_c_1_bnds)

set the inactive continuous lower bounds

e const RealVector & inactive_continuous_upper_bounds () const

return the inactive continuous upper bounds

e void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)
set the inactive continuous upper bounds

e const IntVector & inactive_discrete_lower_bounds () const
return the inactive discrete lower bounds

e void inactive_discrete_lower_bounds (const IntVector &i_d_I_bnds)
set the inactive discrete lower bounds

e const IntVector & inactive_discrete_upper_bounds () const

return the inactive discrete upper bounds

e void inactive_discrete_upper_bounds (const IntVector &i_d_u_bnds)
set the inactive discrete upper bounds

e RealVector all_continuous_lower_bounds () const
returns a single array with all continuous lower bounds

e RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

e IntVector all_discrete_lower_bounds () const

returns a single array with all discrete lower bounds

e IntVector all_discrete_upper_bounds () const
returns a single array with all discrete upper bounds

e void write (ostream &s) const
write a variable constraints object to an ostream

e void read (istream &s)
read a variable constraints object from an istream

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



204 DAKOTA Class Documentation

Private Attributes

e RealVector continuousDesignLowerBnds

the continuous design lower bounds array

e RealVector continuousDesignUpperBnds

the continuous design upper bounds array

e IntVector discreteDesignL.owerBnds

the discrete design lower bounds array

e IntVector discreteDesignUpperBnds

the discrete design upper bounds array

e RealVector uncertainLowerBnds

the uncertain distribution lower bounds array

e RealVector uncertainUpperBnds

the uncertain distribution upper bounds array

e RealVector continuousStateLowerBnds

the continuous state lower bounds array

e RealVector continuousStateUpperBnds

the continuous state upper bounds array

e IntVector discreteStateLowerBnds

the discrete state lower bounds array

e IntVector discreteStateUpperBnds

the discrete state upper bounds array

10.33.1 Detailed Description

Derived class within the Constraints hierarchy which employs the default data view (no variable or domain type
array merging).

Derived variable constraints classes take different views of the design, uncertain, and state variable types and the
continuous and discrete domain types. The DistinctConstraints derived class separates the design, uncertain, and
state variable types as well as the continuous and discrete domain types. The result is separate lower and upper
bounds arrays for continuous design, discrete design, uncertain, continuous state, and discrete state variables.
This is the default approach, so all iterators and strategies not specifically utilizing the All or Merged views use
this approach (see Variables::get_variables(problem_db) for variables type selection; variables type is passed to
the Constraints constructor in Model).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.33 DistinctConstraints Class Reference 205

10.33.2 Constructor & Destructor Documentation

10.33.2.1 DistinctConstraints (const ProblemDescDB & problem_db, const pair< short, short > & view)

standard constructor

In this class, the distinct approach (design, uncertain, and state types are distinct) is used. Most iterators/strategies
use this approach, which is the default in Constraints::get_constraints(). Extract distinct lower and upper bounds
(VariablesUtil is not used).

The documentation for this class was generated from the following files:

e DistinctConstraints.H
e DistinctConstraints.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



206 DAKOTA Class Documentation

10.34 DistinctVariables Class Reference

Derived class within the Variables hierarchy which employs the default data view (no variable or domain type
array merging).

Inheritance diagram for DistinctVariables::

| Variables || VariablesUtil |

t i
l

| DistinctVariabIes|

Public Member Functions

e DistinctVariables ()
default constructor

DistinctVariables (const ProblemDescDB &problem_db, const pair< short, short > &view)
standard constructor

e ~DistinctVariables ()
destructor

e size_t tv () const
Returns total number of vars.

e const RealVector & continuous_variables () const

return the active continuous variables

e void continuous_variables (const Real Vector &c_vars)
set the active continuous variables

e const IntVector & discrete_variables () const

return the active discrete variables

e void discrete_variables (const IntVector &d_vars)
set the active discrete variables

e const StringArray & continuous_variable_labels () const

return the active continuous variable labels

e void continuous_variable_labels (const StringArray &c_v_labels)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.34 DistinctVariables Class Reference 207

set the active continuous variable labels

e const StringArray & discrete_variable_labels () const
return the active discrete variable labels

e void discrete_variable_labels (const StringArray &d_v_labels)
set the active discrete variable labels

e const RealVector & inactive_continuous_variables () const
return the inactive continuous variables

e void inactive_continuous_variables (const RealVector &i_c_vars)

set the inactive continuous variables

e const IntVector & inactive_discrete_variables () const

return the inactive discrete variables

e void inactive_discrete_variables (const IntVector &i_d_ vars)
set the inactive discrete variables

e const StringArray & inactive_continuous_variable_labels () const
return the inactive continuous variable labels

e void inactive_continuous_variable_labels (const StringArray &i_c_v_labels)
set the inactive continuous variable labels

e const StringArray & inactive_discrete_variable_labels () const
return the inactive discrete variable labels

e void inactive_discrete_variable_labels (const StringArray &i_d_v_labels)
set the inactive discrete variable labels

e size_t acv () const

returns total number of continuous vars

e size_t adv () const

returns total number of discrete vars

e RealVector all_continuous_variables () const

returns a single array with all continuous variables

e void all_continuous_variables (const RealVector &a_c_vars)
sets all continuous variables using a single array

e IntVector all_discrete_variables () const

returns a single array with all discrete variables

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



208 DAKOTA Class Documentation

e void all_discrete_variables (const IntVector &a_d_vars)

sets all discrete variables using a single array

e StringArray all_continuous_variable_labels () const

returns a single array with all continuous variable labels

e StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

e StringArray all_variable_labels () const

returns a single array with all variable labels

e void read (istream &s)

read a variables object from an istream

e void write (ostream &s) const

write a variables object to an ostream

e void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

e void read_annotated (istream &s)

read a variables object in annotated format from an istream

e void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

e void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

e void read (BiStream &s)

read a variables object from the binary restart stream

e void write (BoStream &s) const

write a variables object to the binary restart stream

e void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

e void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.34 DistinctVariables Class Reference 209

Private Member Functions

e void copy_rep (const Variables *vars_rep)

Used by copy() to copy the contents of a letter class.

Private Attributes

e RealVector continuousDesignVars

the continuous design variables array

e IntVector discreteDesignVars

the discrete design variables array

e RealVector uncertainVars

the uncertain variables array

e RealVector continuousState Vars

the continuous state variables array

e IntVector discreteStateVars

the discrete state variables array

e StringArray continuousDesignLabels

the continuous design variables label array

e StringArray discreteDesignLabels

the discrete design variables label array

e StringArray uncertainLabels

the uncertain variables label array

e StringArray continuousStateLabels

the continuous state variables label array

e StringArray discreteStateLabels
the discrete state variables label array

Friends

e bool operator== (const DistinctVariables &vars1, const DistinctVariables &vars2)

equality operator

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



210 DAKOTA Class Documentation

10.34.1 Detailed Description

Derived class within the Variables hierarchy which employs the default data view (no variable or domain type
array merging).

Derived variables classes take different views of the design, uncertain, and state variable types and the continuous
and discrete domain types. The DistinctVariables derived class separates the design, uncertain, and state variable
types as well as the continuous and discrete domain types. The result is separate arrays for continuous design,
discrete design, uncertain, continuous state, and discrete state variables. This is the default approach, so all
iterators and strategies not specifically utilizing the All or Merged views use this approach (see Variables::get_-
variables(problem_db)).

10.34.2 Constructor & Destructor Documentation

10.34.2.1 DistinctVariables (const ProblemDescDB & problem_db, const pair< short, short > & view)

standard constructor

In this class, the distinct approach is used (design, uncertain, and state variable types and continuous and discrete
domain types are distinct). Most iterators/strategies use this approach. Extract distinct variable types and labels
(VariablesUtil is not used).

10.34.3 Friends And Related Function Documentation

10.34.3.1 bool operator== (const DistinctVariables & varsl, const DistinctVariables & vars2)
[friend]

equality operator

Checks each array using operator== from data_types.C. Labels are ignored.

The documentation for this class was generated from the following files:

e DistinctVariables.H
e DistinctVariables.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.35 DOTOptimizer Class Reference 211

10.35 DOTOptimizer Class Reference

Wrapper class for the DOT optimization library.

Inheritance diagram for DOTOptimizer::

Minimizer

DOTOptimizer

Public Member Functions

e DOTOptimizer (Model &model)
constructor

e ~DOTOptimizer ()
destructor

e void find_optimum ()

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual function
for the optimizer branch.

Protected Member Functions

e virtual void derived_pre_run ()

performs run-time set up

e virtual void derived_post_run ()

performs final solution processing

Private Member Functions

e void allocate_workspace ()

Allocates workspace for the optimizer.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



212 DAKOTA Class Documentation

e void allocate_constraints ()

Allocates constraint mappings.

Private Attributes

e int dotInfo
INFO from DOT manual.

e int dotFDSinfo
internal DOT parameter NGOTOZ

e int dotMethod
METHOD from DOT manual.

e int printControl
IPRINT from DOT manual (controls output verbosity).

e int optimizationType

MINMAX from DOT manual (minimize or maximize).

e RealArray realCntlParmArray
RPRM from DOT manual.

o IntArray intCntlParmArray
IPRM from DOT manual.

RealVector designVars
array of design variable values passed to DOT

Real objFnValue
value of the objective function passed to DOT

RealVector constraintValues
array of nonlinear constraint values passed to DOT

int realWorkSpaceSize
size of realWorkSpace

int intWorkSpaceSize
size of intWorkSpace

RealArray realWorkSpace
real work space for DOT

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.35 DOTOptimizer Class Reference 213

e IntArray intWorkSpace

int work space for DOT

o SizetList constraintMappingIndices

a list of indices for referencing the corresponding Response constraints used in computing the DOT constraints.

e RealList constraintMappingMultipliers

a list of multipliers for mapping the Response constraints to the DOT constraints.

e RealList constraintMappingOffsets

a list of offsets for mapping the Response constraints to the DOT constraints.

10.35.1 Detailed Description

Wrapper class for the DOT optimization library.

The DOTOptimizer class provides a wrapper for DOT, a commercial Fortran 77 optimization library from Van-
derplaats Research and Development. It uses a reverse communication mode, which avoids the static member
function issues that arise with function pointer designs (see NPSOLOptimizer and SNLLOptimizer).

The user input mappings are as follows: max_i t er at i ons is mapped into DOT’s | TMAX parameter within its
| PRMarray, max_f uncti on_eval uat i ons is implemented directly in the find_optimum() loop since there is
no DOT parameter equivalent, conver gence_t ol er ance is mapped into DOT’s DELOBJ parameter (the rel-
ative convergence tolerance) within its RPRMarray, out put verbosity is mapped into DOT’s | PRI NT parameter
within its function call parameter list (verbose: | PRI NT = 7; quiet: | PRI NT =3), and opt i ni zati on_t ype
is mapped into DOT’s M NMAX parameter within its function call parameter list. Refer to [Vanderplaats Research
and Development, 1995] for information on | PRM RPRM and the DOT function call parameter list.

10.35.2 Member Data Documentation

10.35.2.1 intdotinfo [ private]

INFO from DOT manual.

Information requested by DOT: O=optimization complete, 1=get values, 2=get gradients

10.35.2.2 int dotFDSinfo [ pri vat e]

internal DOT parameter NGOTOZ

the DOT parameter list has been modified to pass NGOTOZ, which signals whether DOT is finite-differencing
(nonzero value) or performing the line search (zero value).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



214 DAKOTA Class Documentation

10.35.2.3 int dotMethod [ pri vat €]

METHOD from DOT manual.

For nonlinear constraints: 0/1 = dot_mmfd, 2 = dot_slp, 3 = dot_sqp. For unconstrained: 0/1 = dot_bfgs, 2 =
dot_freg.

10.35.2.4 int printControl [ pri vat e]

IPRINT from DOT manual (controls output verbosity).
Values range from 0 (least output) to 7 (most output).
10.35.2.5 int optimizationType [ pri vate]
MINMAX from DOT manual (minimize or maximize).
Values of 0 or -1 (minimize) or 1 (maximize).

10.35.2.6 RealArray realCntlParmArray [ pri vate]
RPRM from DOT manual.

Array of real control parameters.

10.35.2.7 IntArray intCntlIParmArray [ pri vate]
IPRM from DOT manual.

Array of integer control parameters.

10.35.2.8 RealVector constraintValues [ pri vat e]

array of nonlinear constraint values passed to DOT

This array must be of nonzero length and must contain only one-sided inequality constraints which are <= 0
(which requires a transformation from 2-sided inequalities and equalities).

10.35.2.9 SizetList constraintMappinglIndices [ pri vat e]

a list of indices for referencing the corresponding Response constraints used in computing the DOT constraints.

The length of the list corresponds to the number of DOT constraints, and each entry in the list points to the
corresponding DAKOTA constraint.

10.35.2.10 RealList constraintMappingMultipliers [ pri vat €]

a list of multipliers for mapping the Response constraints to the DOT constraints.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.35 DOTOptimizer Class Reference 215

The length of the list corresponds to the number of DOT constraints, and each entry in the list contains a multiplier
for the DAKOTA constraint identified with constraintMappingIndices. These multipliers are currently +1 or -1.

10.35.2.11 RealList constraintMappingOffsets [ pri vat e]

a list of offsets for mapping the Response constraints to the DOT constraints.

The length of the list corresponds to the number of DOT constraints, and each entry in the list contains an offset
for the DAKOTA constraint identified with constraintMappingIndices. These offsets involve inequality bounds or
equality targets, since DOT assumes constraint allowables = 0.

The documentation for this class was generated from the following files:

e DOTOptimizer.H
o DOTOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



216

DAKOTA Class Documentation

10.36 ErrorTable Struct Reference

Data structure to hold errors.

Public Attributes

o (telRegexp::RStatus rc
Enumerated type to hold status codes.

e const char * msg

Holds character string error message.

10.36.1 Detailed Description

Data structure to hold errors.

This module implements a C++ wrapper for Regular Expressions based on the public domain engine for regular
expressions released by: Copyright (c) 1986 by University of Toronto. Written by Henry Spencer. Not derived

from licensed software.

The documentation for this struct was generated from the following file:

e CtelRegExp.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.37 ForkAnalysisCode Class Reference 217

10.37 ForkAnalysisCode Class Reference

Derived class in the AnalysisCode class hierarchy which spawns simulations using forks.

Inheritance diagram for ForkAnalysisCode::

AnalysisCode

ForkAnalysisCode

Public Member Functions

e ForkAnalysisCode (const ProblemDescDB &problem_db)

constructor

e ~ForkAnalysisCode ()

destructor

e pid_t fork_program (const bool block_flag)
spawn a child process using fork()/vfork()/execvp() and wait for completion using waitpid() if block_flag is true

void check_status (const int status)

check the exit status of a forked process and abort if an error code was returned

void ifilter_argument_list ()

set argL.ist for execution of the input filter

void ofilter_argument_list ()

set argList for execution of the output filter

void driver_argument_list (const int analysis_id)

set argL.ist for execution of the specified analysis driver

Private Attributes

e StringArray argList

an array of strings for use with execvp(const char x, char x const «). These are converted to an array of const
charx’s in fork_program().

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



218 DAKOTA Class Documentation

10.37.1 Detailed Description

Derived class in the AnalysisCode class hierarchy which spawns simulations using forks.

ForkAnalysisCode creates a copy of the parent DAKOTA process using fork()/vfork() and then replaces the copy
with a simulation process using execvp(). The parent process can then use waitpid() to wait on completion of the
simulation process.

10.37.2 Member Function Documentation

10.37.2.1 void check_status (const int status)

check the exit status of a forked process and abort if an error code was returned

Check to see if the process terminated abnormally (WIFEXITED(status)==0) or if either execvp or the application
returned a status code of -1 (WIFEXITED(status)!=0 && (signed char) WEXITSTATUS(status)==-1). If one of
these conditions is detected, output a failure message and abort. Note: the application code should not return a
status code of -1 unless an immediate abort of dakota is wanted. If for instance, failure capturing is to be used, the
application code should write the word "FAIL" to the appropriate results file and return a status code of 0 through
exit().

The documentation for this class was generated from the following files:

e ForkAnalysisCode. H
e ForkAnalysisCode.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.38 ForkAppliclnterface Class Reference 219

10.38 ForkAppliclnterface Class Reference

Derived application interface class which spawns simulation codes using forks.

Inheritance diagram for ForkApplicInterface::

| Interface |

T

| ApplicationInterface |

T

| ForkAppliclnterface |

Public Member Functions

o ForkApplicInterface (const ProblemDescDB &problem_db)
constructor

e ~ForkAppliclnterface ()
destructor

e void derived_map (const Variables &vars, const ActiveSet &set, Response &response, int fn_eval_id)

Called by map() and other functions to execute the simulation in synchronous mode. The portion of performing an
evaluation that is specific to a derived class.

e void derived_map_asynch (const ParamResponsePair &pair)

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of performing
an asynchronous evaluation that is specific to a derived class.

e void derived_synch (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their results.
It provides the processing code that is specific to derived classes. This version waits for at least one completion.

e void derived_synch_nowait (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their results. It
provides the processing code that is specific to derived classes. This version is nonblocking and will return without
any completions if none are immediately available.

int derived_synchronous_local_analysis (const int &analysis_id)
const StringArray & analysis_drivers () const

retrieve the analysis drivers specification for application interfaces

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



220 DAKOTA Class Documentation

Private Member Functions

e void derived_synch_kernel (PRPList &prp_list, const pid_t pid)

Convenience function for common code between derived_synch() & derived_synch_nowait().

pid_t fork_application (const bool block_flag)

perform the complete function evaluation by managing the input filter, analysis programs, and output filter

void asynchronous_local_analyses (const int &start, const int &end, const int &step)

execute analyses asynchronously on the local processor

void synchronous_local_analyses (const int &start, const int &end, const int &step)

execute analyses synchronously on the local processor

void serve_analyses_asynch ()

serve the analysis scheduler and execute analysis jobs asynchronously

Private Attributes

o ForkAnalysisCode forkSimulator

ForkAnalysisCode provides convenience functions for forking individual programs and checking fork exit status.

e std::map< pid_t, int > processldMap

map of fork process id’s to function evaluation id’s for asynchronous evaluations

10.38.1 Detailed Description

Derived application interface class which spawns simulation codes using forks.

ForkApplicInterface uses a ForkAnalysisCode object for performing simulation invocations.

10.38.2 Member Function Documentation

10.38.2.1 int derived_synchronous_local_analysis (const int & analysis_id) [inline, virtual]

This code provides the derived function used by ApplicationInterface:: serve_analyses_synch() as well as a con-
venience function for ForkApplicInterface::synchronous_local_analyses() below.

Reimplemented from ApplicationInterface.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.38 ForkAppliclnterface Class Reference 221

10.38.2.2 pid_t fork_application (const bool block_flag) [ pri vat e]

perform the complete function evaluation by managing the input filter, analysis programs, and output filter

Manage the input filter, 1 or more analysis programs, and the output filter in blocking or nonblocking mode as
governed by block_flag. In the case of a single analysis and no filters, a single fork is performed, while in other
cases, an initial fork is reforked multiple times. Called from derived_map() with block_flag == BLOCK and
from derived_map_asynch() with block_flag == FALL_THROUGH. Uses ForkAnalysisCode::fork_program() to
spawn individual program components within the function evaluation.

10.38.2.3 void asynchronous_local_analyses (const int & start, const int & end, const int & step)
[private]
execute analyses asynchronously on the local processor

Schedule analyses asynchronously on the local processor using a self-scheduling approach (start to
end in step increments). Concurrency is limited by asynchLocalAnalysisConcurrency. Modeled af-
ter Applicationlnterface::asynchronous_local_evaluations(). =~ NOTE: This function should be elevated to
Applicationlnterface if and when another derived interface class supports asynchronous local analyses.

10.38.2.4 void synchronous_local_analyses (const int & start, const int & end, const int & step)
[inline, private]
execute analyses synchronously on the local processor

Execute analyses synchronously in succession on the local processor (start to end in step increments). Modeled
after ApplicationInterface::synchronous_local_evaluations().

10.38.2.5 void serve_analyses_asynch () [ pri vat e]

serve the analysis scheduler and execute analysis jobs asynchronously

This code runs multiple asynch analyses on each server. It is modeled after
Applicationlnterface::serve_evaluations_asynch(). NOTE: This fn should be elevated to ApplicationInterface if
and when another derived interface class supports hybrid analysis parallelism.

The documentation for this class was generated from the following files:

e ForkApplicInterface.H
e ForkAppliclnterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



222 DAKOTA Class Documentation

10.39 FSUDesignCompExp Class Reference

Wrapper class for the FSUDace QMC/CVT library.
Inheritance diagram for FSUDesignCompExp::

| Iterator |

T

| Analyzer |

T

| PStudyDACE |

| FSUDesignCompExp |

Public Member Functions

o FSUDesignCompExp (Model &model)

primary constructor for building a standard DACE iterator

o ~FSUDesignCompExp ()

destructor

e void extract_trends ()

Redefines the run_iterator virtual function for the PStudy/DACE branch.

e void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

reset sampling iterator

e const String & sampling_scheme () const

return sampling name

e void vary_pattern (bool pattern_flag)

sets varyPattern in derived classes that support it

e void get_parameter_sets ()

Returns one block of samples (ndim x num_samples).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.39 FSUDesignCompExp Class Reference 223

Private Member Functions

e void enforce_input_rules ()

enforce sanity checks/modifications for the user input specification

Private Attributes

e int samplesSpec
user specification of number of samples

e int numSamples

number of samples to be evaluated

e bool allDataFlag

flag which triggers the update of allVars/allResponses for wuse by Iterator::all_variables() and
Iterator::all_responses()

e size t numDACERuns

counter for number of run() executions for this object

e bool latinizeFlag
flag which specifies latinization of QMC or CVT sample sets

e bool volQualityFlag
flag which specifies evaluating the volumetric quality measures

e bool varBasedDecompFlag
flag which specifies calculating variance based decomposition sensitivity analysis metrics

e IntVector sequenceStart

Integer vector defining a starting index into the sequence for random variable sampled. Default is 0 0 0 (e.g. for
three random variables).

e IntVector sequencelLeap

Integer vector defining the leap number for each sequence being generated. Defaultis 1 1 1 (e.g. for three random
vars.).

e IntVector primeBase

Integer vector defining the prime base for each sequence being generated. Default is 2 3 5 (e.g., for three random
vars.).

e int originalSeed

the user seed specification for the random number generator (allows repeatable results)

e int randomSeed

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



224 DAKOTA Class Documentation

current seed for the random number generator

e Dbool varyPattern

flag for continuing the random number or QMC sequence from a previous run() execution (e.g., for surrogate-based
optimization) so that multiple executions are repeatable but not identical.

e int numCVTTrials
specifies the number of sample points taken at internal CVT iteration

e int trialType

Trial type in CVT. Specifies where the points are placed for consideration relative to the centroids. Choices are grid
(2), halton (1), uniform (0), or random (-1). Default is random.

10.39.1 Detailed Description

Wrapper class for the FSUDace QMC/CVT library.

The FSUDesignCompExp class provides a wrapper for FSUDace, a C++ design of experiments library from
Florida State University. This class uses quasi Monte Carlo (QMC) and Centroidal Voronoi Tesselation (CVT)
methods to uniformly sample the parameter space spanned by the active bounds of the current Model. It returns
all generated samples and their corresponding responses as well as the best sample found.

10.39.2 Constructor & Destructor Documentation

10.39.2.1 FSUDesignCompExp (Model & model)

primary constructor for building a standard DACE iterator

This constructor is called for a standard iterator built with data from probDescDB.

10.39.3 Member Function Documentation

10.39.3.1 void enforce_input_rules () [ pri vat e]

enforce sanity checks/modifications for the user input specification

Users may input a variety of quantities, but this function must enforce any restrictions imposed by the sampling
algorithms.

The documentation for this class was generated from the following files:

o FSUDesignCompExp.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.39 FSUDesignCompExp Class Reference 225

o FSUDesignCompExp.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



226 DAKOTA Class Documentation

10.40 FunctionCompare Class Template Reference

Public Member Functions

e FunctionCompare (bool(xfunc)(const T &, void ), void *v)
Constructor that defines the pointer to function and search value.

e bool operator() (T t) const
The operator() must be defined. Calls the function test_fn.

Private Attributes

e bool(x test_fn )(const T &, void *)
Pointer to test function.

e void * search_val

Holds the value to search for.

10.40.1 Detailed Description
template<class T> class Dakota::FunctionCompare< T >

Internal functor to mimic the RW find and index functions using the STL find_if() method. The class holds a
pointer to the test function and the search value.

The documentation for this class was generated from the following file:

e DakotalList.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.41 GaussProcApproximation Class Reference 227

10.41 GaussProcApproximation Class Reference

Derived approximation class for Gaussian Process implementation.

Inheritance diagram for GaussProcApproximation::

| Approximation |

T

| GaussProcA pproximation |

Public Member Functions

e GaussProcApproximation ()

default constructor

o GaussProcApproximation (ProblemDescDB &problem_db, const size_t &num_acv)

standard constructor

o ~GaussProcApproximation ()

destructor

Protected Member Functions

e int num_coefficients () const

return the minimum number of samples required to build the derived class approximation type in numVars dimen-
sions

e int num_constraints () const

return the number of constraints to be enforced via anchorPoint

e void find_coefficients ()

find the covariance parameters governing the Gaussian process response

e const Real & get_value (const Real Vector &x)

retrieve the function value for a given parameter set x

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



228 DAKOTA Class Documentation

Private Member Functions

e void GPmodel_build ()

Function to compute hyperparameters governing the GP.

Real GPmodel_apply (const RealVector &new_x)

Function returns a response value using the GP surface.

e void predict ()

Calculates the predicted new response value for x in normalized space.

e void normalize ()

Normalizes the initial inputs upon which the GP surface is based.

e void unnormalize ()

Takes the value from the GP normalized prediction and unnormalizes it.

e Real calc_nll ()

calculates the negative log likelihood function (based on covariance matrix)

e void covmatrix ()

calculates the covariance matrix for a given set of input points

e void covvector ()

calculates the covariance vector between a new point x and the set of inputs upon which the GP is based

e void optimize_nll ()

function which sets up and performs the optimization of the negative log likelihood to determine the optimal values
of the covariance oaraneters

Static Private Member Functions

e static void negloglik (int mode, int n, const NEWMAT::ColumnVector &X, NEWMAT::Real &fx,
NEWMAT::ColumnVector &grad_x, int &result_mode)

static function used by OPT++ as the objective function to optimize the hyperparameters in the covariance of the
GP by minimizing the negative log likelihood

e static void constraint_eval (int mode, int n, const NEWMAT::ColumnVector &X, NEWMAT::Column-
Vector &g, NEWMAT::Matrix &gradC, int &result_mode)

static function used by OPT++ as the constraint function in the optimization of the negative log likelihood. Cur-
rently this function is empty: it is an unconstrained optimization.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.41 GaussProcApproximation Class Reference 229

Private Attributes

e Epetra_SerialDenseMatrix x_matrix

A 2-D array (num sample sites = rows, num vars = columns) used to create the Gaussian process.

e Epetra_SerialDenseMatrix f_of_x_array
An array of response values; one response value per sample site.

e Epetra_SerialDenseMatrix initX
Initial set of sample values of X upon which the GP is based.

e Epetra_SerialDenseMatrix newX

New value of x at which one wants a point prediction. This is currently a single point, but it may be a vector of X
values, where each X can be multi-dimensional.

e Epetra_SerialDenseMatrix outY
output Y corresponding to initX

e FEpetra_SerialDenseMatrix covmatrixX

The covariance matrix where each element (i,j) is the covariance between points Xi and Xj in the initial set of
samples.

e Epetra_SerialDenseMatrix covvectorX

The covariance vector where each element (j,0) is the covariance between a new point X and point Xj from the
initial set of samples.

e Epetra_SerialDenseMatrix newY
The Gaussian process prediction for point newX.

e Epetra_SerialDenseMatrix tempholder

A temporary placeholder matrix to allow for Epetra matrix multiplication.

e Epetra_SerialDenseMatrix cov_mult

Another temporary placeholder matrix to allow for Epetra matrix multiplication.

e Epetra_SerialDenseVector mean_column
The mean of the input columns of initX.

e Epetra_SerialDenseVector sqterms
The standard deviation of the input columns of initX.

e Real meanY
The mean of the output Y.

e Real stdY
The standard deviation of the output Y.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



230

DAKOTA Class Documentation

size_t num_obs

The number of observations on which the GP surface is built.

size_t num_vars

The number of variables in each X variable (number of dimensions of the problem).

size_t num_new

The number of new X values for which one wants a prediction. In this implementation, num_new = 1.

Real sige

The GP error term.

RealVector theta

Theta is the vector of covariance parameters for the GP. We determine the values of theta by optimization Currently,
the covariance function is theta[0]xexp(-0.5«xsume)+deltaxpow(sige,2). sume is the sum squared of weighted dis-
tances; it involves a sum of theta[1](Xi(1)-Xj(1))"2 + theta[2](Xi(2)-Xj(2))"2 + ... where Xi(1) is the first dimen-
sion value of multi-dimensional variable Xi. deltaxpow(sige,2) is a jitter term used to improve matrix computations.
delta is zero for the covariance between different points and 1 for the covariance between the same point. sige is
the underlying process error.

Real nll

The negative log likelihood value for a particular matrix.

Real approxValue

A placeholder to return the Gaussian process prediction.

Static Private Attributes

e static GaussProcApproximation * GPinstance

pointer to the active object instance used within the static evaluator

10.41.1 Detailed Description

Derived approximation class for Gaussian Process implementation.

The GaussProcApproximation class provides a global approximation (surrogate) based on a Gaussian process.
The Gaussian process is built after normalizing the function values, with zero mean. Opt++ is used to determine
the optimal values of the covariance parameters, those which minimize the negative log likelihood function.

10.41.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.41 GaussProcApproximation Class Reference 231

10.41.2.1 Real GPmodel_apply (const RealVector & new_x) [private]

Function returns a response value using the GP surface.
The response value is computed at the design point specified by the Real Vector function argument.

The documentation for this class was generated from the following files:

o GaussProcApproximation.H
o GaussProcApproximation.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



232 DAKOTA Class Documentation

10.42 GetLongOpt Class Reference

GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer Research Institute, Lyon,
France).

Inheritance diagram for GetLongOpt::

| GetLongOpt |

T

| CommandLineHandler |

Public Types

e enum OptType { Valueless, OptionalValue, MandatoryValue }

enum for different types of values associated with command line options.

Public Member Functions

o GetLongOpt (const char optmark="-")

Constructor.

~GetLongOpt ()

Destructor.

int parse (int argc, char *const xargv)

parse the command line args (argc, argv).

int parse (char xconst str, char *const p)

parse a string of options (typically given from the environment).

int enroll (const char *const opt, const OptType t, const char *const desc, const char xconst val)

Add an option to the list of valid command options.

e const char * retrieve (const char xconst opt) const

Retrieve value of option.

e void usage (ostream &outfile=cout) const
Print usage information to outfile.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.42 GetLongOpt Class Reference 233

e void usage (const char *str)
Change header of usage output to str.

Private Member Functions

e char x basename (char *const p) const
extract the base name from a string as delimited by ’/’

o int setcell (Cell *c, char xvaltoken, char xnexttoken, const char *p)

internal convenience function for setting Cell::value

Private Attributes

o Cell « table
option table

e const char * ustring
usage message

e char * pname
program basename

e char optmarker
option marker

e int enroll_done
finished enrolling

e Cell * last
last entry in option table

10.42.1 Detailed Description

GetLongOpt is a general command line utility from S. Manoharan (Advanced Computer Research Institute, Lyon,
France).

GetLongOpt manages the definition and parsing of "long options." Command line options can be abbreviated as
long as there is no ambiguity. If an option requires a value, the value should be separated from the option either
by whitespace or an "=".

10.42.2 Constructor & Destructor Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



234 DAKOTA Class Documentation

10.42.2.1 GetLongOpt (const char optmark="-")

Constructor.

Constructor for GetLongOpt takes an optional argument: the option marker. If unspecified, this defaults to ’-’, the
standard (?) Unix option marker.

10.42.3 Member Function Documentation

10.42.3.1 int parse (int argc, char xconst x argv)

parse the command line args (argc, argv).

A return value < 1 represents a parse error. Appropriate error messages are printed when errors are seen. parse
returns the the optind (see getopt(3)) if parsing is successful.

10.42.3.2 int parse (char xconst str, char xconst p)

parse a string of options (typically given from the environment).

A return value < 1 represents a parse error. Appropriate error messages are printed when errors are seen. parse
takes two strings: the first one is the string to be parsed and the second one is a string to be prefixed to the parse
errors.

10.42.3.3 intenroll (const char xconst opt, const OptType t, const char xconst desc, const char xconst val)

Add an option to the list of valid command options.

enroll adds option specifications to its internal database. The first argument is the option sting. The second is an
enum saying if the option is a flag (Valueless), if it requires a mandatory value (Mandatory Value) or if it takes
an optional value (OptionalValue). The third argument is a string giving a brief description of the option. This
description will be used by GetLongOpt::usage. GetLongOpt, for usage-printing, uses {$val} to represent values
needed by the options. {<$val>} is a mandatory value and {[$val]} is an optional value. The final argument to
enroll is the default string to be returned if the option is not specified. For flags (options with Valueless), use ""
(empty string, or in fact any arbitrary string) for specifying TRUE and 0 (null pointer) to specify FALSE.

10.42.3.4 const char * retrieve (const char xconst opt) const

Retrieve value of option.

The values of the options that are enrolled in the database can be retrieved using retrieve. This returns a string
and this string should be converted to whatever type you want. See atoi, atof, atol, etc. If a "parse" is not done
before retrieving all you will get are the default values you gave while enrolling! Ambiguities while retrieving
(may happen when options are abbreviated) are resolved by taking the matching option that was enrolled last. For
example, -{v} will expand to {-verify}. If you try to retrieve something you didn’t enroll, you will get a warning
message.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.42 GetLongOpt Class Reference 235

10.42.3.5 void usage (const char = str) [inli ne]

Change header of usage output to str.

GetLongOpt::usage is overloaded. If passed a string "str", it sets the internal usage string to "str". Otherwise it
simply prints the command usage.

The documentation for this class was generated from the following files:

e CommandLineHandler.H
e CommandLineHandler.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



236

DAKOTA Class Documentation

10.43 Graphics Class Reference

The Graphics class provides a single interface to 2D (motif) and 3D (PLPLOT) graphics as well as tabular cata-
loguing of data for post-processing with Matlab, Tecplot, etc.

Public Member Functions

Graphics ()
constructor

~Graphics ()
destructor

void create_plots_2d (const Variables &vars, const Response &response)
creates the 2d graphics window and initializes the plots

void create_tabular_datastream (const Variables &vars, const Response &response, const String &tabular_-
data_file)

opens the tabular data file stream and prints the headings

void add_datapoint (const Variables &vars, const Response &response)

adds data to each window in the 2d graphics and adds a row to the tabular data file based on the results of a model
evaluation

void add_datapoint (int i, double x, double y)
adds data to a single window in the 2d graphics

void new_dataset (int i)
creates a separate line graphic for subsequent data points for a single window in the 2d graphics

void show_data_3d (const RealVector &X, const RealVector &Y, const RealMatrix &F)
generate a new 3d plot for F(X,Y)

void close ()

close graphics windows and tabular datastream

void set_x_labels2d (const char *x_label)

set x label for each plot equal to x_label

void set_y_labels2d (const char xy_label)
set y label for each plot equal to y_label

void set_x_label2d (int i, const char *x_label)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.43 Graphics Class Reference 237

set x label for ith plot equal to x_label

e void set_y_label2d (int i, const char xy_label)
set y label for ith plot equal to y_label

e void graphics_counter (int cntr)

set graphicsCntr equal to cntr

e int graphics_counter () const

return graphicsCntr

e void tabular_counter_label (const String &label)
set tabularCntrLabel equal to label

Private Attributes

e Graphics2D * graphics2D
pointer to the 2D graphics object

e bool win2dOn
flag to indicate if 2D graphics window is active

e bool win3dOn
flag to indicate if 3D graphics window is active

e bool tabularDataFlag
flag to indicate if tabular data stream is active

e int graphicsCntr
used for x axis values in 2D graphics and for 1st column in tabular data

e String tabularCntrLabel
label for counter used in first line comment w/i the tabular data file

e ofstream tabularDataFStream
file stream for tabulation of graphics data within compute_response

10.43.1 Detailed Description

The Graphics class provides a single interface to 2D (motif) and 3D (PLPLOT) graphics as well as tabular cata-
loguing of data for post-processing with Matlab, Tecplot, etc.

There is only one Graphics object (dakotaGraphics) and it is global (for convenient access from strategies, models,
and approximations).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



238 DAKOTA Class Documentation

10.43.2 Member Function Documentation

10.43.2.1 void create_plots_2d (const Variables & vars, const Response & response)

creates the 2d graphics window and initializes the plots

Sets up a single event loop for duration of the dakotaGraphics object, continuously adding data to a single window.
There is no reset. To start over with a new data set, you need a new object (delete old and instantiate new).

10.43.2.2 void create_tabular_datastream (const Variables & vars, const Response & response, const
String & tabular_data_file)
opens the tabular data file stream and prints the headings

Opens the tabular data file stream and prints headings, one for each continuous and discrete variable and one
for each response function, using the variable and response function labels. This tabular data is used for post-
processing of DAKOTA results in Matlab, Tecplot, etc.

10.43.2.3 void add_datapoint (const Variables & vars, const Response & response)

adds data to each window in the 2d graphics and adds a row to the tabular data file based on the results of a model
evaluation

Adds data to each 2d plot and each tabular data column (one for each active variable and for each response
function). graphicsCntr is used for the x axis in the graphics and the first column in the tabular data.

10.43.2.4 void add_datapoint (int i, double x, double y)

adds data to a single window in the 2d graphics

Adds data to a single 2d plot. Allows complete flexibility in defining other kinds of x-y plotting in the 2D graphics.

10.43.2.5 void new_dataset (int i)

creates a separate line graphic for subsequent data points for a single window in the 2d graphics

Used for displaying multiple data sets within the same plot.

10.43.2.6 void show_data_3d (const RealVector & X, const RealVector & Y, const RealMatrix & F)

generate a new 3d plot for F(X,Y)

3D plotting clears data set and builds from scratch each time show_data3d is called. This still involves an event
loop waiting for a mouse click (right button) to continue. X = 1-D x grid values only and Y = 1-D Y grid values
only [X and Y are _not_ (X,Y) pairs]. F = 2-d grid of values for a single function for all (X,Y) combinations.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.43 Graphics Class Reference 239

The documentation for this class was generated from the following files:

e DakotaGraphics.H
e DakotaGraphics.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



240 DAKOTA Class Documentation

10.44 GridAppliclnterface Class Reference

Derived application interface class which spawns simulation codes using grid services such as Condor or Globus.

Inheritance diagram for GridApplicInterface::

| Interface |

T

| Applicationinterface |

T

| GridAppliclnterface |

Public Member Functions

e GridApplicInterface (const ProblemDescDB &problem_db)

constructor

e ~GridAppliclnterface ()

destructor

e void derived_map (const Variables &vars, const ActiveSet &set, Response &response, int fn_eval_id)

Called by map() and other functions to execute the simulation in synchronous mode. The portion of performing an
evaluation that is specific to a derived class.

e void derived_map_asynch (const ParamResponsePair &pair)

Called by map() and other functions to execute the simulation in asynchronous mode. The portion of performing
an asynchronous evaluation that is specific to a derived class.

e void derived_synch (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their results.
It provides the processing code that is specific to derived classes. This version waits for at least one completion.

e void derived_synch_nowait (PRPList &prp_list)

For asynchronous function evaluations, this method is used to detect completion of jobs and process their results. It
provides the processing code that is specific to derived classes. This version is nonblocking and will return without
any completions if none are immediately available.

int derived_synchronous_local_analysis (const int &analysis_id)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.44 GridApplicinterface Class Reference 241

Public Attributes

e SysCallAnalysisCode code
Used to read/write parameter files and responses.

Protected Member Functions

e void derived_synch_kernel (PRPList &prp_list)
Convenience function for common code between wait and nowait case.

e Dbool grid_file_test (const String &root_file)
test file(s) for existence based on root_file name

Protected Attributes

e IntSet idSet
Set of function evaluation id’s for active asynchronous system call evaluations.

o IntShortMap failCountMap
map linking function evaluation id’s to number of response read failures

e start_grid_computing_t start_grid_computing
handle to dynamically linked start_grid_computing function

e perform_analysis_t perform_analysis
handle to dynamically linked perform_analysis grid function

e get_jobs_completed_t get_jobs_completed
handle to dynamically linked get_jobs_completed grid function

e stop_grid_computing_t stop_grid_computing
handle to dynamically linked stop_grid_computing function

10.44.1 Detailed Description

Derived application interface class which spawns simulation codes using grid services such as Condor or Globus.

This class is currently a modified copy of SysCallApplicInterface adapted for use with an external grid dervices
library which was dynamically linked using dlopen() services.

10.44.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



242 DAKOTA Class Documentation

10.44.2.1 int derived_synchronous_local_analysis (const int & analysis_id) [inline, virtual]

This code provides the derived function used by ApplicationInterface::serve_analyses_synch().

Reimplemented from ApplicationInterface.

The documentation for this class was generated from the following files:

e GridApplicInterface.H
e GridApplicInterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.45 HermiteApproximation Class Reference 243

10.45 HermiteApproximation Class Reference

Derived approximation class for Hermite polynomials (global approximation).

Inheritance diagram for Hermite Approximation::

| Approximation |

T

HermiteApproximation
| |

Public Member Functions

e Hermite Approximation ()

default constructor

e HermiteApproximation (ProblemDescDB &problem_db, const size_t &num_acv)

standard constructor

e ~HermiteApproximation ()

destructor

Protected Member Functions

e int num_coefficients () const

return the minimum number of samples required to build the derived class approximation type in numVars dimen-
sions

e int num_constraints () const

return the number of constraints to be enforced via anchorPoint

e const RealVector & approximation_coefficients ()

return the coefficient array computed by find_coefficients()

e void find_coefficients ()

find the Polynomial Chaos coefficients for the response surface

e const Real & get_value (const Real Vector &x)

retrieve the function value for a given parameter set x

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



244 DAKOTA Class Documentation

Private Member Functions

e void get_num_chaos ()
calculate number of Chaos according to the highest order of Chaos

e RealVector get_chaos (const RealVector &x, int order)
calculate the Polynomial Chaos from variables

Private Attributes

e RealVector chaosCoeffs
numChaos entries

e RealVectorArray chaosSamples
numChaos*num_pts entries

e int numChaos
Number of terms in Polynomial Chaos Expansion.

e int highestOrder
Highest order of Hermite Polynomials in Expansion.

10.45.1 Detailed Description

Derived approximation class for Hermite polynomials (global approximation).

The HermiteApproximation class provides a global approximation based on Hermite polynomials. It is used
primarily for polynomial chaos expansions (for stochastic finite element approaches to uncertainty quantification).

The documentation for this class was generated from the following files:

e HermiteApproximation.H
e HermiteApproximation.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.46 HierarchSurrModel Class Reference 245

10.46 HierarchSurrMode Class Reference

Derived model class within the surrogate model branch for managing hierarchical surrogates (models of varying
fidelity).

Inheritance diagram for HierarchSurrModel::

| Model |

T

| SurrogateModel |

T

| HierarchSurrModel |

Public Member Functions

e HierarchSurrModel (ProblemDescDB &problem_db)

constructor

e ~HierarchSurrModel ()
destructor

Protected Member Functions

e void derived_compute_response (const ActiveSet &set)
portion of compute_response() specific to HierarchSurrModel

void derived_asynch_compute_response (const ActiveSet &set)
portion of asynch_compute_response() specific to HierarchSurrModel

const ResponseArray & derived_synchronize ()

portion of synchronize() specific to HierarchSurrModel

const IntResponseMap & derived_synchronize_nowait ()
portion of synchronize_nowait() specific to HierarchSurrModel

Model & surrogate_model ()
return lowFidelityModel

e Model & truth_model ()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



246

DAKOTA Class Documentation

return highFidelityModel

void derived_subordinate_models (ModelList &ml, bool recurse_flag)
return lowFidelityModel and highFidelityModel

void surrogate_bypass (bool bypass_flag)
set surrogateBypass flag and pass request on to highFidelityModel for any lower-level surrogates.

void build_approximation ()

use highFidelityModel to compute the truth values needed for correction of lowFidelityModel results

void component_parallel_mode (int mode)

update component parallel mode for supporting parallelism in lowFidelityModel and highFidelityModel

void derived_init_communicators (const int &max_iterator_concurrency)

set up lowFidelityModel and highFidelityModel for parallel operations

void derived_init_serial ()

set up lowFidelityModel and highFidelityModel for serial operations.

void derived_set_communicators (const int &max_iterator_concurrency)

set active parallel configuration within lowFidelityModel and highFidelityModel

void reset_communicators ()

reset communicator partition data for the HierarchSurrModel (request forwarded to lowFidelityModel and high-
FidelityModel)

void derived_free_communicators (const int &max_iterator_concurrency)

deallocate communicator partitions for the HierarchSurrModel (request forwarded to lowFidelityModel and high-
FidelityModel)

void serve ()

Service lowFidelityModel and highFidelityModel job requests received from the master. Completes when a termi-
nation message is received from stop_servers().

void stop_servers ()

Executed by the master to terminate lowFidelityModel and highFidelityModel server operations when iteration on
the HierarchSurrModel is complete.

int evaluation_id () const

Return the current evaluation id for the HierarchSurrModel.

void set_evaluation_reference ()

set the evaluation counter reference points for the HierarchSurrModel (request forwarded to lowFidelityModel and
highFidelityModel)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.46 HierarchSurrModel Class Reference 247

e void print_evaluation_summary (ostream &s, bool minimal_header=false, bool relative_count=true) const

print the evaluation summary for the HierarchSurrModel (request forwarded to lowFidelityModel and highFidelity-
Model)

Private Member Functions

e void update_model (Model &model)

update the incoming model (lowFidelityModel or highFidelityModel) with current variable values/bounds/labels

Private Attributes

e int hierModelEvals

number of calls to derived_compute_response()/ derived_asynch_compute_response()

e Model lowFidelityModel

provides approximate low fidelity function evaluations. Model is of arbitrary type and supports recursions (e.g.,
lowFidelityModel can be a data fit surrogate on a low fidelity model).

e Model highFidelityModel

provides truth evaluations for computing corrections to the low fidelity results. Model is of arbitrary type and
supports recursions.

e Response highFidResponse

the high fidelity response is computed in build_approximation() and needs class scope for use in automatic surrogate
construction in derived compute_response functions.

10.46.1 Detailed Description

Derived model class within the surrogate model branch for managing hierarchical surrogates (models of varying
fidelity).

The HierarchSurrModel class manages hierarchical models of varying fidelity. In particular, it uses a low fidelity
model as a surrogate for a high fidelity model. The class contains a lowFidelityModel which performs the approx-
imate low fidelity function evaluations and a highFidelityModel which provides truth evaluations for computing
corrections to the low fidelity results.

10.46.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



248 DAKOTA Class Documentation

10.46.2.1 void derived_compute_response (const ActiveSet & set) [ protected, virtual]

portion of compute_response() specific to HierarchSurrModel

Evaluate the approximate response using lowFidelityModel, compute the high fidelity response if needed with
build_approximation(), and, if correction is active, correct the low fidelity results.

Reimplemented from Model.

10.46.2.2 void derived_asynch_compute_response (const ActiveSet & set) [ protected, virtual]

portion of asynch_compute_response() specific to HierarchSurrModel

Evaluate the approximate response using an asynchronous lowFidelityModel evaluation and compute the high
fidelity response with build_approximation() (for correcting the low fidelity results in derived_synchronize() and
derived_synchronize_nowait()) if not performed previously.

Reimplemented from Model.

10.46.2.3 const ResponseArray & derived_synchronize () [ protected, virtual]

portion of synchronize() specific to HierarchSurrModel

Perform a blocking retrieval of all asynchronous evaluations from lowFidelityModel and, if automatic correction
is on, apply correction to each response in the array.

Reimplemented from Model.

10.46.2.4 const IntResponseMap & derived_synchronize_nowait () [ protected, virtual]

portion of synchronize_nowait() specific to HierarchSurrModel

Perform a nonblocking retrieval of currently available asynchronous evaluations from lowFidelityModel and, if
automatic correction is on, apply correction to each response in the list.

Reimplemented from Model.

10.46.2.5 intevaluation_id()const [inline, protected, virtual]

Return the current evaluation id for the HierarchSurrModel.

return the hierarchical model evaluation count. Due to possibly intermittent use of surrogate bypass, this is not
the same as either the loFi or hiFi model evaluation counts. It also does not distinguish duplicate evals.

Reimplemented from Model.

The documentation for this class was generated from the following files:

e HierarchSurrModel. H
e HierarchSurrModel.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.47 IDRProblemDescDB Class Reference 249

10.47 |1DRProblemDescDB Class Reference

The derived input file database utilizing the IDR parser.
Inheritance diagram for IDRProblemDescDB::

| ProblemDescDB |

T

| IDRProblemDescDB |

Public Member Functions

o [DRProblemDescDB (ParallelLibrary &parallel_lib)
constructor

e ~IDRProblemDescDB ()
destructor

e void derived_manage_inputs (const char xdakota_input_file)
parses the input file and populates the problem description database using IDR.

Static Public Member Functions

e static void strategy_kwhandler (const struct FunctionData sparsed_data)
strategy keyword handler called by IDR when a complete strategy specification is parsed

e static void method_kwhandler (const struct FunctionData xparsed_data)
method keyword handler called by IDR when a complete method specification is parsed

e static void model_kwhandler (const struct FunctionData sparsed_data)
model keyword handler called by IDR when a complete model specification is parsed

e static void variables_kwhandler (const struct FunctionData sparsed_data)
variables keyword handler called by IDR when a complete variables specification is parsed

e static void interface_kwhandler (const struct FunctionData xparsed_data)
interface keyword handler called by IDR when a complete interface specification is parsed

e static void responses_kwhandler (const struct FunctionData xparsed_data)
responses keyword handler called by IDR when a complete responses specification is parsed

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



250 DAKOTA Class Documentation

Static Private Member Functions

e static void idr_kw_id_error (const char xkw)

Error handler for missing required IDR keyword.

static Int idr_find_id (Int *id_pos, const Int cntr, const char *id, const char *xid_list, const char xkw)

Function used by the keyword handlers to return the number of parsed instances of a particular keyword.

static Int *x idr_get_int_table (const struct FunctionData xparsed_data, Int identifier, Int &table_len, Int
num_lists, Int list_entry_len)

Function for creating an IDR table of Ints.

static Real *x idr_get_real_table (const struct FunctionData xparsed_data, Int identifier, Int &table_len, Int
num_lists, Int list_entry_len)

Function for creating an IDR table of Reals.

static char s+ idr_get_string_table (const struct FunctionData «parsed_data, Int identifier, Int &table_len,
Int num_lists, Int list_entry_len)

Function for creating an IDR table of strings.

Static Private Attributes

e static IDRProblemDescDB * pDDBInstance

pointer to the active object instance used within the static kwhandler functions in order to avoid the need for static
data

e static Int x* intTable

integer table populated in idr_get_int_table()

e static Real x* realTable

real table populated in idr_get_real_table()

e static char sxx stringTable

string table populated in idr_get_string_table()

10.47.1 Detailed Description

The derived input file database utilizing the IDR parser.

The IDRProblemDescDB class is a database for DAKOTA input file data that is populated by the Input Deck
Reader (IDR) parser. When the parser reads a complete keyword (delimited by a newline), it calls the correspond-
ing kwhandler function from this class which populates the corresponding Data object from the base class. For
information on modifying the IDR input parsing procedures, refer to Dakota/docs/Dev_Spec_Change.dox

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.47 IDRProblemDescDB Class Reference 251

10.47.2 Member Function Documentation

10.47.2.1 void derived_manage_inputs (const char x dakota_input_file) [virtual]

parses the input file and populates the problem description database using IDR.

Parse the input file using the Input Deck Reader (IDR) parsing system. IDR populates the IDRProblemDescDB
object with the input file data.

Reimplemented from ProblemDescDB.

The documentation for this class was generated from the following files:

e IDRProblemDescDB.H
e IDRProblemDescDB.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



252 DAKOTA Class Documentation

10.48 Interface Class Reference

Base class for the interface class hierarchy.

Inheritance diagram for Interface::

Interface
| 1
Applicationinterface | | Approximationl nterface
[ T [
|DirectFnAppIicInterface| | ForkAppliclnterface | | GridAppliclnterface | | SysCallAppliclnterface

| DirectFnAppliclnterface |

Public Member Functions

e Interface ()

default constructor

Interface (ProblemDescDB &problem_db)

standard constructor for envelope

Interface (const Interface &interface)

copy constructor

virtual ~Interface ()

destructor

Interface operator= (const Interface &interface)

assignment operator

e virtual void map (const Variables &vars, const ActiveSet &set, Response &response, const bool asynch_-
flag=false)

the function evaluator: provides a "mapping" from the variables to the responses.

e virtual const ResponseArray & synch ()

recovers data from a series of asynchronous evaluations (blocking)

virtual const IntResponseMap & synch_nowait ()
recovers data from a series of asynchronous evaluations (nonblocking)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.48 Interface Class Reference 253

virtual void serve_evaluations ()

evaluation server function for multiprocessor executions

virtual void stop_evaluation_servers ()
send messages from iterator rank 0 to terminate evaluation servers

virtual void init_communicators (const IntArray &message_lengths, const int &max_iterator_concurrency)

allocate communicator partitions for concurrent evaluations within an iterator and concurrent multiprocessor anal-
yses within an evaluation.

virtual void reset_communicators (const IntArray &message_lengths)

reset the local parallel partition data for an interface (the partitions are already allocated in ParallelLibrary).

virtual void free_communicators ()

deallocate communicator partitions for concurrent evaluations within an iterator and concurrent multiprocessor
analyses within an evaluation.

virtual void init_serial ()

reset certain defaults for serial interface objects.

virtual int asynch_local_evaluation_concurrency () const

return the user-specified concurrency for asynch local evaluations

virtual String interface_synchronization () const
return the user-specified interface synchronization

virtual int minimum_samples (bool constraint_flag) const

returns the minimum number of samples required to build a particular Approximationinterface (used by DataFit-
SurrModels).

virtual void update_approximation (const RealVectorArray &all_variables, const ResponseArray &all_-
responses)

passes multiple points to an approximation for building a surrogate

virtual void update_approximation (const RealVector &c_variables, const Response &response)

passes a single point to an approximation for building a surrogate

virtual void build_approximation (const RealVector &lower_bnds, const Real Vector &upper_bnds)
builds the surrogate

virtual void append_approximation (const RealVector &c_variables, const Response &response)

updates an existing global approximation with new data

virtual void clear ()

clears all data from an approximation interface

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



254 DAKOTA Class Documentation
e virtual bool anchor () const
queries the presence of an anchorPoint within an approximation interface
e virtual const RealVectorArray & approximation_coefficients ()
retrieve the approximation coefficients from each Approximation within an Approximationinterface
e virtual const StringArray & analysis_drivers () const
retrieve the analysis drivers specification for application interfaces
e void assign_rep (Interface xinterface_rep, bool ref_count_incr=true)
replaces existing letter with a new one
e const String & interface_type () const
returns the interface type
e const String & interface_id () const
returns the interface identifier
e int evaluation_id () const
returns the current function evaluation id for the interface
e void set_eval_reference ()
set evaluation count reference points for the interface
e void print_eval_summary (ostream &s, bool minimal_header, bool relative_count) const
print an evaluation summary for the interface
e bool multi_proc_eval_flag () const
returns a flag signaling the use of multiprocessor evaluation partitions
e bool iterator_eval_dedicated_master_flag () const
returns a flag signaling the use of a dedicated master processor at the iterator-evaluation scheduling level
e bool is_null () const

function to check interfaceRep (does this envelope contain a letter?)

Protected Member Functions

Interface (BaseConstructor, const ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

void asv_mapping (const ActiveSet &total_set, ActiveSet &algebraic_set, ActiveSet &core_set, const
Variables &vars, const Response &response)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.48 Interface Class Reference 255

define the evaluation requirements for algebraic_mappings() (algebraic_set) and the core Applica-
tion/Approximation mapping (core_set) from the total Interface evaluation requirements (total_set). Also

e void algebraic_mappings (const Variables &vars, const ActiveSet &algebraic_set, Response &algebraic_-
response)
evaluate the algebraic_response using the AMPL solver library and the data extracted from the algebraic_mappings
file

e void response_mapping (const Response &algebraic_response, const Response &core_response, Response
&total_response)

combine the response from algebraic_mappings() with the response from derived_map() to create the total response

Protected Attributes

e String interfaceType
the interface type: system, fork, direct, grid, or approximation

e String idInterface

the interface specification indentifier string from the DAKOTA input file (used in print_eval_summary())

e bool algebraicMappings

flag for the presence of algebraic_mappings that define the subset of an Interface’s parameter to response mapping
that is explicit and algebraic.

e bool coreMappings

flag for the presence of non-algebraic mappings that define the core of an Interface’s parameter to response map-
ping (using analysis_drivers for ApplicationInterface or functionSurfaces for Approximationinterface).

e int fnEvalld

total interface evaluation counter

e int newFnEvalld

new (non-duplicate) interface evaluation counter

e int fnEvalldRefPt

iteration reference point for fnEvalld

e int newFnEvalldRefPt

iteration reference point for newFnEvalld

e IntArray fnValCounter
number of value evaluations by resp fn

e IntArray fnGradCounter
number of gradient evaluations by resp fn

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



256

DAKOTA Class Documentation

IntArray fnHessCounter
number of Hessian evaluations by resp fn

IntArray newFnValCounter

number of new value evaluations by resp fn

IntArray newFnGradCounter

number of new gradient evaluations by resp fn

IntArray newFnHessCounter

number of new Hessian evaluations by resp fn

IntArray fnValRefPt

iteration reference point for fnvalCounter

IntArray fnGradRefPt

iteration reference point for fnGradCounter

IntArray fnHessRefPt
iteration reference point for fnHessCounter

IntArray newFnValRefPt
iteration reference point for newFnValCounter

IntArray newFnGradRefPt
iteration reference point for newFnGradCounter

IntArray newFnHessRefPt
iteration reference point for newFnHessCounter

ResponseArray rawResponseArray

The complete array of responses returned after a blocking schedule of asynchronous evaluations.

IntResponseMap rawResponseMap

The partial map of responses returned after a nonblocking schedule of asynchronous evaluations.

StringArray responseTags

response function identifier tags from the DAKOTA input file (used in print_eval_summary() and derived direct

interface classes)

bool multiProcEvalFlag

flag for multiprocessor evaluation partitions (evalComm)

bool ieDedMasterFlag

flag for dedicated master partitioning at the iterator level

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.48 Interface Class Reference 257

e Dbool silentFlag

flag for really quiet (silent) interface output

bool quietFlag

flag for quiet interface output

bool verboseFlag

flag for verbose interface output

bool debugFlag

flag for really verbose (debug) interface output

Private Member Functions

o Interface x get_interface (ProblemDescDB &problem_db)

Used by the envelope to instantiate the correct letter class.

Private Attributes

e StringArray algebraicVarTags

set of variable tags from AMPL stub.col

o SizetArray algebraicACVIndices

set of indices mapping AMPL algebraic variables to DAKOTA all continuous variables

e SizetArray algebraicDerivindices

set of indices mapping AMPL algebraic variables to DAKOTA derivative variables

e StringArray algebraicFnTags

set of function tags from AMPL stub.row

o SizetArray algebraicFnIndices

set of indices mapping AMPL algebraic objective functions to DAKOTA response functions

o Interface * interfaceRep

pointer to the letter (initialized only for the envelope)

e int referenceCount

number of objects sharing interfaceRep

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



258 DAKOTA Class Documentation

10.48.1 Detailed Description

Base class for the interface class hierarchy.

The Interface class hierarchy provides the part of a Model that is responsible for mapping a set of Variables
into a set of Responses. The mapping is performed using either a simulation-based application interface or a
surrogate-based approximation interface. For memory efficiency and enhanced polymorphism, the interface hi-
erarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the base class
(Interface) serves as the envelope and one of the derived classes (selected in Interface::get_interface()) serves as
the letter.

10.48.2 Constructor & Destructor Documentation

10.48.2.1 Interface ()

default constructor

used in Model envelope class instantiations

10.48.2.2 Interface (ProblemDescDB & problem_db)

standard constructor for envelope

Used in Model instantiation to build the envelope. This constructor only needs to extract enough data to properly
execute get_interface, since Interface::Interface(BaseConstructor, problem_db) builds the actual base class data
inherited by the derived interfaces.

10.48.2.3 Interface (const Interface & interface)

copy constructor

Copy constructor manages sharing of interfaceRep and incrementing of referenceCount.

10.48.2.4 ~iInterface () [virtual]

destructor

Destructor decrements referenceCount and only deletes interfaceRep if referenceCount is zero.

10.48.2.5 Interface (BaseConstructor, const ProblemDescDB & problem_db) [ pr ot ect ed]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all inherited interfaces. get_interface() instan-
tiates a derived class letter and the derived constructor selects this base class constructor in its initialization list

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.48 Interface Class Reference 259

(to avoid the recursion of the base class constructor calling get_interface() again). Since this is the letter and the
letter IS the representation, interfaceRep is set to NULL (an uninitialized pointer causes problems in ~Interface).

10.48.3 Member Function Documentation

10.48.3.1 Interface operator= (const Interface & interface)

assignment operator

Assignment operator decrements referenceCount for old interfaceRep, assigns new interfaceRep, and increments
referenceCount for new interfaceRep.

10.48.3.2 void assign_rep (Interface * interface_rep, bool ref_count_incr =t r ue)

replaces existing letter with a new one

Similar to the assignment operator, the assign_rep() function decrements referenceCount for the old interfaceRep
and assigns the new interfaceRep. It is different in that it is used for publishing derived class letters to existing
envelopes, as opposed to sharing representations among multiple envelopes (in particular, assign_rep is passed a
letter object and operator= is passed an envelope object). Letter assignment supports two models as governed by
ref_count_incr:

e ref_count_incr = true (default): the incoming letter belongs to another envelope. In this case, increment the
reference count in the normal manner so that deallocation of the letter is handled properly.

e ref_count_incr = false: the incoming letter is instantiated on the fly and has no envelope. This case is
modeled after get_interface(): a letter is dynamically allocated using new and passed into assign_rep, the
letter’s reference count is not incremented, and the letter is not remotely deleted (its memory management
is passed over to the envelope).

10.48.3.3 Interface x get_interface (ProblemDescDB & problem_db) [ pri vat e]

Used by the envelope to instantiate the correct letter class.

used only by the envelope constructor to initialize interfaceRep to the appropriate derived type.

10.48.4 Member Data Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



260 DAKOTA Class Documentation

10.48.4.1 ResponseArray rawResponseArray [ prot ect ed]

The complete array of responses returned after a blocking schedule of asynchronous evaluations.

The array is the raw set of responses corresponding to all asynchronous map calls. This raw array is postprocessed
(i.e., finite difference gradients merged) in Model::synchronize() where it becomes responseArray.

10.48.4.2 IntResponseMap rawResponseMap [ pr ot ect ed]

The partial map of responses returned after a nonblocking schedule of asynchronous evaluations.

The map is a partial set of completions which are identified through their fn_eval_id key. Postprocess-
ing from raw to combined form (i.e., finite difference gradient merging) is not currently supported in
Model::synchronize_nowait().

The documentation for this class was generated from the following files:

e Dakotalnterface. H
e Dakotalnterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.49 lterator Class Reference 261

10.49 I|terator Class Reference

Base class for the iterator class hierarchy.

Inheritance diagram for Iterator::

4__N PSOL Optimizer

Public Member Functions

e Iterator ()
default constructor

Iterator (Model &model)
standard constructor for envelope

Iterator (const Iterator &iterator)

copy constructor

virtual ~Iterator ()

destructor

Iterator operator= (const Iterator &iterator)

assignment operator

virtual void run ()

run the iterator; portion of run_iterator()

virtual const Variables & variable_results () const
return the final iterator solution (variables)

e virtual const Response & response_results () const

return the final iterator solution (response)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



262 DAKOTA Class Documentation

virtual void response_results_active_set (const ActiveSet &set)

set the requested data for the final iterator response results

virtual void print_results (ostream &s) const

print the final iterator results

e virtual void multi_objective_weights (const Real Vector &multi_obj_wts)
set the relative weightings for multiple objective functions. Used by ConcurrentStrategy for Pareto set optimization.

e virtual void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

reset sampling iterator

e virtual const String & sampling_scheme () const

return sampling name

e virtual String uses_method () const

return name of any enabling iterator used by this iterator

e virtual void method_recourse ()

perform a method switch, if possible, due to a detected conflict

e virtual const VariablesArray & all_variables () const

return the complete set of evaluated variables

e virtual const RealVectorArray & all_c_variables () const
return the complete set of evaluated continuous variables

e virtual const ResponseArray & all_responses () const

return the complete set of computed responses

e virtual const RealVectorArray & all_fn_responses () const
return the complete set of computed function responses

void pre_run ()
utility function to perform common operations prior to run()

e void run_iterator (ostream &s)

utility function to automate pre_run()/run()/post_run() verbosely

e void run_iterator ()

utility function to automate pre_run()/run()/post_run() quietly

void post_run (ostream &s)

utility function to perform common operations following run() verbosely

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.49 lterator Class Reference 263

e void post_run ()

utility function to perform common operations following run() quietly

e void assign_rep (Iterator xiterator_rep, bool ref_count_incr=true)

replaces existing letter with a new one

e void user_defined_model (const Model &the_model)
set the model

e Model & user_defined_model () const
return the model

e const String & method_name () const
return the method name

e const String & method_id () const
return the method identifier (idMethod)

e const int & maximum_concurrency () const

return the maximum concurrency supported by the iterator

e void maximum_concurrency (const int &max_conc)
set the maximum concurrency supported by the iterator

e void active_set (const ActiveSet &set)
set the default active set vector (for use with iterators that employ evaluate_parameter_sets())

e const ActiveSet & active_set () const
return the default active set vector (used by iterators that employ evaluate_parameter_sets())

e void sub_iterator_flag (bool si_flag)
set sublteratorFlag

e void variable_mappings (const SizetArray &c_index 1, const SizetArray &d_index 1, const SizetArray &in-
dex?2)

set primaryCVarMaplndices, primaryDVarMaplndices, secondaryVarMaplndices

bool is_null () const

function to check iteratorRep (does this envelope contain a letter?)

Protected Member Functions

e [terator (BaseConstructor, Model &model)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



264 DAKOTA Class Documentation

e Iterator (NoDBBaseConstructor, Model &model)
base class for iterator classes constructed on the fly (no DB queries)

e virtual void derived_pre_run ()

portions of pre_run specific to derived iterators

e virtual void derived_post_run ()
portions of post_run specific to derived iterators

Protected Attributes

e Model & userDefinedModel
class member reference for the model passed into the constructor

e const ProblemDescDB & probDescDB
class member reference to the problem description database

e String methodName

name of the iterator (the user’s method spec)

e Real convergenceTol

iteration convergence tolerance

e int maxlterations

maximum number of iterations for the iterator

e int maxFunctionEvals

maximum number of fn evaluations for the iterator

e int maxConcurrency

maximum coarse-grained concurrency

e size_t numFunctions

number of response functions

e size_t numContinuousVars

number of active continuous vars.

e size t numDiscreteVars

number of active discrete vars.

e ActiveSet activeSet

tracks the response data requirements on each function evaluation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.49 lterator Class Reference 265

e Dbool sublteratorFlag
flag indicating if this Iterator is a sub-iterator (NestedModel::sublterator or DataFitSurrModel::dacelterator)

e SizetArray primaryCVarMaplndices
"primary" continuous variable mappings flowed down from higher level iteration

o SizetArray primaryDVarMaplndices
"primary" discrete variable mappings flowed down from higher level iteration

e SizetArray secondary VarMaplIndices
"secondary" variable mappings flowed down from higher level iteration

e String gradientType
type of gradient data: analytic, numerical, mixed, or none

e String intervalType
type of numerical gradient interval: central or forward

e String methodSource
source of numerical gradient routine: dakota or vendor

e String hessianType
type of Hessian data: analytic, numerical, quasi, mixed, or none

Real fdGradStepSize
relative finite difference step size for numerical gradients

Real fdHessByGradStepSize
relative finite difference step size for numerical Hessians estimated using first-order differences of gradients

Real fdHessByFnStepSize
relative finite difference step size for numerical Hessians estimated using second-order differences of function values

e Dbool silentOutput
flag for really quiet (silent) algorithm output

e bool quietOutput
flag for quiet algorithm output

e bool verboseOutput
flag for verbose algorithm output

e bool debugOutput
flag for really verbose (debug) algorithm output

e bool asynchFlag
copy of the model’s asynchronous evaluation flag

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



266 DAKOTA Class Documentation

Private Member Functions

e [terator x get_iterator (Model &model)

Used by the envelope to instantiate the correct letter class.

Private Attributes

e String idMethod

method identifier string from the input file

e [terator * iteratorRep

pointer to the letter (initialized only for the envelope)

e int referenceCount

number of objects sharing iteratorRep

10.49.1 Detailed Description

Base class for the iterator class hierarchy.

The Iterator class is the base class for one of the primary class hierarchies in DAKOTA. The iterator hierarchy
contains all of the iterative algorithms which use repeated execution of simulations as function evaluations. For
memory efficiency and enhanced polymorphism, the iterator hierarchy employs the "letter/envelope idiom" (see
Coplien "Advanced C++", p. 133), for which the base class (Iterator) serves as the envelope and one of the derived
classes (selected in Iterator::get_iterator()) serves as the letter.

10.49.2 Constructor & Destructor Documentation

10.49.2.1 Iterator ()

default constructor

The default constructor is used in Vector<Iterator> instantiations and for initialization of Iterator objects con-
tained in Strategy derived classes (see derived class header files). iteratorRep is NULL in this case (a populated
problem_db is needed to build a meaningful Iterator object). This makes it necessary to check for NULL pointers
in the copy constructor, assignment operator, and destructor.

10.49.2.2 Iterator (Model & model)

standard constructor for envelope

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.49 lterator Class Reference 267

Used in iterator instantiations within strategy constructors. Envelope constructor only needs to extract enough data
to properly execute get_iterator, since Iterator(BaseConstructor, model) builds the actual base class data inherited
by the derived iterators.

10.49.2.3 Iterator (const Iterator & iterator)

copy constructor

Copy constructor manages sharing of iteratorRep and incrementing of referenceCount.

10.49.2.4 ~lterator () [virtual]

destructor

Destructor decrements referenceCount and only deletes iteratorRep when referenceCount reaches zero.
10.49.2.5 Iterator (BaseConstructor, Model & model) [ pr ot ect ed]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

This constructor builds the base class data for all inherited iterators. get_iterator() instantiates a derived class and
the derived class selects this base class constructor in its initialization list (to avoid the recursion of the base class
constructor calling get_iterator() again). Since the letter IS the representation, its representation pointer is set to
NULL (an uninitialized pointer causes problems in ~Iterator).

10.49.2.6 Iterator (NoDBBaseConstructor, Model & model) [ pr ot ect ed]

base class for iterator classes constructed on the fly (no DB queries)

This constructor also builds base class data for inherited iterators. However, it is used for on-the-fly instantiations
for which DB queries cannot be used. Therefore it only sets attributes taken from the incoming model.

10.49.3 Member Function Documentation

10.49.3.1 Iterator operator= (const Iterator & iterator)

assignment operator

Assignment operator decrements referenceCount for old iteratorRep, assigns new iteratorRep, and increments
referenceCount for new iteratorRep.

10.49.3.2 wvoidrun() [virtual]

run the iterator; portion of run_iterator()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



268 DAKOTA Class Documentation

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is the virtual run function
for the iterator class hierarchy. All derived classes need to redefine it.

Reimplemented in LeastSq, NonD, Optimizer, and PStudyDACE.

10.49.3.3 void print_results (ostream & s) const [ vi rtual ]

print the final iterator results

This virtual function provides additional iterator-specific final results outputs beyond the function evaluation sum-
mary printed in post_run().

Reimplemented in LeastSq, Optimizer, = PStudyDACE, NonDEvidence, = NonDLHSSampling,
NonDPCESampling, and NonDReliability.

10.49.3.4 void pre_run ()

utility function to perform common operations prior to run()

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is the pre-run function. This
function is not virtual: derived portions are defined in derived_pre_run().

10.49.3.5 void run_iterator (ostream & s)

utility function to automate pre_run()/run()/post_run() verbosely

Iterator supports a construct/pre-run/run/post-run/destruct progression. This non-virtual function is one form of
the overloaded run_iterator function which automates the pre-run/run/post-run portions of the progression. This
form accepts an ostream and executes verbosely.

10.49.3.6 void run_iterator ()

utility function to automate pre_run()/run()/post_run() quietly

Iterator supports a construct/pre-run/run/post-run/destruct progression. This non-virtual function is one form of
the overloaded run_iterator function which automates the pre-run/run/post-run portions of the progression. This
form does not accept an ostream and executes quietly.

10.49.3.7 void post_run (ostream & s)

utility function to perform common operations following run() verbosely

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is one form of the over-
loaded post-run function. This form accepts an ostream and executes verbosely. This function is not virtual:
derived portions are defined in derived_post_run().

10.49.3.8 void post_run ()

utility function to perform common operations following run() quietly

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.49 lterator Class Reference 269

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is one form of the over-
loaded post-run function. This form does not accept an ostream and executes quietly. This function is not virtual:
derived portions are defined in derived_post_run().

10.49.3.9 void assign_rep (Iterator = iterator_rep, bool ref_count_incr =t r ue)

replaces existing letter with a new one

Similar to the assignment operator, the assign_rep() function decrements referenceCount for the old iteratorRep
and assigns the new iteratorRep. It is different in that it is used for publishing derived class letters to existing
envelopes, as opposed to sharing representations among multiple envelopes (in particular, assign_rep is passed a
letter object and operator=is passed an envelope object). Letter assignment supports two models as governed by
ref_count_incr:

e ref_count_incr = true (default): the incoming letter belongs to another envelope. In this case, increment the
reference count in the normal manner so that deallocation of the letter is handled properly.

e ref_count_incr = false: the incoming letter is instantiated on the fly and has no envelope. This case is
modeled after get_iterator(): a letter is dynamically allocated using new and passed into assign_rep, the
letter’s reference count is not incremented, and the letter is not remotely deleted (its memory management
is passed over to the envelope).

10.49.3.10 void derived_pre_run() [protected, virtual]

portions of pre_run specific to derived iterators

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is the virtual derived class
portion of pre_run(). Redefinition by derived classes is optional.

Reimplemented in CONMINOptimizer, DOTOptimizer, NLPQLPOptimizer, = SNLLLeastSq, and
SNLLOptimizer.

10.49.3.11 void derived_post_run() [protected, virtual]

portions of post_run specific to derived iterators

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is the virtual derived class
portion of post_run(). Redefinition by derived classes is optional.

Reimplemented in CONMINOptimizer, DOTOptimizer, NLPQLPOptimizer, = SNLLLeastSq, and
SNLLOptimizer.

10.49.3.12 Iterator x get_iterator (Model & model) [ pri vat e]

Used by the envelope to instantiate the correct letter class.

Used only by the envelope constructor to initialize iteratorRep to the appropriate derived type, as given by the
methodName attribute.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



270 DAKOTA Class Documentation

10.49.4 Member Data Documentation

10.49.4.1 Real fdGradStepSize [ prot ect ed]

relative finite difference step size for numerical gradients

A scalar value (instead of the vector fd_gradient_step_size spec) is used within the iterator hierarchy since this
attribute is only used to publish a step size to vendor numerical gradient algorithms.

10.49.4.2 Real fdHessByGradStepSize [ pr ot ect ed]

relative finite difference step size for numerical Hessians estimated using first-order differences of gradients

A scalar value (instead of the vector fd_hessian_step_size spec) is used within the iterator hierarchy since this
attribute is only used to publish a step size to vendor numerical Hessian algorithms.

10.49.4.3 Real fdHessByFnStepSize [ pr ot ect ed]

relative finite difference step size for numerical Hessians estimated using second-order differences of function
values

A scalar value (instead of the vector fd_hessian_step_size spec) is used within the iterator hierarchy since this
attribute is only used to publish a step size to vendor numerical Hessian algorithms.

The documentation for this class was generated from the following files:

e Dakotalterator.H
e Dakotalterator.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.50 JEGAEvaluator Class Reference 271

10.50 JEGAEvaluator Class Reference

This evaluator uses Sandia National Laboratories Dakota software.

Public Member Functions

o virtual bool Evaluate (JEGA:: Utilities::DesignGroup &group)

Does evaluation of each design in "group’.

e virtual bool Evaluate (JEGA::Utilities::Design &des)
This method cannot be used!!

e virtual std::string GetName () const

Returns the proper name of this operator.

o virtual std::string GetDescription () const

Returns a full description of what this operator does and how.

o virtual GeneticAlgorithmOperator * Clone (JEGA::Algorithms::GeneticAlgorithm &algorithm) const

Creates and returns a pointer to an exact duplicate of this operator.

o JEGAEvaluator (JEGA::Algorithms::GeneticAlgorithm &algorithm, Model &model, JEGAOptimizer
&theOptimizer)

Constructs a JEGAEvaluator for use by algorithm.

o JEGAEvaluator (const JEGAEvaluator &copy)
Copy constructs a JEGAEvaluator.

o JEGAEvaluator (const JEGAEvaluator &copy, JEGA::Algorithms::GeneticAlgorithm &algorithm, Model
&model, JEGAOptimizer &theOptimizer)

Copy constructs a JEGAEvaluator for use by algorithm.

Static Public Member Functions

e static const std::string & Name ()

Returns the proper name of this operator.

e static const std::string & Description ()

Returns a full description of what this operator does and how.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



272 DAKOTA Class Documentation

Protected Member Functions

e RealVector GetContinuum VariableValues (const JEGA:: Utilities::Design &from) const

Returns the continuous Design variable values held in Design from.

o IntVector GetDiscrete VariableValues (const JEGA::Utilities::Design &from) const

Returns the discrete Design variable values held in Design from.

e void GetContinuum VariableValues (const JEGA:: Utilities::Design &from, RealVector &into) const

Places the continuous Design variable values from Design from into RealVector into.

o void GetDiscreteVariableValues (const JEGA:: Utilities::Design &from, IntVector &into) const

Places the discrete Design variable values from Design from into IntVector into.

e void SeparateVariables (const JEGA::Utilities::Design &from, IntVector &intoDisc, RealVector &into-
Cont) const

This method fills intoDisc and intoCont appropriately using the values of from.

e void RecordResponses (const RealVector &from, JEGA::Utilities::Design &into) const

Records the computed objective and constraint function values into into.

e std::size_t GetNumberNonLinearConstraints () const

Returns the number of non-linear constraints for the problem.

e std::size_t GetNumberLinearConstraints () const

Returns the number of linear constraints for the problem.

Private Member Functions

o JEGAEvaluator (JEGA::Algorithms::GeneticAlgorithm &algorithm)

This constructor has no implementation and cannot be used.

Private Attributes

e Model & model

The Model known by this evaluator.

e JEGAOptimizer & _theOptimizer
The JEGAOptimizer that created this evaluator.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.50 JEGAEvaluator Class Reference 273

10.50.1 Detailed Description

This evaluator uses Sandia National Laboratories Dakota software.

Evaluations are carried out using a Model which is known by reference to this class. This provides the advantage
of execution on massively parallel computing architectures.

10.50.2 Constructor & Destructor Documentation

10.50.2.1 JEGAEvaluator (JEGA::Algorithms::GeneticAlgorithm & algorithm, Model & model,
JEGAOptimizer & theOptimizer)
Constructs a JEGAEvaluator for use by algorithm.

The optimizer is needed for purposes of variable scaling.

Parameters:
algorithm The GA for which the new evaluator is to be used.

model The model through which evaluations will be done.
theOptimizer The optimizer that created and is using this evaluator.

10.50.2.2 JEGAEvaluator (const JEGAEvaluator & copy)

Copy constructs a JEGAEvaluator.

Parameters:
copy The evaluator from which properties are to be duplicated into this.

10.50.2.3 JEGAEvaluator (const JEGAEvaluator & copy, JEGA::Algorithms::GeneticAlgorithm &
algorithm, Model & model, JEGAOptimizer & theOptimizer)

Copy constructs a JEGAEvaluator for use by algorithm.

The optimizer is needed for purposes of variable scaling.

Parameters:
copy The existing JEGAEvaluator from which to retrieve properties.

algorithm The GA for which the new evaluator is to be used.
model The model through which evaluations will be done.
theOptimizer The optimizer that created and is using this evaluator.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



274 DAKOTA Class Documentation

10.50.2.4 JEGAEvaluator (JEGA::Algorithms::GeneticAlgorithm & algorithm) [ pri vat e]

This constructor has no implementation and cannot be used.

This constructor can never be used. It is provided so that this operator can still be registered in an operator registry
even though it can never be instantiated from there.

Parameters:

algorithm The GA for which the new evaluator is to be used.

10.50.3 Member Function Documentation

10.50.3.1 const string & Name () [stati c]
Returns the proper name of this operator.

Returns:
The string "JEGA Evaluator".

10.50.3.2 const string & Description () [stati c]

Returns a full description of what this operator does and how.

The returned text is:

This eval uator uses Sandia's DAKOTA optim zation
software to evaluate the passed in Designs. This

nmakes it possible to take advantage of the fact that
DAKOTA is designed to run on massively parallel nachines.

Returns:
A description of the operation of this operator.

10.50.3.3 RealVector GetContinuumVariableValues (const JEGA::Utilities::Desigh & from) const
[ prot ect ed]
Returns the continuous Design variable values held in Design from.

It returns them as a RealVector for use in the Dakota interface. The values in the returned vector will be the actual
values intended for use in the evaluation functions.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.50 JEGAEvaluator Class Reference 275

Parameters:
from The Design class object from which to extract the continuous design variable values.

Returns:
A vector of the continuous design variable values associated with from.

10.50.3.4 IntVector GetDiscreteVariableValues (const JEGA::Utilities::Design & from) const
[ prot ect ed]
Returns the discrete Design variable values held in Design from.

It returns them as a IntVector for use in the Dakota interface. The values in the returned vector will be the values
for the design variables as far as JEGA knows. However, in actuality, the values are the representations due to the
way that Dakota manages discrete variables.

Parameters:
from The Design class object from which to extract the discrete design variable values.

Returns:
A vector of the discrete design variable values associated with from.

10.50.3.5 void GetContinuumVariableValues (const JEGA::Utilities::Design & from, RealVector & into)
const [ protected]

Places the continuous Design variable values from Design frominto Real Vector into.

The values in the returned vector will be the actual values intended for use in the evaluation functions.

Parameters:
from The Design class object from which to extract the continuous design variable values.

into The vector into which to place the extracted values.

10.50.3.6 void GetDiscreteVariableValues (const JEGA::Utilities::Design & from, IntVector & into) const
[ prot ect ed]

Places the discrete Design variable values from Design from into IntVector into.

The values placed in the vector will be the values for the design variables as far as JEGA knows. However, in
actuality, the values are the representations due to the way that Dakota manages discrete variables.

Parameters:
from The Design class object from which to extract the discrete design variable values.

into The vector into which to place the extracted values.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



276 DAKOTA Class Documentation

10.50.3.7 void SeparateVariables (const JEGA::Utilities::Design & from, IntVector & intoDisc,
RealVector & intoCont) const [ pr ot ect ed]

This method fills intoDisc and intoCont appropriately using the values of from.

The discrete design variable values are placed in intoDisc and the continuum are placed into intoCont.

It is more efficient to use this method than to use GetDiscreateVariableValues and GetContinuum VariableValues
separately if you want both.

Parameters:
from The Design class object from which to extract the discrete design variable values.

intoDisc The vector into which to place the extracted discrete values.

intoCont The vector into which to place the extracted continuous values.

10.50.3.8 void RecordResponses (const RealVector & from, JEGA::Utilities::Design & into) const
[ prot ect ed]

Records the computed objective and constraint function values into into.

This method takes the response values stored in from and properly transfers them into the into design.

The response vector from is expected to contain values for each objective function followed by values for each
non-linear constraint in the order in which the info objects were loaded into the target by the optimizer class.

Parameters:
from The vector of responses to install into into.

into The Design to which the responses belong and into which they must be written.

10.50.3.9 size_t GetNumberNonLinearConstraints () const [ pr ot ect ed]

Returns the number of non-linear constraints for the problem.

This is computed by adding the number of non-linear equality constraints to the number of non-linear inequality
constraints. These values are obtained from the model.

Returns:
The total number of non-linear constraints.

10.50.3.10 size_t GetNumberLinearConstraints () const [ pr ot ect ed]

Returns the number of linear constraints for the problem.

This is computed by adding the number of linear equality constraints to the number of linear inequality constraints.
These values are obtained from the model.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.50 JEGAEvaluator Class Reference 277

Returns:
The total number of linear constraints.

10.50.3.11 virtual bool Evaluate (JEGA::Utilities::DesignGroup & group) [ virtual ]

Does evaluation of each design in "group’.

This method uses the Model known by this class to get Designs evaluated. It properly formats the Design class
information in a way that Dakota will understand and then interprets the Dakota results and puts them back into
the Design class object. It respects the asynchronous flag in the Model so evaluations may occur synchronously
or asynchronously.

Prior to evaluating a Design, this class checks to see if it is marked as already evaluated. If it is, then the evaluation
of that Design is not carried out. This is not strictly necessary because Dakota keeps track of evaluated designs
and does not re-evaluate. An exception is the case of a population read in from a file complete with responses
where Dakota is unaware of the evaluations.

Parameters:
group The group of Design class objects to be evaluated.

Returns:
true if all evaluations completed and false otherwise.

10.50.3.12 virtual bool Evaluate (JEGA::Utilities::Design & des) [ vi rtual ]

This method cannot be used!!

This method does nothing and cannot be called. This is because in the case of asynchronous evaluation, this
method would be unable to conform. It would require that each evaluation be done in a synchronous fashion.

Parameters:
des A Design that would be evaluated if this method worked.

Returns:
Would return true if the Design were evaluated and false otherwise.

10.50.3.13 string GetName () const [virtual ]

Returns the proper name of this operator.

Returns:
See Name().

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



278 DAKOTA Class Documentation

10.50.3.14 string GetDescription () const [ virtual ]
Returns a full description of what this operator does and how.

Returns:
See Description().

10.50.3.15 virtual GeneticAlgorithmOperatorx Clone (JEGA::Algorithms::GeneticAlgorithm &
algorithm) const [vi rtual ]

Creates and returns a pointer to an exact duplicate of this operator.

Parameters:
algorithm The GA for which the clone is being created.

Returns:
A clone of this operator.

10.50.4 Member Data Documentation

10.50.4.1 Model& _model [ private]

The Model known by this evaluator.

It is through this model that evaluations will take place.

10.50.4.2 JEGAOptimizer& _theOptimizer [pri vate]

The JEGAOptimizer that created this evaluator.

This instance is used to access certain needed functions from the optimizer class such as those methods that do
variable scaling.

The documentation for this class was generated from the following files:

e JEGAEvaluator.H
e JEGAEvaluator.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.51 JEGAOptimizer Class Reference 279

10.51 JEGAOptimizer Class Reference

Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms.

Inheritance diagram for JEGAOptimizer::

| Iterator |

T

| Minimizer |

T

| Optimizer |

| JEGAOptimizer |

Public Member Functions

e virtual void find_optimum ()

Performs the iterations to determine the optimal set of solutions.

o JEGAOptimizer (Model &model)
Constructs a JEGAOptimizer class object.

o ~JEGAOptimizer ()
Destructs a JEGAOptimizer.

Protected Member Functions

o void ReCreateTheAlgorithmConfig ()

Destroys the existing algorithm configuration and creates a new one.

e void ReCreateTheProblemConfig ()

Destroys the existing problem configuration and creates a new one.

e void LoadTheAlgorithmConfig ()
Completely initializes or re-initializes the algorithm configuration.

e void LoadTheProblemConfig ()
Completely initializes or re-initializes the problem configuration.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



280 DAKOTA Class Documentation

e void LoadTheDesignVariables ()
Adds DesignVariablelnfo objects into the problem configuration object.

e void LoadTheObjectiveFunctions ()
Adds ObjectiveFunctioninfo objects into the problem configuration object.

e void LoadTheConstraints ()
Adds Constraintinfo objects into the problem configuration object.

e const JEGA::Utilities::Design * GetBestSolution (const JEGA::Utilities::DesignOFSortSet &from)
Chooses the best Design from a set of solutions taking into account the algorithm type.

e const JEGA::Utilities::Design * GetBestMOSolution (const JEGA::Utilities::DesignOFSortSet &from)
Chooses the best Design from a set of solutions assuming that they are generated by a multi objective algorithm.

o const JEGA::Utilities::Design * GetBestSOSolution (const JEGA::Utilities::DesignOFSortSet &from)
Chooses the best Design from a set of solutions assuming that they are generated by a single objective algorithm.

Private Attributes

e EvalCreator * _theEvalCreator

A pointer to an EvaluatorCreator used to create the evaluator used by JEGA in Dakota (a JEGAEvaluator).

o JEGA::FrontEnd::ProblemConfig * _theProbConfig

A pointer to the problem configuration loaded by this optimizer at each call to find_optimum and passed to the
JEGA Driver.

o JEGA::FrontEnd::AlgorithmConfig * _theAlgConfig

A pointer to the algorithm configuration loaded by this optimizer at each call to find_optimum and passed to the
JEGA Driver.

e JEGAProbDescDB * _theProbDB

A pointer to the JEGAProbDescDB that wraps the Dakota::ProblemDescDB and from which all parameters are
retrieved by the created algorithms.

Static Private Attributes

e static const std::string _sogaMethodText
The text that indicates the SOGA method.

e static const std::string _mogaMethodText
The text that indicates the MOGA method.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.51 JEGAOptimizer Class Reference 281

Friends

e class JEGAEvaluator

The JEGAEvaluator is a friend so that it can access the methods of the Minimizer base class of the JEGAOptimizer
necessary to do variable scaling.

Classes

e class EvalCreator
A specialization of the JEGA::FrontEnd::EvaluatorCreator that creates a new instance of a JEGAEvaluator.

e class JEGAProbDescDB

A specialization of the JEGA::Utilities::ParameterDatabase that wraps and retrieves data from a
Dakota::ProblemDescDB.

10.51.1 Detailed Description

Version of Optimizer for instantiation of John Eddy’s Genetic Algorithms.

This class encapsulates the necessary functionality for creating and properly initializing a GeneticAlgorithm.

10.51.2 Constructor & Destructor Documentation

10.51.2.1 JEGAOptimizer (Model & model)
Constructs a JEGAOptimizer class object.
This method does some of the initialization work for the algorithm. In particular, it initialized the JEGA core.

Parameters:
model The Dakota::Model that will be used by this optimizer for problem information, etc.

10.51.3 Member Function Documentation

10.51.3.1 void ReCreateTheAlgorithmConfig () [ pr ot ect ed]

Destroys the existing algorithm configuration and creates a new one.

A usable evaluator creator must already exist prior to calling this method. The parameter database will be de-
stroyed and re-created in order to implement this method. As a result, the parameter data in the underlying
ProblemDescDB will remain unchanged but any additional data will be gone.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



282 DAKOTA Class Documentation

10.51.3.2 void ReCreateTheProblemConfig () [ prot ect ed]

Destroys the existing problem configuration and creates a new one.

The newly created problem configuration will be completely empty.

10.51.3.3 void LoadTheAlgorithmConfig () [ pr ot ect ed]

Completely initializes or re-initializes the algorithm configuration.

This first uses the ReCreateThe AlgorithmConfig method and then loads the fresh configuration object with ap-
propriate data retrieved from the parameter database.

10.51.3.4 void LoadTheProblemConfig () [ prot ect ed]

Completely initializes or re-initializes the problem configuration.

This first uses the ReCreateTheProblemConfig method and then loads the fresh configuration object using the
LoadTheDesignVariables, LoadTheObjectiveFunctions, and LoadTheConstraints methods.

10.51.3.5 void LoadTheDesignVariables () [ pr ot ect ed]

Adds DesignVariableInfo objects into the problem configuration object.

This retrieves design variable information from the ParameterDatabase and creates DesignVariableInfo’s from it.

10.51.3.6 void LoadTheObjectiveFunctions () [ pr ot ect ed]

Adds ObjectiveFunctionInfo objects into the problem configuration object.

This retrieves objective function information from the ParameterDatabase and creates ObjectiveFunctionInfo’s
from it.

10.51.3.7 void LoadTheConstraints () [ pr ot ect ed]

Adds ConstraintInfo objects into the problem configuration object.

This retrieves constraint function information from the ParameterDatabase and creates ConstraintInfo’s from it.

10.51.3.8 const JEGA::Utilities::Designx GetBestSolution (const JEGA::Utilities: :DesignOFSortSet &
from) [ pr ot ect ed]

Chooses the best Design from a set of solutions taking into account the algorithm type.

eventually this functionality must be moved into a separate post-processing application for MO datasets.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.51 JEGAOptimizer Class Reference 283

10.51.3.9 const JEGA::Utilities::Designx GetBestMOSolution (const JEGA::Utilities::DesignOFSortSet
& from) [ protect ed]
Chooses the best Design from a set of solutions assuming that they are generated by a multi objective algorithm.

eventually this functionality must be moved into a separate post-processing application for MO datasets.

10.51.3.10 const JEGA::Utilities::Design* GetBestSOSolution (const JEGA:: Utilities: :DesignOFSortSet
& from) [ protected]
Chooses the best Design from a set of solutions assuming that they are generated by a single objective algorithm.

eventually this functionality must be moved into a separate post-processing application for MO datasets.

10.51.3.11 void find_optimum () [virtual]

Performs the iterations to determine the optimal set of solutions.
Override of pure virtual method in Optimizer base class.
Implements Optimizer.

The documentation for this class was generated from the following files:

o JEGAOptimizer.H
o JEGAOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



284 DAKOTA Class Documentation

10.52 JEGAOptimizer::EvalCreator Class Reference

A specialization of the JEGA::FrontEnd::EvaluatorCreator that creates a new instance of a JEGAEvaluator.

Public Member Functions

e virtual JEGA::Algorithms::GeneticAlgorithmEvaluator % CreateEvaluator (JEGA::Algorithms::Genetic-
Algorithm &alg)

Overriden to return a newly created JEGAEvaluator.

e EvalCreator (Model &theModel, JEGAOptimizer &theOptimizer)

Constructs an EvalCreator using the supplied model and optimizer.

Private Attributes

o JEGAOptimizer & _theOptimizer

The optimizer instance to be passed to the constructor of the JEGAEvaluator.

e Model & _theModel

The user defined model to be passed to the constructor of the JEGAEvaluator.

10.52.1 Detailed Description

A specialization of the JEGA::FrontEnd::EvaluatorCreator that creates a new instance of a JEGAEvaluator.

10.52.2 Constructor & Destructor Documentation

10.52.2.1 EvalCreator (Model & theModel, JEGAOptimizer & theOptimizer)

Constructs an EvalCreator using the supplied model and optimizer.

Parameters:
theModel The Dakota::Model this creator will pass to the created evaluator.

theOptimizer The JEGAOptimizer this creator will pass to the created evaluator.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.52 JEGAOptimizer::EvalCreator Class Reference 285

10.52.3 Member Function Documentation

10.52.3.1 virtual JEGA::Algorithms::GeneticAlgorithmEvaluatorx CreateEvaluator
(JEGA::Algorithms::GeneticAlgorithm & alg) [ vi rtual ]

Overriden to return a newly created JEGAEvaluator.

The GA will assume ownership of the evaluator so we needn’t worry about keeping track of it for destruction.
The additional parameters needed by the JEGAEvaluator are stored as members of this class at construction time.

Parameters:
alg The GA for which the evaluator is to be created.

Returns:
A pointer to a newly created Evaluator.

The documentation for this class was generated from the following file:

o JEGAOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



286 DAKOTA Class Documentation

10.53 JEGAOptimizer::JEGAProbDescDB Class Reference

A specialization of the JEGA::Utilities::ParameterDatabase that wraps and retrieves data from a
Dakota::ProblemDescDB.
Public Member Functions

e virtual int GetIntegral (const std::string &tag) const
Overridden to supply the requested parameter as an integer from this DB.

o virtual double GetDouble (const std::string &tag) const

Overridden to supply the requested parameter as a double from this DB.

e virtual std::size_t GetSizeType (const std::string &tag) const
Overridden to supply the requested parameter as a size_t from this DB.

o virtual bool GetBoolean (const std::string &tag) const

Overridden to supply the requested parameter as a bool from this DB.

o virtual std::string GetString (const std::string &tag) const
Overridden to supply the requested parameter as a string from this DB.

o virtual JEGA::DoubleVector GetDoubleVector (const std::string &tag) const
Overridden to supply the requested parameter as a DoubleVector from this DB.

o virtual JEGA::IntVector GetIntVector (const std::string &tag) const

Overridden to supply the requested parameter as an IntVector from this DB.

e virtual JEGA::DoubleMatrix GetDoubleMatrix (const std::string &tag) const
Overridden to supply the requested parameter as a DoubleMatrix from this DB.

o virtual JEGA::IntList GetIntList (const std::string &tag) const

Overridden to supply the requested parameter as an IntList from this DB.

o virtual JEGA::StringVector GetString Vector (const std::string &tag) const
Overridden to supply the requested parameter as a StringVector from this DB.

o virtual JEGA::StringList GetStringList (const std::string &tag) const

Overridden to supply the requested parameter as a StringList from this DB.

e virtual std::string Dump () const
Prints the contents of the entire database into a string and return it.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.53 JEGAOptimizer::JEGAProbDescDB Class Reference 287

e virtual void Dump (std::ostream &stream) const

Prints the contents of the entire database into the supplied output stream.

o JEGAProbDescDB (const ProblemDescDB &wrapped)
Constructs a JEGAProbDescDB to wrap wrapped.

Private Attributes

e const ProblemDescDB & _wrapped
The Dakota::ProblemDescription database from which the actual data is obtained.

10.53.1 Detailed Description

A specialization of the JEGA::Utilities::ParameterDatabase that wraps and retrieves data from a
Dakota::ProblemDescDB.

10.53.2 Constructor & Destructor Documentation

10.53.2.1 JEGAProbDescDB (const ProblemDescDB & wrapped)

Constructs a JEGAProbDescDB to wrap wrapped.

Parameters:
wrapped The existing ProblemDescDB from which otherwise unknown parameter values are retrieved.

10.53.3 Member Function Documentation

10.53.3.1 int GetlIntegral (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as an integer from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



288 DAKOTA Class Documentation

10.53.3.2 double GetDouble (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as a double from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.3 size_t GetSizeType (const std::string & tag) const [ vi rtual ]
Overridden to supply the requested parameter as a size_t from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.4 bool GetBoolean (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as a bool from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.5 string GetString (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as a string from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.6  JEGA::DoubleVector GetDoubleVector (const std::string & tag) const [ vi rt ual ]

Overridden to supply the requested parameter as a Double Vector from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.53 JEGAOptimizer::JEGAProbDescDB Class Reference 289

10.53.3.7 JEGA::IntVector GetInt\Vector (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as an IntVector from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.8 JEGA::DoubleMatrix GetDoubleMatrix (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as a DoubleMatrix from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.9 JEGA::IntList GetIntList (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as an IntList from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.10 JEGA::StringVector GetStringVector (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as a StringVector from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

10.53.3.11 JEGA::StringList GetStringList (const std::string & tag) const [ vi rtual ]

Overridden to supply the requested parameter as a StringList from this DB.

Parameters:
tag The key by which the requested value is to be retrieved.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



290 DAKOTA Class Documentation

10.53.3.12 string Dump () const [ vi rtual ]

Prints the contents of the entire database into a string and return it.

This method cannot be implemented by this class and thus does nothing.

Returns:
The entire contents of the database in a string.

10.53.3.13 void Dump (std::ostream & stream) const [vi rtual ]

Prints the contents of the entire database into the supplied output stream.

This method cannot be implemented by this class and thus does nothing.

Parameters:
stream The stream into which to write the contents of this database.

The documentation for this class was generated from the following file:

o JEGAOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.54 LeastSq Class Reference 291

10.54 LeastSq Class Reference

Base class for the nonlinear least squares branch of the iterator hierarchy.

Inheritance diagram for LeastSq::

| Iterator |

T

| Minimizer

T

[ e
i

{ w \
|NLZSOLLeastSq| |NLSSOLLeastSq| | SNLLLeastSq |

Protected Member Functions

e LeastSq ()

default constructor

LeastSq (Model &model)

standard constructor

~LeastSq ()

destructor

void run ()

run the iterator; portion of run_iterator()

void print_results (ostream &s) const

void derived_initialize_scaling ()

provides derived class-specific portions of scaling initialization since Optimizer and LeastSq iterators have obj fn.
and residual scales, respectively

virtual void minimize_residuals ()=0

Used within the least squares branch for minimizing the sum of squares residuals. Redefines the run_iterator virtual
function for the least squares branch.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



292 DAKOTA Class Documentation

Protected Attributes

e int numLeastSqTerms
number of least squares terms

10.54.1 Detailed Description

Base class for the nonlinear least squares branch of the iterator hierarchy.

The LeastSq class provides common data and functionality for NLSSOLLeastSq and SNLLLeastSq.

10.54.2 Constructor & Destructor Documentation

10.54.2.1 LeastSq (Model & model) [ pr ot ect ed]

standard constructor

This constructor extracts the inherited data for the least squares branch and performs sanity checking on gradient
and constraint settings.

10.54.3 Member Function Documentation

10.54.3.1 wvoidrun() [inline, protected, virtual]

run the iterator; portion of run_iterator()

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is the virtual run function
for the iterator class hierarchy. All derived classes need to redefine it.

Reimplemented from Iterator.

10.54.3.2 void print_results (ostream & s) const [ protected, virtual]

Redefines default iterator results printing to include nonlinear least squares results (residual terms and constraints).
Reimplemented from Iterator.

The documentation for this class was generated from the following files:

e DakotaleastSq.H
e Dakotal.eastSq.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.55 List Class Template Reference

293

10.55 List Class Template Reference

Template class for the Dakota bookkeeping list.

Public Member Functions

List ()
Default constructor.

List (const List< T > &a)
Copy constructor.

~List ()
Destructor.

template<class Inputlter> List (Inputlter first, Inputlter last)

Range constructor (member template).

List< T > & operator= (const List< T > &a)
assignment operator

void write (ostream &s) const
Writes a List to an output stream.

void read (MPIUnpackBuffer &s)

Reads a List from an MPIUnpackBuffer after an MPI receive.

void write (MPIPackBuffer &s) const
Writes a List to a MPIPackBuffer prior to an MPI send.

size_t entries () const

Returns the number of items that are currently in the list.

T get ()
Removes and returns the first item in the list.

T removeAt (size_t index)

Removes and returns the item at the specified index.

bool remove (const T &a)
Removes the specified item from the list.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



294 DAKOTA Class Documentation

e void insert (const T &a)

Adds the item a to the end of the list.

e bool contains (const T &a) const

Returns TRUE if list contains object a, returns FALSE otherwise.

e bool find (bool(xtest_fn)(const T &, const void =), const void *test_fn_data, T &found_item) const

Returns TRUE if the list contains an object that the user defined function finds and sets k to this object.

e List< T >::iterator find (bool(xtest_fn)(const T &, const void *), const void xtest_fn_data)

Returns an iterator pointing to an object that the user defined function finds.

e size_tindex (bool(xtest_fn)(const T &, const void *), const void *test_fn_data) const

Returns the index of object that the user defined test function finds.

e void sort (bool(xsort_fn)(const T &, const T &))

Sorts the list into an order based on the predefined sort function.

e size_t index (const T &a) const

Returns the index of the object.

e size_t count (const T &a) const

Returns the number of items in the list equal to object.

o T & operator][ ] (size_t 1)

Returns the object at index i (can use as Ivalue).

e const T & operator[ ] (size_t i) const

Returns the object at index i, const (can’t use as Ivalue).

10.55.1 Detailed Description
template<class T> class Dakota::List< T >

Template class for the Dakota bookkeeping list.

The List is the common list class for Dakota. It inherits from either the RW list class or the STL list class. Extends
the base list class to add Dakota specific methods Builds upon the previously existing DakotaValList class

10.55.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.55 List Class Template Reference 295

1055.2.1 T get()

Removes and returns the first item in the list.

Remove and return item from front of list. Returns the object pointed to by the list::begin() iterator. It also deletes
the first node by calling the list::pop_front() method. Note: get() is not the same as list::front() since the latter
would return the 1st item but would not delete it.

10.55.2.2 T removeAt (size_t index)

Removes and returns the item at the specified index.

Removes the item at the index specified. Uses the STL advance() function to step to the appropriate position in
the list and then calls the list::erase() method.

10.55.2.3 bool remove (const T & a)

Removes the specified item from the list.

Removes the first instance matching object a from the list (and therefore differs from the STL list::remove() which
removes all instances). Uses the STL find() algorithm to find the object and the list::erase() method to perform
the remove.

10.55.2.4 void insert (const T &a) [i nli ne]

Adds the item a to the end of the list.

Insert item at end of list, calls list::push_back() method.

10.55.2.5 bool contains (const T & a) const [ i nl i ne]

Returns TRUE if list contains object a, returns FALSE otherwise.

Uses the STL find() algorithm to locate the first instance of object a. Returns true if an instance is found.

10.55.2.6 bool find (bool(x)(const T &, const void ) test_fn, const void x* test_fn_data, T & found_item)
const

Returns TRUE if the list contains an object that the user defined function finds and sets k to this object.

Find the first item in the list which satisfies the test function. Sets k if the object is found.

10.55.2.7 List< T >::iterator find (bool(x)(const T &, const void x) test_fn, const void * test_fn_data)

Returns an iterator pointing to an object that the user defined function finds.

Find the first item in the list which satisfies the test function and return an iterator pointing to it.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



296 DAKOTA Class Documentation

10.55.2.8 size_t index (bool(x)(const T &, const void x) test_fn, const void « test_fn_data) const

Returns the index of object that the user defined test function finds.

Returns the index of the first item in the list which satisfies the test function. Uses a single list traversal to both
locate the object and return its index (generic algorithms would require two loop traversals).

10.55.2.9 void sort (bool(x)(const T &, const T &) sort_fn) [inli ne]

Sorts the list into an order based on the predefined sort function.

The sort method utilizes the SortCompare functor and the base class list::sort algorithm to sort a list based on
the incoming sorting function sort_fn. Note that the functor-based sorting method of std::list is not supported by
all compilers (e.g., SOLARIS, TFLOP) due to use of member templates, but a function pointer-based interface is
available in some cases.

10.55.2.10 size_tindex (const T & a) const

Returns the index of the object.

Returns the index of the first item in the list which matches the object a. Uses a single list traversal to both locate
the object and return its index (generic algorithms would require two loop traversals).

10.55.2.11 size_tcount (const T & a) const [i nli ne]

Returns the number of items in the list equal to object.

Uses the STL count() algorithm to return the number of occurences of the specified object.

1055212 ]

T & operator][ ] (size_t i)
Returns the object at index i (can use as lvalue).

Returns item at position i of the list by stepping through the list using forward or reverse STL iterators (depending
on which end of the list is closer to the desired item). Once the object is found, it returns the value pointed to by
the iterator.

This functionality is inefficient in 0->len loop-based list traversals and is being replaced by iterator-based list
traversals in the main DAKOTA code. For isolated look-ups of a particular index, however, this approach is
acceptable.

10.55.2.13 ]

const T & operator[ ] (size_t i) const

Returns the object at index i, const (can’t use as lvalue).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.55 List Class Template Reference 297

Returns const item at position i of the list by stepping through the list using forward or reverse STL iterators
(depending on which end of the list is closer to the desired item). Once the object is found it returns the value
pointed to by the iterator.

This functionality is inefficient in 0->len loop-based list traversals and is being replaced by iterator-based list
traversals in the main DAKOTA code. For isolated look-ups of a particular index, however, this approach is
acceptable.

The documentation for this class was generated from the following file:

e DakotaList.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



298 DAKOTA Class Documentation

10.56 Matrix Class Template Reference

Template class for the Dakota numerical matrix.

Inheritance diagram for Matrix::

BaseVector< BaseVector< T > >

Matrix

Public Member Functions

e Matrix (size_t num_rows=0, size_t num_cols=0)

Constructor, takes number of rows, and number of columns as arguments.

~Matrix ()
Destructor.

e Matrix< T > & operator= (const T &ival)
Sets all elements in the matrix to ival.

e size_t num_rows () const

Returns the number of rows for the matrix.

e size_t num_columns () const

Returns the number of columns for the matrix.

e void reshape_2d (size_t num_rows, size_t num_cols)

Resizes the matrix to num_rows by num_cols.

e void read (istream &s, size_t nr, size_t nc)

Reads a portion of the Matrix from an input stream.

e void read (istream &s)

Reads the complete Matrix from an input stream.

e void read_row_vector (istream &s, size_t i, size_t nc)

Reads a portion of the ith Matrix row vector from an input stream.

e void read_row_vector (istream &s, size_t i)

Reads the ith Matrix row vector from an input stream.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.56 Matrix Class Template Reference 299

e void write (ostream &s, size_t nr, size_t nc, bool brackets, bool row_rtn, bool final_rtn) const

Writes a portion of the Matrix to an output stream.

e void write (ostream &s, bool brackets, bool row_rtn, bool final_rtn) const

Writes the complete Matrix to an output stream.

e void write_row_vector (ostream &s, size_t i, size_t nc, bool brackets, bool break_line, bool final_rtn) const

Writes a portion of the ith Matrix row vector to an output stream.

e void write_row_vector (ostream &s, size_t i, bool brackets, bool break_line, bool final_rtn) const

Writes the ith Matrix row vector to an output stream.

e void read (BiStream &s, size_t nr, size_t nc)

Reads a portion of the Matrix from a binary input stream.

e void read (BiStream &s)
Reads the complete Matrix from a binary input stream.

e void read_row_vector (BiStream &s, size_t i, size_t nc)

Reads a portion of the ith Matrix row vector from a binary input stream.

e void read_row_vector (BiStream &s, size_t i)

Reads the ith Matrix row vector from a binary input stream.

e void write (BoStream &s, size_t nr, size_t nc) const

Writes a portion of the Matrix to a binary output stream.

e void write (BoStream &s) const

Writes the complete Matrix to a binary output stream.

e void write_row_vector (BoStream &s, size_t i, size_t nc) const

Writes a portion of the ith Matrix row vector to a binary output stream.

e void write_row_vector (BoStream &s, size_t i) const

Writes the ith Matrix row vector to a binary output stream.

e void read (MPIUnpackBuffer &s)
Reads a Matrix from an MP1UnpackBuffer after an MPI receive.

e void read_annotated (MPIUnpackBuffer &s)
Reads an annotated Matrix from an MPIUnpackBuffer after an MPI receive.

e void read_row_vector (MPIUnpackBuffer &s, size_t i)
Reads the ith Matrix row vector from an MPIUnpackBuffer after an MPI recv.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



300 DAKOTA Class Documentation

e void write (MPIPackBuffer &s) const
Writes a Matrix to a MP1PackBuffer prior to an MPI send.

e void write_annotated (MPIPackBuffer &s) const

Writes an annotated Matrix to a MPIPackBuffer prior to an MPI send.

e void write_row_vector (MPIPackBuffer &s, size_t i) const

Writes the ith Matrix row vector to a MPIPackBuffer prior to an MPI send.

10.56.1 Detailed Description
template<class T> class Dakota::Matrix< T >

Template class for the Dakota numerical matrix.

A matrix class template to provide 2D arrays of objects. The matrix is zero-based, rows: 0 to (numRows-1) and
cols: 0 to (numColumns-1). The class supports overloading of the subscript operator allowing it to emulate a
normal built-in 2D array type. Matrix relies on the BaseVector template class to manage any differences between
underlying DAKOTA_BASE_VECTOR implementations (RW, STL, etc.).

10.56.2 Member Function Documentation

10.56.2.1 Matrix< T > & operator=(const T &val) [i nli ne]

Sets all elements in the matrix to ival.
calls base class operator=(ival)

The documentation for this class was generated from the following file:

e DakotaMatrix.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.57 MergedConstraints Class Reference 301

10.57 MergedConstraints Class Reference

Derived class within the Constraints hierarchy which employs the merged data view.

Inheritance diagram for MergedConstraints::

| Congtraints || VariablesUtil |

t f
l

| MergedConstraints |

Public Member Functions

e MergedConstraints ()
default constructor

MergedConstraints (const ProblemDescDB &problem_db, const pair< short, short > &view)
standard constructor

e ~MergedConstraints ()
destructor

e const RealVector & continuous_lower_bounds () const

return the active continuous variable lower bounds

e void continuous_lower_bounds (const RealVector &c_I_bnds)
set the active continuous variable lower bounds

e const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds

e void continuous_upper_bounds (const RealVector &c_u_bnds)
set the active continuous variable upper bounds

e const RealVector & inactive_continuous_lower_bounds () const

return the inactive continuous lower bounds

e void inactive_continuous_lower_bounds (const RealVector &i_c_1_bnds)
set the inactive continuous lower bounds

e const RealVector & inactive_continuous_upper_bounds () const

return the inactive continuous upper bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



302 DAKOTA Class Documentation

e void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)

set the inactive continuous upper bounds

e RealVector all_continuous_lower_bounds () const

returns a single array with all continuous lower bounds

e RealVector all_continuous_upper_bounds () const

returns a single array with all continuous upper bounds

e void write (ostream &s) const

write a variable constraints object to an ostream

e void read (istream &s)

read a variable constraints object from an istream

Private Attributes

e RealVector mergedDesignLowerBnds

a design lower bounds array merging continuous and discrete domains (integer values promoted to reals)

e RealVector mergedDesignUpperBnds

a design upper bounds array merging continuous and discrete domains (integer values promoted to reals)

e RealVector uncertainLowerBnds

the uncertain distribution lower bounds array (no discrete uncertain to merge)

e RealVector uncertainUpperBnds

the uncertain distribution upper bounds array (no discrete uncertain to merge)

e RealVector mergedStateLowerBnds
a state lower bounds array merging continuous and discrete domains (integer values promoted to reals)

e RealVector mergedStateUpperBnds
a state upper bounds array merging continuous and discrete domains (integer values promoted to reals)

10.57.1 Detailed Description

Derived class within the Constraints hierarchy which employs the merged data view.

Derived variable constraints classes take different views of the design, uncertain, and state variable types and
the continuous and discrete domain types. The MergedConstraints derived class combines continuous and dis-
crete domain types but separates design, uncertain, and state variable types. The result is merged design bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.57 MergedConstraints Class Reference 303

arrays (mergedDesignLowerBnds, mergedDesignUpperBnds), uncertain distribution bounds arrays (uncertain-
LowerBnds, uncertainUpperBnds), and merged state bounds arrays (mergedStateLowerBnds, mergedStateUpper-
Bnds). The branch and bound strategy uses this approach (see Variables::get_variables(problem_db) for variables
type selection; variables type is passed to the Constraints constructor in Model).

10.57.2 Constructor & Destructor Documentation

10.57.2.1 MergedConstraints (const ProblemDescDB & problem_db, const pair< short, short > & view)

standard constructor

In this class, a merged data approach is used in which continuous and discrete arrays are combined into a single
continuous array (integrality is relaxed; the converse of truncating reals is not currently supported but could be in
the future if needed). Iterators/strategies which use this class include: BranchBndStrategy. Extract fundamental
lower and upper bounds and merge continuous and discrete domains to create mergedDesignL.owerBnds, merged-
DesignUpperBnds, mergedStateL.owerBnds, and mergedStateUpperBnds using utilities from VariablesUtil (un-
certain distribution bounds do not require any merging).

The documentation for this class was generated from the following files:

o MergedConstraints.H
o MergedConstraints.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



304 DAKOTA Class Documentation

10.58 MergedVariables Class Reference

Derived class within the Variables hierarchy which employs the merged data view.

Inheritance diagram for Merged Variables::

| Variables || VariablesUtil |

t f
[

| MergedVariabIesl

Public Member Functions

e MergedVariables ()
default constructor

MergedVariables (const ProblemDescDB &problem_db, const pair< short, short > &view)
standard constructor

e ~MergedVariables ()
destructor

e size_t tv () const

Returns total number of vars.

e const RealVector & continuous_variables () const
return the active continuous variables

e void continuous_variables (const RealVector &c_vars)

set the active continuous variables

e const StringArray & continuous_variable_labels () const
return the active continuous variable labels

e void continuous_variable_labels (const StringArray &c_v_labels)

set the active continuous variable labels

e const RealVector & inactive_continuous_variables () const
return the inactive continuous variables

e void inactive_continuous_variables (const Real Vector &i_c_vars)

set the inactive continuous variables

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.58 MergedVariables Class Reference 305

e const StringArray & inactive_continuous_variable_labels () const

return the inactive continuous variable labels

e void inactive_continuous_variable_labels (const StringArray &i_c_v_labels)

set the inactive continuous variable labels

e size_t acv () const

returns total number of continuous vars

e RealVector all_continuous_variables () const

returns a single array with all continuous variables

e void all_continuous_variables (const Real Vector &a_c_vars)

sets all continuous variables using a single array

e StringArray all_continuous_variable_labels () const

returns a single array with all continuous variable labels

e StringArray all_variable_labels () const

returns a single array with all variable labels

e void read (istream &s)

read a variables object from an istream

e void write (ostream &s) const
write a variables object to an ostream

e void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

e void read_annotated (istream &s)
read a variables object in annotated format from an istream

e void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

e void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

e void read (BiStream &s)
read a variables object from the binary restart stream

e void write (BoStream &s) const

write a variables object to the binary restart stream

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



306 DAKOTA Class Documentation

e void read (MPIUnpackBuffer &s)

read a variables object from a packed MPI buffer

e void write (MPIPackBuffer &s) const

write a variables object to a packed MPI buffer

Private Member Functions

e void copy_rep (const Variables *vars_rep)

Used by copy() to copy the contents of a letter class.

Private Attributes

e RealVector mergedDesignVars

a design variables array merging continuous and discrete domains (integer values promoted to reals)

e RealVector uncertainVars

the uncertain variables array (no discrete uncertain to merge)

e RealVector mergedStateVars

a state variables array merging continuous and discrete domains (integer values promoted to reals)

e StringArray mergedDesignLabels

a label array combining continuous design and discrete design labels

e StringArray uncertainLabels

the uncertain variables label array (no discrete uncertain to combine)

e StringArray mergedStateLabels

a label array combining continuous state and discrete state labels

Friends

e bool operator== (const MergedVariables &vars1, const Merged Variables &vars2)

equality operator

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.58 MergedVariables Class Reference 307

10.58.1 Detailed Description

Derived class within the Variables hierarchy which employs the merged data view.

Derived variables classes take different views of the design, uncertain, and state variable types and the continuous
and discrete domain types. The MergedVariables derived class combines continuous and discrete domain types
but separates design, uncertain, and state variable types. The result is a single continuous array of design variables
(mergedDesignVars), a single continuous array of uncertain variables (uncertainVars), and a single continuous
array of state variables (mergedStateVars). The branch and bound strategy uses this approach (see Variables::get_-
variables(problem_db)).

10.58.2 Constructor & Destructor Documentation

10.58.2.1 MergedVariables (const ProblemDescDB & problem_db, const pair< short, short > & view)

standard constructor

In this class, a merged data approach is used in which continuous and discrete arrays are combined into a single
continuous array (integrality is relaxed; the converse of truncating reals is not currently supported but could be in
the future if needed). Iterators/strategies which use this class include: BranchBndStrategy. Extract fundamental
variable types and labels and merge continuous and discrete domains to create mergedDesignVars, mergedState-
Vars, mergedDesignLabels, and mergedStateLabels using utilities from VariablesUtil (uncertain variables and
labels do not require any merging).

The documentation for this class was generated from the following files:

e MergedVariables.H
e MergedVariables.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



308 DAKOTA Class Documentation

10.59 Minimizer Class Reference

Base class for the optimizer and least squares branches of the iterator hierarchy.

Inheritance diagram for Minimizer::

| Iterator |

T

| Minimizer |
1
| LeastSq | | Optimizer |

———— NL2SOLLeastSqy |
4| NLSSOL LeastSq |
4| SNLL LeastSq |

COLINOptimizer |

CONMINOptimizer |

DOTOptimizer |

—
.
.
.

JEGAOptimizer |

4| NLPQL POptimizer |
4| NPSOL Optimizer |
4| SNLL Optimizer |

Public Member Functions

e const Variables & variable_results () const
return the final iterator solution (variables)

e const Response & response_results () const
return the final iterator solution (response)

Protected Member Functions

e Minimizer ()

default constructor

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.59 Minimizer Class Reference 309

Minimizer (Model &model)
standard constructor

Minimizer (NoDBBaseConstructor, size_t num_lin_ineq, size_t num_lin_eq, size_t num_nln_ineq, size_t
num_nln_eq)

alternate constructor for "on the fly" instantiations

~Minimizer ()

destructor

e void response_results_active_set (const ActiveSet &set)

set the requested data for the final iterator response results

virtual void derived_initialize_scaling ()=0

provides derived class-specific portions of scaling initialization since Optimizer and LeastSq iterators have obj fn.
and residual scales, respectively

void initialize_scaling ()

helper function to initialize scaling multipliers and offets

RealVector modify_n2s (const Real Vector &native_vars, const Real Vector &multipliers, const Real Vector
&offsets) const

general mapping from native to scaled variables vectors: scaled_vars = (native_vars - offsets)/multiplierss

e RealVector cv_modify_n2s (const Real Vector &native_vars) const

map continuous variables from native to scaled

RealVector nln_ineq_modify_n2s (const Real Vector &native_vars) const

map nonlinear inequalities from native to scaled

RealVector nln_eq_modify_n2s (const Real Vector &native_vars) const

map nonlinear equalities from native to scaled

RealVector lin_ineq_modify_n2s (const Real Vector &native_vars) const

map linear inequalities from native to scaled

RealVector lin_eq_modify_n2s (const Real Vector &native_vars) const
map linear equalities from native to scaled

RealVector fns_modify_n2s (const Real Vector &native_fns) const

map functions (reponse vector) from native to scaled

RealMatrix lin_coeffs_modify_n2s (const RealMatrix &native_coeffs, const RealVector &cv_multipliers,
const Real Vector &lin_multipliers) const

general linear coefficients mapping from native to scaled space

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



310 DAKOTA Class Documentation

RealMatrix lin_ineq_coeffs_modify_n2s (const RealMatrix &native_coeffs) const
map linear inequality constraint matrix from native to scaled

RealMatrix lin_eq_coeffs_modify_n2s (const RealMatrix &native_coeffs) const

map linear inequality constraint matrix from native to scaled

Response response_modify_n2s (const Response &response_source) const
map reponses from native to scaled variable space

RealVector modify_s2n (const RealVector &scaled_vars, const Real Vector &multipliers, const Real Vector
&offsets) const

general RealVector mapping from native to scaled variables: native_vars = scaled_vars * multipliers + offsets

RealVector cv_modify_s2n (const Real Vector &scaled_vars) const

map continuous variables from scaled to native

RealVector fns_modify_s2n (const Real Vector &scaled_fns) const
map functions (responses) from scaled to native

void adjust_user_scales (Real Vector &scales, const int length, const Real default_scale_factor)

expand and error check user-supplied scaling vectors before use in scaling framework

void compute_scale_factor (const Real lower_bound, const Real upper_bound, Real «multiplier, Real
xoffset)

automatically compute scaling factor — bounds case

void compute_scale_factor (const Real target, Real «xmultiplier)
automatically compute scaling factor — target case

Protected Attributes

e Real constraintTol

optimizer/least squares constraint tolerance

e Real bigRealBoundSize

cutoff value for inequality constraint and continuous variable bounds

e int bigIntBoundSize
cutoff value for discrete variable bounds

e size_t numNonlinearIneqConstraints

number of nonlinear inequality constraints

e size_t numNonlinearEqConstraints

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.59 Minimizer Class Reference 311

number of nonlinear equality constraints

e size_t numLinearlneqConstraints

number of linear inequality constraints

e size_t numLinearEqConstraints
number of linear equality constraints

e int numNonlinearConstraints

total number of nonlinear constraints

e int numLinearConstraints

total number of linear constraints

e int numConstraints

total number of linear and nonlinear constraints

e bool boundConstraintFlag

convenience flag for denoting the presence of user-specified bound constraints. Used for method selection and error
checking.

e bool speculativeFlag
flag for speculative gradient evaluations

e Dbool scaleFlag

flag indicating scaling status

e RealVector cvScaleMultipliers

scales for continuous variables

e RealVector cvScaleOffsets
offsets for continuous variables

e RealVector fnScaleMultipliers

scales for obj. fns. or LSQ terms

e RealVector nonlinearlneqScaleMultipliers

scales for nonlin. ineq.

e RealVector nonlinearlneqScaleOffsets
offsets for nonlin. ineq.

e RealVector nonlinearEqScaleMultipliers

scales for nonlin. eq.

RealVector nonlinearEqScaleOffsets

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



312 DAKOTA Class Documentation

offsets for nonlin. eq.

e RealVector responseScaleMultipliers

scales for ALL responses

e RealVector responseScaleOffsets

offsets for ALL responses (zero f or functions, not for nonlin con)

e RealVector linearlneqScaleMultipliers

scales for linear ineq constrs.

e RealVector linearlneqScaleOffsets
offsets for linear ineq constrs.

e RealVector linearEqScaleMultipliers

scales for linear constraints

e RealVector linearEqScaleOffsets

offsets for linear constraints

e bool vendorNumericalGradFlag
convenience flag for gradType == numerical && methodSource == vendor

e Variables bestVariables
best variables found in solution

e Response bestResponses

best responses found in solution

Friends

e class SOLBase

the SOLBase class is not derived the iterator hierarchy but still needs access to iterator hierarchy data (to avoid
attribute replication)

e class SNLLBase

the SNLLBase class is not derived the iterator hierarchy but still needs access to iterator hierarchy data (to avoid
attribute replication)

10.59.1 Detailed Description

Base class for the optimizer and least squares branches of the iterator hierarchy.

The Minimizer class provides common data and functionality for Optimizer and LeastSq.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.59 Minimizer Class Reference 313

10.59.2 Constructor & Destructor Documentation

10.59.2.1 Minimizer (Model & model) [ pr ot ect ed]

standard constructor

This constructor extracts inherited data for the optimizer and least squares branches and performs sanity checking
on constraint settings.

10.59.3 Member Function Documentation

10.59.3.1 void initialize_scaling () [ pr ot ect ed]

helper function to initialize scaling multipliers and offets

helper function used in constructors of derived classes to set up scaling multipliers and offsets when input scaling
flag is enabled includes call to the derived class’ derived_initialize_scaling()

10.59.3.2 RealMatrix lin_coeffs_modify n2s (const RealMatrix & src_coeffs, const RealVector &
cv_multipliers, const RealVector & lin_multipliers) const [ pr ot ect ed]

general linear coefficients mapping from native to scaled space

compute scaled linear constraint matrix given design variable multipliers and linear scaling multipliers. Only
scales components corresponding to continuous variables so for src_coeffs of size MxN, lin_multipliers.size() <=
M, cv_multipliers.size() <=N

10.59.3.3 Response response_modify_n2s (const Response & src_response) const [ pr ot ect ed]

map reponses from native to scaled variable space

scaling forward mapping: modifies response from a model (native) for use in iterators (scaled) with scaling
and multi_objective or building least squares terms — not including multi_obejctive_modify, since least squares
methods do not use

10.59.3.4 void adjust_user_scales (RealVector & scales, const int length, const Real default_scale_factor)
[ prot ect ed]
expand and error check user-supplied scaling vectors before use in scaling framework

expand and error check user-specified scales vector if no scales: populate with default_scale_factor if only one
scale factor: replicate to appropriate length

The documentation for this class was generated from the following files:

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



314 DAKOTA Class Documentation

e DakotaMinimizer.H
e DakotaMinimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 315

10.60 Model Class Reference

Base class for the model class hierarchy.

Inheritance diagram for Model::

| Model |

i
[ | |

NestedM odel || SingleModel || SurrogateM odel |
t

| DataFitSurrModel | |HierarchSurrModeI|

Public Member Functions

e Model ()

default constructor

e Model (ProblemDescDB &problem_db)

standard constructor for envelope

e Model (const Model &model)
copy constructor

e virtual ~Model ()

destructor

e Model operator= (const Model &model)

assignment operator

e virtual Iterator & subordinate_iterator ()

return the sub-iterator in nested and surrogate models

e virtual Model & surrogate_model ()

return the approximation sub-model in surrogate models

e virtual Model & truth_model ()

return the truth sub-model in surrogate models

e virtual void derived_subordinate_models (ModelList &ml, bool recurse_flag)

portion of subordinate_models()() specific to derived model classes

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



316 DAKOTA Class Documentation

e virtual Interface & interface ()

return the interface employed by the derived model class, if present: SingleModel::userDefinedInterface,
DataFitSurrModel::approxinterface, or NestedModel::optionalInterface

e virtual void surrogate_bypass (bool bypass_flag)
deactivate/reactivate the approximations for any/all surrogate models contained within this model

e virtual void build_approximation ()

build a new approximation in SurrogateModels

e virtual bool build_approximation (const RealVector &c_vars, const Response &response)

build a new approximation in SurrogateModels using/enforcing response at c_vars

e virtual void update_approximation (const Real Vector &c_vars, const Response &response)

update an existing approximation in DataFitSurrModels with new data

e virtual const RealVectorArray & approximation_coefficients ()

retrieve the approximation coefficients from each Approximation within a DataFitSurrModel

e virtual void compute_correction (const Response &truth_response, const Response &approx_response,
const Real Vector &c_vars)

compute correction factors for use in SurrogateModels

virtual void auto_correction (bool correction_flag)

manages automatic application of correction factors in SurrogateModels

virtual bool auto_correction ()

return flag indicating use of automatic correction within this model’s responses

virtual void apply_correction (Response &approx_response, const RealVector &c_vars, bool quiet_-
flag=false)

apply correction factors to approx_response (for use in SurrogateModels)

e virtual void component_parallel_mode (int mode)

update component parallel mode for supporting parallelism in a model’s interface component, sub-model com-
ponent, or neither component [componentParallelMode = 0 (none), 1 (INTERFACE/LF_MODEL), or 2 (SUB_-
MODEL/HF_MODEL/TRUTH_MODEL)].

e virtual String local_eval_synchronization ()

return derived model synchronization setting

virtual int local_eval_concurrency ()

return derived model asynchronous evaluation concurrency

virtual void reset_communicators ()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 317

reset communicator partition data for a model

e virtual void serve ()

Service job requests received from the master. Completes when a termination message is received from
stop_servers().

e virtual void stop_servers ()

Executed by the master to terminate all server operations for a particular model when iteration on the model is
complete.

e virtual bool derived_master_overload () const

Return a flag indicating the combination of multiprocessor evaluations and a dedicated master iterator scheduling.
Used in synchronous compute_response functions to prevent the error of trying to run a multiprocessor job on the
master.

e virtual int evaluation_id () const

Return the current function evaluation id for the Model.

e virtual void set_evaluation_reference ()

Set the reference points for the evaluation counters within the Model.

e virtual void print_evaluation_summary (ostream &s, bool minimal_header=false, bool relative_count=true)
const

Print an evaluation summary for the Model.

e ModelList & subordinate_models (bool recurse_flag=true)

return the sub-models in nested and surrogate models

e void compute_response ()

Compute the Response at currentVariables (default ActiveSet).

e void compute_response (const ActiveSet &set)

Compute the Response at currentVariables (specified ActiveSet).

e void asynch_compute_response ()

Spawn an asynchronous job (or jobs) that computes the value of the Response at currentVariables (default
ActiveSet).

e void asynch_compute_response (const ActiveSet &set)

Spawn an asynchronous job (or jobs) that computes the value of the Response at currentVariables (specified
ActiveSet).

e const ResponseArray & synchronize ()

Execute a blocking scheduling algorithm to collect the complete set of results from a group of asynchronous evalu-
ations.

e const IntResponseMap & synchronize_nowait ()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



318 DAKOTA Class Documentation

Execute a nonblocking scheduling algorithm to collect all available results from a group of asynchronous evalua-
tions.

void init_communicators (const int &max_iterator_concurrency)

allocate communicator partitions for a model and store configuration in modelPClterMap

void init_serial ()

for cases where init_communicators() will not be called, modify some default settings to behave properly in serial.

e void set_communicators (const int &max_iterator_concurrency)

set active parallel configuration for the model (set modelPClter from modelPClterMap)

void free_communicators (const int &max_iterator_concurrency)

deallocate communicator partitions for a model

e void estimate_message_lengths ()

estimate messageLengths for a model

void assign_rep (Model xmodel_rep, bool ref_count_incr=true)

replaces existing letter with a new one

e size_t num_functions () const
return number of functions in currentResponse

e size_t tv () const

return total number of vars

e size_t cv () const

return number of active continuous variables

e size_t dv () const

return number of active discrete variables

e void active_variables (const Variables &vars)

set the active variables in currentVariables

e const RealVector & continuous_variables () const

return the active continuous variables from currentVariables

e void continuous_variables (const RealVector &c_vars)
set the active continuous variables in currentVariables

e const IntVector & discrete_variables () const

return the active discrete variables from currentVariables

e void discrete_variables (const IntVector &d_vars)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference

319

set the active discrete variables in currentVariables

e size_ticv () const
return number of inactive continuous variables

e size_tidv () const
return number of inactive discrete variables

e const RealVector & inactive_continuous_variables () const
return the inactive continuous variables in currentVariables

e void inactive_continuous_variables (const RealVector &i_c_vars)

set the inactive continuous variables in currentVariables

e const IntVector & inactive_discrete_variables () const

return the inactive discrete variables in currentVariables

e void inactive_discrete_variables (const IntVector &i_d_ vars)
set the inactive discrete variables in currentVariables

e const RealVector & normal_means () const
return the normal uncertain variable means

e void normal_means (const Real Vector &n_means)
set the normal uncertain variable means

e const RealVector & normal_std_deviations () const
return the normal uncertain variable standard deviations

e void normal_std_deviations (const RealVector &n_std_devs)
set the normal uncertain variable standard deviations

e const RealVector & normal_lower_bounds () const

return the normal uncertain variable lower bounds

e void normal_lower_bounds (const Real Vector &n_lower_bnds)

set the normal uncertain variable lower bounds

e const RealVector & normal_upper_bounds () const

return the normal uncertain variable upper bounds

e void normal_upper_bounds (const Real Vector &n_upper_bnds)
set the normal uncertain variable upper bounds

e const RealVector & lognormal_means () const

return the lognormal uncertain variable means

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



320

DAKOTA Class Documentation

void lognormal_means (const RealVector &In_means)

set the lognormal uncertain variable means

const RealVector & lognormal_std_deviations () const

return the lognormal uncertain variable standard deviations

void lognormal_std_deviations (const RealVector &In_std_devs)
set the lognormal uncertain variable standard deviations

const RealVector & lognormal_error_factors () const

return the lognormal uncertain variable error factors

void lognormal_error_factors (const Real Vector &In_err_facts)

set the lognormal uncertain variable error factors

const RealVector & lognormal_lower_bounds () const

return the lognormal uncertain variable lower bounds

void lognormal_lower_bounds (const RealVector &In_lower_bnds)

set the lognormal uncertain variable lower bounds

const RealVector & lognormal_upper_bounds () const

return the lognormal uncertain variable upper bounds

void lognormal_upper_bounds (const Real Vector &In_upper_bnds)
set the lognormal uncertain variable upper bounds

const RealVector & uniform_lower_bounds () const

return the uniform uncertain variable lower bounds

void uniform_lower_bounds (const RealVector &u_lower_bnds)
set the uniform uncertain variable lower bounds

const RealVector & uniform_upper_bounds () const

return the uniform uncertain variable upper bounds

void uniform_upper_bounds (const Real Vector &u_upper_bnds)

set the uniform uncertain variable upper bounds

const RealVector & loguniform_lower_bounds () const

return the loguniform uncertain variable lower bounds

void loguniform_lower_bounds (const Real Vector &lu_lower_bnds)

set the loguniform uncertain variable lower bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 321

e const RealVector & loguniform_upper_bounds () const

return the loguniform uncertain variable upper bounds

e void loguniform_upper_bounds (const Real Vector &lu_upper_bnds)

set the loguniform uncertain variable upper bounds

e const RealVector & triangular_modes () const
return the triangular uncertain variable modes

e void triangular_modes (const RealVector &t_modes)

set the triangular uncertain variable modes

e const RealVector & triangular_lower_bounds () const
return the triangular uncertain variable lower bounds

e void triangular_lower_bounds (const Real Vector &t_lower_bnds)

set the triangular uncertain variable lower bounds

e const RealVector & triangular_upper_bounds () const

return the triangular uncertain variable upper bounds

e void triangular_upper_bounds (const RealVector &t_upper_bnds)

set the triangular uncertain variable upper bounds

e const RealVector & beta_alphas () const
return the beta uncertain variable alphas

e void beta_alphas (const RealVector &b_alphas)
set the beta uncertain variable alphas

e const RealVector & beta_betas () const

return the beta uncertain variable betas

e void beta_betas (const RealVector &b_Dbetas)
set the beta uncertain variable betas

e const RealVector & beta_lower_bounds () const
return the beta uncertain variable lower bounds

e void beta_lower_bounds (const Real Vector &b_lower_bnds)

set the beta uncertain variable lower bounds

e const RealVector & beta_upper_bounds () const

return the beta uncertain variable upper bounds

e void beta_upper_bounds (const RealVector &b_upper_bnds)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



322

DAKOTA Class Documentation

set the beta uncertain variable upper bounds

const Real Vector & gamma_alphas () const
return the gamma uncertain variable alpha parameters

void gamma_alphas (const Real Vector &ga_alphas)
set the gamma uncertain variable alpha parameters

const RealVector & gamma_betas () const

return the gamma uncertain variable beta parameters

void gamma_betas (const Real Vector &ga_betas)

set the gamma uncertain variable beta parameters

const RealVector & gumbel_alphas () const
return the gumbel uncertain variable alphas

void gumbel_alphas (const RealVector &gu_alphas)
set the gumbel uncertain variable alphas

const RealVector & gumbel_betas () const
return the gumbel uncertain variable betas

void gumbel_betas (const RealVector &gu_betas)
set the gumbel uncertain variable betas

const RealVector & frechet_alphas () const
return the frechet uncertain variable alpha parameters

void frechet_alphas (const RealVector &f_alphas)

set the frechet uncertain variable alpha parameters

const RealVector & frechet_betas () const

return the frechet uncertain variable beta parameters

void frechet_betas (const RealVector &f_betas)
set the frechet uncertain variable beta parameters

const RealVector & weibull_alphas () const

return the weibull uncertain variable alpha parameters

void weibull_alphas (const Real Vector &w_alphas)
set the weibull uncertain variable alpha parameters

const RealVector & weibull_betas () const
return the weibull uncertain variable beta parameters

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference

323

e void weibull_betas (const RealVector &w_Dbetas)

set the weibull uncertain variable beta parameters

e const RealVectorArray & histogram_bin_pairs () const

return the histogram uncertain bin pairs

e void histogram_bin_pairs (const Real VectorArray &h_bin_pairs)
set the histogram uncertain bin pairs

e const RealVectorArray & histogram_point_pairs () const

return the histogram uncertain point pairs

e void histogram_point_pairs (const Real VectorArray &h_pt_pairs)

set the histogram uncertain point pairs

e const IntVector & interval_num_intervals () const

return the interval number of intervals per variable

e void interval_num_intervals (const IntVector &int_num_intvls)

set the interval number of intervals per variable

e const RealVector & interval_probs () const

return the interval probability values

e void interval_probs (const RealVector &int_probs)
set the interval probability values

e const RealVector & interval_bounds () const

return the interval bounds

e void interval_bounds (const Real Vector &int_bounds)
set the interval probability values

e const StringArray & continuous_variable_types () const

return the active continuous variable types from currentVariables

e const StringArray & discrete_variable_types () const

return the active discrete variable types from currentVariables

e const StringArray & continuous_variable_labels () const

return the active continuous variable labels from currentVariables

e void continuous_variable_labels (const StringArray &c_v_labels)

set the active continuous variable labels in currentVariables

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



324

DAKOTA Class Documentation

const StringArray & discrete_variable_labels () const

return the active discrete variable labels from currentVariables

void discrete_variable_labels (const StringArray &d_v_labels)

set the active discrete variable labels in currentVariables

const StringArray & inactive_continuous_variable_labels () const
return the inactive continuous variable labels in currentVariables

void inactive_continuous_variable_labels (const StringArray &i_c_v_labels)

set the inactive continuous variable labels in currentVariables

const StringArray & inactive_discrete_variable_labels () const
return the inactive discrete variable labels in currentVariables

void inactive_discrete_variable_labels (const StringArray &i_d_v_labels)
set the inactive discrete variable labels in currentVariables

const RealVector & continuous_lower_bounds () const
return the active continuous variable lower bounds from userDefinedConstraints

void continuous_lower_bounds (const RealVector &c_1_bnds)

set the active continuous variable lower bounds in userDefinedConstraints

const RealVector & continuous_upper_bounds () const

return the active continuous variable upper bounds from userDefinedConstraints

void continuous_upper_bounds (const Real Vector &c_u_bnds)

set the active continuous variable upper bounds in userDefinedConstraints

const IntVector & discrete_lower_bounds () const

return the active discrete variable lower bounds from userDefinedConstraints

void discrete_lower_bounds (const IntVector &d_1_bnds)
set the active discrete variable lower bounds in userDefinedConstraints

const IntVector & discrete_upper_bounds () const

return the active discrete variable upper bounds from userDefinedConstraints

void discrete_upper_bounds (const IntVector &d_u_bnds)

set the active discrete variable upper bounds in userDefinedConstraints

const RealVector & inactive_continuous_lower_bounds () const

return the inactive continuous lower bounds in userDefinedConstraints

void inactive_continuous_lower_bounds (const RealVector &i_c_I1_bnds)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 325

set the inactive continuous lower bounds in userDefinedConstraints

e const RealVector & inactive_continuous_upper_bounds () const
return the inactive continuous upper bounds in userDefinedConstraints

e void inactive_continuous_upper_bounds (const RealVector &i_c_u_bnds)

set the inactive continuous upper bounds in userDefinedConstraints

e const IntVector & inactive_discrete_lower_bounds () const
return the inactive discrete lower bounds in userDefinedConstraints

e void inactive_discrete_lower_bounds (const IntVector &i_d_1_bnds)

set the inactive discrete lower bounds in userDefinedConstraints

e const IntVector & inactive_discrete_upper_bounds () const

return the inactive discrete upper bounds in userDefinedConstraints

e void inactive_discrete_upper_bounds (const IntVector &i_d_u_bnds)
set the inactive discrete upper bounds in userDefinedConstraints

e size_t num_linear_ineq_constraints () const
return the number of linear inequality constraints

e size_t num_linear_eq_constraints () const
return the number of linear equality constraints

e const RealMatrix & linear_ineq_constraint_coeffs () const
return the linear inequality constraint coefficients

e void linear_ineq_constraint_coeffs (const RealMatrix &lin_ineq_coeffs)

set the linear inequality constraint coefficients

e const RealVector & linear_ineq_constraint_lower_bounds () const

return the linear inequality constraint lower bounds

e void linear_ineq_constraint_lower_bounds (const Real Vector &lin_ineq_1_bnds)

set the linear inequality constraint lower bounds

e const RealVector & linear_ineq_constraint_upper_bounds () const

return the linear inequality constraint upper bounds

e void linear_ineq_constraint_upper_bounds (const RealVector &lin_ineq_u_bnds)
set the linear inequality constraint upper bounds

e const RealMatrix & linear_eq_constraint_coeffs () const

return the linear equality constraint coefficients

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



326 DAKOTA Class Documentation

e void linear_eq_constraint_coeffs (const RealMatrix &lin_eq_coeffs)

set the linear equality constraint coefficients

e const RealVector & linear_eq_constraint_targets () const

return the linear equality constraint targets

e void linear_eq_constraint_targets (const Real Vector &lin_eq_targets)
set the linear equality constraint targets

e size_t num_nonlinear_ineq_constraints () const

return the number of nonlinear inequality constraints

e size_t num_nonlinear_eq_constraints () const

return the number of nonlinear equality constraints

e const RealVector & nonlinear_ineq_constraint_lower_bounds () const

return the nonlinear inequality constraint lower bounds

e void nonlinear_ineq_constraint_lower_bounds (const RealVector &nln_ineq_l1_bnds)

set the nonlinear inequality constraint lower bounds

e const RealVector & nonlinear_ineq_constraint_upper_bounds () const

return the nonlinear inequality constraint upper bounds

e void nonlinear_ineq_constraint_upper_bounds (const RealVector &nln_ineq_u_bnds)
set the nonlinear inequality constraint upper bounds

e const RealVector & nonlinear_eq_constraint_targets () const

return the nonlinear equality constraint targets

e void nonlinear_eq_constraint_targets (const Real Vector &nln_eq_targets)
set the nonlinear equality constraint targets

e const IntList & merged_integer_list () const

return the list of discrete variables merged into a continuous array in currentVariables

e const IntArray & message_lengths () const

return the array of MPI packed message buffer lengths (messageLengths)

e const Variables & current_variables () const

return the current variables (currentVariables)

e const Response & current_response () const

return the current response (currentResponse)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 327

e const ProblemDescDB & prob_desc_db () const

return the problem description database (probDescDB)

e const String & model_type () const
return the model type (modelType)

e const String & model_id () const

return the model identifier (idModel)

e const String & interface_id ()

return the interface identifier (interface().interface_id())

e bool asynch_flag () const

return the asynchronous evaluation flag (asynchEvalFlag)

e void asynch_flag (const bool flag)

set the asynchronous evaluation flag (asynchEvalFlag)

e void auto_graphics (const bool flag)

set modelAutoGraphicsFlag to activate posting of graphics data within compute_response/synchronize functions
(automatic graphics posting in the model as opposed to graphics posting at the strategy level).

e const String & gradient_method () const

return the gradient evaluation method (gradType)

e const String & hessian_method () const

return the Hessian evaluation method (hessType)

e const int & evaluation_capacity () const

return the evaluation capacity for use in iterator logic

e int derivative_concurrency () const

return the gradient concurrency for use in parallel configuration logic

void parallel_configuration_iterator (const ParConfigLIter &pc_iter)

set modelPClter

const ParConfigLIter & parallel_configuration_iterator () const

return modelPClter

bool is_null () const

function to check modelRep (does this envelope contain a letter)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



328 DAKOTA Class Documentation

Protected Member Functions

e Model (BaseConstructor, ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

e virtual void derived_compute_response (const ActiveSet &set)
portion of compute_response() specific to derived model classes

e virtual void derived_asynch_compute_response (const ActiveSet &set)

portion of asynch_compute_response() specific to derived model classes

e virtual const ResponseArray & derived_synchronize ()
portion of synchronize() specific to derived model classes

e virtual const IntResponseMap & derived_synchronize_nowait ()
portion of synchronize_nowait() specific to derived model classes

e virtual void derived_init_communicators (const int &max_iterator_concurrency)

portion of init_communicators() specific to derived model classes

e virtual void derived_init_serial ()
portion of init_serial() specific to derived model classes

e virtual void derived_set_communicators (const int &max_iterator_concurrency)

portion of set_communicators() specific to derived model classes

e virtual void derived_free_communicators (const int &max_iterator_concurrency)

portion of free_communicators() specific to derived model classes

Protected Attributes

e Variables currentVariables
the set of current variables used by the model for performing function evaluations

e size_t numDerivVars

the number of active continuous variables used in computing most response derivatives (i.e., in places such as
quasi-Hessians and response corrections where only the active continuous variables are supported)

e Response currentResponse

the set of current responses that holds the results of model function evaluations

e size t numFns

the number of functions in currentResponse

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 329

e Constraints userDefinedConstraints

Explicit constraints on variables are maintained in the Constraints class hierarchy. Currently, this includes linear
constraints and bounds, but could be extended in the future to include other explicit constraints which (1) have their
form specified by the user, and (2) are not catalogued in Response since their form and coefficients are published
to an iterator at startup.

e IntArray messageLengths
length of packed MPI buffers containing vars, vars/set, response, and PRPair

e const ProblemDescDB & probDescDB

class member reference to the problem description database. This reference is a const copy of the incoming
problem_db non-const reference and is only used in Model::prob_desc_db() (it is not inherited).

e ParallelLibrary & parallelLib

class member reference to the parallel library

e ParConfigLIter modelPClter

the ParallelConfiguration node used by this model instance

e int componentParallelMode

the component parallelism mode: 0 (none), 1 (INTERFACE/LF_MODEL), or 2 (SUB_MODEL/HF_-
MODEL/TRUTH_MODEL)

Private Member Functions

e Model * get_model (ProblemDescDB &problem_db)
Used by the envelope to instantiate the correct letter class.

e int estimate_derivatives (const IntArray &map_asv, const IntArray &fd_grad_asv, const IntArray &fd_-
hess_asv, const IntArray &quasi_hess_asv, const ActiveSet &original_set, const bool asynch_flag)

evaluate numerical gradients using finite differences. This routine is selected with "method_source dakota" (the
default method_source) in the numerical gradient specification.

e void synchronize_derivatives (const Variables &vars, const ResponseArray &fd_responses, Response
&new_response, const IntArray &fd_grad_asv, const IntArray &fd_hess_asv, const IntArray &quasi_-
hess_asv, const ActiveSet &original_set)

combine results from an array of finite difference response objects (fd_grad_responses) into a single response
(new_response)

e void update_response (const Variables &vars, Response &new_response, const IntArray &fd_grad_asv,
const IntArray &fd_hess_asv, const IntArray &quasi_hess_asv, const ActiveSet &original_set, Response
&initial_map_response, const RealMatrix &new_fn_grads, const RealMatrixArray &new_fn_hessians)

overlay results to update a response object

e void update_quasi_hessians (const Variables &vars, Response &new_response, const ActiveSet
&original _set)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



330 DAKOTA Class Documentation

perform quasi-Newton Hessian updates

e bool manage_asv (const IntArray &asv_in, IntArray &map_asv_out, IntArray &fd_grad_asv_out, IntArray
&fd_hess_asv_out, IntArray &quasi_hess_asv_out)

Coordinates usage of estimate_derivatives() calls based on asv_in.

Private Attributes

e Model * modelRep

pointer to the letter (initialized only for the envelope)

e int referenceCount

number of objects sharing modelRep

e String modelType
type of model: single, nested, or surrogate

e Dbool hierarchicalModel

flag for identifying a HierarchSurrModel

e String idModel
model identifier string from the input file

e bool estDerivsFlag
flags presence of estimated derivatives within a set of calls to asynch_compute_response()

e bool asynchEvalFlag

flags asynch evaluations (local or distributed)

e int evaluationCapacity

capacity for concurrent evaluations supported by the Model

e std::map< int, ParConfigLIter > modelPCIterMap
map< > used for tracking modelPClter instances using concurrency level as the lookup key

e bool modelAutoGraphicsFlag

flag for posting of graphics data within compute_response (automatic graphics posting in the model as opposed to
graphics posting at the strategy level)

e Dbool silentFlag
flag for really quiet (silent) model output

e Dbool quietFlag
flag for quiet model output

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 331

ModelList modelList
used to collect sub-models for subordinate_models()

VariablesList varsList
history of vars populated in asynch_compute_response() and used in synchronize().

List< IntArray > asvList
if estimate_derivatives() is used, transfers ASVs from asynch_compute_response() to synchronize()

List< ActiveSet > setList
if estimate_derivatives() is used, transfers ActiveSets from asynch_compute_response() to synchronize()

BoolList initialMapList
transfers initial_map flag values from estimate_derivatives() to synchronize_derivatives()

BoolList dbCaptureList

transfers db_capture flag values from estimate_derivatives() to synchronize_derivatives()

ResponseList dbResponseList

transfers database captures from estimate_derivatives() to synchronize_derivatives()

RealList deltaList

transfers deltas from estimate_derivatives() to synchronize_derivatives()

IntList numMapsList

tracks the number of maps used in estimate_derivatives(). Used in synchronize() as a key for combining finite
difference responses into numerical gradients.

RealMatrix xPrev

previous parameter vectors used in computing s for quasi-Newton updates

RealMatrix fnGradsPrev
previous gradient vectors used in computing y for quasi-Newton updates

RealMatrixArray quasiHessians

quasi-Newton Hessian approximations

SizetArray numQuasiUpdates

number of quasi-Newton Hessian updates applied

ResponseArray responseArray

used to return an array of responses for asynchronous evaluations. This array has the responses in final concate-
nated form. The similar array in Interface contains the raw responses.

IntResponseMap graphicsRespMap
used to cache the data returned from derived_synchronize_nowait() prior to sequential input into the graphics

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



332 DAKOTA Class Documentation

e String gradType
grad type: none,numerical,analytic,mixed

e String methodSrc
method source: dakota,vendor

e String intervalType
interval type: forward,central

e RealVector fdGradSS

relative step sizes for numerical gradients

o IntList gradldAnalytic

analytic id’s for mixed gradients

o IntList gradldNumerical

numerical id’s for mixed gradients

e String hessType
Hess type: none,numerical,quasi,analytic,mixed.

e String quasiHessType
quasi-Hessian type: bfgs, damped_bfgs, srl

e RealVector fdHessByGradSS
relative step sizes for numerical Hessians estimated with 1st-order grad differences

e RealVector fdHessByFnSS
relative step sizes for numerical Hessians estimated with 2nd-order fn differences

e IntList hessIdAnalytic
analytic id’s for mixed Hessians

e IntList hessldNumerical
numerical id’s for mixed Hessians

e IntList hessIdQuasi
quasi id’s for mixed Hessians

e RealVector normalMeans

normal uncertain variable means

e RealVector normalStdDevs

normal uncertain variable standard deviations

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference

333

Real Vector normalLowerBnds

normal uncertain variable lower bounds

e RealVector normalUpperBnds
normal uncertain variable upper bounds

e RealVector lognormalMeans
lognormal uncertain variable means

e RealVector lognormalStdDevs

lognormal uncertain variable standard deviations

e RealVector lognormalErrFacts
lognormal uncertain variable error factors

e RealVector lognormalLowerBnds

lognormal uncertain variable lower bounds

e RealVector lognormalUpperBnds

lognormal uncertain variable upper bounds

e RealVector uniformLowerBnds

uniform uncertain variable lower bounds

e RealVector uniformUpperBnds
uniform uncertain variable upper bounds

e RealVector loguniformLowerBnds

loguniform uncertain variable lower bounds

e RealVector loguniformUpperBnds
loguniform uncertain variable upper bounds

e RealVector triangularModes

triangular uncertain variable modes

e RealVector triangularLowerBnds

triangular uncertain variable lower bounds

e RealVector triangularUpperBnds
triangular uncertain variable upper bounds

e RealVector betaAlphas
beta uncertain variable alphas

RealVector betaBetas

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



334 DAKOTA Class Documentation

beta uncertain variable betas

e RealVector betalLowerBnds

beta uncertain variable lower bounds

e RealVector betaUpperBnds
beta uncertain variable upper bounds

e RealVector gammaAlphas
gamma uncertain variable alphas

e RealVector gammaBetas

gamma uncertain variable betas

e RealVector gumbelAlphas
gumbel uncertain variable alphas

e RealVector gumbelBetas
gumbel uncertain variable betas

e RealVector frechetAlphas
frechet uncertain variable alphas

e RealVector frechetBetas
frechet uncertain variable betas

e RealVector weibullAlphas
weibull uncertain variable alphas

e RealVector weibullBetas
weibull uncertain variable betas

e RealVectorArray histogramBinPairs

histogram uncertain (x,y) bin pairs (continuous linear histogram)

e RealVectorArray histogramPointPairs

histogram uncertain (x,y) point pairs (discrete histogram)

e IntVector intervalNumlIntervals

interval uncertain variable number of intervals per variable

e RealVector intervalProbValues
interval uncertain variable probability values

e RealVector intervalBounds
interval uncertain variable interval bounds

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 335

10.60.1 Detailed Description

Base class for the model class hierarchy.

The Model class is the base class for one of the primary class hierarchies in DAKOTA. The model hierarchy
contains a set of variables, an interface, and a set of responses, and an iterator operates on the model to map
the variables into responses using the interface. For memory efficiency and enhanced polymorphism, the model
hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the base class
(Model) serves as the envelope and one of the derived classes (selected in Model::get_model()) serves as the letter.

10.60.2 Constructor & Destructor Documentation

10.60.2.1 Model ()

default constructor

The default constructor is used in vector<Model > instantiations and for initialization of Model objects contained
in Iterator and derived Strategy classes. modelRep is NULL in this case (a populated problem_db is needed to
build a meaningful Model object). This makes it necessary to check for NULL in the copy constructor, assignment
operator, and destructor.

10.60.2.2 Model (ProblemDescDB & problem_db)

standard constructor for envelope

Used in model instantiations within strategy constructors. Envelope constructor only needs to extract enough data
to properly execute get_model, since Model(BaseConstructor, problem_db) builds the actual base class data for
the derived models.

10.60.2.3 Model (const Model & model)

copy constructor

Copy constructor manages sharing of modelRep and incrementing of referenceCount.

10.60.2.4 ~Model () [virtual]

destructor

Destructor decrements referenceCount and only deletes modelRep when referenceCount reaches zero.
10.60.2.5 Model (BaseConstructor, ProblemDescDB & problem_db) [ pr ot ect ed]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



336 DAKOTA Class Documentation

This constructor builds the base class data for all inherited models. get_model() instantiates a derived class and
the derived class selects this base class constructor in its initialization list (to avoid the recursion of the base class
constructor calling get_model() again). Since the letter IS the representation, its representation pointer is set to
NULL (an uninitialized pointer causes problems in ~Model).

10.60.3 Member Function Documentation

10.60.3.1 Model operator= (const Model & model)

assignment operator

Assignment operator decrements referenceCount for old modelRep, assigns new modelRep, and increments
referenceCount for new modelRep.

10.60.3.2 Iterator & subordinate_iterator () [virtual]

return the sub-iterator in nested and surrogate models

return by reference requires use of dummy objects, but is important to allow use of assign_rep() since this opera-
tion must be performed on the original envelope object.

Reimplemented in DataFitSurrModel, and NestedModel.

10.60.3.3 Model & surrogate_model () [virtual]

return the approximation sub-model in surrogate models

return by reference requires use of dummy objects, but is important to allow use of assign_rep() since this opera-
tion must be performed on the original envelope object.

Reimplemented in DataFitSurrModel, and HierarchSurrModel.

10.60.3.4 Model & truth_model () [virtual]

return the truth sub-model in surrogate models

return by reference requires use of dummy objects, but is important to allow use of assign_rep() since this opera-
tion must be performed on the original envelope object.

Reimplemented in DataFitSurrModel, and HierarchSurrModel.

10.60.3.5 Interface & interface () [virtual]

return the interface employed by the derived model class, if present: SingleModel::userDefinedInterface,
DataFitSurrModel::approxInterface, or NestedModel::optionallnterface

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 337

return by reference requires use of dummy objects, but is important to allow use of assign_rep() since this opera-
tion must be performed on the original envelope object.

Reimplemented in DataFitSurrModel, NestedModel, and SingleModel.

10.60.3.6  String local_eval_synchronization () [virtual ]

return derived model synchronization setting

SingleModels and HierarchSurrModels redefine this virtual function. A default value of "synchronous" prevents
asynch local operations for:

o NestedModels: a sublterator can support message passing parallelism, but not asynch local.

e DataFitSurrModels: while asynch evals on approximations will work due to some added bookkeeping,
avoiding them is preferable.

Reimplemented in SingleModel.

10.60.3.7 intlocal_eval concurrency () [virtual]

return derived model asynchronous evaluation concurrency
SingleModels and HierarchSurrModels redefine this virtual function.

Reimplemented in SingleModel.

10.60.3.8 ModelList & subordinate_models (bool recurse_flag =t r ue)

return the sub-models in nested and surrogate models

since modelList is built with list insertions (using envelope copies), these models may not be used for
model.assign_rep() since this operation must be performed on the original envelope object. They may, however,
be used for letter-based operations (including assign_rep() on letter contents such as an interface).

10.60.3.9 void init_communicators (const int & max_iterator_concurrency)

allocate communicator partitions for a model and store configuration in modelPClIterMap

The init_communicators() and derived_init_communicators() functions are stuctured to avoid performing the
messagelengths estimation more than once. init_communicators() (not virtual) performs the estimation and then
forwards the results to derived_init_communicators (virtual) which uses the data in different contexts.

10.60.3.10 void init_serial ()

for cases where init_communicators() will not be called, modify some default settings to behave properly in serial.

The init_serial() and derived_init_serial() functions are stuctured to separate base class (common) operations from
derived class (specialized) operations.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



338 DAKOTA Class Documentation

10.60.3.11 void estimate_message_lengths ()

estimate messageLengths for a model

This functionality has been pulled out of init_communicators() and defined separately so that it may be used in
those cases when messageLengths is needed but model.init_communicators() is not called, e.g., for the master
processor in the self-scheduling of a concurrent iterator strategy.

10.60.3.12 void assign_rep (Model « model_rep, bool ref_count_incr =t r ue)

replaces existing letter with a new one

Similar to the assignment operator, the assign_rep() function decrements referenceCount for the old modelRep
and assigns the new modelRep. It is different in that it is used for publishing derived class letters to existing
envelopes, as opposed to sharing representations among multiple envelopes (in particular, assign_rep is passed a
letter object and operator= is passed an envelope object). Letter assignment supports two models as governed by
ref_count_incr:

e ref_count_incr = true (default): the incoming letter belongs to another envelope. In this case, increment the
reference count in the normal manner so that deallocation of the letter is handled properly.

e ref_count_incr = false: the incoming letter is instantiated on the fly and has no envelope. This case is
modeled after get_model(): a letter is dynamically allocated using new and passed into assign_rep, the
letter’s reference count is not incremented, and the letter is not remotely deleted (its memory management
is passed over to the envelope).

10.60.3.13 int derivative_concurrency () const

return the gradient concurrency for use in parallel configuration logic

This function assumes derivatives with respect to the active continuous variables. Therefore, concurrency with
respect to the inactive continuous variables is not captured.

10.60.3.14 Model x get_model (ProblemDescDB & problem_db) [ pri vat e]

Used by the envelope to instantiate the correct letter class.

Used only by the envelope constructor to initialize modelRep to the appropriate derived type, as given by the
modelType attribute.

10.60.3.15 int estimate_derivatives (const IntArray & map_asv, const IntArray & fd_grad_asv, const
IntArray & fd_hess_asv, const IntArray & quasi_hess_asv, const ActiveSet & original_set,
const bool asynch_flag) [ pri vat e]

evaluate numerical gradients using finite differences. This routine is selected with "method_source dakota" (the
default method_source) in the numerical gradient specification.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.60 Model Class Reference 339

Estimate derivatives by computing finite difference gradients, finite difference Hessians, and/or quasi-Newton
Hessians. The total number of finite difference evaluations is returned for use by synchronize() to track response
arrays, and it could be used to improve management of max_function_evaluations within the iterators.

10.60.3.16 void synchronize_derivatives (const Variables & vars, const ResponseArray & fd_responses,
Response & new_response, const IntArray & fd_grad_asv, const IntArray & fd_hess_asv,
const IntArray & quasi_hess_asv, const ActiveSet & original_set) [ pri vat €]

combine results from an array of finite difference response objects (fd_grad_responses) into a single response
(new_response)

Merge an array of fd_responses into a single new_response. This function is used both by synchronous
compute_response() for the case of asynchronous estimate_derivatives() and by synchronize() for the case where
one or more asynch_compute_response() calls has employed asynchronous estimate_derivatives().

10.60.3.17 void update_response (const Variables & vars, Response & new_response, const IntArray &
fd_grad_asv, const IntArray & fd_hess_asv, const IntArray & quasi_hess_asv, const ActiveSet
& original_set, Response & initial_map_response, const RealMatrix & new_fn_grads, const
RealMatrixArray & new_fn_hessians) [ pri vat e]

overlay results to update a response object

Overlay the initial_map_response with numerically estimated new_fn_grads and new_fn_hessians to populate
new_response as governed by asv vectors. Quasi-Newton secant Hessian updates are also performed here,
since this is where the gradient data needed for the updates is first consolidated. Convenience function used
by estimate_derivatives() for the synchronous case and by synchronize_derivatives() for the asynchronous case.

10.60.3.18 void update_quasi_hessians (const Variables & vars, Response & new_response, const
ActiveSet & original_set) [ pri vat e]

perform quasi-Newton Hessian updates

quasi-Newton updates are performed for approximating response function Hessians using BFGS or SR1 formu-
lations. These Hessians are supported only for the active continuous variables, and a check is performed on the
DVYV prior to invoking the function.

10.60.3.19 bool manage_asv (const IntArray & asv_in, IntArray & map_asv_out, IntArray &
fd_grad_asv_out, IntArray & fd_hess_asv_out, IntArray & quasi_hess_asv_out) [ pri vat e]
Coordinates usage of estimate_derivatives() calls based on asv_in.

Splits asv_in total request into map_asv_out, fd_grad_asv_out, fd_hess_asv_out, and quasi_hess_asv_out as gov-
erned by the responses specification. If the returned use_est_deriv is true, then these asv outputs are used by
estimate_derivatives() for the initial map, finite difference gradient evals, finite difference Hessian evals, and
quasi-Hessian updates, respectively. If the returned use_est_deriv is false, then only map_asv_out is used.

The documentation for this class was generated from the following files:

e DakotaModel.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



340 DAKOTA Class Documentation

e DakotaModel.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.61 MPIPackBuffer Class Reference 341

10.61 MPIPackBuffer Class Reference

Class for packing MPI message buffers.

Public Member Functions

e MPIPackBuffer (int size_=1024)
Constructor, which allows the default buffer size to be set.

e ~MPIPackBuffer ()
Desctructor.

e const char * buf ()

Returns a pointer to the internal buffer that has been packed.

e intsize ()

The number of bytes of packed data.

e int capacity ()
the allocated size of Buffer.

e void reset ()

Resets the buffer index in order to reuse the internal buffer.

e void pack (const int xdata, const int num=1)

Pack one or more int’s.

e void pack (const u_int xdata, const int num=1)
Pack one or more unsigned int’s.

e void pack (const long *data, const int num=1)

Pack one or more long's.

e void pack (const u_long *data, const int num=1)

Pack one or more unsigned long's.

e void pack (const short xdata, const int num=1)

Pack one or more short’s.

e void pack (const u_short xdata, const int num=1)
Pack one or more unsigned short’s.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



342

DAKOTA Class Documentation

void pack (const char xdata, const int num=1)
Pack one or more char’s.

void pack (const u_char xdata, const int num=1)
Pack one or more unsigned char’s.

void pack (const double *data, const int num=1)
Pack one or more doubl€'s.

void pack (const float *data, const int num=1)
Pack one or more fbat’s.

void pack (const bool xdata, const int num=1)
Pack one or more boal’s.

void pack (const int &data)
Pack a int.

void pack (const u_int &data)
Pack a unsigned int.

void pack (const long &data)
Pack a long.

void pack (const u_long &data)
Pack a unsigned long.

void pack (const short &data)
Pack a short.

void pack (const u_short &data)
Pack a unsigned short.

void pack (const char &data)
Pack a char.

void pack (const u_char &data)
Pack a unsigned char.

void pack (const double &data)
Pack a double.

void pack (const float &data)
Pack a fbat.

void pack (const bool &data)
Pack a bool.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.61 MPIPackBuffer Class Reference 343

Protected Member Functions

e void resize (const int newsize)
Resizes the internal buffer.

Protected Attributes

e char *x Buffer

The internal buffer for packing.

e int Index
The index into the current buffer.

e int Size
The total size that has been allocated for the buffer.

10.61.1 Detailed Description

Class for packing MPI message buffers.

A class that provides a facility for packing message buffers using the MPI_Pack facility. The MPI PackBuf f er
class dynamically resizes the internal buffer to contain enough memory to pack the entire object. When deleted,
the MPl PackBuf f er object deletes this internal buffer. This class is based on the Dakota_Version_3_0 version
of utilib::PackBuffer from utilib/src/io/PackBuf.[cpp,h]

The documentation for this class was generated from the following files:

o MPIPackBuffer.H
o MPIPackBuffer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



344 DAKOTA Class Documentation

10.62 MPIUnpackBuffer Class Reference

Class for unpacking MPI message buffers.

Public Member Functions

e void setup (char xbuf_, int size_, bool flag_=false)
Method that does the setup for the constructors.

e MPIUnpackBuffer ()
Default constructor.

e MPIUnpackBuffer (int size_)

Constructor that specifies the size of the buffer.

e MPIUnpackBuffer (char sbuf_, int size_, bool flag_=false)

Constructor that sets the internal buffer to the given array.

e ~MPIUnpackBuffer ()
Destructor.

e void resize (const int newsize)

Resizes the internal buffer.

e const char * buf ()

Returns a pointer to the internal buffer.

e intsize ()

Returns the length of the buffer.

e int curr ()

Returns the number of bytes that have been unpacked from the buffer.

e void reset ()

Resets the index of the internal buffer.

e void unpack (int xdata, const int num=1)

Unpack one or more int’s.

e void unpack (u_int xdata, const int num=1)
Unpack one or more unsigned int’s.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.62 MPIUnpackBuffer Class Reference

345

void unpack (long *data, const int num=1)

Unpack one or more long's.

void unpack (u_long *data, const int num=1)

Unpack one or more unsigned long's.

void unpack (short xdata, const int num=1)
Unpack one or more short’s.

void unpack (u_short xdata, const int num=1)

Unpack one or more unsigned short’s.

void unpack (char xdata, const int num=1)
Unpack one or more char’s.

void unpack (u_char xdata, const int num=1)

Unpack one or more unsigned char’s.

void unpack (double xdata, const int num=1)

Unpack one or more double's.

void unpack (float xdata, const int num=1)

Unpack one or more foat’s.

void unpack (bool xdata, const int num=1)

Unpack one or more bool’s.

void unpack (int &data)
Unpack a int.

void unpack (u_int &data)
Unpack a unsigned int.

void unpack (long &data)
Unpack a long.

void unpack (u_long &data)
Unpack a unsigned long.

void unpack (short &data)
Unpack a short.

void unpack (u_short &data)
Unpack a unsigned short.

void unpack (char &data)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



346 DAKOTA Class Documentation

Unpack a char.

e void unpack (u_char &data)
Unpack a unsigned char.

e void unpack (double &data)
Unpack a double.

e void unpack (float &data)
Unpack a fiat.

e void unpack (bool &data)
Unpack a bool.

Protected Attributes

e char x Buffer
The internal buffer for unpacking.

e int Index
The index into the current buffer.

e int Size
The total size that has been allocated for the buffer.

e bool ownFlag
If TRUE, then this class owns the internal buffer.

10.62.1 Detailed Description

Class for unpacking MPI message buffers.

A class that provides a facility for unpacking message buffers using the MPI_Unpack facility. This class is based
on the Dakota_Version_3_0 version of utilib::UnPackBuffer from utilib/src/io/PackBuf.[cpp,h]

The documentation for this class was generated from the following files:

o MPIPackBuffer.H
o MPIPackBuffer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.63 MultilevelOptStrategy Class Reference 347

10.63 MultilevelOptStrategy Class Reference

Strategy for hybrid optimization using multiple optimizers on multiple models of varying fidelity.

Inheritance diagram for MultilevelOptStrategy::

| Strategy |

T

| Multilevel OptStrategy |

Public Member Functions

e MultilevelOptStrategy (ProblemDescDB &problem_db)

constructor

e ~MultilevelOptStrategy ()

destructor

e void run_strategy ()

Performs the hybrid optimization strategy by executing multiple iterators on different models of varying fidelity.

e const Variables & variable_results () const

return the final solution from selectedlterators (variables)

e const Response & response_results () const

return the final solution from selectedlterators (response)

Private Member Functions

e void run_coupled ()

run a tightly coupled hybrid

e void run_uncoupled ()

run an uncoupled hybrid

e void run_uncoupled_adaptive ()

run an uncoupled adaptive hybrid

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



348 DAKOTA Class Documentation

Private Attributes

o String multiLevelType

coupled, uncoupled, or uncoupled_adaptive

e StringArray methodList

the list of method identifiers

e int numlterators

number of methods in methodList

e Real localSearchProb

the probability of running a local search refinement within phases of the global optimization for coupled hybrids

e Real progressMetric

the amount of progress made in a single iterator++ cycle within an uncoupled adaptive hybrid

e Real progressThreshold

when the progress metric falls below this threshold, the uncoupled adaptive hybrid switches to the next method

e [teratorArray selectedlterators

the set of iterators, one for each entry in methodList

e ModelArray userDefinedModels

the set of models, one for each iterator

10.63.1 Detailed Description

Strategy for hybrid optimization using multiple optimizers on multiple models of varying fidelity.

This strategy has three approaches to hybrid optimization: (1) the uncoupled hybrid runs one method to comple-
tion, passes its best results as the starting point for a subsequent method, and continues this succession until all
methods have been executed; (2) the uncoupled adaptive hybrid is similar to the uncoupled hybrid, except that the
stopping rules for the optimizers are controlled adapatively by the strategy instead of internally by each optimizer;
and (3) the coupled hybrid uses multiple methods in close coordination, generally using a local search optimizer
repeatedly within a global optimizer (the local search optimizer refines candidate optima which are fed back to the
global optimizer). The uncoupled strategies only pass information forward, whereas the coupled strategy allows
both feed forward and feedback. Note that while the strategy is targeted at optimizers, any iterator may be used so
long as it defines the notion of a final solution which can be passed as the starting point for subsequent iterators.

10.63.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.63 MultilevelOptStrategy Class Reference 349

10.63.2.1 void run_coupled () [private]

run a tightly coupled hybrid

In the coupled case, use is made of external hybridization capabilities, such as those available in the global/local
hybrids from SGOPT. This function is responsible only for publishing the local optimizer selection to the global
optimizer and then invoking the global optimizer; the logic of method switching is handled entirely within the
global optimizer. Status: incomplete.

10.63.2.2 void run_uncoupled () [ pri vat e]

run an uncoupled hybrid

In the uncoupled nonadaptive case, there is no interference with the iterators. Each runs until its own convergence
criteria is satisfied. Status: fully operational.

10.63.2.3 void run_uncoupled_adaptive () [ pri vate]

run an uncoupled adaptive hybrid

In the uncoupled adaptive case, there is interference with the iterators through the use of the ++ overloaded oper-
ator. iterator++ runs the iterator for one cycle, after which a progress_metric is computed. This progress metric is
used to dictate method switching instead of each iterator’s internal convergence criteria. Status: incomplete.

The documentation for this class was generated from the following files:

e MultilevelOptStrategy.H
e MultilevelOptStrategy.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



350 DAKOTA Class Documentation

10.64 NestedM odd Class Reference

Derived model class which performs a complete sub-iterator execution within every evaluation of the model.

Inheritance diagram for NestedModel::

Model

NestedM odel

Public Member Functions

e NestedModel (ProblemDescDB &problem_db)
constructor

e ~NestedModel ()
destructor

Protected Member Functions

e void derived_compute_response (const ActiveSet &set)

portion of compute_response() specific to NestedModel

e void derived_asynch_compute_response (const ActiveSet &set)
portion of asynch_compute_response() specific to NestedModel

e void derived_subordinate_models (ModelList &ml, bool recurse_flag)
return subModel

e Iterator & subordinate_iterator ()

return sublterator

e Interface & interface ()

return optionallnterface

e void surrogate_bypass (bool bypass_flag)

NestedModels have nothing to bypass, but must pass request on to the subModel for any lower-level surrogates.

e void component_parallel_mode (int mode)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.64 NestedModel Class Reference 351

update component parallel mode for supporting parallelism in optionalinterface and subModel

bool derived_master_overload () const

flag which prevents overloading the master with a multiprocessor evaluation (forwarded to optionallnterface)

void derived_init_communicators (const int &max_iterator_concurrency)

set up optionalinterface and subModel for parallel operations

void derived_init_serial ()
set up optionallnterface and subModel for serial operations.

void derived_set_communicators (const int &max_iterator_concurrency)

set active parallel configuration within subModel

void reset_communicators ()

reset communicator partitions for the NestedModel (forwarded to optionallnterface and subModel)

void derived_free_communicators (const int &max_iterator_concurrency)

deallocate communicator partitions for the NestedModel (forwarded to optionallnterface and subModel)

void serve ()

Service optionalinterface and subModel job requests received from the master. Completes when a termination
message is received from stop_servers().

void stop_servers ()

Executed by the master to terminate server operations for subModel and optionallnterface when iteration on the
NestedModel is complete.

int evaluation_id () const

Return the current evaluation id for the NestedModel.

void set_evaluation_reference ()
set the evaluation counter reference points for the NestedModel (request forwarded to optionallnterface and sub-
Model)

void print_evaluation_summary (ostream &s, bool minimal_header=false, bool relative_count=true) const

print the evaluation summary for the NestedModel (request forwarded to optionallnterface and subModel)

Private Member Functions

void asv_mapping (const IntArray &mapped_asv, IntArray &interface_asv, IntArray &sub_iterator_asv)

define the evaluation requirements for the optionalinterface (interface_asv) and the sublterator (sub_iterator_asv)
from the total model evaluation requirements (mapped_asv)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



352 DAKOTA Class Documentation

e void response_mapping (const Response &interface_response, const Response &sub_iterator_response,
Response &mapped_response)

combine the response from the optional interface evaluation with the response from the sub-iteration using the
primaryCoeffs/secondaryCoeffs mappings to create the total response for the model

e void update_sub_model ()
update subModel with current variable values/bounds/labels

Private Attributes

e int nestedModelEvals
number of calls to derived_compute_response()/ derived_asynch_compute_response()

e [terator sublterator

the sub-iterator that is executed on every evaluation of this model

e Model subModel
the sub-model used in sub-iterator evaluations

e size t numSublterFns
number of sub-iterator response functions prior to mapping

e size_t numSublterMappedIneqCon
number of top-level inequality constraints mapped from the sub-iteration results

e size_t numSublterMappedEqCon
number of top-level equality constraints mapped from the sub-iteration results

o Interface optionallnterface
the optional interface contributes nonnested response data to the total model response

e String optInterfacePointer
the optional interface pointer from the nested model specification

e Response optlnterfaceResponse

the response object resulting from optional interface evaluations

e size_t numOptInterfPrimary

number of primary response functions (objective/least squares/generic functions) resulting from optional interface
evaluations

o size_t numOptInterflneqCon

number of inequality constraints resulting from optional interface evaluations

o size_t numOptInterfEqCon

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.64 NestedModel Class Reference 353

number of equality constraints resulting from the optional interface evaluations

o SizetArray primaryCVarMaplndices

"primary" variable mappings for inserting active continuous currentVariables into active continuous subModel
variables. If there are no secondary mappings defined, then the insertions replace the subModel variable values.

e SizetArray primaryDVarMaplndices

"primary" variable mappings for inserting active discrete currentVariables into active discrete subModel variables.
No secondary mappings are defined for discrete variables, so the insertions replace the subModel variable values.

e SizetArray secondary VarMaplndices

"secondary" variable mappings for inserting active continuous currentVariables into sub-parameters (e.g., distri-
bution parameters for uncertain variables) of the active continuous subModel variables.

e RealMatrix primaryRespCoeffs
"primary" response_mapping matrix applied to the sub-iterator response functions. For OUU, the matrix is applied
to UQ statistics to create contributions to the top-level objective functions/least squares/ generic response terms.

e RealMatrix secondaryRespCoeffs

"secondary" response_mapping matrix applied to the sub-iterator response functions. For OUU, the matrix is
applied to UQ statistics to create contributions to the top-level inequality and equality constraints.

10.64.1 Detailed Description

Derived model class which performs a complete sub-iterator execution within every evaluation of the model.

The NestedModel class nests a sub-iterator execution within every model evaluation. This capability is most
commonly used for optimization under uncertainty, in which a nondeterministic iterator is executed on every
optimization function evaluation. The NestedModel also contains an optional interface, for portions of the model
evaluation which are independent from the sub-iterator, and a set of mappings for combining sub-iterator and
optional interface data into a top level response for the model.

10.64.2 Member Function Documentation

10.64.2.1 void derived_compute_response (const ActiveSet & set) [ protected, virtual]

portion of compute_response() specific to NestedModel

Update subModel’s inactive variables with active variables from currentVariables, compute the optional interface
and sub-iterator responses, and map these to the total model response.

Reimplemented from Model.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



354 DAKOTA Class Documentation

10.64.2.2 void derived_asynch_compute_response (const ActiveSet & set) [ protected, virtual]

portion of asynch_compute_response() specific to NestedModel

Not currently supported by NestedModels (need to add concurrent iterator support). As a result,
derived_synchronize() and derived_synchronize_nowait() are inactive as well).

Reimplemented from Model.

10.64.2.3 bool derived_master_overload () const [inline, protected, virtual]

flag which prevents overloading the master with a multiprocessor evaluation (forwarded to optionallnterface)

Derived master overload for subModel is handled separately in subModel.compute_response() within sub-
Iterator.run().

Reimplemented from Model.

10.64.2.4 void derived_init_communicators (const int & max_iterator_concurrency) [i nli ne,
protected, virtual]
set up optionallnterface and subModel for parallel operations

Asynchronous flags need to be initialized for the subModel. In addition, max_iterator_concurrency is the outer
level iterator concurrency, not the sublterator concurrency that subModel will see, and recomputing the message_-
lengths on the subModel is probably not a bad idea either. Therefore, recompute everything on subModel using
init_communicators().

Reimplemented from Model.

10.64.2.5 intevaluation_id () const [inline, protected, virtual]

Return the current evaluation id for the NestedModel.

return the top level nested evaluation count. To get the lower level eval count, the subModel must be explicitly
queried. This is consistent with the eval counter definitions in surrogate models.

Reimplemented from Model.

10.64.2.6 void response_mapping (const Response & opt_interface_response, const Response &
sub_iterator_response, Response & mapped_response) [ pri vat e]

combine the response from the optional interface evaluation with the response from the sub-iteration using the
primaryCoeffs/secondaryCoeffs mappings to create the total response for the model

In the OUU case,

optionalInterface fns = {f}, {g} (determnistic primary functions, constraints)
sublterator fns ={S} (UQ response statistics)

Problem formul ati on for mapped functions:
m nimze {f} + [W{S}

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.64 NestedModel Class Reference 355

subject to {g_l} <= {g} <= {g_u}
{a_l} <= [AI{S} <= {a_u}
{g} == {g_t}
[AI{S} == {a_t}

where [W] is the primary_mapping_matrix user input (primaryRespCoeffs class attribute), [A] is the secondary_-
mapping_matrix user input (secondaryRespCoeffs class attribute), { {g_l},{a_l}} are the top level inequality con-
straint lower bounds, {{g_u},{a_u}} are the top level inequality constraint upper bounds, and {{g_t},{a_t}} are
the top level equality constraint targets.

NOTE: optionallnterface/sublterator primary fns (obj/lsq/generic fns) overlap but optionallnterface/sublterator
secondary fns (ineq/eq constraints) do not. The [W] matrix can be specified so as to allow

e some purely deterministic primary functions and some combined: [W] filled and [W].num_rows() <
{f}.length() [combined first] or [W].num_rows() == {f}.length() and [W] contains rows of zeros [combined
last]

e some combined and some purely stochastic primary functions: [W] filled and [W].num_rows() >
{f}.length()

e separate deterministic and stochastic primary functions: [W].num_rows() > {f}.length() and [W] contains
{f}.length() rows of zeros.

If the need arises, could change constraint definition to allow overlap as well: {g_1} <= {g} + [A]{S} <= {g_u}
with [A] usage the same as for [W] above.

In the UOO case, things are simpler, just compute statistics of each optimization response function: [W] = [I],
{f}/{g}/[A] are empty.

10.64.3 Member Data Documentation

10.64.3.1 Model subModel [ private]

the sub-model used in sub-iterator evaluations

There are no restrictions on subModel, so arbitrary nestings are possible. This is commonly used to support
surrogate-based optimization under uncertainty by having NestedModels contain SurrogateModels and vice versa.

The documentation for this class was generated from the following files:

o NestedModel. H
o NestedModel.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



356 DAKOTA Class Documentation

10.65 NI2Misc Struct Reference

Auxiliary information passed to calcr and calcj via ur.

Public Attributes

e Real % J [2]

cache the two most recent Jacobian values in speculative-evaluation mode

e int nf [2]

function-evaluation counts corresponding to cached Jacobian values (used to tell which J value to use)

e int specgrad

whether to cache J values (0 == no, 1 == yes)

10.65.1 Detailed Description

Auxiliary information passed to calcr and calcj via ur.

The documentation for this struct was generated from the following file:

e NL2SOLLeastSq.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.66 NL2SOL LeastSq Class Reference 357

10.66 NL2SOL L eastSg Class Reference

Wrapper class for the NL2SOL nonlinear least squares library.
Inheritance diagram for NL2SOLLeastSq::

| Iterator |

T

| Minimizer |

T

|LeastSq|

T

| NL2SOL L eastsq |

Public Member Functions

e NL2SOLLeastSq (Model &model)
standard constructor

e ~NL2SOLLeastSq ()
destructor

e void minimize_residuals ()

Static Private Member Functions

e static void calcr (int *np, int *pp, Real *X, int *nfp, Real xr, int *ui, void *ur, Vf vf)

evaluator function for residual vector

e static void calcj (int *np, int xpp, Real xx, int *nfp, Real J, int *ui, void *ur, Vf vf)
evaluator function for residual Jacobian

Private Attributes

e int auxprt

auxilary printing bits (see Dakota Ref Manual): sum of 1 = x0prt (print initial guess) 2 = solprt (print final solution)
4 = statpr (print solution statistics) 8 = parprt (print nondefault parameters) 16 = dradpr (print bound constraint
drops/adds) debug/verbose/normal use default = 31 (everything), quiet uses 3, silent uses 0.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



358 DAKOTA Class Documentation

e int outlev
frequency of output summary lines in number of iterations (debug/verbose/normal/quiet use default = 1, silent uses
0)

e Real dltfdj
finite-diff step size for computing Jacobian approximation (f d_gr adi ent _st ep_si ze)

e Real delta0

finite-diff step size for gradient differences for H (a component of some covariance approximations, if desired)
(fd_hessi an_st ep_si ze)

e Real ditfdc
finite-diff step size for function differences for H (f d_hessi an_st ep_si ze)

e int mxfcal

function-evaluation limit (max_f unct i on_eval uati ons)

e int mxiter

iteration limit (max_i t er at i ons)

e Real rfctol
relative fn convergence tolerance (conver gence_t ol er ance)

e Real afctol

absolute fn convergence tolerance (absol ut e_conv_tol)

e Real xctol
x-convergence tolerance (x_conv_tol)

e Real sctol

singular convergence tolerance (si ngul ar _conv_t ol )

e Real Imaxs

radius for singular-convergence test (si ngul ar _r adi us)

e Real xftol
false-convergence tolerance (f al se_conv_tol)

e int covreq

kind of covariance required (covar i ance): 1 or -1 ==> sigma”2 H"-1 J*"T JH"-1 2 or -2 ==> sigma”2 H"-1
3or -3 ==> sigma”2 (J"T J)"-1 1 or 2 ==> use gradient diffs to estimate H -1 or -2 ==> use function diffs to
estimate H default = 0 (no covariance)

e int rdreq
whether to compute the regression diagnostic vector (r egr essi on_di agnosti cs)

e Real fprec

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.66 NL2SOL LeastSq Class Reference 359

expected response function precision (f unct i on_pr eci si on)

e Real Imax0
initial trust-region radius (i ni ti al _trust _radi us)

Static Private Attributes

e static NL2SOLLeastSq * nl2sollnstance
pointer to the active object instance used within the static evaluator functions

10.66.1 Detailed Description

Wrapper class for the NL2SOL nonlinear least squares library.

The NL2SOLLeastSq class provides a wrapper for NL2SOL, a C library from Bell Labs. It uses a function pointer
approach for which passed functions must be either global functions or static member functions.

10.66.2 Member Function Documentation

10.66.2.1 void minimize_residuals () [virtual ]

Details on the following subscript values appear in "Usage Summary for Selected Optimization Rou-
tines" by David M. Gay, Computing Science Technical Report No. 153, AT&T Bell Laboratories, 1990.
http://netlib.bell-labs.comcnfcs/cstr/153. ps. gz

Implements LeastSq.

The documentation for this class was generated from the following files:

e NL2SOLLeastSq.H
e NL2SOLLeastSq.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



360 DAKOTA Class Documentation

10.67 NLPQLPOptimizer Class Reference

Wrapper class for the NLPQLP optimization library, Version 2.0.
Inheritance diagram for NLPQLPOptimizer::

| Iterator |

T

| Minimizer |

T

| Optimizer |

T

NL PQL POptimizer
| |

Public Member Functions

o NLPQLPOptimizer (Model &model)
constructor

o ~NLPQLPOptimizer ()
destructor

e void find_optimum ()

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual function
for the optimizer branch.

Protected Member Functions

e virtual void derived_pre_run ()

performs run-time set up

e virtual void derived_post_run ()

performs final solution processing

Private Member Functions

e void allocate_workspace ()

Allocates workspace for the optimizer.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.67 NLPQLPOptimizer Class Reference 361

e void deallocate_workspace ()
Releases workspace memory.

e void allocate_constraints ()

Allocates constraint mappings.

Private Attributes

e intL

L : Number of parallel systems, i.e. function calls during line search at predetermined iterates. HINT: If only less
than 10 parallel function evaluations are possible, it is recommended to apply the serial version by setting L=1.

o int numEqConstraints

numEqConstraints : Number of equality constraints.

o int MMAX

MMAX : Row dimension of array DG containing Jacobian of constraints. MMAX must be at least one and greater
or equal to M.

e intN
N : Number of optimization variables.

o int NMAX
NMAX : Row dimension of C. NMAX must be at least two and greater than N.

e int MNN2
MNN2 : Must be equal to M+N+N+2.

e double x X

X(NMAX,L) : Initially, the first column of X has to contain starting values for the optimal solution. On return, X is
replaced by the current iterate. In the driving program the row dimension of X has to be equal to NMAX. X is used
internally to store L different arguments for which function values should be computed simultaneously.

e double * F

F(L) : On return, F(1) contains the final objective function value. F is used also to store L different objective
function values to be computed from L iterates stored in X.

e double x G

G(MMAX,L) : On return, the first column of G contains the constraint function values at the final iterate X. In the
driving program the row dimension of G has to be equal to MMAX. G is used internally to store L different set of
constraint function values to be computed from L iterates stored in X.

e double * DF

DF(NMAX) : DF contains the current gradient of the objective function. In case of numerical differentiation and a
distributed system (L>1), it is recommended to apply parallel evaluations of F to compute DF.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



362

DAKOTA Class Documentation

double x* DG

DG(MMAX,NMAX) : DG contains the gradients of the active constraints (ACTIVE(J)=.true.) at a current iterate
X. The remaining rows are filled with previously computed gradients. In the driving program the row dimension of
DG has to be equal to MMAX.

double x U

U(MNN?2) : U contains the multipliers with respect to the actual iterate stored in the first column of X. The first M
locations contain the multipliers of the M nonlinear constraints, the subsequent N locations the multipliers of the
lower bounds, and the final N locations the multipliers of the upper bounds. At an optimal solution, all multipliers
with respect to inequality constraints should be nonnegative.

double * C

C(NMAX,NMAX) : On return, C contains the last computed approximation of the Hessian matrix of the Lagrangian
function stored in form of an LDL decomposition. C contains the lower triangular factor of an LDL factorization
of the final quasi-Newton matrix (without diagonal elements, which are always one). In the driving program, the
row dimension of C has to be equal to NMAX.

double * D

D(NMAX) : The elements of the diagonal matrix of the LDL decomposition of the quasi-Newton matrix are stored
in the one-dimensional array D.

double ACC

ACC : The user has to specify the desired final accuracy (e.g. 1.0D-7). The termination accuracy should not be
smaller than the accuracy by which gradients are computed.

double ACCQP

ACCQP : The tolerance is needed for the QP solver to perform several tests, for example whether optimality
conditions are satisfied or whether a number is considered as zero or not. If ACCQP is less or equal to zero, then
the machine precision is computed by NLPQLP and subsequently multiplied by 1.0D+4.

double STPMIN

STPMIN : Minimum steplength in case of L>1. Recommended is any value in the order of the accuracy by which
functions are computed. The value is needed to compute a steplength reduction factor by STPMINsx(1/L-1). If
STPMIN<=0, then STPMIN=ACC is used.

int MAXFUN

MAXFUN : The integer variable defines an upper bound for the number of function calls during the line search
(e.g. 20). MAXFUN is only needed in case of L=1, and must not be greater than 50.

int MAXIT

MAXIT : Maximum number of outer iterations, where one iteration corresponds to one formulation and solution of
the quadratic programming subproblem, or, alternatively, one evaluation of gradients (e.g. 100).

int MAX_NM

MAX_NM : Stack size for storing merit function values at previous iterations for non-monotone line search (e.g.
10). In case of MAX_NM=0, monotone line search is performed.

double TOL_NM

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.67 NLPQLPOptimizer Class Reference 363

TOL_NM : Relative bound for increase of merit function value, if line search is not successful during the very first
step. Must be non-negative (e.g. 0.1).

e int [PRINT

IPRINT : Specification of the desired output level. IPRINT = 0 : No output of the program. IPRINT =1 : Only
a final convergence analysis is given. IPRINT =2 : One line of intermediate results is printed in each iteration.
IPRINT = 3 : More detailed information is printed in each iteration step, e.g. variable, constraint and multiplier
values. IPRINT =4 : In addition to "IPRINT=3", merit function and steplength values are displayed during the line
search.

e int MODE

MODE : The parameter specifies the desired version of NLPQLP. MODE = 0 : Normal execution (reverse commu-
nication!). MODE =1 : The user wants to provide an initial guess for the multipliers in U and for the Hessian of
the Lagrangian function in C and D in form of an LDL decomposition.

e intIOUT
IOUT : Integer indicating the desired output unit number, i.e. all write-statements start with "WRITE(IOUT,... ".

e int IFAIL

IFAIL : The parameter shows the reason for terminating a solution process. Initially IFAIL must be set to zero. On
return IFAIL could contain the following values: IFAIL =-2 : Compute gradient values w.r.t. the variables stored in
first column of X, and store them in DF and DG. Only derivatives for active constraints ACTIVE(J)=.TRUE. need
to be computed. Then call NLPQLP again, see below. IFAIL =-1 : Compute objective fn and all constraint values
subject the variables found in the first L columns of X, and store them in F and G. Then call NLPQLP again, see
below. IFAIL = 0 : The optimality conditions are satisfied. IFAIL =1 : The algorithm has been stopped after MAXIT
iterations. IFAIL = 2 : The algorithm computed an uphill search direction. IFAIL = 3 : Underflow occurred when
determining a new approxi- mation matrix for the Hessian of the Lagrangian. IFAIL = 4 : The line search could
not be terminated successfully. IFAIL =5 : Length of a working array is too short. More detailed error information
is obtained with "IPRINT>0". IFAIL = 6 : There are false dimensions, for example M>MMAX, N>=NMAX, or
MNN2<>M+N+N+2. IFAIL = 7 : The search direction is close to zero, but the current iterate is still infeasible.
IFAIL = 8 : The starting point violates a lower or upper bound. IFAIL =9 : Wrong input parameter, i.e., MODE,
LDL decomposition in D and C (in case of MODE=1), IPRINT, IOUT IFAIL = 10 : Internal inconsistency of the
quadratic subproblem, division by zero. IFAIL > 100 : The solution of the quadratic programming subproblem
has been terminated with an error message and IFAIL is set to IFQL+100, where IFQL denotes the index of an
inconsistent constraint.

e double x WA
WA(LWA) : WA is a real working array of length LWA.

e int LWA
LWA : LWA value extracted from NLPQLP20.f.

e int x KWA
KWA(LKWA) : The user has to provide working space for an integer array.

e int LKWA
LKWA : LKWA should be at least N+10.

e int + ACTIVE

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



364 DAKOTA Class Documentation

ACTIVE(LACTIV) : The logical array shows a user the constraints, which NLPQLP considers to be active at the
last computed iterate, i.e. G(J,X) is active, if and only if ACTIVE(J)=.TRUE., J=1,...,M.

e int LACTIVE
LACTIV : The length LACTIV of the logical array should be at least 2«M+10.

e intLQL

LQL : If LQL = .TRUE., the quadratic programming subproblem is to be solved with a full positive definite quasi-
Newton matrix. Otherwise, a Cholesky decomposition is performed and updated, so that the subproblem matrix
contains only an upper triangular factor.

o SizetList nonlinlneqConMappingIndices

a list of indices for referencing the DAKOTA nonlinear inequality constraints used in computing the corresponding
NLPQL constraints.

e RealList nonlinlneqConMappingMultipliers

a list of multipliers for mapping the DAKOTA nonlinear inequality constraints to the corresponding NLPQL con-
straints.

e RealList nonlinlneqConMappingOffsets
a list of offsets for mapping the DAKOTA nonlinear inequality constraints to the corresponding NLPQL constraints.

e SizetList linlneqConMappingIndices

a list of indices for referencing the DAKOTA linear inequality constraints used in computing the corresponding
NLPQL constraints.

e RealList linlneqConMappingMultipliers
a list of multipliers for mapping the DAKOTA linear inequality constraints to the corresponding NLPQL constraints.

e RealList linlneqConMappingOffsets
a list of offsets for mapping the DAKOTA linear inequality constraints to the corresponding NLPQL constraints.

10.67.1 Detailed Description

Wrapper class for the NLPQLP optimization library, Version 2.0.
SRR SRR SRR KRR SRR SRR RSk RSk R Sk kR SRk R Rk R ok ok

AN IMPLEMENTATION OF A SEQUENTIAL QUADRATIC PROGRAMMING METHOD FOR SOLVING
NONLINEAR OPTIMIZATION PROBLEMS BY DISTRIBUTED COMPUTING AND NON-MONOTONE
LINE SEARCH

This subroutine solves the general nonlinear programming problem
minimize F(X) subject to G(J,X) =0, J=1,....ME G(J,X) >=0, J=ME+1,. M XL <=X <=XU

and is an extension of the code NLPQLD. NLPQLP is specifically tuned to run under distributed systems. A new
input parameter L is introduced for the number of parallel computers, that is the number of function calls to be
executed simultaneously. In case of L=1, NLPQLP is identical to NLPQLD. Otherwise the line search is modified

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.67 NLPQLPOptimizer Class Reference 365

to allow L parallel function calls in advance. Moreover the user has the opportunity to used distributed function
calls for evaluating gradients.

The algorithm is a modification of the method of Wilson, Han, and Powell. In each iteration step, a linearly con-
strained quadratic programming problem is formulated by approximating the Lagrangian function quadratically
and by linearizing the constraints. Subsequently, a one-dimensional line search is performed with respect to an
augmented Lagrangian merit function to obtain a new iterate. Also the modified line search algorithm guarantees
convergence under the same assumptions as before.

For the new version, a non-monotone line search is implemented which allows to increase the merit function in
case of instabilities, for example caused by round-off errors, errors in gradient approximations, etc.

The subroutine contains the option to predetermine initial guesses for the multipliers or the Hessian of the La-
grangian function and is called by reverse communication.

The documentation for this class was generated from the following files:

o NLPQLPOptimizer.H
o NLPQLPOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



366 DAKOTA Class Documentation

10.68 NLSSOL L eastSq Class Reference

Wrapper class for the NLSSOL nonlinear least squares library.
Inheritance diagram for NLSSOLLeastSq::

| Iterator |

T

| Minimizer

T

| LeastSq || SOLBase |

t i
N

| NLSSOLLeastSq|

Public Member Functions

e NLSSOLLeastSq (Model &model)
standard constructor

e ~NLSSOLLeastSq ()
destructor

e void minimize_residuals ()

Used within the least squares branch for minimizing the sum of squares residuals. Redefines the run_iterator virtual
function for the least squares branch.

Static Private Member Functions

e static void least_sq_eval (int &mode, int &m, int &n, int &nrowfj, double *x, double *f, double xgradf, int
&nstate)

Evaluator for NLSSOL: computes the values and first derivatives of the least squares terms (passed by function
pointer to NLSSOL).

Static Private Attributes

e static NLSSOLLeastSq * nlssollnstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for static
data

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.68 NLSSOL LeastSq Class Reference 367

10.68.1 Detailed Description

Wrapper class for the NLSSOL nonlinear least squares library.

The NLSSOLLeastSq class provides a wrapper for NLSSOL, a Fortran 77 sequential quadratic programming
library from Stanford University marketed by Stanford Business Associates. It uses a function pointer approach
for which passed functions must be either global functions or static member functions. Any nonstatic attribute
used within static member functions must be either local to that function or accessed through a static pointer.

The user input mappings are as follows: max_function_eval uati ons is implemented directly in
NLSSOLLeastSq’s evaluator functions since there is no NLSSOL parameter equivalent, and max_i t er ati ons,
conver gence_t ol erance, output verbosity, verify |evel, function_precision, and
| i nesear ch_t ol er ance are mapped into NLSSOL’s "Major Iteration Limit", "Optimality Tolerance", "Ma-
jor Print Level" (ver bose: Major Print Level = 20; qui et : Major Print Level = 10), "Verify Level", "Func-
tion Precision", and "Linesearch Tolerance" parameters, respectively, using NLSSOL’s npoptn() subroutine (as
wrapped by npoptn2() from the npoptn_wrapper.f file). Refer to [Gill, P.E., Murray, W., Saunders, M.A., and
Wright, M.H., 1986] for information on NLSSOL’s optional input parameters and the npoptn() subroutine.

The documentation for this class was generated from the following files:

e NLSSOLLeastSq.H
e NLSSOLLeastSq.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



368 DAKOTA Class Documentation

10.69 NoDBBaseConstructor Struct Reference

Dummy struct for overloading constructors used in on-the-fly instantiations.

Public Member Functions

e NoDBBaseConstructor (int=0)
C++ structs can have constructors.

10.69.1 Detailed Description

Dummy struct for overloading constructors used in on-the-fly instantiations.

NoDBBaseConstructor is used to overload the constructor used for on-the-fly iterator instantiations in which
ProblemDescDB queries cannot be used. Putting this struct here avoids circular dependencies.

The documentation for this struct was generated from the following file:

e global_defs.h

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.70 NonD Class Reference 369

10.70 NonD Class Reference

Base class for all nondetermistic iterators (the DAKOTA/UQ branch).

Inheritance diagram for NonD::

| Iterator |

T

| Analyzer |

T

| NonD |

i
[ N |

NonDEvidence || NonDReliability || NonDSampling |
t

| NonDLHSSampIing| | NonDPCESampling

Protected Member Functions

e NonD (Model &model)
constructor

e NonD (NoDBBaseConstructor, Model &model)
alternate constructor for sample generation and evaluation "on the fly"

o NonD (NoDBBaseConstructor, const Real Vector &lower_bnds, const Real Vector &upper_bnds)

alternate constructor for sample generation "on the fly"

e ~NonD ()
destructor

e void run ()

redefines the main iterator hierarchy virtual function to invoke quantify_uncertainty

e const Response & response_results () const

return the final statistics from the nondeterministic iteration

e void response_results_active_set (const ActiveSet &set)

set the active set within finalStatistics

virtual void quantify_uncertainty ()=0

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



370 DAKOTA Class Documentation

performs a forward uncertainty propagation of parameter distributions into response statistics

Protected Attributes

e RealMatrix uncertainCorrelations

uncertain variable correlation matrix (rank correlations for sampling and correlation coefficients for analytic reli-
ability)

e size t numNormalVars

number of normal uncertain variables

e size_t numLognormalVars

number of lognormal uncertain variables

e size_t numUniformVars

number of uniform uncertain variables

e size_t numLoguniformVars

number of loguniform uncertain variables

e size_t numTriangularVars
number of triangular uncertain variables

e size_t numBetaVars

number of beta uncertain variables

e size t numGammaVars

number of gamma uncertain variables

e size_t numGumbelVars

number of gumbel uncertain variables

e size_t numFrechetVars

number of frechet uncertain variables

e size_t numWeibull Vars
number of weibull uncertain variables

e size_t numHistogramVars

number of histogram uncertain variables

e size t numlntervalVars
number of interval uncertain variables

e size t numUncertainVars

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.70 NonD Class Reference 371

total number of uncertain variables

e size_t numResponseFunctions

number of response functions

e RealVector meanStats
means of response functions calculated in compute_statistics()

e RealVector stdDevStats
std deviations of response functions (calculated in compute_statistics())

e RealVectorArray requestedRespLevels

requested response levels for all response functions

e RealVectorArray computedProbLevels
output probability levels for all response functions resulting from requestedRespLevels

e RealVectorArray computedRelLevels
output reliability levels for all response functions resulting from requestedRespLevels

e RealVectorArray requestedProbLevels

requested probability levels for all response functions

e RealVectorArray requestedRelLevels
requested reliability (beta) levels for all response functions

e RealVectorArray computedRespLevels
output response levels for all response functions resulting from either requestedProbLevels or requestedRelLevels

e size_t totalLevelRequests
total number of levels specified within requestedRespLevels, requestedProbLevels, and requestedRelLevels

e bool cdfFlag

flag for type of probabilities/reliabilities used in mappings: cumulative/CDF (true) or complementary/CCDF (false)

e bool respLevelProbFlag
flag to indicate mapping of z->p (true) or z->beta (false)

e Dbool correlationFlag

flag for indicating if correlation exists among the uncertain variables

e bool strategyFlag

flag indicating a strategy other than "single_method". Used to compute additional statistics for use at the strategy
level or to deactivate additional output not needed for strategy executions.

e Response finalStatistics

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



372 DAKOTA Class Documentation

final statistics from the uncertainty propagation used in strategies: response means, standard deviations, and prob-
abilities of failure

Private Member Functions

e void distribute_levels (Real VectorArray &levels)

convenience function for distributing a vector of levels among multiple response functions if a short-hand specifi-
cation is employed.

10.70.1 Detailed Description

Base class for all nondetermistic iterators (the DAKOTA/UQ branch).

The base class for nondeterministic iterators consolidates uncertain variable data and probabilistic utilities for
inherited classes.

The documentation for this class was generated from the following files:

e DakotaNonD.H
e DakotaNonD.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.71 NonDEvidence Class Reference 373

10.71 NonDEvidence Class Reference

Class for the Dempster-Shafer Evidence Theory methods within DAKOTA/UQ.

Inheritance diagram for NonDEvidence::

NonDEvidence

Public Member Functions

e NonDEvidence (Model &model)
constructor

e ~NonDEvidence ()
destructor

e void quantify_uncertainty ()

performs an epistemic uncertainty propagation using Dempster-Shafer evidence theory methods which solve for
cumulative distribution functions of belief and plausibility

e void print_results (ostream &s) const

print the cumulative distribution functions for belief and plausibility

Private Member Functions

e void calculate_basic_prob_intervals ()

convenience function for encapsulating the calculation of basic probability assignments for input interval combi-
nations

e void calculate_maxmin_per_interval ()

convenience function for encapsulating the determination of maximum and minimum values within each input
interval combination (cell).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



374

DAKOTA Class Documentation

void calculate_cum_belief_plaus ()

convenience function for determining the cumulative distribution functions of belief and plausbility, based on the

max and mins per interval cell

Private Attributes

const int originalSeed

the user seed specification (default is 0)

int numSamples

the number of samples used in the surrogate

int NV
Size variable for DDS arrays.

int NCMB

Size variable for DDS arrays.

int MAXINTVLS
Size variable for DDS arrays.

Real Y
Temporary output variable.

Real « BPA
Internal DDS array.

Real * VMIN

Internal DDS array.

Real * VMAX
Internal DDS array.

Real * BPAC
Internal DDS array.

Real * CMIN
Internal DDS Array.

Real * CMAX
Internal DDS Array.

Real * X
Internal DDS Array.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.71 NonDEvidence Class Reference 375

e int x NI

Internal DDS array.

e int x IP

Internal DDS array.

10.71.1 Detailed Description

Class for the Dempster-Shafer Evidence Theory methods within DAKOTA/UQ.

The NonDEvidence class implements the propagation of epistemic uncertainty using Dempster-Shafer theory of
evidence. In this approach, one assigns a set of basic probability assignments (BPA) to intervals defined for the
uncertain variables. Input interval combinations are calculated, along with their BPA. Currently, the response
function is evaluated at a set of sample points, then a response surface is constructed which is sampled extensively
to find the minimum and maximum within each input interval cell, corresponding to the belief and plausibility
within that cell, respectively. This data is then aggregated to calculate cumulative distribution functions for belief
and plausibility.

10.71.2 Member Data Documentation

10.71.2.1 intNV [private]

Size variable for DDS arrays.

NV = number of interval variables

10.71.2.2 int NCMB [pri vat e]

Size variable for DDS arrays.

NCMB = number of cell combinations

10.71.2.3 int MAXINTVLS [private]

Size variable for DDS arrays.

MAXINTVLS = maximum number of intervals per individual interval var
10.71.2.4 Real Y [private]

Temporary output variable.

Y = current output to be placed in cell

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



376

DAKOTA Class Documentation

10.71.2.5 Realx BPA [pri vate]

Internal DDS array.

Basic Probability Assignments

10.71.2.6 Real« VMIN [private]

Internal DDS array.

Minimum ends of intervals.

10.71.2.7 Realx VMAX [private]

Internal DDS array.

Maximum ends of intervals.

10.71.2.8 Realx BPAC [ pri vate]

Internal DDS array.

Basic Probability Combinations.

10.71.2.9 Realx CMIN [private]

Internal DDS Array.

Minimum per cell combination.

10.71.2.10 Realx CMAX [private]

Internal DDS Array.

Maximum per cell combination.

10.71.2.11 Realx X [private]

Internal DDS Array.
X per cell combination.

10.71.2.12 int« NI [private]

Internal DDS array.

Number of intervals per interval variable

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.71 NonDEvidence Class Reference 377

10.71.2.13 int« IP [private]

Internal DDS array.
Sort order for combinations

The documentation for this class was generated from the following files:

e NonDEvidence.H
e NonDEvidence.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



378

DAKOTA Class Documentation

10.72 NonDLHSSampling Class Reference

Performs LHS and Monte Carlo sampling for uncertainty quantification.

Inheritance diagram for NonDLHSSampling::

Public Member Functions

e NonDLHSSampling (Model &model)

constructor

Iterator |

T

Analyzer |

T

NonD |

T

NonDSampling
| |

T

| NonDLHSSampling |

NonDLHSSampling (Model &model, int samples, int seed)

alternate constructor for sample generation and evaluation "on the fly"

NonDLHSSampling (int samples, int seed, const RealVector &lower_bnds, const RealVector &upper_-

bnds)

alternate constructor for sample generation “on the fly"

~NonDLHSSampling ()

destructor

void quantify_uncertainty ()

performs a forward uncertainty propagation by using LHS to generate a set of parameter samples, performing
function evaluations on these parameter samples, and computing statistics on the ensemble of results.

void print_results (ostream &s) const

print the final statistics

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.72 NonDLHSSampling Class Reference 379

Private Attributes

e Dbool allVarsFlag

flags DACE mode using all variables

e bool varBasedDecompFlag
flags computation of VBD

10.72.1 Detailed Description

Performs LHS and Monte Carlo sampling for uncertainty quantification.

The Latin Hypercube Sampling (LHS) package from Sandia Albuquerque’s Risk and Reliability organization
provides comprehensive capabilities for Monte Carlo and Latin Hypercube sampling within a broad array of user-
specified probabilistic parameter distributions. It enforces user-specified rank correlations through use of a mixing
routine. The NonDLHSSampling class provides a C++ wrapper for the LHS library and is used for performing
forward propagations of parameter uncertainties into response statistics.

10.72.2 Constructor & Destructor Documentation

10.72.2.1 NonDLHSSampling (Model & model)

constructor

This constructor is called for a standard letter-envelope iterator instantiation. In this case, set_db_list_nodes has
been called and probDescDB can be queried for settings from the method specification.

10.72.2.2 NonDLHSSampling (Model & model, int samples, int seed)

alternate constructor for sample generation and evaluation "on the fly"

This alternate constructor is used by NonDEvidence for generation and evaluation of Model-based sample sets.
It is _not_ a letter-envelope instantiation and a set_db_list_nodes has not been performed. It is called with all
needed data passed through the constructor. It’s purpose is to avoid the need for a separate LHS specification
within methods that use LHS sampling.

10.72.2.3 NonDLHSSampling (int samples, int seed, const RealVector & lower_bnds, const Real\Vector &
upper_bnds)

alternate constructor for sample generation "on the fly"

This alternate constructor is used by ConcurrentStrategy for generation of uniform, uncorrelated sample sets. It is
_not_ a letter-envelope instantiation and a set_db_list_nodes has not been performed. It is called with all needed
data passed through the constructor and is designed to allow more flexibility in variables set definition (i.e., relax

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



380 DAKOTA Class Documentation

connection to a variables specification and allow sampling over parameter sets such as multiobjective weights).
In this case, a Model is not used and the object must only be used for sample generation (no evaluation).

10.72.3 Member Function Documentation

10.72.3.1 void quantify_uncertainty () [vi rtual]

performs a forward uncertainty propagation by using LHS to generate a set of parameter samples, performing
function evaluations on these parameter samples, and computing statistics on the ensemble of results.

Loop over the set of samples and compute responses. Compute statistics on the set of responses if statsFlag is set.
Implements NonD.

The documentation for this class was generated from the following files:

e NonDLHSSampling.H
e NonDLHSSampling.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.73 NonDPCESampling Class Reference 381

10.73 NonDPCESampling Class Reference

Stochastic finite element approach to uncertainty quantification using polynomial chaos expansions.

Inheritance diagram for NonDPCESampling::

| Iterator |

T

| Analyzer |

T

| NonD |

T

NonDSampling
| |

T

| NonDPCESampling |

Public Member Functions

o NonDPCESampling (Model &model)
constructor

e ~NonDPCESampling ()
destructor

e void quantify_uncertainty ()
perform a forward uncertainty propagation using SFEM/PCE methods

e void print_results (ostream &s) const

print the final statistics and PCE coefficient array

Private Attributes

e RealVectorArray coeffArray
Array containing Polynomial Chaos coefficients, one real vector per response function.

e int highestOrder
Highest order of Hermite Polynomials in Expansion.

e int numChaos

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



382 DAKOTA Class Documentation

Number of terms in Polynomial Chaos Expansion.

10.73.1 Detailed Description

Stochastic finite element approach to uncertainty quantification using polynomial chaos expansions.

The NonDPCE class uses a polynomial chaos expansion (PCE) approach to approximate the effect of parameter
uncertainties on response functions of interest. It utilizes the HermiteSurf and HermiteChaos classes to perform

the PCE.

The documentation for this class was generated from the following files:

e NonDPCESampling.H
o NonDPCESampling.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 383

10.74 NonDRédliability Class Reference

Class for the reliability methods within DAKOTA/UQ.

Inheritance diagram for NonDReliability::

| Iterator |

T

| Analyzer |

T

| NonD |

T

| NonDReliability |

Public Member Functions

e NonDReliability (Model &model)
constructor

e ~NonDReliability ()
destructor

e void quantify_uncertainty ()

performs an uncertainty propagation using analytical reliability methods which solve constrained optimization
problems to obtain approximations of the cumulative distribution function of response

e void print_results (ostream &s) const

print the approximate mean, standard deviation, and importance factors when using the mean value method or the
CDF/CCDF information when using MPP-search-based reliability methods

e String uses_method () const
return name of active MPP optimizer

e void method_recourse ()

perform an MPP optimizer method switch due to a detected conflict

Private Member Functions

e void initialize_random_variables ()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



384

DAKOTA Class Documentation

convenience fn for initializing ranVarType, ranVarMeansX, ranVarStdDevsX

void initial_taylor_series ()

convenience function for performing the initial limit state Taylor-series approximation

void mean_value ()

convenience function for encapsulating the simple Mean Value computation of approximate statistics and impor-
tance factors

void mpp_search ()

convenience function for encapsulating the reliability methods that employ a search for the most probable point
(AMV, AMV+, FORM, SORM)

void initialize_class_data ()

convenience function for initializing class scope arrays

void initialize_level_data ()

convenience function for initializing/warm starting MPP search data for each response function prior to level 0

void initialize_mpp_search_data ()

convenience function for initializing/warm starting MPP search data for each z/p/beta level for each response
function

void update_mpp_search_data (const Variables &vars_star, const Response &resp_star)

convenience function for updating MPP search data for each z/p/beta level for each response function

void update_level_data (Real Vector &final_stats, RealMatrix &final_stat_grads)
convenience function for updating z/p/beta level data and final statistics following MPP convergence

void update_limit_state_surrogate ()

convenience function for passing the latest variables/response data to limitStateSurrogate

void assign_mean_data ()

update mostProbPointX/U, computedRespLevel, fnGradX/U, and fnHessX/U from ranVarMeansX/U, fnValsMeanX,
fnGradsMeanX, and fnHessiansMeanX

void g_eval (int &mode, const Epetra_SerialDenseVector &u)

convenience function for evaluating fnVal(u), fnGradU(u), and fnHessU(u) as required by RIA_constraint_eval()
and PMA_objective_eval()

void dg_ds_eval (const Epetra_SerialDenseVector &x_vars, const Epetra_SerialDenseVector &fn_grad_x,
RealMatrix &final_stat_grads)

convenience function for evaluating dg/ds

void trans_U_to_X (const Epetra_SerialDenseVector &u_vars, Epetra_SerialDense Vector &x_vars)

Transformation routine from u-space of uncorrelated standard normal variables to x-space of correlated random
variables.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 385

e void trans_U_to_Z (const Epetra_SerialDenseVector &u_vars, Epetra_SerialDenseVector &z_vars)

Transformation routine from u-space of uncorrelated standard normal variables to z-space of correlated standard
normal variables.

e void trans_Z_to_X (const Epetra_SerialDenseVector &z_vars, Epetra_SerialDenseVector &x_vars)

Transformation routine from z-space of correlated standard normal variables to x-space of correlated random
variables.

e void trans_X_to_U (const Epetra_SerialDense Vector &x_vars, Epetra_SerialDenseVector &u_vars)

Transformation routine from x-space of correlated random variables to u-space of uncorrelated standard normal
variables.

e void trans_X_to_Z (const Epetra_SerialDenseVector &x_vars, Epetra_SerialDenseVector &z_vars)

Transformation routine from x-space of correlated random variables to z-space of correlated standard normal
variables.

e void trans_Z_to_U (Epetra_SerialDenseVector &z_vars, Epetra_SerialDense Vector &u_vars)

Transformation routine from z-space of correlated standard normal variables to u-space of uncorrelated standard
normal variables.

e void trans_grad_X_to_U (const Epetra_SerialDenseVector &fn_grad_x, Epetra_SerialDenseVector &fn_-
grad_u, const Epetra_SerialDenseVector &x_vars)

Transformation routine for gradient vector from x-space to u-space.

e void trans_hess_X_to_U (const Epetra_SerialSymDenseMatrix &fn_hess_x, Epetra_SerialSymDense-
Matrix &fn_hess_u, const Epetra_SerialDenseVector &x_vars, const Epetra_SerialDenseVector &fn_-
grad_x)

Transformation routine for Hessian matrix from x-space to u-space.

e void jacobian_dX_dU (const Epetra_SerialDenseVector &x_vars, Epetra_SerialDenseMatrix &jacobian_-
Xu)

Jacobian of x(u) mapping obtained from dX/dZ dz/dU.

e void jacobian_dX_dZ (const Epetra_SerialDenseVector &x_vars, Epetra_SerialDenseMatrix &jacobian_-
XZ)

Jacobian of x(z) mapping obtained from differentiation of trans_Z_to_X().

e void jacobian_dU_dX (const Epetra_SerialDenseVector &x_vars, Epetra_SerialDenseMatrix &jacobian_-
ux)

Jacobian of u(x) mapping obtained from dU/dzZ dz/dX.

e void jacobian_dZ_dX (const Epetra_SerialDenseVector &x_vars, Epetra_SerialDenseMatrix &jacobian_-
ZX)

Jacobian of z(x) mapping obtained from differentiation of trans_X_to_Z().

e void jacobian_dX_dS (const Epetra_SerialDenseVector &x_vars, Epetra_SerialDenseMatrix &jacobian_-
XS)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



386 DAKOTA Class Documentation

Design Jacobian of x(u,s) mapping obtained from differentiation of trans_U_to_X() with respect to distribution
parameters S.

e void numerical_design_jacobian (const Epetra_SerialDenseVector &x_vars, bool xs, Epetra_SerialDense-
Matrix &num_jacobian_xs, bool zs, Epetra_SerialDenseMatrix &num_jacobian_zs)

Computes numerical dx/ds and dz/ds Jacobians as requested by xs and zs booleans.

e void hessian_d2X_dU?2 (const Epetra_SerialDenseVector &x_vars, Array< Epetra_SerialSymDenseMatrix
> &hessian_xu)

Hessian of x(u) mapping obtained from dZ/dU”T d”2X/dZ"2 dZ/dU.

e void hessian_d2X_dZ2 (const Epetra_SerialDenseVector &x_vars, Array< Epetra_SerialSymDenseMatrix
> &hessian_xz)

Hessian of x(z) mapping obtained from differentiation of jacobian_dX_dZ().

e void trans_correlations ()

As part of the Nataf distribution model (Der Kiureghian & Liu, 1986), this procedure modifies the user-specified
correlation matrix (corrMatrix) and decomposes it into its Cholesky factor (corrCholeskyFactor).

e void verify_trans_jacobian_hessian (const Epetra_SerialDenseVector &v0)
routine for verification of transformation Jacobian/Hessian terms

e void verify_design_jacobian (const Epetra_SerialDenseVector &u0)
routine for verification of design Jacobian terms

e const Real & distribution_parameter (const size_t &index)
return a particular random variable distribution parameter

e void distribution_parameter (const size_t &index, const Real &param)

set a particular random variable distribution parameter and update derived quantities

Real probability (const Real &beta)
Convert beta to a probability using either a first-order or second-order integration.

Real reliability (const Real &p)
Convert probability to beta using the inverse of a first-order or second-order integration.

void principal_curvatures ()

Compute the kappaU vector of principal curvatures from fnHessU.

Real phi (const Real &beta)
Standard normal density function.

Real Phi (const Real &beta)
Standard normal cumulative distribution function.

Real Phi_inverse (const Real &p)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 387

Inverse of standard normal cumulative distribution function.

e Real erf_inverse (const Real &p)

Inverse of error function used in Phi_inverse().

e Real cdf_beta_Pinv (const Real &normcdf, const Real &alpha, const Real &beta)
Inverse of standard beta CDF (not supported by GSL).

Static Private Member Functions

e static void RIA_objective_eval (int &mode, int &n, double *u, double &f, double xgrad_f, int &)

static function used by NPSOL as the objective function in the Reliability Index Approach (RIA) problem formula-
tion. This equality-constrained optimization problem performs the search for the most probable point (MPP) with
the objective function of (norm u)”"2.

e static void RIA_constraint_eval (int &mode, int &ncnln, int &n, int &nrowj, int *needc, double *u, double
xc, double *cjac, int &nstate)

static function used by NPSOL as the constraint function in the Reliability Index Approach (RIA) problem formula-
tion. This equality-constrained optimization problem performs the search for the most probable point (MPP) with
the constraint of G(u) = response level.

e static void PMA_objective_eval (int &mode, int &n, double *u, double &f, double xgrad_f, int &)

static function used by NPSOL as the objective function in the Performance Measure Approach (PMA) problem for-
mulation. This equality-constrained optimization problem performs the search for the most probable point (MPP)
with the objective function of G(u).

static void PMA_constraint_eval (int &mode, int &ncnln, int &n, int &nrowj, int xneedc, double xu, double
xc, double *cjac, int &nstate)
static function used by NPSOL as the constraint function in the Performance Measure Approach (PMA) prob-

lem formulation. This equality-constrained optimization problem performs the search for the most probable point
(MPP) with the constraint of (norm u)"2 = beta” 2.

static void RIA_objective_eval (int mode, int n, const NEWMAT::ColumnVector &u, NEWMAT::Real &f,
NEWMAT::ColumnVector &grad_{, int &result_mode)

static function used by OPT++ as the objective function in the Reliability Index Approach (RIA) problem formula-
tion. This equality-constrained optimization problem performs the search for the most probable point (MPP) with
the objective function of (norm u)”"2.

static void RIA_constraint_eval (int mode, int n, const NEWMAT::ColumnVector &u,
NEWMAT::ColumnVector &g, NEWMAT::Matrix &grad_g, int &result_mode)
static function used by OPT++ as the constraint function in the Reliability Index Approach (RIA) problem formula-

tion. This equality-constrained optimization problem performs the search for the most probable point (MPP) with
the constraint of G(u) = response level.

static void PMA_objective_eval (int mode, int n, const NEWMAT::ColumnVector &u, NEWMAT::Real
&f, NEWMAT::ColumnVector &grad_f, int &result_mode)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



388 DAKOTA Class Documentation

static function used by OPT++ as the objective function in the Performance Measure Approach (PMA) problem for-
mulation. This equality-constrained optimization problem performs the search for the most probable point (MPP)
with the objective function of G(u).

e static void PMA_constraint_eval (int mode, int n, const NEWMAT::ColumnVector &u,
NEWMAT::ColumnVector &g, NEWMAT::Matrix &grad_g, int &result_mode)

static function used by OPT++ as the constraint function in the Performance Measure Approach (PMA) prob-
lem formulation. This equality-constrained optimization problem performs the search for the most probable point
(MPP) with the constraint of (norm u)”2 = beta” 2.

Private Attributes

e Approximation limitStateSurrogate

Approximation instance used for TANA-3 and Taylor series limit state approximations.

e size_t numRelAnalyses

number of invocations of quantify_uncertainty()

e size_t approxlters

number of AMV+/TANA approximation cycles for the current respFnCount/levelCount

e bool approxConverged

indicates convergence of approximation-based iterations

e Epetra_SerialDenseVector fnGradX
actual x-space gradient for current function from most recent response evaluation

e Epetra_SerialDenseVector fnGradU

u-space gradient for current function updated from fnGradX and Jacobian dx/du

e Epetra_SerialSymDenseMatrix fnHessX

actual x-space Hessian for current function from most recent response evaluation

e Epetra_SerialSymDenseMatrix fnHessU
u-space Hessian for current function updated from fnHessX and Jacobian dx/du

e Epetra_SerialDenseVector kappaU
principal curvatures derived from eigenvalues of orthonormal transformation of fnHessU

e Real modelFnVal
x-space/u-space value for current function from (linearized) model used in RIA/PMA objective/constraint evaluators

e Epetra_SerialDenseVector modelFnGradU
u-space gradient for current function from (linearized) model used in RIA/PMA objective/constraint evaluators

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 389

Epetra_SerialSymDenseMatrix modelFnHessU
u-space Hessian for current function from (linearized) model used in RIA/PMA objective/constraint evaluators

Epetra_SerialDense Vector fnValsMeanX
response function values evaluated at mean x

Epetra_SerialDenseMatrix fnGradsMeanX
response function gradients evaluated at mean x

Array< Epetra_SerialSymDenseMatrix > fnHessiansMeanX
response function Hessians evaluated at mean x

Real Vector medianFnVals

response function values evaluated at u=0 (for first-order integration, p=0.5 -> median function values). Used to
determine the sign of beta.

Real Vector initialPtU
initial guess for MPP search in u-space

Epetra_SerialDenseVector mostProbPointX
location of MPP in x-space

Epetra_SerialDense Vector mostProbPointU
location of MPP in u-space

RealVectorArray prevMPPULev0
array of converged MPP’s in u-space for level 0. Used for warm-starting initialPtU within RBDO.

RealMatrix prevFnGradDLev0

matrix of limit state sensitivities w.r.t. inactive/design variables for level 0. Used for warm-starting initialPtU
within RBDO.

RealMatrix prevFnGradULev0

matrix of limit state sensitivities w.r.t. active/uncertain variables for level 0. Used for warm-starting initialPtU
within RBDO.

RealVector prevICVars
previous design vector. Used for warm-starting initialPtU within RBDO.

IntArray prevCumASVLev0

accumulation (using |=) of all previous design ASV’s from requested finalStatistics. Used to detect availability of
prevFnGradDLev0 data for warm-starting initialPtU within RBDO.

IntArray ranVarType
vector of indices indicating the type of each uncertain variable

Epetra_SerialDenseVector ranVarMeansX

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



390 DAKOTA Class Documentation

vector of means for all uncertain random variables in x-space

e Epetra_SerialDenseVector ranVarMeansU
vector of means for all uncertain random variables in u-space

e Epetra_SerialDenseVector ranVarStdDevsX
vector of standard deviations for all uncertain random variables in x-space

e Epetra_SerialSymDenseMatrix corrMatrix

Epetra copy of uncertainCorrelations.

e Epetra_SerialDenseMatrix corrCholeskyFactor

cholesky factor of corrMatrix

e int respFnCount

counter for which response function is being analyzed

e size_t levelCount

counter for which response/probability level is being analyzed

o size_t statCount

counter for which final statistic is being computed

e Real requestedRespLevel
the response level target for the current response function

e Real requestedCDFProbLevel
the CDF probability level target for the current response function

e Real requestedCDFRelLevel

the CDF reliability level target for the current response function

e Real computedRespLevel
output response level calculated

e Real computedRelLevel
output reliability level calculated

e short mppSearchType
the MPP search type selection: MV, x/u-space AMV, x/u-space AMV+, or FORM

e bool npsolFlag
flag representing the optimization MPP search algorithm selection (SQP or NIP)

e bool warmStartFlag
flag indicating the use of warm starts

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 391

e bool nipModeOverrideFlag

flag indicating the use of move overrides within OPT++ NIP

e short integrationOrder

integration order (1 or 2) provided by i nt egr at i on specification

e short taylorOrder
order of Taylor series approximations (1 or 2) in MV/AMV/AMV+ derived from hessianType

e RealMatrix impFactor

importance factors predicted by MV

e int npsolDerivLevel

derivative level for NPSOL executions (1 = analytic grads of objective fn, 2 = analytic grads of constraints, 3 =
analytic grads of both).

e const Real Pi

the value for Pi used in several numerical routines

Static Private Attributes

e static NonDReliability * nondRellnstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for static
data

10.74.1 Detailed Description

Class for the reliability methods within DAKOTA/UQ.

The NonDReliability class implements the following reliability methods through the support of different limit
state approximation and integration options: mean value (MV), advanced mean value method (AMV) in x- or u-
space, iterated advanced mean value method (AMV+) in x- or u-space, first order reliability method (FORM), and
second order reliability method (SORM). The AMV/AMV+/FORM/SORM variants employ an optimizer (cur-
rently NPSOL SQP or OPT++ NIP) to solve an equality-constrained optimization problem for the most probable
point (MPP).

10.74.2 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



392 DAKOTA Class Documentation

10.74.2.1 void initialize_random_variables () [ pri vat e]

convenience fn for initializing ranVarType, ranVarMeansX, ranVarStdDevsX

Build ranVar arrays containing the uncertain variable distribution types and their corresponding means/standard
deviations.

10.74.2.2 void initial_taylor_series() [ pri vat e]

convenience function for performing the initial limit state Taylor-series approximation

An initial first- or second-order Taylor-series approximation is required for MV/AMV/AMV+/TANA or for the
case where meanStats or stdDevStats (from MV) are required within finalStatistics for sublterator usage of
NonDReliability.

10.74.2.3 void initialize_class_data() [ pri vat e]

convenience function for initializing class scope arrays

Initialize class-scope arrays and perform other start-up activities, such as evaluating median limit state responses.

10.74.2.4 void initialize_level data() [ pri vate]

convenience function for initializing/warm starting MPP search data for each response function prior to level O

For a particular response function prior to the first z/p/beta level, initialize/warm-start optimizer initial guess
(initialPtU), expansion point (mostProbPointX/U), and associated response data (computedRespLevel, fnGrad-
X/U, and fnHessX/U).

10.74.2.5 void initialize_mpp_search_data() [ pri vat e]

convenience function for initializing/warm starting MPP search data for each z/p/beta level for each response
function

For a particular response function at a particular z/p/beta level, warm-start or reset the optimizer initial guess
(initialPtU), expansion point (mostProbPointX/U), and associated response data (computedRespLevel, fnGrad-
X/U, and fnHessX/U).

10.74.2.6 void update_mpp_search_data (const Variables & vars_star, const Response & resp_star)
[ private]

convenience function for updating MPP search data for each z/p/beta level for each response function

Includes case-specific logic for updating MPP search data for the AMV/AMV+/TANA/NO_APPROX methods.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 393

10.74.2.7 void update_level_data (RealVector & final_stats, RealMatrix & final_stat_grads)
[ private]

convenience function for updating z/p/beta level data and final statistics following MPP convergence

Updates computedRespLevels/computedProbLevels/computedRelLevels, final_stats/final_stat_grads, warm start,
and graphics data.

10.74.2.8 void g_eval (int & mode, const Epetra_SerialDenseVector & u) [ pri vat e]

convenience function for evaluating fnVal(u), fnGradU(u), and fnHessU(u) as required by RIA_constraint_eval()
and PMA_objective_eval()

Convenience function for evaluating the value/gradient/Hessian of G(u). Attributes containing actual data from
response evaluations:

e fnValsMeanX, computedRespLevel, fnGradX, fnHessX Attributes used in evaluator fns that may involve
approximations:

e modelFnVal, modelFnGradU, modelFnHessU It is important to keep these separate, since fnGradU is used
in a number of places (warm start projections, sensitivities, and SORM integrations at converged MPP’s)
and should not defined from approximations.

10.74.2.9 void dg_ds_eval (const Epetra_SerialDenseVector & x_vars, const Epetra_SerialDenseVector
& fn_grad_x, RealMatrix & final_stat_grads) [ pri vat €]

convenience function for evaluating dg/ds

Computes dg/ds where s = design variables. Supports potentially overlapping cases of design variable augmenta-
tion and insertion.

10.74.2.10 void trans_U_to_X (const Epetra_SerialDenseVector & u_vars, Epetra_SerialDenseVector &
x_vars) [private]

Transformation routine from u-space of uncorrelated standard normal variables to x-space of correlated random
variables.

This procedure performs the transformation from u to x space. u_vars is the vector of random variables in un-
correlated standard normal space (u-space). x_vars is the vector of random variables in the original user-defined
X-space.

10.74.2.11 void trans_U_to_Z (const Epetra_SerialDenseVector & u_vars, Epetra_SerialDenseVector &
z vars) [private]

Transformation routine from u-space of uncorrelated standard normal variables to z-space of correlated standard
normal variables.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



394 DAKOTA Class Documentation

This procedure computes the transformation from u to z space. u_vars is the vector of random variables in
uncorrelated standard normal space (u-space). z_vars is the vector of random variables in normal space with
proper correlations (z-space).

10.74.2.12 void trans_Z_to_X (const Epetra_SerialDenseVector & z_vars, Epetra_SerialDenseVector &
x_vars) [private]

Transformation routine from z-space of correlated standard normal variables to x-space of correlated random
variables.

This procedure computes the transformation from z to x space. z_vars is the vector of random variables in normal
space with proper correlations (z-space). x_vars is the vector of random variables in the original user-defined
X-space

10.74.2.13 void trans_X_to_U (const Epetra_SerialDenseVector & x_vars, Epetra_SerialDenseVector &
u_vars) [private]

Transformation routine from x-space of correlated random variables to u-space of uncorrelated standard normal
variables.

This procedure performs the transformation from x to u space u_vars is the vector of random variables in un-
correlated standard normal space (u-space). x_vars is the vector of random variables in the original user-defined
X-space.

10.74.2.14 void trans_X_to_Z (const Epetra_SerialDenseVector & x_vars, Epetra_SerialDenseVector &
z vars) [private]

Transformation routine from x-space of correlated random variables to z-space of correlated standard normal
variables.

This procedure performs the transformation from x to z space: z_vars is the vector of random variables in normal
space with proper correlations (z-space). x_vars is the vector of random variables in the original user-defined
X-space.

10.74.2.15 void trans_Z_to_U (Epetra_SerialDenseVector & z_vars, Epetra_SerialDenseVector &
u_vars) [private]

Transformation routine from z-space of correlated standard normal variables to u-space of uncorrelated standard
normal variables.

This procedure computes the transformation from z to u space. u_vars is the vector of random variables in
uncorrelated standard normal space (u-space). z_vars is the vector of random variables in normal space with
proper correlations (z-space).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 395

10.74.2.16 void trans_grad_X_to_U (const Epetra_SerialDenseVector & fn_grad_x,
Epetra_SerialDenseVector & fn_grad_u, const Epetra_SerialDenseVector & x_vars)
[ private]

Transformation routine for gradient vector from x-space to u-space.

This procedure tranforms a gradient vector from the original user-defined x-space (where evaluations are per-
formed) to uncorrelated standard normal space (u-space). x_vars is the vector of random variables in x-space.

10.74.2.17 void trans_hess_X_to_U (const Epetra_SerialSymDenseMatrix & fn_hess_x,
Epetra_SerialSymDenseMatrix & fn_hess_u, const Epetra_SerialDenseVector & x_vars, const
Epetra_SerialDenseVector & fn_grad_x) [ pri vat e]

Transformation routine for Hessian matrix from x-space to u-space.

This procedure tranforms a Hessian matrix from the original user-defined x-space (where evaluations are per-
formed) to uncorrelated standard normal space (u-space). x_vars is the vector of the random variables in x-space.

10.74.2.18 void jacobian_dX_dU (const Epetra_SerialDenseVector & x_vars, Epetra_SerialDenseMatrix
& jacobian_xu) [ private]
Jacobian of x(u) mapping obtained from dX/dZ dZ/dU.

This procedure computes the Jacobian of the transformation x(u). x_vars is the vector of random variables in the
original user-defined x-space.

10.74.2.19 void jacobian_dX_dZ (const Epetra_SerialDenseVector & x_vars, Epetra_SerialDenseMatrix
& jacobian_xz) [private]
Jacobian of x(z) mapping obtained from differentiation of trans_Z_to_X().

This procedure computes the Jacobian of the transformation x(z). x_vars is the vector of random variables in the
original user-defined x-space.

10.74.2.20 void jacobian_dU_dX (const Epetra_SerialDenseVector & x_vars, Epetra_SerialDenseMatrix
& jacobian_ux) [ private]

Jacobian of u(x) mapping obtained from dU/dZ dZ/dX.

This procedure computes the Jacobian of the transformation u(x). x_vars is the vector of random variables in the
original user-defined x-space.

10.74.2.21 void jacobian_dZ_dX (const Epetra_SerialDenseVector & x_vars, Epetra_SerialDenseMatrix
& jacobian_zx) [ private]

Jacobian of z(x) mapping obtained from differentiation of trans_X_to_Z().

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



396 DAKOTA Class Documentation

This procedure computes the Jacobian of the transformation z(x). x_vars is the vector of random variables in the
original user-defined x-space.

10.74.2.22 void jacobian_dX_dS (const Epetra_SerialDenseVector & x_vars, Epetra_SerialDenseMatrix
& jacobian_xs) [ pri vate]

Design Jacobian of x(u,s) mapping obtained from differentiation of trans_U_to_X() with respect to distribution
parameters S.

This procedure computes the derivative of the original variables x with respect to the random variable distribu-
tion parameters s. This provides the design Jacobian of the transformation for use in computing RBDO design
sensitivities.

10.74.2.23 void numerical_design_jacobian (const Epetra_SerialDenseVector & X_vars, bool xs,
Epetra_SerialDenseMatrix & num_jacobian_xs, bool zs, Epetra_SerialDenseMatrix &
num_jacobian_zs) [privat e]

Computes numerical dx/ds and dz/ds Jacobians as requested by xs and zs booleans.

This procedure computes numerical derivatives of x and/or z with respect to distribution parameters s, and is used
by jacobian_dX_dS() to provide data that is not available analytically. Numerical dz/ds involves dL/ds (z(s) =
L(s) u and dz/ds = dL/ds u) and is needed to evaluate dx/ds semi-analytically for correlated variables. Numerical
dx/ds is needed for distributions lacking simple closed-form CDF expressions (beta and gamma distributions).

10.74.2.24 void hessian_d2X_dU2 (const Epetra_SerialDenseVector & x_vars, Array<
Epetra_SerialSymDenseMatrix > & hessian_xu) [ pri vat e]

Hessian of x(u) mapping obtained from dZ/dUNT d"2X/dZ"2 dZ/dU.

This procedure computes the Hessian of the transformation x(u). hessian_xu is a 3D tensor modeled as an array
of matrices, where the i_th matrix is d"2X_i/dU”2. x_vars is the vector of random variables in the original
user-defined x-space.

10.74.2.25 void hessian_d2X_dZ2 (const Epetra_SerialDenseVector & x_vars, Array<
Epetra_SerialSymDenseMatrix > & hessian_xz) [ pri vat e]

Hessian of x(z) mapping obtained from differentiation of jacobian_dX_dZ().

This procedure computes the Hessian of the transformation x(z). hessian_xz is a 3D tensor modeled as an array
of matrices, where the i_th matrix is d"2X_i/dZ"2. x_vars is the vector of random variables in the original
user-defined x-space.

10.74.2.26 void trans_correlations () [ pri vat e]

As part of the Nataf distribution model (Der Kiureghian & Liu, 1986), this procedure modifies the user-specified
correlation matrix (corrMatrix) and decomposes it into its Cholesky factor (corrCholeskyFactor).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.74 NonDReliability Class Reference 397

This procedure modifies the correlation matrix input by the user for use in the Nataf distribution model (Der Ki-
ureghian and Liu, ASCE JEM 112:1, 1986). It uses empirical expressionss derived from least-squares polynomial
fits to numerical integration data.

e corrMatrix: the correlation coefficient matrix of the random variables provided by the user
e mod_corr_matrix: modified correlation matrix

e corrCholeskyFactor: Cholesky factor of the modified correlation matrix for use in Z_to_U and U_to_Z
transformations.

Note: The modification is exact for normal-normal, lognormal-lognormal, and normal-lognormal tranformations.
All other cases are approximations with some error as noted below.

10.74.2.27 Real probability (const Real & beta) [ pri vat e]

Convert beta to a probability using either a first-order or second-order integration.

Converts beta into a probability using either first-order (FORM) or second-order (SORM) integration. The SORM
calculation first calculates the principal curvatures at the MPP (using the approach in Ch. 8 of Haldar & Ma-
hadevan), and then applies correction formulations from the literature (Breitung, Hohenbichler/Rackwitz, Tvedt,
Hong).

10.74.2.28 Real reliability (const Real & p) [ pri vat €]

Convert probability to beta using the inverse of a first-order or second-order integration.

Converts a probability into a reliability using the inverse of the first-order or second-order integrations imple-
mented in NonDReliability::probability(beta).

10.74.2.29 Real Phi (const Real & beta) [inline, private]

Standard normal cumulative distribution function.

returns a probability < 0.5 for negative beta and a probability > 0.5 for positive beta.
10.74.2.30 Real Phi_inverse (const Real & p) [inline, private]

Inverse of standard normal cumulative distribution function.

returns a negative beta for probability < 0.5 and a positive beta for probability > 0.5.

10.74.2.31 Real cdf_beta_Pinv (const Real & normcdf, const Real & alpha, const Real & beta)
[ private]

Inverse of standard beta CDF (not supported by GSL).

Solve is performed in scaled space (for the standard beta distribution).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



398 DAKOTA Class Documentation

The documentation for this class was generated from the following files:

e NonDReliability.H
e NonDReliability.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.75 NonDSampling Class Reference 399

10.75 NonDSampling Class Reference

Base class for common code between NonDLHSSampling and NonDPCESampling.

Inheritance diagram for NonDSampling::

| Iterator |

T

| Analyzer |

T

| NonD |

T

| NonDSampling |
t

NonDLHSSampling | | NonDPCESampling

Protected Member Functions

e NonDSampling (Model &model)

constructor

NonDSampling (NoDBBaseConstructor, Model &model, int samples, int seed)

alternate constructor for sample generation and evaluation "on the fly"

NonDSampling (NoDBBaseConstructor, int samples, int seed, const RealVector &lower_bnds, const
RealVector &upper_bnds)

alternate constructor for sample generation "on the fly"

e ~NonDSampling ()
destructor

void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag)

resets number of samples and sampling flags

const String & sampling_scheme () const

return sampleType: "lhs" or "random"

void vary_pattern (bool pattern_flag)
set varyPattern

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



400 DAKOTA Class Documentation

e void get_parameter_sets ()

Uses run_lhs() to generate a set of samples from the distributions in userDefinedModel. In the usual mode, this will
be called once. In variance-based decomposition or replicated LHS, it may be called several times.

e void get_parameter_sets (const Real Vector &lower_bnds, const RealVector &upper_bnds)

Uses run_lhs() to generate a set of uniform samples over lower_bnds/upper_bnds.

e void run_lhs (const RealVector &all_l_bnds, const RealVector &all_u_bnds, const RealVector &n_-
means, const RealVector &n_std_devs, const Real Vector &n_1_bnds, const RealVector &n_u_bnds, const
Real Vector &In_means, const RealVector &In_std_devs, const RealVector &In_err_facts, const Real Vector
&In_1_bnds, const RealVector &In_u_bnds, const RealVector &u_l_bnds, const RealVector &u_u_-
bnds, const RealVector &lu_l_bnds, const RealVector &lu_u_bnds, const RealVector &t_modes, const
RealVector &t_I_bnds, const RealVector &t_u_bnds, const RealVector &b_alphas, const Real Vector &b_-
betas, const RealVector &b_l_bnds, const RealVector &b_u_bnds, const RealVector &ga_alphas, const
RealVector &ga_betas, const RealVector &w_alphas, const RealVector &w_betas, const Real VectorArray
&h_bin_prs, const RealVectorArray &h_pt_prs, const IntVector &num_intervals, const RealVector
&interval_probs, const Real Vector &interval_bounds)

generates the desired set of parameter samples from within user-specified probabilistic distributions. Supports both
old and new LHS libraries. Used by NonDLHSSampling and NonDPCESampling.
e void compute_statistics (const RealVectorArray &samples)

computes mean, standard deviation, and probability of failure for the samples input

e void compute_correlations (const RealVectorArray &all_c_vars, const Real VectorArray &all_fns)

computes four correlation matrices for input and output data simple, partial, simple rank, and partial rank

e void simple_corr (Epetra_SerialDenseMatrix &total_data, const int &num_obs, const int &num_cort, const
bool &rank_on)

computes simple correlations

e void partial_corr (Epetra_SerialDenseMatrix &total_data, const int &num_obs, const int &num_corr, const
bool &rank_on)

computes partial correlations

e void print_statistics (ostream &s) const

prints the mean, standard deviation, and probability of failure statistics computed in compute_statistics()

Static Protected Member Functions

e static bool rank_sort (const int &x, const int &y)

sort algorithm to compute ranks for rank correlations

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.75 NonDSampling Class Reference 401

Protected Attributes

e int samplesSpec

user specification of number of samples

e int numSamples

the number of samples to evaluate

e String sampleType
the sample type: "lhs" or "random"

e bool statsFlag
flags computation/output of statistics

e bool allDataFlag
flags update of allVariables/allResponses

e size_t numActiveVars

total number of variables published to LHS

e size_t numDesignVars

number of design variables (treated as uniform distribution within design variable bounds for DACE usage of
NonDSampling)

e size_t numStateVars

number of state variables (treated as uniform distribution within state variable bounds for DACE usage of
NonDSampling)

e bool varyPattern

flag for generating a sequence of seed values within multiple run_lhs() calls so that the run_lhs() executions (e.g.,
for surrogate-based optimization) are repeatable but not correlated.

Private Member Functions

e void check_error (const int &err_code, const char *err_source) const

checks the return codes from LHS routines and aborts if an error is returned

Private Attributes

e const int originalSeed

the user seed specification (default is 0)

e int randomSeed

the current random number seed

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



402 DAKOTA Class Documentation

e size t numLHSRuns

counter for number of executions of run_lhs() for this object

e RealVector mean95CIDeltas

Plus/minus deltas on response function means for 95% confidence intervals (calculated in compute_statistics()).

o RealVector stdDev95CILowerBnds

Lower bound for 95% confidence interval on std deviation (calculated in compute_statistics()).

e RealVector stdDev95CIUpperBnds

Upper bound for 95% confidence interval on std deviation (calculated in compute_statistics()).

e Epetra_SerialDenseMatrix simpleCorr

matrix to hold simple raw correlations

e Epetra_SerialDenseMatrix simpleRankCorr

matrix to hold simple rank correlations

e Epetra_SerialDenseMatrix partialCorr

matrix to hold partial raw correlations

e Epetra_SerialDenseMatrix partialRankCorr

matrix to hold partial rank correlations

Static Private Attributes

e static RealArray rawData

vector to hold raw data before rank sort

e static int pgf90Initialized
flag indicating whether pghpf_init() has been called.

10.75.1 Detailed Description

Base class for common code between NonDLHSSampling and NonDPCESampling.

This base class provides common code for sampling methods which employ the Latin Hypercube Sampling (LHS)
package from Sandia Albuquerque’s Risk and Reliability organization. NonDSampling manages two LHS ver-
sions within a #ifdef construct in run_lhs(): (1) the 1998 Fortran 90 LHS version as documented in SAND98-0210,
which was converted to a UNIX link library in 2001, (2) the 1970’s vintage LHS that had been f2¢’d and converted
to (incomplete) classes.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.75 NonDSampling Class Reference 403

10.75.2 Constructor & Destructor Documentation

10.75.2.1 NonDSampling (Model & model) [ prot ect ed]

constructor

This constructor is called for a standard letter-envelope iterator instantiation. In this case, set_db_list_nodes has
been called and probDescDB can be queried for settings from the method specification.

10.75.2.2 NonDSampling (NoDBBaseConstructor, Model & model, int samples, int seed)
[ prot ect ed]
alternate constructor for sample generation and evaluation "on the fly"

This alternate constructor is used by NonDEvidence for generation and evaluation of on-the-fly sample sets.

10.75.2.3 NonDSampling (NoDBBaseConstructor, int samples, int seed, const Real\Vector & lower_bnds,
const RealVector & upper_bnds) [ pr ot ect ed]
alternate constructor for sample generation "on the fly"

This alternate constructor is used by ConcurrentStrategy for generation of uniform, uncorrelated sample sets.

10.75.3 Member Function Documentation

10.75.3.1 void sampling_reset (int min_samples, bool all_data_flag, bool stats_flag) [i nli ne,
protected, virtual]
resets number of samples and sampling flags

used by ApproximationInterface::build_global_approximation() to publish the minimum number of samples
needed from the sampling routine (to build a particular global approximation) and to set allDataFlag and statsFlag.
In this case, allDataFlag is set to true (vectors of variable and response sets must be returned to build the global
approximation) and statsFlag is set to false (statistics computations are not needed).

Reimplemented from Iterator.

The documentation for this class was generated from the following files:

o NonDSampling. H
e NonDSampling.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



DAKOTA Class Documentation

404

10.76 NPSOL Optimizer Class Reference

Wrapper class for the NPSOL optimization library.

Inheritance diagram for NPSOLOptimizer::

| lteaor |
I
Minimizer |
T
| Optimizer | | SOLBase
t ]
{
| NPSOL Optimizer |

Public Member Functions

e NPSOLOptimizer (Model &model)
standard constructor
e NPSOLOptimizer (const Real Vector &initial_point, const RealVector &var_lower_bnds, const Real Vector
&var_upper_bnds, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lower_bnds, const
RealVector &lin_ineq_upper_bnds, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_-
targets, const RealVector &nonlin_ineq_lower_bnds, const RealVector &nonlin_ineq_upper_bnds, const

RealVector &nonlin_eq_targets, void(xuser_obj_eval)(int &, int &, double *, double &, double x*, int &),
void(xuser_con_eval)(int &, int &, int &, int &, int *, double *, double *, double *, int &), const int

&derivative_level, const Real &conv_tol)
alternate constructor for instantiations "on the fly"

e ~NPSOLOptimizer ()

destructor

e void find_optimum ()
Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual function

for the optimizer branch.

Private Member Functions

e void find_optimum_on_model ()
called by find_optimum for setUpType == "model"

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.76 NPSOLOptimizer Class Reference 405

e void find_optimum_on_user_functions ()

called by find_optimum for setUpType == "user_functions"

Static Private Member Functions

e static void objective_eval (int &mode, int &n, double xx, double &f, double xgradf, int &nstate)

OBJFUN in NPSOL manual: computes the value and first derivatives of the objective function (passed by function
pointer to NPSOL).

Private Attributes

e String setUpType
controls iteration mode: "model” (normal usage) or "user_functions" (user-supplied functions mode for "on the fly"
instantiations). NonDReliability currently uses the user_functions mode.

e RealVector initialPoint

holds initial point passed in for "user_functions" mode.

e RealVector lowerBounds

holds variable lower bounds passed in for "user_functions" mode.

e RealVector upperBounds

holds variable upper bounds passed in for "user_functions™ mode.

e void(x userObjectiveEval )(int &, int &, double %, double &, double x*, int &)

holds function pointer for objective function evaluator passed in for "user_functions" mode.

e void(* userConstraintEval )(int &, int &, int &, int &, int *, double *, double %, double *, int &)

holds function pointer for constraint function evaluator passed in for "user_functions™ mode.

Static Private Attributes

e static NPSOLOptimizer * npsollnstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for static
data

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



406 DAKOTA Class Documentation

10.76.1 Detailed Description

Wrapper class for the NPSOL optimization library.

The NPSOLOptimizer class provides a wrapper for NPSOL, a Fortran 77 sequential quadratic programming
library from Stanford University marketed by Stanford Business Associates. It uses a function pointer approach
for which passed functions must be either global functions or static member functions. Any attribute used within
static member functions must be either local to that function or accessed through a static pointer.

The user input mappings are as follows: max_function_eval uati ons is implemented directly in
NPSOLOptimizer’s evaluator functions since there is no NPSOL parameter equivalent, and max_i t er ati ons,
conver gence_t ol erance, output verbosity, verify | evel, function_precision, and
| i nesear ch_t ol er ance are mapped into NPSOL’s "Major Iteration Limit", "Optimality Tolerance", "Major
Print Level" (ver bose: Major Print Level = 20; qui et : Major Print Level = 10), "Verify Level", "Function
Precision", and "Linesearch Tolerance" parameters, respectively, using NPSOL’s npoptn() subroutine (as wrapped
by npoptn2() from the npoptn_wrapper.ffile). Refer to [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H.,
1986] for information on NPSOL’s optional input parameters and the npoptn() subroutine.

The documentation for this class was generated from the following files:

e NPSOLOptimizer.H
e NPSOLOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.77 Optimizer Class Reference 407

10.77 Optimizer Class Reference

Base class for the optimizer branch of the iterator hierarchy.

Inheritance diagram for Optimizer::

\ \ \ \ \ \ \
COLINOptimizer | [ CONMINOptimizer | [ DOTOptimizer | [ JEGAOptimizer | [ NLPQLPOptimizer | [ NPSOLOptimizer | [ SNLLOptimizer

Public Member Functions

e void run ()

run the iterator; portion of run_iterator()

Protected Member Functions

e Optimizer ()
default constructor

Optimizer (Model &model)
standard constructor

Optimizer (NoDBBaseConstructor, size_t num_cv, size_t num_lin_ineq, size_t num_lin_eq, size_t num_-
nln_ineq, size_t num_nln_eq)

alternate constructor for "on the fly" instantiations

~Optimizer ()
destructor

void print_results (ostream &s) const
void multi_objective_weights (const Real Vector &multi_obj_wts)

set the relative weightings for multiple objective functions. Used by ConcurrentStrategy for Pareto set optimization.

void derived_initialize_scaling ()

provides derived class-specific portions of scaling initialization since Optimizer and LeastSq iterators have obj fn.
and residual scales, respectively

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



408 DAKOTA Class Documentation

e virtual void find_optimum ()=0

Used within the optimizer branch for computing the optimal solution. Redefines the run_iterator virtual function
for the optimizer branch.

e Response multi_objective_modify (const Response &raw_response) const

forward mapping: maps multiple objective functions to a single objective for single-objective optimizers

e const RealVector & multi_objective_retrieve (const Variables &vars, const Response &response) const

inverse mapping: retrieves values for multiple objective functions from the solution of a single-objective optimizer

Protected Attributes

e size_t numObjectiveFunctions

number of objective functions

e RealVector multiObjWeights

user-specified weights for multiple objective functions

Friends

e class COLINApplication

a COLINOptimizer uses a COLINApplication object to perform the function evaluations

10.77.1 Detailed Description

Base class for the optimizer branch of the iterator hierarchy.

The Optimizer class provides common data and functionality for DOTOptimizer, NPSOLOptimizer,
SNLLOptimizer, and COLINOptimizer.

10.77.2 Constructor & Destructor Documentation

10.77.2.1 Optimizer (Model & model) [ pr ot ect ed]

standard constructor

This constructor extracts the inherited data for the optimizer branch and performs sanity checking on gradient and
constraint settings.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.77 Optimizer Class Reference 409

10.77.3 Member Function Documentation

10.77.3.1 voidrun() [inline, virtual]

run the iterator; portion of run_iterator()

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is the virtual run function
for the iterator class hierarchy. All derived classes need to redefine it.

Reimplemented from Iterator.

10.77.3.2 void print_results (ostream & s) const [ prot ected, virtual]

Redefines default iterator results printing to include optimization results (objective functions and constraints).

Reimplemented from Iterator.

10.77.3.3 Response multi_objective_modify (const Response & raw_response) const [ pr ot ect ed]

forward mapping: maps multiple objective functions to a single objective for single-objective optimizers

This function is responsible for the mapping of multiple objective functions into a single objective for publishing to
single-objective optimizers. Used in DOTOptimizer, NPSOLOptimizer, SNLLOptimizer, and SGOPTApplication
on every function evaluation. The simple weighting approach (using multiObjWeights) is the only technique
supported currently. The weightings are used to scale function values, gradients, and Hessians as needed.

10.77.3.4 const RealVector & multi_objective_retrieve (const Variables & vars, const Response &
response) const [ prot ect ed]
inverse mapping: retrieves values for multiple objective functions from the solution of a single-objective optimizer

Retrieve a full multiobjective response based on the data returned by a single objective optimizer by performing a
data_pairs search.

The documentation for this class was generated from the following files:

e DakotaOptimizer.H
e DakotaOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



410 DAKOTA Class Documentation

10.78 ParallelConfi guration Class Reference

Container class for a set of ParallelLevel list iterators that collectively identify a particular multilevel parallel
configuration.

Public Member Functions

e ParallelConfiguration ()

default constructor

e ParallelConfiguration (const ParallelConfiguration &pl)

copy constructor

e ~ParallelConfiguration ()

destructor

e ParallelConfiguration & operator= (const ParallelConfiguration &pl)

assignment operator

e const ParallelLevel & w_parallel_level () const

return the ParallelLevel corresponding to wPLIter

e const ParallelLevel & si_parallel_level () const

return the ParallelLevel corresponding to siPLIter

e const ParallelLevel & ie_parallel_level () const

return the ParallelLevel corresponding to iePLIter

e const ParallelLevel & ea_parallel_level () const

return the ParallelLevel corresponding to eaPLIter

Private Member Functions

e void assign (const ParallelConfiguration &pl)

assign the attributes of the incoming pl to this object

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.78 ParallelConfiguration Class Reference 411

Private Attributes

e short numParallelLevels
number of parallel levels

o ParLevLIter wPLIter

list iterator for MPI_COMM_WORLD (not strictly required, but improves modularity by avoiding explicit usage of
MPI_COMM_WORLD)

ParLevLlIter siPLIter
list iterator for concurrent iterator partitions (there may be more than one per parallel configuration instance)

ParLevLlIter iePLIter
list iterator identifying the iterator-evaluation parallelLevel (there can only be one)

ParLevLlIter eaPLIter
list iterator identifying the evaluation-analysis parallelLevel (there can only be one)

Friends

e class ParallelLibrary
the ParallelLibrary class has special access priveleges in order to streamline implementation

10.78.1 Detailed Description

Container class for a set of ParallelLevel list iterators that collectively identify a particular multilevel parallel
configuration.

Rather than containing the multilevel parallel configuration directly, ParallelConfiguration instead provides a set
of list iterators which point into a combined list of ParallelLevels. This approach allows different configurations
to reuse ParallelLevels without copying them. A list of ParallelConfigurations is contained in ParallelLibrary
(ParallelLibrary::parallelConfigurations).

The documentation for this class was generated from the following file:

e ParallelLibrary.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



412 DAKOTA Class Documentation

10.79 ParallelLevel Class Reference

Container class for the data associated with a single level of communicator partitioning.

Public Member Functions

e ParallelLevel ()
default constructor

e ParallelLevel (const ParallelLevel &pl)
copy constructor

e ~ParallelLevel ()
destructor

e ParallelLevel & operator= (const ParallelLevel &pl)

assignment operator

e bool dedicated_master_flag () const
return dedicatedMasterFlag

e bool communicator_split_flag () const
return commSplitFlag

e Dbool server_master_flag () const

return serverMasterFlag

e Dbool message_pass () const
return messagePass

e const int & num_servers () const

return numsServers

e const int & processors_per_server () const

return procsPerServer

e const MPI_Comm & server_intra_communicator () const

return serverintraComm

e const int & server_communicator_rank () const
return serverCommRank

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.79 ParallelLevel Class Reference

413

e const int & server_communicator_size () const

return serverCommSize

e const MPI_Comm & hub_server_intra_communicator () const

return hubServerintraComm

e constint & hub_server_communicator_rank () const

return hubServerCommRank

e constint & hub_server_communicator_size () const

return hubServerCommsSize

e const MPI_Comm & hub_server_inter_communicator () const
return hubServerinterComm

e MPI_Comm * hub_server_inter_communicators () const

return hubServerInterComms

e constint & server_id () const
return serverld

Private Member Functions

e void assign (const ParallelLevel &pl)
assign the attributes of the incoming pl to this object

Private Attributes

e bool dedicatedMasterFlag
signals dedicated master partitioning

e bool commSplitFlag
signals a communicator split was used

e Dbool serverMasterFlag

identifies master server processors

e bool messagePass

flag for message passing at this level

e int numServers

number of servers

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



414

DAKOTA Class Documentation

int procsPerServer
processors per server

MPI_Comm serverIntraComm
intracomm. for each server partition

int serverCommRank
rank in serverintraComm

int serverCommSize
size of serverintraComm

MPI_Comm hubServerIntraComm

intracomm for all serverCommRank==0 w/i next higher level serverIntraComm

int hubServerCommRank
rank in hubServerintraComm

int hubServerCommsSize

size of hubServerIntraComm

MPI_Comm hubServerInterComm

intercomm. between a server & the hub (on server partitions only)

MPI_Comm * hubServerInterComms

intercomm. array on hub processor

int serverld
server identifier

Friends

e class ParallelLibrary

the ParallelLibrary class has special access priveleges in order to streamline implementation

10.79.1 Detailed Description

Container class for the data associated with a single level of communicator partitioning.

A list of these levels is contained in ParallelLibrary (ParallelLibrary::parallelLevels), which defines all of the

parallelism levels across one or more multilevel parallelism configurations.

The documentation for this class was generated from the following file:

e ParallelLibrary.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.80 ParallelLibrary Class Reference 415

10.80 ParallelLibrary Class Reference

Class for partitioning multiple levels of parallelism and managing message passing within these levels.

Public Member Functions

e ParallelLibrary (int &argc, char *x&argv)

stand-alone mode constructor

ParallelLibrary ()
library mode constructor

ParallelLibrary (int dummy)
dummy constructor (used for dummy_lib)

~ParallelLibrary ()
destructor

const ParallelLevel & init_iterator_communicators (const int &iterator_servers, const int &procs_per_-
iterator, const int &max_iterator_concurrency, const String &default_config, const String &iterator_-
scheduling)

split MPI_COMM_WORLD into iterator communicators

e const ParallelLevel & init_evaluation_communicators (const int &evaluation_servers, const int &procs_-
per_evaluation, const int &max_evaluation_concurrency, const int &asynch_local_evaluation_concurrency,
const String &default_config, const String &evaluation_scheduling)

split an iterator communicator into evaluation communicators

e const ParallelLevel & init_analysis_communicators (const int &analysis_servers, const int &procs_-
per_analysis, const int &max_analysis_concurrency, const int &asynch_local_analysis_concurrency, const
String &default_config, const String &analysis_scheduling)

split an evaluation communicator into analysis communicators

e void free_iterator_communicators ()

deallocate iterator communicators

e void free_evaluation_communicators ()

deallocate evaluation communicators

e void free_analysis_communicators ()
deallocate analysis communicators

void print_configuration ()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



416

DAKOTA Class Documentation

print the parallel level settings for a particular parallel configuration

void specify_outputs_restart (CommandLineHandler &cmd_line_handler)

specify output streams and restart file(s) using command line inputs (normal mode)

void specify_outputs_restart (const char xclh_std_output_filename, const char *clh_std_error_filename,
const char xclh_read_restart_filename, const char xclh_write_restart_filename, int restart_evals)

specify output streams and restart file(s) using external inputs (library mode).

void manage_outputs_restart (const ParallelLevel &pl)
manage output streams and restart file(s) (both modes)

void close_streams ()

close streams, files, and any other services

void send_si (MPIPackBuffer &send_buff, int dest, int tag)
blocking send at the strategy-iterator communication level

void isend_si (MPIPackBuffer &send_buff, int dest, int tag, MPI_Request &send_req)

nonblocking send at the strategy-iterator communication level

void recv_si (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Status &status)

blocking receive at the strategy-iterator communication level

void irecv_si (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Request &recv_req)

nonblocking receive at the strategy-iterator communication level

void send_ie (MPIPackBuffer &send_buff, int dest, int tag)

blocking send at the iterator-evaluation communication level

void isend_ie (MPIPackBuffer &send_buff, int dest, int tag, MPI_Request &send_req)
nonblocking send at the iterator-evaluation communication level

void recv_ie (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Status &status)

blocking receive at the iterator-evaluation communication level

void irecv_ie (MPIUnpackBuffer &recv_buff, int source, int tag, MPI_Request &recv_req)

nonblocking receive at the iterator-evaluation communication level

void send_ea (int &send_int, int dest, int tag)

blocking send at the evaluation-analysis communication level

void isend_ea (int &send_int, int dest, int tag, MPI_Request &send_req)

nonblocking send at the evaluation-analysis communication level

void recv_ea (int &recv_int, int source, int tag, MPI_Status &status)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.80 ParallelLibrary Class Reference 417

blocking receive at the evaluation-analysis communication level

e void irecv_ea (int &recv_int, int source, int tag, MPI_Request &recv_req)
nonblocking receive at the evaluation-analysis communication level

e void bcast_w (int &data)
broadcast an integer across MPI_COMM_WORLD

e void bcast_i (int &data)

broadcast an integer across an iterator communicator

e void bcast_e (int &data)
broadcast an integer across an evaluation communicator

e void bcast_a (int &data)
broadcast an integer across an analysis communicator

e void bcast_si (int &data)
broadcast an integer across a strategy-iterator intra communicator

e void bcast_w (MPIPackBuffer &send_buff)
broadcast a packed buffer across MPI_COMM_WORLD

e void bcast_i (MPIPackBuffer &send_buff)
broadcast a packed buffer across an iterator communicator

e void bcast_e (MPIPackBuffer &send_buff)
broadcast a packed buffer across an evaluation communicator

e void bcast_a (MPIPackBuffer &send_buff)

broadcast a packed buffer across an analysis communicator

e void bcast_si (MPIPackBuffer &send_buff)
broadcast a packed buffer across a strategy-iterator intra communicator

e void becast_w (MPIUnpackBuffer &recv_buff)
matching receive for packed buffer broadcast across MPI_COMM_WORLD

e void bcast_i (MPIUnpackBuffer &recv_buff)

matching receive for packed buffer bcast across an iterator communicator

e void becast_e (MPIUnpackBuffer &recv_buff)
matching receive for packed buffer bcast across an evaluation communicator

e void bcast_a (MPIUnpackBuffer &recv_buff)
matching receive for packed buffer bcast across an analysis communicator

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



418

DAKOTA Class Documentation

void bcast_si (MPIUnpackBuffer &recv_buff)
matching recv for packed buffer bcast across a strat-iterator intra comm

void barrier_w ()
enforce MP1_Barrier on MPI_COMM_WORLD

void barrier_i ()

enforce MPI_Barrier on an iterator communicator

void barrier_e ()

enforce MPI_Barrier on an evaluation communicator

void barrier_a ()

enforce MPI_Barrier on an analysis communicator

void reduce_sum_ea (double xlocal_vals, double xsum_vals, const int &num_vals)

compute a sum over an eval-analysis intra-communicator using MPI_Reduce

void reduce_sum_a (double xlocal_vals, double xsum_vals, const int &num_vals)

compute a sum over an analysis communicator using MPI_Reduce

void test (MPI_Request &request, int &test_flag, MPI_Status &status)
test a nonblocking send/receive request for completion

void wait (MPI_Request &request, MPI_Status &status)
wait for a nonblocking send/receive request to complete

void waitall (const int &num_recvs, MPI_Request x&recv_reqs)
wait for all messages from a series of nonblocking receives

void waitsome (const int &num_sends, MPI_Request x&recv_requests, int &num_recvs, int *&index_-
array, MPI_Status x&status_array)

wait for at least one message from a series of nonblocking receives but complete all that are available

void free (MPI_Request &request)
free an MPI_Request

const int & world_size () const

return worldSize

const int & world_rank () const

return worldRank

bool mpirun_flag () const

return mpirunFlag

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.80 ParallelLibrary Class Reference 419

e bool is_null () const

return dummyFlag

e Real parallel_time () const

returns current MPI wall clock time

e void parallel_configuration_iterator (const ParConfigLIter &pc_iter)

set the current ParallelConfiguration node

o const ParConfiglIter & parallel_configuration_iterator () const

return the current ParallelConfiguration node

e const ParallelConfiguration & parallel_configuration () const

return the current ParallelConfiguration instance

e size_t num_parallel_configurations () const

returns the number of entries in parallelConfigurations

e bool parallel_configuration_is_complete ()

identifies if the current ParallelConfiguration has been fully populated

e void increment_parallel_configuration ()

add a new node to parallelConfigurations and increment currPClter

e bool w_parallel_level_defined () const

test current parallel configuration for definition of world parallel level

e bool si_parallel_level_defined () const

test current parallel configuration for definition of strategy-iterator parallel level

e Dbool ie_parallel_level_defined () const

test current parallel configuration for definition of iterator-evaluation parallel level

e Dbool ea_parallel_level_defined () const

test current parallel configuration for definition of evaluation-analysis parallel level

e Array< MPI_Comm > analysis_intra_communicators ()

return the set of analysis intra communicators for all parallel configurations (used for setting up direct simulation
interfaces prior to execution time).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



420 DAKOTA Class Documentation

Private Member Functions

e void init_communicators (const ParallelLevel &parent_pl, const int &num_servers, const int &procs_per_-
server, const int &max_concurrency, const int &asynch_local_concurrency, const String &default_config,
const String &scheduling_override)

split a parent communicator into child server communicators

e void free_communicators (ParallelLevel &pl)
deallocate intra/inter communicators for a particular ParallelLevel

e bool split_communicator_dedicated_master (const ParallelLevel &parent_pl, ParallelLevel &child_pl,
const int &proc_remainder)

split a parent communicator into a dedicated master processor and num_servers child communicators

e bool split_communicator_peer_partition (const ParallelLevel &parent_pl, ParallelLevel &child_pl, const
int &proc_remainder)

split a parent communicator into num_servers peer child communicators (no dedicated master processor)

e bool resolve_inputs (int &num_servers, int &procs_per_server, const int &avail_procs, int &proc_-
remainder, const int &max_concurrency, const int &capacity_multiplier, const String &default_config,
const String &scheduling_override)

resolve user inputs into a sensible partitioning scheme

e void send (MPIPackBuffer &send_buff, const int &dest, const int &tag, ParallelLevel &parent_pl,
ParallelLevel &child_pl)

blocking buffer send at the current communication level

e void send (int &send_int, const int &dest, const int &tag, ParallelLevel &parent_pl, ParallelLevel &child_-
pD)
blocking integer send at the current communication level

e void isend (MPIPackBuffer &send_buff, const int &dest, const int &tag, MPI_Request &send_req,
ParallelLevel &parent_pl, ParallelLevel &child_pl)

nonblocking buffer send at the current communication level

e void isend (int &send_int, const int &dest, const int &tag, MPI_Request &send_req, Parallellevel
&parent_pl, ParallelLevel &child_pl)

nonblocking integer send at the current communication level

e void recv (MPIUnpackBuffer &recv_buff, const int &source, const int &tag, MPI_Status &status,
ParallelLevel &parent_pl, ParallelLevel &child_pl)

blocking buffer receive at the current communication level

e void recv (int &recv_int, const int &source, const int &tag, MPI_Status &status, ParallelLevel &parent_pl,
ParallelLevel &child_pl)

blocking integer receive at the current communication level

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.80 ParallelLibrary Class Reference 421

e void irecv (MPIUnpackBuffer &recv_buff, const int &source, const int &tag, MPI_Request &recv_req,
ParallelLevel &parent_pl, ParallelLevel &child_pl)
nonblocking buffer receive at the current communication level
e void irecv (int &recv_int, const int &source, const int &tag, MPI_Request &recv_req, ParallelLevel

&parent_pl, ParallelLevel &child_pl)
nonblocking integer receive at the current communication level

e void bcast (int &data, const MPI_Comm &comm)
broadcast an integer across a communicator

e void bcast (MPIPackBuffer &send_buff, const MPI_Comm &comm)
send a packed buffer across a communicator using a broadcast

e void bcast (MPIUnpackBuffer &recv_buff, const MPI_Comm &comm)
matching receive for a packed buffer broadcast

e void barrier (const MPI_Comm &comm)

enforce MP1_Barrier on comm

void reduce_sum (double xlocal_vals, double xsum_vals, const int &num_vals, const MPI_Comm
&comm)

compute a sum over comm using MPI_Reduce

void check_error (const String &err_source, const int &err_code)

check the MPI return code and abort if error

Private Attributes

e ofstream output_ofstream

tagged file redirection of stdout

e ofstream error_ofstream

tagged file redirection of stderr

e int worldRank
rank in MPI_COMM_WORLD

e int worldSize
size of MPI_COMM_WORLD

e bool mpirunFlag
flag for a parallel mpirun/yod launch

bool ownMPIFlag

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



422 DAKOTA Class Documentation

flag for ownership of MPI_Init/MPI_Finalize

e bool dummyFlag
prevents multiple MPI_Finalize calls due to dummy_lib

e bool stdOutputFlag
flags redirection of DAKOTA std output to a file

e bool stdErrorFlag
flags redirection of DAKOTA std error to a file

e Real startCPUTime
start reference for UTILIB CPU timer

e Real startWCTime
start reference for UTILIB wall clock timer

o Real startMPITime
start reference for MPI wall clock timer

e long startClock
start reference for local clock() timer measuring parent+child CPU

e const char * stdOutputFilename
filename for redirection of stdout

e const char * stdErrorFilename

filename for redirection of stderr

e const char * readRestartFilename

input filename for restart

e const char x writeRestartFilename

output filename for restart

e int restartEvals

number of restart evals to read

e List< ParallelLevel > parallelLevels

the complete set of parallelism levels for managing multilevel parallelism among one or more configurations

o List< ParallelConfiguration > parallelConfigurations
the set of parallel configurations which manage list iterators for indexing into parallelLevels

e ParLevLlIter currPLIter
list iterator identifying the current node in parallelLevels

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.80 ParallelLibrary Class Reference 423

e ParConfigLIter currPClter

list iterator identifying the current node in parallelConfigurations

10.80.1 Detailed Description

Class for partitioning multiple levels of parallelism and managing message passing within these levels.

The ParallelLibrary class encapsulates all of the details of performing message passing within multiple levels of
parallelism. It provides functions for partitioning of levels according to user configuration input and functions for
passing messages within and across MPI communicators for each of the parallelism levels. If support for other
message-passing libraries beyond MPI becomes needed (PVM, ...), then ParallelLibrary would be promoted to a
base class with virtual functions to encapsulate the library-specific syntax.

10.80.2 Constructor & Destructor Documentation

10.80.2.1 ParallelLibrary (int & argc, char xx& argv)

stand-alone mode constructor

This constructor is the one used by main.C. It calls MPI_Init conditionally based on whether a parallel launch is
detected.

10.80.2.2 ParallelLibrary ()

library mode constructor

This constructor provides a library mode and is used by the SIERRA Adak application. It does not call MPI_Init,
but rather gathers data from MPI_COMM_WORLD if MPI_Init has been called elsewhere.

10.80.2.3 ParallelLibrary (int dummy)

dummy constructor (used for dummy_lib)

This constructor is used for creation of the global dummy_lib object, which is used to satisfy initialization re-
quirements when the real ParallelLibrary object is not available.

10.80.3 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



424 DAKOTA Class Documentation

10.80.3.1 void specify_outputs_restart (CommandLineHandler & cmd_line_handler)

specify output streams and restart file(s) using command line inputs (normal mode)

Get the -output, -error, -read_restart, and -write_restart filenames and the -stop_restart limit from the command
line. Defaults for the filenames from the command line handler are NULL for the filenames and O for restart_evals
if no user specification. Only worldRank==0 has access to command line arguments and must Bcast this data to
all iterator masters.

10.80.3.2 void manage_outputs_restart (const ParallelLevel & pl)

manage output streams and restart file(s) (both modes)

If the user has specified the use of files for DAKOTA standard output and/or standard error, then bind these
filenames to the Cout/Cerr macros. In addition, if concurrent iterators are to be used, create and tag multiple
output streams in order to prevent jumbled output. Manage restart file(s) by processing any incoming evaluations
from an old restart file and by setting up the binary output stream for new evaluations. Only master iterator
processor(s) read & write restart information. This function must follow init_iterator_communicators so that
restart can be managed properly for concurrent iterator strategies. In the case of concurrent iterators, each iterator
has its own restart file tagged with iterator number.

10.80.3.3 void close_streams ()

close streams, files, and any other services

Close streams associated with manage_outputs and manage_restart and terminate any additional services that may
be active.

10.80.3.4 void increment_parallel_configuration() [i nli ne]

add a new node to parallelConfigurations and increment currPClter

Called from the ParallelLibrary ctor and from Model::init_communicators(). An increment is performed for each
Model initialization except the first (which inherits the world and strategy-iterator parallel levels from the first
partial configuration).

10.80.3.5 void init_communicators (const ParallelLevel & parent_pl, const int & num_servers, const int
& procs_per_server, const int & max_concurrency, const int & asynch_local_concurrency, const
String & default_config, const String & scheduling_override) [ pri vat e]

split a parent communicator into child server communicators

Split parent communicator into concurrent child server partitions as specified by the passed parameters. This
constructs new child intra-communicators and parent-child inter-communicators. This function is called from the
Strategy constructor for the concurrent iterator level and from ApplicationInterface::init_communicators() for the
concurrent evaluation and concurrent analysis levels.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.80 ParallelLibrary Class Reference 425

10.80.3.6 bool resolve_inputs (int & num_servers, int & procs_per_server, const int & avail_procs, int &
proc_remainder, const int & max_concurrency, const int & capacity_multiplier, const String &
default_config, const String & scheduling_override) [ pri vat e]

resolve user inputs into a sensible partitioning scheme

This function is responsible for the "auto-configure" intelligence of DAKOTA. It resolves a variety of inputs and
overrides into a sensible partitioning configuration for a particular parallelism level. It also handles the general
case in which a user’s specification request does not divide out evenly with the number of available processors for
the level. If num_servers & procs_per_server are both nondefault, then the former takes precedence.

The documentation for this class was generated from the following files:

e ParallelLibrary.H
e ParallelLibrary.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



426 DAKOTA Class Documentation

10.81 ParamResponsePair Class Reference

Container class for a variables object, a response object, and an evaluation id.

Public Member Functions

e ParamResponsePair ()

default constructor

e ParamResponsePair (const Variables &vars, const String &interface_id, const Response &response, bool
deep_copy=false)

alternate constructor for temporaries

e ParamResponsePair (const Variables &vars, const String &interface_id, const Response &response, const
int eval_id, bool deep_copy=true)

standard constructor for history uses

ParamResponsePair (const ParamResponsePair &pair)

copy constructor

e ~ParamResponsePair ()

destructor

e ParamResponsePair & operator= (const ParamResponsePair &pair)

assignment operator

e void read (istream &s)

read a ParamResponsePair object from an istream

e void write (ostream &s) const

write a ParamResponsePair object to an ostream

e void read_annotated (istream &s)

read a ParamResponsePair object in annotated format from an istream

e void write_annotated (ostream &s) const

write a ParamResponsePair object in annotated format to an ostream

e void write_tabular (ostream &s) const

write a ParamResponsePair object in tabular format to an ostream

e void read (BiStream &s)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.81 ParamResponsePair Class Reference 427

read a ParamResponsePair object from the binary restart stream

void write (BoStream &s) const
write a ParamResponsePair object to the binary restart stream

void read (MPIUnpackBuffer &s)
read a ParamResponsePair object from a packed MPI buffer

void write (MPIPackBuffer &s) const
write a ParamResponsePair object to a packed MPI buffer

e int eval_id () const
return the evaluation identifier

e const Variables & prp_parameters () const
return the parameters object

e const Response & prp_response () const
return the response object

e void prp_response (const Response &response)
set the response object

e const ActiveSet & active_set () const
return the active set object from the response object

e void active_set (const ActiveSet &set)
set the active set object within the response object

e const String & interface_id () const
return the interface identifier from the response object

Private Attributes

e Variables prPairParameters
the set of parameters for the function evaluation

e Response prPairResponse
the response set for the function evaluation

e String idInterface

the interface used to generate the response object. Used in ParamResponsePair::vars_set_compare to prevent
duplicate detection on results from different interfaces.

e int evalld
the function evaluation identifier (assigned from Applicationinterface::fnEvalld)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



428 DAKOTA Class Documentation

Friends

e bool operator== (const ParamResponsePair &pairl, const ParamResponsePair &pair2)

equality operator

e bool operator!= (const ParamResponsePair &pairl, const ParamResponsePair &pair2)

inequality operator

10.81.1 Detailed Description

Container class for a variables object, a response object, and an evaluation id.

ParamResponsePair provides a container class for association of the input for a particular function evaluation
(a variables object) with the output from this function evaluation (a response object), along with an evaluation
identifier. This container defines the basic unit used in the data_pairs list, in restart file operations, and in a variety
of scheduling algorithm bookkeeping operations. With the advent of STL, replacement of arrays of this class with
map< > and pair< > template constructs may be possible (using map<int, pair<vars,response> >, for example),
assuming that deep copies, I/O, alternate constructors, etc., can be adequately addressed.

10.81.2 Constructor & Destructor Documentation

10.81.2.1 ParamResponsePair (const Variables & vars, const String & interface_id, const Response &
response, bool deep_copy=fal se) [inline]

alternate constructor for temporaries

Uses of this constructor often employ the standard Variables and Response copy constructors to share representa-
tions since this constructor is commonly used for search_pairs (which are local instantiations that go out of scope
prior to any changes to values; i.e., they are not used for history).

10.81.2.2 ParamResponsePair (const Variables & vars, const String & interface_id, const Response &
response, const int eval_id, bool deep_copy=true) [inline]

standard constructor for history uses

Uses of this constructor often do not share representations since deep copies are used when history mechanisms
(e.g., beforeSynchCorePRPList, data_pairs) are involved.

10.81.3 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.81 ParamResponsePair Class Reference 429

10.81.3.1 void read (MPIUnpackBuffer &s) [i nli ne]

read a ParamResponsePair object from a packed MPI buffer

idInterface is omitted since master processor retains interface ids and communicates asv and response data only
with slaves.

10.81.3.2 void write (MPIPackBuffer & s) const [i nli ne]

write a ParamResponsePair object to a packed MPI buffer

idInterface is omitted since master processor retains interface ids and communicates asv and response data only
with slaves.

10.81.4 Member Data Documentation

10.81.4.1 String idInterface [ pri vate]
the interface used to generate the response object. Used in ParamResponsePair::vars_set_compare to prevent
duplicate detection on results from different interfaces.

idInterface belongs here rather than in Response since some Response objects involve consolidation of several fn
evals (e.g., Model::synchronize_derivatives()) that are not, in total, generated by a single interface. The prPair, on
the other hand, is used for storage of all low level fn evals that get evaluated in ApplicationInterface::map().

10.81.4.2 intevalld [ private]

the function evaluation identifier (assigned from ApplicationInterface::fnEvalld)

evalld belongs here rather than in Response since some Response objects involve consolidation of several fn evals
(e.g., Model::synchronize_derivatives()). The prPair, on the other hand, is used for storage of all low level fn evals
that get evaluated in ApplicationInterface::map().

The documentation for this class was generated from the following files:

e ParamResponsePair.H
e ParamResponsePair.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



430 DAKOTA Class Documentation

10.82 ParamStudy Class Reference

Class for vector, list, centered, and multidimensional parameter studies.

Inheritance diagram for ParamStudy::

PStudyDACE

Public Member Functions

e ParamStudy (Model &model)
constructor

e ~ParamStudy ()
destructor

e void extract_trends ()

Redefines the run_iterator virtual function for the PStudy/DACE branch.

Private Member Functions

e void compute_vector_steps ()

computes stepVector and numSteps from initialPoint, finalPoint, and either numSteps or stepLength (pStudyType is
1lor?2)

e void vector_loop (const RealVector &start, const Real Vector &step_vect, const int &num_steps)

performs the parameter study by looping from start in num_steps increments of step_vect. Total number of evalua-
tions is num_steps + 1.

e void sample (const RealVector &list_of_points)

performs the parameter study by sampling from a list of points

o void centered_loop (const RealVector &start, const Real &percent_delta, const int &deltas_per_variable)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.82 ParamStudy Class Reference 431

performs a number of plus and minus offsets for each parameter centered about start

e void multidim_loop (const IntArray &var_partitions)
performs vector_loops recursively in multiple dimensions

e void recurse (int nloop, int nindex, IntArray &current_index, const IntArray &max_index, const Real Vector
&start, const Real Vector &step_vect)

used by multidim_loop to enable a variable number of nested loops

Private Attributes

e RealVector listOfPoints
list of evaluation points for the list_parameter_study

e RealVector initialPoint
the starting point for vector and centered parameter studies

e RealVector finalPoint
the ending point for vector_parameter_study (a specification option)

e RealVector step Vector
the n-dimensional increment in vector_parameter_study

e int numSteps
the number of times stepVector is applied in vector_parameter_study

e int pStudyType
internal code for parameter study type: -1 (list), 1,2,3 (different vector specifications), 4 (centered), or 5 (multidim)

e int deltasPerVariable
number of offsets in the plus and the minus direction for each variable in a centered_parameter_study

e bool nestedFlag
flag set by parameter studies which call other parameter studies in loops

e Real stepLength
the Cartesian length of multidimensional steps in vector_parameter_study (a specification option)

e Real percentDelta
size of relative offsets in percent for each variable in a centered_parameter_study

e IntArray variablePartitions
number of partitions for each variable in a multidim_parameter_study

e int psCounter
class-scope counter (needed for asynchronous multidim_loop)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



432 DAKOTA Class Documentation

10.82.1 Detailed Description

Class for vector, list, centered, and multidimensional parameter studies.

The ParamStudy class contains several algorithms for performing parameter studies of different types. It is not a
wrapper for an external library, rather its algorithms are self-contained. The vector parameter study steps along
an n-dimensional vector from an arbitrary initial point to an arbitrary final point in a specified number of steps.
The centered parameter study performs a number of plus and minus offsets in each coordinate direction around a
center point. A multidimensional parameter study fills an n-dimensional hypercube based on a specified number
of intervals for each dimension. It is a nested study in that it utilizes the vector parameter study internally as it
recurses through the variables. And the list parameter study provides for a user specification of a list of points to
evaluate, which allows general parameter investigations not fitting the structure of vector, centered, or multidim
parameter studies.

The documentation for this class was generated from the following files:

e ParamStudy.H
e ParamStudy.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.83 ProblemDescDB Class Reference 433

10.83 ProblemDescDB Class Reference

The database containing information parsed from the DAKOTA input file.

Inheritance diagram for ProblemDescDB::

| ProblemDescDB |

T

| |DRProblemDescDB |

Public Member Functions

e ProblemDescDB ()

default constructor

e ProblemDescDB (ParallelLibrary &parallel_lib)

standard constructor

e ProblemDescDB (const ProblemDescDB &db)

copy constructor

e ~ProblemDescDB ()

destructor

e ProblemDescDB operator= (const ProblemDescDB &db)

assignment operator

e void manage_inputs (CommandLineHandler &cmd_line_handler)

parses the input file and populates the problem description database. This version reads from the dakota input
filename passed with the "-input" option on the DAKOTA command line.

e void manage_inputs (const char xdakota_input_file)

parses the input file and populates the problem description database. This version reads from the dakota input
filename passed in.

e void check_input ()

verifies that there was at least one of each of the required keywords in the dakota input file. Used by
manage_inputs().

void set_db_list_nodes (const String &method_tag)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



434

DAKOTA Class Documentation

set dataMethodlter based on a method identifier string to activate a particular method specification in dataMethod-
List and use pointers from this method specification to set all other list iterators.

void set_db_list_nodes (const size_t &method_index)

set dataMethodlter based on an index within dataMethodList to activate a particular method specification and use
pointers from this method specification to set all other list iterators.

void set_db_method_node (const size_t &method_index)
set dataMethodlter based on an index within dataMethodList to activate a particular method specification (only).

size_t get_db_method_node ()
return the index of the active node in dataMethodList

void set_db_model_nodes (const String &model_tag)

set the model list iterators (dataModellter, dataVariableslter, datalnterfacelter, and dataResponseslter) based on
the model identifier string

void set_db_model_nodes (const size_t &model_index)

set the model list iterators (dataModellter, dataVariableslter, datalnterfacelter, and dataResponseslter) based on
an index within dataModelList

size_t get_db_model_node ()
return the index of the active node in dataModelList

void set_db_variables_node (const String &variables_tag)
set dataVariableslter based on the variables identifier string

void set_db_interface_node (const String &interface_tag)
set datalnterfacelter based on the interface identifier string

void set_db_responses_node (const String &responses_tag)
set dataResponseslter based on the responses identifier string

ParallelLibrary & parallel_library () const
return the parallelLib reference

IteratorList & iterator_list ()
return a list of all Iterator objects that have been instantiated

ModelList & model_list ()
return a list of all Model objects that have been instantiated

VariablesList & variables_list ()
return a list of all Variables objects that have been instantiated

InterfaceList & interface_list ()
return a list of all Interface objects that have been instantiated

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.83 ProblemDescDB Class Reference 435

e ResponseList & response_list ()

return a list of all Response objects that have been instantiated

e const [terator & get_iterator (Model &model)
retrieve an existing lterator, if it exists, or instantiate a new one

e const Model & get_model ()
retrieve an existing Model, if it exists, or instantiate a new one

e const Variables & get_variables ()

retrieve an existing Variables, if it exists, or instantiate a new one

e const Interface & get_interface ()

retrieve an existing Interface, if it exists, or instantiate a new one

e const Response & get_response (const Variables &vars)

retrieve an existing Response, if it exists, or instantiate a new one

e const RealVector & get_drv (const String &entry_name) const

get a RealVector out of the database based on an identifier string

e const IntVector & get_div (const String &entry_name) const

get a IntVector out of the database based on an identifier string

e const IntArray & get_dia (const String &entry_name) const
get a IntArray out of the database based on an identifier string

e const RealMatrix & get_drm (const String &entry_name) const

get a RealMatrix out of the database based on an identifier string

e const RealVectorArray & get_drva (const String &entry_name) const
get a RealVectorArray out of the database based on an identifier string

e const IntList & get_dil (const String &entry_name) const

get a IntList out of the database based on an identifier string

e const StringArray & get_dsa (const String &entry_name) const

get a StringArray out of the database based on an identifier string

e const String2DArray & get_ds2a (const String &entry_name) const
get a String2DArray out of the database based on an identifier string

e const String & get_string (const String &entry_name) const

get a String out of the database based on an identifier string

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



436 DAKOTA Class Documentation

e const Real & get_real (const String &entry_name) const

get a Real out of the database based on an identifier string

e const int & get_int (const String &entry_name) const

get an int out of the database based on an identifier string

e const short & get_short (const String &entry_name) const

get a short int out of the database based on an identifier string

e const size_t & get_sizet (const String &entry_name) const

get a size_t out of the database based on an identifier string

e const bool & get_bool (const String &entry_name) const

get a bool out of the database based on an identifier string

e void insert_node (const DataStrategy &data_strategy)
set the DataStrategy object

e void insert_node (const DataMethod &data_method)
add a DataMethod object to the dataMethodList

e void insert_node (const DataModel &data_model)
add a DataModel object to the dataModelList

e void insert_node (const DataVariables &data_variables)

add a DataVariables object to the dataVariablesList

e void insert_node (const Datalnterface &data_interface)

add a Datalnterface object to the datalnterfaceList

e void insert_node (const DataResponses &data_responses)

add a DataResponses object to the dataResponsesList

Protected Member Functions

e ProblemDescDB (BaseConstructor, ParallelLibrary &parallel_lib)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

e virtual void derived_manage_inputs (const char *dakota_input_file)

parses the input file and populates the problem description database. This version reads from the dakota input
filename passed in.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.83 ProblemDescDB Class Reference 437

Protected Attributes

e DataStrategy strategySpec
the strategy specification (only one allowed) resulting from a call to strategy_kwhandler() or insert_node()

e List< DataMethod > dataMethodList
list of method specifications, one for each call to method_kwhandler() or insert_node()

e List< DataModel > dataModelList
list of model specifications, one for each call to model_kwhandler() or insert_node()

e List< DataVariables > dataVariablesList
list of variables specifications, one for each call to variables_kwhandler() or insert_node()

e List< Datalnterface > datalnterfaceList
list of interface specifications, one for each call to interface_kwhandler() or insert_node()

e List< DataResponses > dataResponsesList
list of responses specifications, one for each call to responses_kwhandler() or insert_node()

e size_t strategyCntr
counter for strategy specifications used in check_input

Private Member Functions

e ProblemDescDB x get_db (ParallelLibrary &parallel_lib)
Used by the standard envelope constructor to instantiate the correct letter class.

e void send_db_buffer ()

MPI send of a large buffer containing strategySpec and all objects in dataMethodList, dataModelList, data-
VariablesList, datalnterfaceList, and dataResponsesList. Used by manage_inputs().

e void receive_db_buffer ()

MPI receive of a large buffer containing strategySpec and all objects in dataMethodList, dataModelList, data-
VariablesList, datalnterfaceList, and dataResponsesList. Used by manage_inputs().

Private Attributes

e ParallelLibrary & parallelLib
reference to the parallel_lib object passed from main

e List< DataMethod >::iterator dataMethodlIter
iterator identifying the active list node in dataMethodList

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



438 DAKOTA Class Documentation

e List< DataModel >::iterator dataModellter

iterator identifying the active list node in dataModelList

e List< DataVariables >::iterator dataVariableslter
iterator identifying the active list node in dataVariablesList

e List< Datalnterface >::iterator datalnterfacelter
iterator identifying the active list node in datalnterfaceList

e List< DataResponses >::iterator dataResponsesIter

iterator identifying the active list node in dataResponsesList

e [teratorList iteratorList

list of iterator objects, one for each method specification

e ModelList modelList

list of model objects, one for each model specification

e VariablesList variablesList

list of variables objects, one for each variables specification

e InterfaceList interfacelist

list of interface objects, one for each interface specification

e ResponseList responseList

list of response objects, one for each responses specification

e bool dbLocked

prevents use of get_<type> data retrieval functions prior to a set_db_list_nodes invocation

e ProblemDescDB x dbRep

pointer to the letter (initialized only for the envelope)

e int referenceCount

number of objects sharing dbRep

10.83.1 Detailed Description

The database containing information parsed from the DAKOTA input file.

The ProblemDescDB class is a database for DAKOTA input file data that is populated by a parser defined in a
derived class. When the parser reads a complete keyword (delimited by a newline), it populates a data class object
(DataStrategy, DataMethod, DataVariables, Datalnterface, or DataResponses) and, for all cases except strategy,
appends the object to a linked list (dataMethodList, dataVariablesList, datalnterfaceList, or dataResponsesList).
No strategy linked list is used since only one strategy specification is allowed.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.83 ProblemDescDB Class Reference 439

10.83.2 Constructor & Destructor Documentation

10.83.2.1 ProblemDescDB ()

default constructor

The default constructor: dbRep is NULL in this case. This makes it necessary to check for NULL in the copy
constructor, assignment operator, and destructor.

10.83.2.2 ProblemDescDB (ParallelLibrary & parallel_lib)

standard constructor

This is the primary envelope constructor which uses problem_db to build a fully populated db object. It only
needs to extract enough data to properly execute get_db(problem_db), since the constructor overloaded with
BaseConstructor builds the actual base class data inherited by the derived classes.

10.83.2.3 ProblemDescDB (const ProblemDescDB & db)

copy constructor

Copy constructor manages sharing of dbRep and incrementing of referenceCount.

10.83.2.4 ~ProblemDescDB ()

destructor

Destructor decrements referenceCount and only deletes dbRep when referenceCount reaches zero.

10.83.2.5 ProblemDescDB (BaseConstructor, ParallelLibrary & parallel_lib) [ pr ot ect ed]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all derived classes. get_db() instantiates
a derived class letter and the derived constructor selects this base class constructor in its initialization list (to
avoid the recursion of the base class constructor calling get_db() again). Since the letter IS the representation, its
representation pointer is set to NULL (an uninitialized pointer causes problems in ~ProblemDescDB).

10.83.3 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



440 DAKOTA Class Documentation

10.83.3.1 ProblemDescDB operator= (const ProblemDescDB & db)

assignment operator

Assignment operator decrements referenceCount for old dbRep, assigns new dbRep, and increments reference-
Count for new dbRep.

10.83.3.2 void manage_inputs (CommandLineHandler & cmd_line_handler)

parses the input file and populates the problem description database. This version reads from the dakota input
filename passed with the "-input" option on the DAKOTA command line.

Manage command line inputs using the CommandLineHandler class and parse the input file.

10.83.3.3 void manage_inputs (const char x dakota_input_file)

parses the input file and populates the problem description database. This version reads from the dakota input
filename passed in.

Parse the input file.

10.83.3.4 ProblemDescDB * get_db (ParallelLibrary & parallel_lib) [ pri vat e]

Used by the standard envelope constructor to instantiate the correct letter class.
Initializes dbRep to the appropriate derived type. The standard derived class constructors are invoked.

The documentation for this class was generated from the following files:

e ProblemDescDB.H
e ProblemDescDB.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.84 PStudyDACE Class Reference

441

10.84 PStudyDACE Class Reference

Base class for managing common aspects of parameter studies and design of experiments methods.

Inheritance diagram for PStudyDACE::

| Iterator |

T

| Anayzer |

T

| PStudyDACE |

f
[ | |

|DDACEDesignCompExp| | FSUDesignCompExp | | ParamStudy

Protected Member Functions

e PStudyDACE (Model &model)

constructor
o ~PStudyDACE ()
destructor
e void run ()
run the iterator; portion of run_iterator()
e const Variables & variable_results () const
return the final iterator solution (variables)
e const Response & response_results () const

return the final iterator solution (response)

e void response_results_active_set (const ActiveSet &set)

set the requested data for the final iterator response results

e void print_results (ostream &s) const

print the final iterator results

virtual void extract_trends ()=0

Redefines the run_iterator virtual function for the PStudy/DACE branch.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



442 DAKOTA Class Documentation

e void update_best (const RealVector &vars, const Response &response, const int eval_num)

compares current evaluation to best evaluation and updates best

Protected Attributes

e Variables bestVariables
best variables found during the study

e Response bestResponses
best responses found during the study

e Real bestObjFn
best objective function found during the study

e Real bestConViol

best constraint violations found during the study. In the current approach, constraint violation reduction takes strict
precedence over objective function reduction.

e size_t numObjFns

number of objective functions

e size_t numLSqTerms

number of least squares terms

e RealVector multiObjWts
vector of multiobjective weights

10.84.1 Detailed Description

Base class for managing common aspects of parameter studies and design of experiments methods.

The PStudyDACE base class manages common data and functions, such as those involving the best solutions
located during the parameter set evaluations or the printing of final results.

10.84.2 Member Function Documentation

10.84.2.1 voidrun() [inline, protected, virtual]

run the iterator; portion of run_iterator()

Iterator supports a construct/pre-run/run/post-run/destruct progression. This function is the virtual run function
for the iterator class hierarchy. All derived classes need to redefine it.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.84 PStudyDACE Class Reference 443

Reimplemented from Iterator.

10.84.2.2 void print_results (ostream & s) const [ prot ected, virtual]

print the final iterator results

This virtual function provides additional iterator-specific final results outputs beyond the function evaluation sum-
mary printed in post_run().

Reimplemented from Iterator.

The documentation for this class was generated from the following files:

e DakotaPStudyDACE.H
e DakotaPStudyDACE.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



444 DAKOTA Class Documentation

10.85 Response Class Reference

Container class for response functions and their derivatives. Response provides the handle class.

Public Member Functions

e Response ()
default constructor

e Response (const Variables &vars, const ProblemDescDB &problem_db)
standard constructor built from problem description database

e Response (const ActiveSet &set)

alternate constructor using limited data

e Response (const Response &response)

copy constructor

e ~Response ()
destructor

e Response operator= (const Response &response)

assignment operator

e size_t num_functions () const

return the number of response functions

e const ActiveSet & active_set () const
return the active set

e void active_set (const ActiveSet &set)

set the active set

e const IntArray & active_set_request_vector () const

return the active set request vector

e void active_set_request_vector (const IntArray &asrv)

set the active set request vector

e const IntArray & active_set_derivative_vector () const
return the active set derivative vector

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.85 Response Class Reference

445

e void active_set_derivative_vector (const IntArray &asdv)

set the active set derivative vector

e const String & responses_id () const

return the response identifier

e const StringArray & fn_tags () const
return the function identifier strings

e void fn_tags (const StringArray &tags)
set the function identifier strings

e const RealVector & function_values () const
return the function values

e void function_values (const RealVector &function_vals)
set the function values

e const RealMatrix & function_gradients () const

return the function gradients

e void function_gradients (const RealMatrix &function_grads)

set the function gradients

e const RealMatrixArray & function_hessians () const

return the function Hessians

e void function_hessians (const RealMatrixArray &function_hessians)

set the function Hessians

e void read (istream &s)

read a response object from an istream

e void write (ostream &s) const

write a response object to an ostream

e void read_annotated (istream &s)

read a response object in annotated format from an istream

e void write_annotated (ostream &s) const

write a response object in annotated format to an ostream

e void read_tabular (istream &s)

read responseRep::functionValues in tabular format from an istream

e void write_tabular (ostream &s) const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



446

DAKOTA Class Documentation

write responseRep::functionValues in tabular format to an ostream

void read (BiStream &s)
read a response object from the binary restart stream

void write (BoStream &s) const
write a response object to the binary restart stream

void read (MPIUnpackBuffer &s)
read a response object from a packed MPI buffer

void write (MPIPackBuffer &s) const
write a response object to a packed MPI buffer

Response copy () const
a deep copy for use in history mechanisms

int data_size ()
handle class forward to corresponding body class member function

void read_data (double xresponse_data)

handle class forward to corresponding body class member function

void write_data (double xresponse_data)

handle class forward to corresponding body class member function

void overlay (const Response &response)
handle class forward to corresponding body class member function

void copy_results (const Response &response)

Used in place of operator= when only results data updates are desired (functionValues/functionGradients/function-
Hessians are updated, ASV/tags/id’s/etc. are not). Care is taken to allow different derivative array sizing between

the two response objects.

void copy_results (const RealVector &source_fn_vals, const RealMatrix &source_fn_grads, const

RealMatrixArray &source_fn_hessians, const ActiveSet &source_set)

Overloaded form which allows update from components of a response object. Care is taken to allow different

derivative array sizing.

void reset ()
handle class forward to corresponding body class member function

void reset_inactive ()
handle class forward to corresponding body class member function

bool is_null () const
function to check responseRep (does this handle contain a body)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.85 Response Class Reference 447

Private Attributes

e ResponseRep * responseRep
pointer to the body (handle-body idiom)

Friends

e bool operator== (const Response &resp1, const Response &resp2)

equality operator

e Dbool operator!= (const Response &respl, const Response &resp2)
inequality operator

10.85.1 Detailed Description

Container class for response functions and their derivatives. Response provides the handle class.

The Response class is a container class for an abstract set of functions (functionValues) and their first (function-
Gradients) and second (functionHessians) derivatives. The functions may involve objective and constraint func-
tions (optimization data set), least squares terms (parameter estimation data set), or generic response functions
(uncertainty quantification data set). It is not currently part of a class hierarchy, since the abstraction has been
sufficiently general and has not required specialization. For memory efficiency, it employs the "handle-body id-
iom" approach to reference counting and representation sharing (see Coplien "Advanced C++", p. 58), for which
Response serves as the handle and ResponseRep serves as the body.

10.85.2 Constructor & Destructor Documentation

10.85.2.1 Response ()

default constructor

Need a populated problem description database to build a meaningful Response object, so set the response-
Rep=NULL in default constructor for efficiency. This then requires a check on NULL in the copy constructor,
assignment operator, and destructor.

The documentation for this class was generated from the following files:

e DakotaResponse.H
e DakotaResponse.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



448 DAKOTA Class Documentation

10.86 ResponseRep Class Reference

Container class for response functions and their derivatives. ResponseRep provides the body class.

Private Member Functions

e ResponseRep ()
default constructor

e ResponseRep (const Variables &vars, const ProblemDescDB &problem_db)
standard constructor built from problem description database

e ResponseRep (const ActiveSet &set)

alternate constructor using limited data

e ~ResponseRep ()

destructor

e void read (istream &s)
read a responseRep object from an istream

e void write (ostream &s) const
write a responseRep object to an ostream

e void read_annotated (istream &s)

read a responseRep object from an istream (annotated format)

e void write_annotated (ostream &s) const
write a responseRep object to an ostream (annotated format)

e void read_tabular (istream &s)

read functionValues from an istream (tabular format)

e void write_tabular (ostream &s) const

write functionValues to an ostream (tabular format)

e void read (BiStream &s)

read a responseRep object from a binary stream

e void write (BoStream &s) const
write a responseRep object to a binary stream

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.86 ResponseRep Class Reference 449

void read (MPIUnpackBuffer &s)
read a responseRep object from a packed MPI buffer

void write (MPIPackBuffer &s) const
write a responseRep object to a packed MPI buffer

e int data_size ()

return the number of doubles active in response. Used for sizing doublex response_data arrays passed into read_-
data and write_data.

e void read_data (double xresponse_data)

read from an incoming doublex array

e void write_data (double xresponse_data)

write to an incoming doublex array

e void overlay (const Response &response)

add incoming response to functionValues/Gradients/Hessians

e void copy_results (const RealVector &source_fn_vals, const RealMatrix &source_fn_grads, const
RealMatrixArray &source_fn_hessians, const ActiveSet &source_set)

update this response object from components of another response object

e void reshape (const size_t &num_fns, const size_t &num_params, bool grad_flag, bool hess_flag)

rehapes response data arrays

e void reset ()
resets all response data to zero

e void reset_inactive ()

resets all inactive response data to zero

void active_set_request_vector (const IntArray &asrv)

set the active set request vector and verify consistent number of response functions

void active_set_derivative_vector (const IntArray &asdv)

set the active set derivative vector and reshape functionGradients/functionHessians if needed

Private Attributes

e int referenceCount
number of handle objects sharing responseRep

e RealVector functionValues
abstract set of functions

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



450 DAKOTA Class Documentation

e RealMatrix functionGradients

first derivatives

e RealMatrixArray functionHessians

second derivatives

e ActiveSet responseActiveSet

copy of the ActiveSet used by the Model to generate a Response instance

e StringArray fnTags

function identifiers used to improve output readability

o String idResponses

response identifier string from the input file

Friends

e class Response

the handle class can access attributes of the body class directly

e bool operator== (const ResponseRep &repl, const ResponseRep &rep2)

equality operator

10.86.1 Detailed Description

Container class for response functions and their derivatives. ResponseRep provides the body class.

The ResponseRep class is the "representation” of the response container class. It is the "body" portion of the
"handle-body idiom" (see Coplien "Advanced C++", p. 58). The handle class (Response) provides for memory
efficiency in management of multiple response objects through reference counting and representation sharing.
The body class (ResponseRep) actually contains the response data (functionValues, functionGradients, function-
Hessians, etc.). The representation is hidden in that an instance of ResponseRep may only be created by Response.
Therefore, programmers create instances of the Response handle class, and only need to be aware of the han-
dle/body mechanisms when it comes to managing shallow copies (shared representation) versus deep copies
(separate representation used for history mechanisms).

10.86.2 Constructor & Destructor Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.86 ResponseRep Class Reference 451

10.86.2.1 ResponseRep (const Variables & vars, const ProblemDescDB & problem_db) [ pri vat e]

standard constructor built from problem description database

The standard constructor used by Dakota::ModelRep.

10.86.2.2 ResponseRep (const ActiveSet & set) [ pri vat e]

alternate constructor using limited data

Used for building a response object of the correct size on the fly (e.g., by slave analysis servers performing
execute() on a local_response). fnTags is not needed for this purpose since it’s not passed in the MPI send/recv
buffers. However, NPSOLOptimizer’s user-defined functions option uses this constructor to build bestResponses
and bestResponses needs fnTags for I/O, so construction of fnTags has been added.

10.86.3 Member Function Documentation

10.86.3.1 void read (istream & s) [ pri vat e]

read a responseRep object from an istream

ASCII version of read needs capabilities for capturing data omissions or formatting errors (resulting from user
error or asynch race condition) and analysis failures (resulting from nonconvergence, instability, etc.).

10.86.3.2 void write (ostream & s) const [ pri vat e]

write a responseRep object to an ostream

ASCII version of write.

10.86.3.3 void read_annotated (istream &s) [pri vat e]

read a responseRep object from an istream (annotated format)

read_annotated() is used for neutral file translation of restart files. Since objects are built solely from this data,
annotations are used. This version closely mirrors the BiStream version.

10.86.3.4 void write_annotated (ostream & s) const [ pri vat €]

write a responseRep object to an ostream (annotated format)

write_annotated() is used for neutral file translation of restart files. Since objects need to be build solely from this
data, annotations are used. This version closely mirrors the BoStream version, with the exception of the use of
white space between fields.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



452 DAKOTA Class Documentation

10.86.3.5 void read_tabular (istream & s) [ pri vat e]

read functionValues from an istream (tabular format)

read_tabular is used to read functionValues in tabular format. It is currently only used by ApproximationInterfaces
in reading samples from a file. There is insufficient data in a tabular file to build complete response objects; rather,
the response object must be constructed a priori and then its functionValues can be set.

10.86.3.6 void write_tabular (ostream & s) const [ pri vat €]

write functionValues to an ostream (tabular format)

write_tabular is used for output of functionValues in a tabular format for convenience in post-processing/plotting
of DAKOTA results.

10.86.3.7 void read (BiStream & s) [ pri vat e]

read a responseRep object from a binary stream

Binary version differs from ASCII version in 2 primary ways: (1) it lacks formatting. (2) the Response has not
been sized a priori. In reading data from the binary restart file, a ParamResponsePair was constructed with its
default constructor which called the Response default constructor. Therefore, we must first read sizing data and
resize all of the arrays.

10.86.3.8 void write (BoStream & s) const [ pri vat €]

write a responseRep object to a binary stream

Binary version differs from ASCII version in 2 primary ways: (1) It lacks formatting. (2) In reading data from the
binary restart file, ParamResponsePairs are constructed with their default constructor which calls the Response
default constructor. Therefore, we must first write sizing data so that ResponseRep::read(BoStream& s) can resize
the arrays.

10.86.3.9 void read (MPlUnpackBuffer &s) [ pri vat e]

read a responseRep object from a packed MPI buffer

UnpackBuffer version differs from BiStream version in the omission of fnTags. Master processor retains function
tags and interface ids and communicates asv and response data only with slaves.

10.86.3.10 void write (MPIPackBuffer & s) const [ pri vat €]

write a responseRep object to a packed MPI buffer

MPIPackBuffer version differs from BoStream version only in the omission of fnTags. The master processor
retains tags and ids and communicates asv and response data only with slaves.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.86 ResponseRep Class Reference 453

10.86.3.11 void copy_results (const RealVector & source_fn_vals, const RealMatrix & source_fn_grads,
const RealMatrixArray & source_fn_hessians, const ActiveSet & source_set) [ pri vat e]
update this response object from components of another response object

Copy function values/gradients/Hessians data _only_. Prevents unwanted overwriting of responseActiveSet, fn-
Tags, etc. Also, care is taken to account for differences in derivative variable matrix sizing.

10.86.3.12 void reshape (const size_t & num_fns, const size_t & num_params, bool grad_flag, bool
hess flag) [ pri vat e]

rehapes response data arrays

Reshape functionValues, functionGradients, and functionHessians according to num_fns, num_params, grad_flag,
and hess_flag.

10.86.3.13 void reset() [private]

resets all response data to zero

Reset all numerical response data (not tags, ids, or active set) to zero.

10.86.3.14 void reset_inactive () [ pri vat e]

resets all inactive response data to zero
Used to clear out any inactive data left over from previous evaluations.

The documentation for this class was generated from the following files:

e DakotaResponse.H
e DakotaResponse.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



454 DAKOTA Class Documentation

10.87 SingleMethodStrategy Class Reference

Simple fall-through strategy for running a single iterator on a single model.

Inheritance diagram for SingleMethodStrategy::

Strategy

SingleMethodStrategy

Public Member Functions

e SingleMethodStrategy (ProblemDescDB &problem_db)

constructor

o ~SingleMethodStrategy ()

destructor

e void run_strategy ()

Perform the strategy by executing selectedlterator on userDefinedModel.

e const Variables & variable_results () const

return the final solution from selectedlterator (variables)

e const Response & response_results () const

return the final solution from selectedlterator (response)

Private Attributes

o Model userDefinedModel

the model to be iterated

e [terator selectedlterator

the iterator

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.87 SingleMethodStrategy Class Reference 455

10.87.1 Detailed Description

Simple fall-through strategy for running a single iterator on a single model.

This strategy executes a single iterator on a single model. Since it does not provide coordination for multiple
iterators and models, it can considered to be a "fall-through" strategy in that it allows control to fall through
immediately to the iterator.

The documentation for this class was generated from the following files:

o SingleMethodStrategy.H
o SingleMethodStrategy.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



456 DAKOTA Class Documentation

10.88 SingleModel Class Reference

Derived model class which utilizes a single interface to map variables into responses.

Inheritance diagram for SingleModel::

Model

SingleModel

Public Member Functions

e SingleModel (ProblemDescDB &problem_db)
constructor

e ~SingleModel ()
destructor

Protected Member Functions

e Interface & interface ()
return userDefinedInterface

e void derived_compute_response (const ActiveSet &set)

portion of compute_response() specific to SingleModel (invokes a synchronous map() on userDefinedInterface)

e void derived_asynch_compute_response (const ActiveSet &set)

portion of asynch_compute_response() specific to SingleModel (invokes an asynchronous map() on userDefined-
Interface)

e const ResponseArray & derived_synchronize ()

portion of synchronize() specific to SingleModel (invokes synch() on userDefinedInterface)

e const IntResponseMap & derived_synchronize_nowait ()
portion of synchronize_nowait() specific to SingleModel (invokes synch_nowait() on userDefinedInterface)

e void component_parallel_mode (int mode)

SingleModel only supports parallelism in userDefinedInterface, so this virtual function redefinition is simply a
sanity check.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.88 SingleModel Class Reference 457

String local_eval_synchronization ()

return userDefinedInterface synchronization setting

int local_eval_concurrency ()

return userDefinedInterface asynchronous evaluation concurrency

bool derived_master_overload () const

flag which prevents overloading the master with a multiprocessor evaluation (request forwarded to userDefined-
Interface)

void derived_init_communicators (const int &max_iterator_concurrency)

set up SingleModel for parallel operations (request forwarded to userDefinedInterface)

void derived_init_serial ()

set up SingleModel for serial operations (request forwarded to userDefinedInterface).

void reset_communicators ()

reset communicator partition data for the SingleModel (request forwarded to userDefinedInterface)

void derived_free_communicators (const int &max_iterator_concurrency)

deallocate communicator partitions for the SingleModel (request forwarded to userDefinedInterface)

void serve ()

Service userDefinedInterface job requests received from the master. Completes when a termination message is
received from stop_servers().

void stop_servers ()

executed by the master to terminate userDefinedInterface server operations when SingleModel iteration is complete.

int evaluation_id () const

return the current evaluation id for the SingleModel (request forwarded to userDefinedInterface)

void set_evaluation_reference ()

set the evaluation counter reference points for the SingleModel (request forwarded to userDefinedInterface)

void print_evaluation_summary (ostream &s, bool minimal_header=false, bool relative_count=true) const

print the evaluation summary for the SingleModel (request forwarded to userDefinedInterface)

Private Attributes

Interface userDefinedInterface

the interface used for mapping variables to responses

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



458 DAKOTA Class Documentation

10.88.1 Detailed Description

Derived model class which utilizes a single interface to map variables into responses.

The SingleModel class is the simplest of the derived model classes. It provides the capabilities the old Model
class, prior to the development of surrogate and nested model extensions. The derived response computation and
synchronization functions utilize a single interface to perform the function evaluations.

The documentation for this class was generated from the following files:

e SingleModel.H
e SingleModel.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.89 SNLLBase Class Reference 459

10.89 SNLLBase Class Reference

Base class for OPT++ optimization and least squares methods.

Inheritance diagram for SNLLBase::

SNLLBase

\
| SNLL LeastSq | |SNLLOptimizer|

Public Member Functions

e SNLLBase ()
default constructor

e SNLLBase (Model &model)
standard constructor

e ~SNLLBase ()
destructor

Protected Member Functions

e void copy_con_vals (const Real Vector &local_fn_vals, NEWMAT::ColumnVector &g, const size_t &off-
set)

convenience function for copying local_fn_vals to g; used by constraint evaluator functions

void copy_con_vals (const NEWMAT::ColumnVector &g, RealVector &local_fn_vals, const size_t &off-
set)

convenience function for copying g to local_fn_vals; used in final solution logging

void copy_con_grad (const RealMatrix &local_fn_grads, NEWMAT::Matrix &grad_g, const size_t &off-
set)

convenience function for copying local_fn_grads to grad_g; used by constraint evaluator functions

. void copy_con_hess (const RealMatrixArray &local_fn_hessians, = OPTPP::OptppArray <
NEWMAT::SymmetricMatrix > &hess_g, const size_t &offset)

convenience function for copying local_fn_hessians to hess_g; used by constraint evaluator functions

void snll_pre_instantiate (const String &merit_fn, bool bound_constr_flag, const int &num_constr)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



460 DAKOTA Class Documentation

convenience function for setting OPT++ options prior to the method instantiation

e void snll_post_instantiate (const int &num_cv, bool vendor_num_grad_flag, const String &finite_diff_-
type, const Real &fdss, const int &max_iter, const int &max_fn_evals, const Real &conv_tol, const
Real &grad_tol, const Real &max_step, bool bound_constr_flag, const int &num_constr, bool debug_-
output, OPTPP::OptimizeClass xthe_optimizer, OPTPP::NLPO *nlf_objective, OPTPP::FDNLF1 «fd_nlf1,
OPTPP::FDNLF]1 *fd_nlf1_con)

convenience function for setting OPT++ options after the method instantiation

e void snll_pre_run (OPTPP::NLPO *nlf_objective, OPTPP::NLP xnlp_constraint, const RealVector &init_-
pt, bool bound_constr_flag, const RealVector &lower_bnds, const RealVector &upper_bnds, const
RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_l_bnds, const RealVector &lin_ineq_u_bnds,
const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_targets, const RealVector &nln_ineq_1_bnds,
const RealVector &nln_ineq_u_bnds, const Real Vector &nln_eq_targets)

convenience function for OPT++ configuration prior to the method invocation

e void snll_post_run (OPTPP::NLPO xnlf_objective)
convenience function for setting OPT++ options after the method instantiations

Static Protected Member Functions

e static void init_fn (int n, NEWMAT::ColumnVector &Xx)

An initialization mechanism provided by OPT++ (not currently used).

Protected Attributes

e String searchMethod

value_based_line_search, gradient_based_line_search, trust_region, or tr_pds

o OPTPP::SearchStrategy searchStrat
enum: LineSearch, TrustRegion, or TrustPDS

o OPTPP::MeritFcn meritFn

enum: NormFmu, ArgaezTapia, or VanShanno

e bool constantASVFlag

flags a user selection of active_set_vector == constant. By mapping this into mode override, reliance on duplicate
detection can be avoided.

Static Protected Attributes

e static Minimizer * optLSqlnstance

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.89 SNLLBase Class Reference 461

pointer to the active base class object instance used within the static evaluator functions in order to avoid the need
for static data

e static bool modeOverrideFlag

flags OPT++ mode override (for combining value, gradient, and Hessian requests)

o static EvalType lastFnEvalL.ocn

an enum used to track whether an nlf evaluator or a constraint evaluator was the last location of a function evalu-
ation

e static int lastEvalMode

copy of mode from constraint evaluators

e static RealVector lastEvalVars

copy of variables from constraint evaluators

10.89.1 Detailed Description

Base class for OPT++ optimization and least squares methods.

The SNLLBase class provides a common base class for SNLLOptimizer and SNLLLeastSq, both of which are
wrappers for OPT++, a C++ optimization library from the Computational Sciences and Mathematics Research
(CSMR) department at Sandia’s Livermore CA site.

The documentation for this class was generated from the following files:

e SNLLBase.H
e SNLLBase.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



462 DAKOTA Class Documentation

10.90 SNLLLeastSq Class Reference

Wrapper class for the OPT++ optimization library.

Inheritance diagram for SNLLLeastSq::

Iterator

Minimizer

| LeastSq || SNLLBase |

SNLLLeastSq

Public Member Functions

e SNLLLeastSq (Model &model)

constructor

o ~SNLLLeastSq ()
destructor

e void minimize_residuals ()

Performs the iterations to determine the least squares solution.

Protected Member Functions

e virtual void derived_pre_run ()

invokes SNLLBase::snll_pre_run() and performs other set-up

e virtual void derived_post_run ()

invokes SNLLBase::snll_post_run() and performs other solution processing

Static Private Member Functions

e static void nlf2_evaluator_gn (int mode, int n, const NEWMAT::ColumnVector &x, NEWMAT::Real &f,
NEWMAT::ColumnVector &grad_f, NEWMAT::SymmetricMatrix &hess_f, int &result_mode)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.90 SNLL LeastSq Class Reference 463

objective function evaluator function which obtains values and gradients for least square terms and computes
objective function value, gradient, and Hessian using the Gauss-Newton approximation.

e static void constraintl_evaluator_gn (int mode, int n, const NEWMAT::ColumnVector &x,
NEWMAT::ColumnVector &g, NEWMAT::Matrix &grad_g, int &result_mode)

constraint evaluator function which provides constraint values and gradients to OPT++ Gauss-Newton methods.

e static void constraint2_evaluator_gn (int mode, int n, const NEWMAT::ColumnVector
&X, NEWMAT::ColumnVector &g, NEWMAT::Matrix  &grad_g, OPTPP::OptppArray <
NEWMAT::SymmetricMatrix > &hess_g, int &result_mode)

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ Gauss-Newton
methods.

Private Attributes

e OPTPP::NLPO * nlfObjective
objective NLF base class pointer

e OPTPP::NLPO * nlfConstraint

constraint NLF base class pointer

e OPTPP::NLP * nlpConstraint
constraint NLP pointer

e OPTPP::NLF2 x* nif2
pointer to objective NLF for full Newton optimizers

e OPTPP::NLF2 * nlf2Con

pointer to constraint NLF for full Newton optimizers

e OPTPP::NLF1 % nlf1Con
pointer to constraint NLF for Quasi Newton optimizers

e OPTPP::OptimizeClass * theOptimizer

optimizer base class pointer

o OPTPP::OptNewton * optnewton
Newton optimizer pointer.

o OPTPP::OptBCNewton * optbcnewton

Bound constrained Newton optimizer ptr.

o OPTPP::OptDHNIPS * optdhnips
Disaggregated Hessian NIPS optimizer ptr.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



464 DAKOTA Class Documentation

Static Private Attributes

e static SNLLLeastSq * snllLSqInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for static
data

10.90.1 Detailed Description

Wrapper class for the OPT++ optimization library.

The SNLLLeastSq class provides a wrapper for OPT++, a C++ optimization library of nonlinear programming
and pattern search techniques from the Computational Sciences and Mathematics Research (CSMR) department
at Sandia’s Livermore CA site. It uses a function pointer approach for which passed functions must be either
global functions or static member functions. Any attribute used within static member functions must be either
local to that function, a static member, or accessed by static pointer.

The user input mappings are as follows: max_iterations, max_function_eval uations,
conver gence_t ol erance, nax_step, gradi ent _tol erance, search_mnet hod, and search_-
scheme_si ze are set using OPT++’s setMaxIter(), setMaxFeval(), setFcnTol(), setMaxStep(), setGradTol(),
setSearchStrategy(), and setSSS() member functions, respectively; out put verbosity is used to toggle OPT++’s
debug mode using the setDebug() member function. Internal to OPT++, there are 3 search strategies, while
the DAKOTA sear ch_nmnet hod specification supports 4 (val ue_based_| i ne_sear ch, gradi ent _-
based_|ine_search,trust_regi on,ortr_pds). The difference stems from the "is_expensive" flag in
OPT++. If the search strategy is LineSearch and "is_expensive" is turned on, then the val ue_based_I i ne_-
sear ch is used. Otherwise (the "is_expensive" default is off), the algorithm will use the gr adi ent _based_-
I i ne_sear ch. Refer to [Meza, J.C., 1994] and to the OPT++ source in the Dakota/VendorOptimizers/opt++
directory for information on OPT++ class member functions.

10.90.2 Member Function Documentation

10.90.2.1 void nlf2_evaluator_gn (int mode, int n, const NEWMAT::ColumnVector & x, NEWMAT::Real
& f, NEWMAT::ColumnVector & grad_f, NEWMAT::SymmetricMatrix & hess_f, int &
result_ mode) [static, private]

objective function evaluator function which obtains values and gradients for least square terms and computes
objective function value, gradient, and Hessian using the Gauss-Newton approximation.

This nlf2 evaluator function is used for the Gauss-Newton method in order to exploit the special structure of
the nonlinear least squares problem. Here, fx = sum (T_i - Tbar_i)"*2 and Response is made up of residual
functions and their gradients along with any nonlinear constraints. The objective function and its gradient vector
and Hessian matrix are computed directly from the residual functions and their derivatives (which are returned
from the Response object).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.90 SNLL LeastSq Class Reference 465

10.90.2.2 void constraintl_evaluator_gn (int mode, int n, const NEWMAT::ColumnVector & X,
NEWMAT::ColumnVector & g, NEWMAT::Matrix & grad_g, int & result_ mode) [ stati c,
private]

constraint evaluator function which provides constraint values and gradients to OPT++ Gauss-Newton methods.

While it does not employ the Gauss-Newton approximation, it is distinct from constraintl_evaluator() due to its
need to anticipate the required modes for the least squares terms. This constraint evaluator function is used with
diaggregated Hessian NIPS and is currently active.

10.90.2.3 void constraint2_evaluator_gn (int mode, int n, const NEWMAT::ColumnVector & X,
NEWMAT::ColumnVector & g, NEWMAT::Matrix & grad_g, OPTPP::OptppArray<
NEWMAT::SymmetricMatrix > & hess_g, int & result_mode) [static, private]

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ Gauss-Newton
methods.

While it does not employ the Gauss-Newton approximation, it is distinct from constraint2_evaluator() due to its
need to anticipate the required modes for the least squares terms. This constraint evaluator function is used with
full Newton NIPS and is currently inactive.

The documentation for this class was generated from the following files:

o SNLLLeastSq.H
o SNLLLeastSq.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



466 DAKOTA Class Documentation

10.91 SNLLOptimizer Class Reference

Wrapper class for the OPT++ optimization library.

Inheritance diagram for SNLLOptimizer::

Minimizer

| Optimizer || SNLLBase |
t ¥

SNLL Optimizer

Public Member Functions

e SNLLOptimizer (Model &model)

standard constructor

o SNLLOptimizer (const RealVector &initial_point, const RealVector &var_lower_bnds, const Real Vector
&var_upper_bnds, const RealMatrix &lin_ineq_coeffs, const RealVector &lin_ineq_lower_bnds, const
RealVector &lin_ineq_upper_bnds, const RealMatrix &lin_eq_coeffs, const RealVector &lin_eq_-
targets, const RealVector &nonlin_ineq_lower_bnds, const RealVector &nonlin_ineq_upper_bnds, const
RealVector &nonlin_eq_targets, void(xuser_obj_eval)(int mode, int n, const NEWMAT::ColumnVector
&x, NEWMAT::Real &f, NEWMAT::ColumnVector &grad_f, int &result_mode), void(xuser_con_-
eval)(int mode, int n, const NEWMAT::ColumnVector &x, NEWMAT::ColumnVector &g, NEW-
MAT::Matrix &grad_g, int &result_mode))

alternate constructor for instantiations "on the fly"

e ~SNLLOptimizer ()

destructor

e void find_optimum ()
Performs the iterations to determine the optimal solution.

Protected Member Functions

e virtual void derived_pre_run ()

invokes SNLLBase::snll_pre_run() and performs other set-up

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.91 SNLLOptimizer Class Reference 467

e virtual void derived_post_run ()
invokes SNLLBase::snll_post_run() and performs other solution processing

Static Private Member Functions

e static void nlfO_evaluator (int n, const NEWMAT::ColumnVector &x, NEWMAT::Real &f, int &result_-
mode)

objective function evaluator function for OPT++ methods which require only function values.

e static void nlfl_evaluator (int mode, int n, const NEWMAT::ColumnVector &x, NEWMAT::Real &f,
NEWMAT::ColumnVector &grad_f, int &result_mode)

objective function evaluator function which provides function values and gradients to OPT++ methods.

e static void nlf2_evaluator (int mode, int n, const NEWMAT::ColumnVector &x, NEWMAT::Real &f,
NEWMAT::ColumnVector &grad_f, NEWMAT::SymmetricMatrix &hess_f, int &result_mode)

objective function evaluator function which provides function values, gradients, and Hessians to OPT++ methods.

e static void constraintQ_evaluator (int n, const NEWMAT::ColumnVector &x, NEWMAT::Column Vector
&g, int &result_mode)

constraint evaluator function for OPT++ methods which require only constraint values.

e static void constraintl_evaluator (int mode, int n, const NEWMAT::ColumnVector &x,
NEWMAT::ColumnVector &g, NEWMAT::Matrix &grad_g, int &result_mode)

constraint evaluator function which provides constraint values and gradients to OPT++ methods.

e static void constraint2_evaluator (int mode, int n, const NEWMAT::ColumnVector
&X, NEWMAT::ColumnVector &g, NEWMAT::Matrix  &grad_g, OPTPP::OptppArray <
NEWMAT::SymmetricMatrix > &hess_g, int &result_mode)

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ methods.

Private Attributes

e OPTPP::NLPO * nlfObjective
objective NLF base class pointer

e OPTPP::NLPO * nIfConstraint
constraint NLF base class pointer

e OPTPP::NLP * nlpConstraint

constraint NLP pointer

e OPTPP::NLFO * nIf0
pointer to objective NLF for nongradient optimizers

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



468 DAKOTA Class Documentation

e OPTPP::NLF1 x* nlfl
pointer to objective NLF for (analytic) gradient-based optimizers

e OPTPP::NLF1 % nlf1Con
pointer to constraint NLF for (analytic) gradient-based optimizers

e OPTPP::FDNLF]1 * fdnlfl
pointer to objective NLF for (finite diff) gradient-based optimizers

e OPTPP::FDNLF]1 * fdnlf1Con
pointer to constraint NLF for (finite diff) gradient-based optimizers

e OPTPP::NLF2 * nlf2

pointer to objective NLF for full Newton optimizers

e OPTPP::NLF2 * nlf2Con

pointer to constraint NLF for full Newton optimizers

o OPTPP::OptimizeClass * theOptimizer
optimizer base class pointer

o OPTPP::OptPDS * optpds
PDS optimizer pointer.

e OPTPP::OptCG * optcg
CG optimizer pointer.

e OPTPP::OptLBFGS * optlbfgs
L-BFGS optimizer pointer.

o OPTPP::OptNewton * optnewton
Newton optimizer pointer.

e OPTPP::OptQNewton * optqnewton

Quasi-Newton optimizer pointer.

o OPTPP::OptFDNewton * optfdnewton
Finite Difference Newton opt pointer.

o OPTPP::OptBCNewton * optbcnewton
Bound constrained Newton opt pointer.

e OPTPP::OptBCQNewton * optbcqnewton
Bnd constrained Quasi-Newton opt ptr.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.91 SNLLOptimizer Class Reference 469

OPTPP::OptBCFDNewton * optbcfdnewton
Bnd constrained FD-Newton opt ptr.

o OPTPP::OptNIPS x* optnips

NIPS optimizer pointer.

o OPTPP::OptQNIPS * optqnips
Quasi-Newton NIPS optimizer pointer.

o OPTPP::OptFDNIPS x* optfdnips
Finite Difference NIPS opt pointer.

e String setUpType

flag for iteration mode: "model™ (normal usage) or “user_functions" (user-supplied functions mode for "on the fly"
instantiations). NonDReliability currently uses the user_functions mode.

e RealVector initialPoint

holds initial point passed in for "user_functions" mode.

e RealVector lowerBounds
holds variable lower bounds passed in for "user_functions" mode.

e RealVector upperBounds
holds variable upper bounds passed in for "user_functions" mode.

Static Private Attributes

e static SNLLOptimizer * snllOptInstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for static
data

10.91.1 Detailed Description

Wrapper class for the OPT++ optimization library.

The SNLLOptimizer class provides a wrapper for OPT++, a C++ optimization library of nonlinear programming
and pattern search techniques from the Computational Sciences and Mathematics Research (CSMR) department
at Sandia’s Livermore CA site. It uses a function pointer approach for which passed functions must be either
global functions or static member functions. Any attribute used within static member functions must be either
local to that function, a static member, or accessed by static pointer.

The user input mappings are as follows: max_iterations, max_function_eval uations,
conver gence_t ol erance, max_step, gradi ent _tol erance, search_mnet hod, and search_-
schenme_si ze are set using OPT++’s setMaxIter(), setMaxFeval(), setFcnTol(), setMaxStep(), setGradTol(),
setSearchStrategy(), and setSSS() member functions, respectively; out put verbosity is used to toggle OPT++’s

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



470 DAKOTA Class Documentation

debug mode using the setDebug() member function. Internal to OPT++, there are 3 search strategies, while
the DAKOTA sear ch_net hod specification supports 4 (val ue_based_I| i ne_search, gradi ent _-
based_l i ne_search,trust_regi on,ortr_pds). The difference stems from the "is_expensive" flag in
OPT++. If the search strategy is LineSearch and "is_expensive" is turned on, then the val ue_based_I i ne_-
sear ch is used. Otherwise (the "is_expensive" default is off), the algorithm will use the gr adi ent _based_-
I i ne_sear ch. Refer to [Meza, J.C., 1994] and to the OPT++ source in the Dakota/VendorOptimizers/opt++
directory for information on OPT++ class member functions.

10.91.2 Constructor & Destructor Documentation

10.91.2.1 SNLLOptimizer (Model & model)

standard constructor

This constructor is used for normal instantiations using data from the ProblemDescDB.

10.91.2.2 SNLLOptimizer (const RealVector & initial_point, const RealVector & var_lower_bnds,
const RealVector & var_upper_bnds, const RealMatrix & lin_ineq_coeffs, const RealVector
& lin_ineq_lower_bnds, const RealVector & lin_ineq_upper_bnds, const RealMatrix &
lin_eq_coeffs, const RealVector & lin_eq_targets, const RealVector & nonlin_ineq_lower_bnds,
const RealVector & nonlin_ineq_upper_bnds, const RealVector & nonlin_eq_targets,
void(*)(int mode, int n, const NEWMAT::ColumnVector &x, NEWMAT::Real &f,
NEWMAT::ColumnVector &grad_f, int &result_mode) user_obj_eval, void(x)(int mode, int
n, const NEWMAT::ColumnVector &x, NEWMAT::ColumnVector &g, NEWMAT::Matrix
&grad_g, int &result_mode) user_con_eval)

alternate constructor for instantiations "on the fly"

This is an alternate constructor for performing an optimization using the passed in objective function and con-
straint function pointers.

10.91.3 Member Function Documentation

10.91.3.1 void nlf0_evaluator (int n, const NEWMAT::ColumnVector & X, NEWMAT::Real & f, int &
result mode) [static, private]

objective function evaluator function for OPT++ methods which require only function values.

For use when DAKOTA computes f and gradients are not directly available. This is used by nongradient-based
optimizers such as PDS and by gradient-based optimizers in vendor numerical gradient mode (opt++’s internal
finite difference routine is used).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.91 SNLLOptimizer Class Reference 471

10.91.3.2 void nlfl_evaluator (int mode, int n, const NEWMAT::ColumnVector & x, NEWMAT::Real &
f, NEWMAT::ColumnVector & grad_f, int & result mode) [static, private]

objective function evaluator function which provides function values and gradients to OPT++ methods.

For use when DAKOTA computes f and df/dX (regardless of gradientType). Vendor numerical gradient case is
handled by nlf0_evaluator.

10.91.3.3 void nlf2_evaluator (int mode, int n, const NEWMAT::ColumnVector & x, NEWMAT::Real
& f, NEWMAT::ColumnVector & grad_f, NEWMAT::SymmetricMatrix & hess_f, int &
result_ mode) [static, private]

objective function evaluator function which provides function values, gradients, and Hessians to OPT++ methods.

For use when DAKOTA receives f, df/dX, & d”2f/dx”2 from the ApplicationInterface (analytic only). Finite
differencing does not make sense for a full Newton approach, since lack of analytic gradients & Hessian should
dictate the use of quasi-newton or fd-newton. Thus, there is no fdnlf2_evaluator for use with full Newton ap-
proaches, since it is preferable to use quasi-newton or fd-newton with nlf1. Gauss-Newton does not fit this model;
it uses nlf2_evaluator_gn instead of nlf2_evaluator.

10.91.3.4 void constraint0_evaluator (int n, const NEWMAT::ColumnVector & X,
NEWMAT::ColumnVector & g, int & result mode) [static, private]

constraint evaluator function for OPT++ methods which require only constraint values.

For use when DAKOTA computes g and gradients are not directly available. This is used by nongradient-based
optimizers and by gradient-based optimizers in vendor numerical gradient mode (opt++’s internal finite difference
routine is used).

10.91.3.5 void constraintl_evaluator (int mode, int n, const NEWMAT::ColumnVector & X,
NEWMAT::ColumnVector & g, NEWMAT::Matrix & grad_g, int & result_ mode) [stati c,
private]

constraint evaluator function which provides constraint values and gradients to OPT++ methods.

For use when DAKOTA computes g and dg/dX (regardless of gradientType). Vendor numerical gradient case is
handled by constraintO_evaluator.

10.91.3.6 void constraint2_evaluator (int mode, int n, const NEWMAT::ColumnVector & X,
NEWMAT::ColumnVector & g, NEWMAT::Matrix & grad_g, OPTPP::OptppArray<
NEWMAT::SymmetricMatrix > & hess_g, int & result_ mode) [static, private]

constraint evaluator function which provides constraint values, gradients, and Hessians to OPT++ methods.

For use when DAKOTA computes g, dg/dX, & d”2g/dx”*2 (analytic only).

The documentation for this class was generated from the following files:

o SNLLOptimizer.H
e SNLLOptimizer.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



472 DAKOTA Class Documentation

10.92 SOL Base Class Reference

Base class for Stanford SOL software.

Inheritance diagram for SOLBase::

| SOLBase |

i
[ |

| NLSSOL LeastSq | | NPSOLOptimizer|

Public Member Functions

e SOLBase ()
default constructor

e SOLBase (Model &model)

standard constructor

e ~SOLBase ()
destructor

Protected Member Functions

e void allocate_arrays (const int &num_cv, const size_t &num_nln_con, const RealMatrix &lin_ineq_coeffs,
const RealMatrix &lin_eq_coeffs)

Allocates miscellaneous arrays for the SOL algorithms.

e void deallocate_arrays ()

Deallocates memory previously allocated by allocate_arrays().

e void allocate_workspace (const int &num_cv, const int &num_nln_con, const int &num_lin_con, const int
&num_Isq)

Allocates real and integer workspaces for the SOL algorithms.

e void set_options (bool speculative_flag, bool vendor_num_grad_flag, bool verbose_output, const int
&verify_lev, const Real &fn_prec, const Real &linesrch_tol, const int &max_iter, const Real &constr_-
tol, const Real &conv_tol, const String &grad_type, const Real &fdss)

Sets SOL method options using calls to npoptn2.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.92 SOLBase Class Reference 473

e void augment_bounds (RealVector &augmented_l_bnds, RealVector &augmented_u_bnds, const
RealVector &lin_ineq_l_bnds, const RealVector &lin_ineq_u_bnds, const RealVector &lin_eq_targets,
const RealVector &nln_ineq_I_bnds, const RealVector &nln_ineq_u_bnds, const RealVector &nln_eq_-
targets)

augments variable bounds with linear and nonlinear constraint bounds.

Static Protected Member Functions

e static void constraint_eval (int &mode, int &ncnln, int &n, int &nrowj, int xneedc, double *x, double *c,
double xcjac, int &nstate)

CONFUN in NPSOL manual: computes the values and first derivatives of the nonlinear constraint functions.

Protected Attributes

e int realWorkSpaceSize
size of realWorkSpace

e int intWorkSpaceSize
size of intWorkSpace

e RealArray realWorkSpace
real work space for NPSOL/NLSSOL

o IntArray intWorkSpace
int work space for NPSOL/NLSSOL

o int nInConstraintArraySize

used for non-zero array sizing (nonlinear constraints)

e int linConstraintArraySize

used for non-zero array sizing (linear constraints)

e RealArray cLambda
CLAMBDA from NPSOL manual: Langrange multipliers.

e IntArray constraintState
ISTATE from NPSOL manual: constraint status.

e int informResult
INFORM from NPSOL manual: optimization status on exit.

e int numberlterations

ITER from NPSOL manual: number of (major) iterations performed.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



474 DAKOTA Class Documentation

e int boundsArraySize
length of augmented bounds arrays (variable bounds plus linear and nonlinear constraint bounds)

e double * linConstraintMatrixF77
[A] matrix from NPSOL manual: linear constraint coefficients

e double * upperFactorHessianF77
[R] matrix from NPSOL manual: upper Cholesky factor of the Hessian of the Lagrangian.

e double * constraintJacMatrixF77

[CJAC] matrix from NPSOL manual: nonlinear constraint Jacobian

e int fnEvalCntr
counter for testing against maxFunctionEvals

e size t constrOffset

used in constraint_eval() to bridge NLSSOLLeastSq::numLeastSqTerms and
NPSOLOptimizer::numObjectiveFunctions

Static Protected Attributes

e static SOLBase * sollnstance

pointer to the active object instance used within the static evaluator functions in order to avoid the need for static
data

e static Minimizer * optLSqlnstance

pointer to the active base class object instance used within the static evaluator functions in order to avoid the need
for static data

10.92.1 Detailed Description

Base class for Stanford SOL software.

The SOLBase class provides a common base class for NPSOLOptimizer and NLSSOLLeastSq, both of which are
Fortran 77 sequential quadratic programming algorithms from Stanford University marketed by Stanford Business
Associates.

The documentation for this class was generated from the following files:

e SOLBase.H
e SOLBase.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.93 SortCompare Class Template Reference 475

10.93 SortCompare Class Template Reference

Public Member Functions

e SortCompare (bool(xfunc)(const T &, const T &))
Constructor that defines the pointer to function.

e bool operator() (const T &pl, const T &p2) const
The operator() must be defined. Calls the defined sort_fn.

Private Attributes

e bool(x sort_fn )(const T &, const T &)

Pointer to test function.

10.93.1 Detailed Description
template<class T> class Dakota::SortCompare< T >

Internal functor used in the sort algorithm to sort using a specified compare method. The class holds a pointer to
the sort function.

The documentation for this class was generated from the following file:

e Dakotalist.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



476 DAKOTA Class Documentation

10.94 Strategy Class Reference

Base class for the strategy class hierarchy.

Inheritance diagram for Strategy::

| Strategy |

f
[ N N |

| ConcurrentStrategy | |Multi|eveIOptStrategy| |SingIeMethodStrategy| |SurrBasedOptStrategy

Public Member Functions

e Strategy ()
default constructor

Strategy (ProblemDescDB &problem_db)

envelope constructor

Strategy (const Strategy &strat)
copy constructor

virtual ~Strategy ()
destructor

Strategy operator= (const Strategy &strat)
assignment operator

virtual void run_strategy ()
the run function for the strategy: invoke the iterator(s) on the model(s). Called from main.C.

e virtual const Variables & variable_results () const

return the final strategy solution (variables)

e virtual const Response & response_results () const

return the final strategy solution (response)

e void run_iterator (Iterator &the_iterator, Model &the_model)

Convenience function for invoking an iterator and managing parallelism. This version omits communicator repar-
titioning. Function must be public due to use by MINLPNode.

ProblemDescDB & prob_desc_db () const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.94 Strategy Class Reference 477

returns the problem description database (probDescDB)

e ParallelLibrary & parallel_library () const
returns the parallel library (parallelLib)

Protected Member Functions

o Strategy (BaseConstructor, ProblemDescDB &problem_db)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

e void init_communicators (Iterator &the_iterator, Model &the_model)
convenience function for allocating comms prior to running an iterator

e void free_communicators (Iterator &the_iterator, Model &the_model)
convenience function for deallocating comms after running an iterator

e void initialize_graphics (const Model &model)
convenience function for initialization of 2D graphics and data tabulation

Protected Attributes

e ProblemDescDB & probDescDB
class member reference to the problem description database

e ParallelLibrary & parallelLib
class member reference to the parallel library

e String strategyName

type of strategy: single_method, multi_level, surrogate_based_opt, opt_under_uncertainty, branch_and_bound,
multi_start, or pareto_set.

e int worldRank
processor rank in MPI_COMM_WORLD

e int worldSize
size of MPI_COMM_WORLD

e int iteratorCommRank

processor rank in iteratorComm

e int iteratorCommSize

number of processors in iteratorComm

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



478 DAKOTA Class Documentation

e bool mpirunFlag

flag for parallel MPI launch of DAKOTA

e Dbool graphicsFlag

flag for using graphics in a graphics executable

e bool tabularDataFlag

flag for file tabulation of graphics data

e String tabularDataFile

filename for tabulation of graphics data

Private Member Functions

e Strategy * get_strategy ()

Used by the envelope to instantiate the correct letter class.

Private Attributes

e Strategy * strategyRep

pointer to the letter (initialized only for the envelope)

e int referenceCount

number of objects sharing strategyRep

10.94.1 Detailed Description

Base class for the strategy class hierarchy.

The Strategy class is the base class for the class hierarchy providing the top level control in DAKOTA. The
strategy is responsible for creating and managing iterators and models. For memory efficiency and enhanced
polymorphism, the strategy hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p.
133), for which the base class (Strategy) serves as the envelope and one of the derived classes (selected in
Strategy::get_strategy()) serves as the letter.

10.94.2 Constructor & Destructor Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.94 Strategy Class Reference 479

10.94.2.1 Strategy ()

default constructor

Default constructor. strategyRep is NULL in this case (a populated problem_db is needed to build a meaningful
Strategy object). This makes it necessary to check for NULL in the copy constructor, assignment operator, and
destructor.

10.94.2.2 Strategy (ProblemDescDB & problem_db)

envelope constructor

Used in main.C instantiation to build the envelope. This constructor only needs to extract enough data to properly
execute get_strategy, since Strategy::Strategy(BaseConstructor, problem_db) builds the actual base class data
inherited by the derived strategies.

10.94.2.3 Strategy (const Strategy & strat)

copy constructor

Copy constructor manages sharing of strategyRep and incrementing of referenceCount.

10.94.2.4 ~Strategy () [virtual]

destructor

Destructor decrements referenceCount and only deletes strategyRep when referenceCount reaches zero.

10.94.2.5 Strategy (BaseConstructor, ProblemDescDB & problem_db) [ pr ot ect ed]
constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all inherited strategies. get_strategy() instanti-
ates a derived class letter and the derived constructor selects this base class constructor in its initialization list (to
avoid the recursion of the base class constructor calling get_strategy() again). Since the letter IS the representation,
its representation pointer is set to NULL (an uninitialized pointer causes problems in ~Strategy).

10.94.3 Member Function Documentation

10.94.3.1 Strategy operator= (const Strategy & strat)

assignment operator

Assignment operator decrements referenceCount for old strategyRep, assigns new strategyRep, and increments
referenceCount for new strategyRep.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



480 DAKOTA Class Documentation

10.94.3.2 void run_iterator (Iterator & the_iterator, Model & the_model)
Convenience function for invoking an iterator and managing parallelism. This version omits communicator repar-
titioning. Function must be public due to use by MINLPNode.

This is a convenience function for encapsulating the parallel features (run/serve) of running an iterator. This
function omits allocation/deallocation of communicators to provide greater efficiency in those strategies which
involve multiple iterator executions but only require communicator allocation/deallocation to be performed once.

It does not require a strategyRep forward since it is only used by letter objects. While it is currently a public
function due to its use in MINLPNode, this usage still involves a strategy letter object.

10.94.3.3 void init_communicators (Iterator & the_iterator, Model & the_model) [ pr ot ect ed]

convenience function for allocating comms prior to running an iterator

This is a convenience function for encapsulating the allocation of communicators prior to running an iterator. It
does not require a strategyRep forward since it is only used by letter objects.

10.94.3.4 void free_communicators (Iterator & the_iterator, Model & the_model) [ pr ot ect ed]

convenience function for deallocating comms after running an iterator

This is a convenience function for encapsulating the deallocation of communicators after running an iterator. It
does not require a strategyRep forward since it is only used by letter objects.

10.94.3.5 void initialize_graphics (const Model & model) [ pr ot ect ed]

convenience function for initialization of 2D graphics and data tabulation

This is a convenience function for encapsulating graphics initialization operations. It does not require a strategy-
Rep forward since it is only used by letter objects.

10.94.3.6 Strategy * get_strategy () [ pri vate]

Used by the envelope to instantiate the correct letter class.

Used only by the envelope constructor to initialize strategyRep to the appropriate derived type, as given by the
strategyName attribute.

The documentation for this class was generated from the following files:

e DakotaStrategy.H
e DakotaStrategy.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.95 String Class Reference 481

10.95 String Class Reference

Dakota::String class, used as main string class for Dakota.

Public Member Functions

e String ()
Default constructor.

e String (const String &a)
Copy constructor for incoming String.

e String (const String &a, size_t start_index, size_t num_items)

Copy constructor for portion of incoming String.

e String (const char xc_string)

Copy constructor for incoming charx array.

o String (const DAKOTA_BASE_STRING &a)

Copy constructor for incoming base string.

o ~String ()
Destructor.

e String & operator= (const String &)

Assignment operator for incoming String.

o String & operator= (const DAKOTA_BASE_STRING &)

Assignment operator for incoming base string.

String & operator= (const char x)

Assignment operator for incoming charx array.

e operator const char x () const
The operator() returns pointer to standard C char array.

String & toUpper ()
Convert to upper case string.

void upper ()
String & toLower ()

Convert to lower case string.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



482 DAKOTA Class Documentation

void lower ()

bool contains (const char ssub_string) const

Returns true if String contains charx substring.

bool begins (const char *sub_string) const

Returns true if String starts with charx substring.

bool ends (const char *sub_string) const

Returns true if String ends with charx substring.

char * data () const

Returns pointer to standard C char array.

10.95.1 Detailed Description

Dakota::String class, used as main string class for Dakota.

The Dakota::String class is the common string class for Dakota. It provides a common interface for string opera-
tions whether inheriting from the STL basic_string or the Rogue Wave RWCString class

10.95.2 Member Function Documentation

10.95.2.1 operator const char x () const [i nl i ne]

The operator() returns pointer to standard C char array.

The operator () returns a pointer to a char string. Uses the STL c_str() method. This allows for the String to be
used in method calls without having to call the data() or c_str() methods.

10.95.2.2 void upper ()

Private method which converts String to upper. Utilizes an STL iterator to step through the string and then calls
the STL toupper() method. Needs to be done this way because STL only provides a single char toupper method.

10.95.2.3 void lower ()

Private method which converts String to lower. Utilizes an STL iterator to step through the string and then calls
the STL tolower() method. Needs to be done this way because STL only provides a single char tolower method.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.95 String Class Reference 483

10.95.2.4 bool contains (const char * sub_string) const [i nl i ne]

Returns true if String contains char* substring.

Returns true if the String contains the char* sub_string. Uses the STL find() method.
10.95.2.5 bool begins (const char * sub_string) const [i nl i ne]

Returns true if String starts with chars substring.

Returns true if the String begins with the char* sub_string. Uses the STL compare() method.
10.95.2.6 bool ends (const char * sub_string) const [i nl i ne]

Returns true if String ends with charx substring.

Returns true if the String ends with the charx sub_string. Uses the STL compare() method.
10.95.2.7 char xdata () const [i nli ne]

Returns pointer to standard C char array.
Returns a pointer to C style char array. Needed to mimic the Rogue Wave string class. USE WITH CARE.

The documentation for this class was generated from the following files:

e DakotaString.H
e DakotaString.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



484 DAKOTA Class Documentation

10.96 SurfpackApproximation Class Reference

Derived approximation class for Surfpack approximation classes. Interface between Surfpack and Dakota.

Inheritance diagram for Surfpack Approximation::

| Approximation |

T

| SurfpackApproximation |

Public Member Functions

e SurfpackApproximation ()

default constructor

o SurfpackApproximation (ProblemDescDB &problem_db, const size_t &num_acv)

and are passed as is to Surfpack methods and functions— which expect structures of type std::vector. This is legal
as long as the types Surfpack expects really are superclasses of their Dakota counterparts. It will fail if a Real
is #defined in Dakota to be a float, because then it will be a subclass of std::vector<float> being passed in as a
std::vector<double>. The possible solutions, I think, are: 1. Have the same typedef feature in Surfpack so that
everything can be configured to use floats or doubles 2. Explicitly cast each vector component as it passes over the
Dakota/Surfpack boundary

e ~SurfpackApproximation ()
destructor

Protected Member Functions

e int num_coefficients () const
void find_coefficients ()

SurfData object will be created from Dakota’s SurrogateDataPoints, and the appropriate Surfpack build method
will be invoked.

const RealVector & approximation_coefficients ()

Vector of values representing the identity of the Surfpack surface. Return value of this function is not yet meaningful.
The format of such a vector of values is not yet defined for all Surfpack classes.

const Real & get_value (const Real Vector &x)

Return the value of the Surfpack surface for a given parameter vector x.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.96 SurfpackApproximation Class Reference 485

e const RealBaseVector & get_gradient (const Real Vector &x)

retrieve the approximate function gradient for a given parameter vector x

e const RealMatrix & get_hessian (const Real Vector &x)

retrieve the approximate function Hessian for a given parameter vector x

Private Member Functions

e void checkForEqualityConstraints ()

If anchor_point is present, create equality constraints from a particular point, gradient, and/or hessian.

e SurfData * surrogates_to_surf_data ()

copy from SurrogateDataPoint to SurfPoint/SurfData

Private Attributes

e RealVector coefficients

Vector representation of the Approximation (e.g., polynomial coefficients for linear regression or trained neural
network weights). The format of such a vector has not been defined for all Surfpack classes.

e Surface * surface

The native Surfpack approximation.

e SurfData x surfData

The data used to build the approximation, in Surfpack format.

e short polyOrder

order (1, 2, or 3) of a polynomial regression surrogate

10.96.1 Detailed Description

Derived approximation class for Surfpack approximation classes. Interface between Surfpack and Dakota.

The SurfpackApproximation class is the interface between Dakota and Surfpack. Based on the information in
the ProblemDescDB that is passed in through the constructor, Surfpack Approximation builds a Surfpack Surface
object that corresponds to one of the following data-fitting techniques: polynomial regression, kriging, artificial
neural networks, radial basis function network, or multivariate adaptaive regression splines (MARS).

10.96.2 Constructor & Destructor Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



486 DAKOTA Class Documentation

10.96.2.1 SurfpackApproximation (ProblemDescDB & problem_db, const size_t & num_acv)

and are passed as is to Surfpack methods and functions— which expect structures of type std::vector. This is legal
as long as the types Surfpack expects really are superclasses of their Dakota counterparts. It will fail if a Real
is #defined in Dakota to be a float, because then it will be a subclass of std::vector<float> being passed in as a
std::vector<double>. The possible solutions, I think, are: 1. Have the same typedef feature in Surfpack so that
everything can be configured to use floats or doubles 2. Explicitly cast each vector component as it passes over
the Dakota/Surfpack boundary

Initialize the embedded Surfpack surface object and configure it using the specifications from the input file. Data
for the surface is created later.

Todo
Add RBFNet surface fit interface

10.96.3 Member Function Documentation

10.96.3.1 int num_coefficients () const [ protected, virtual]

Todo
: Check to make sure that the number of points required does not

Todo
: The reported number of points required is computed in a rather

exceed the bounds for a signed integer ad hoc manner. Do something smarter.

Reimplemented from Approximation.

10.96.3.2 void find_coefficients () [ protected, virtual]

SurfData object will be created from Dakota’s SurrogateDataPoints, and the appropriate Surfpack build method
will be invoked.

Todo
Right now, we’re completely deleting the old data and then

surfData will be deleted in dtor recopying the current data into a SurfData object. This was just the easiest way to
arrive at a solution that would build and run. This function is frequently called from addPoint rebuild, however,
and it’s not good to go through this whole process every time one more data point is added.

Reimplemented from Approximation.

10.96.3.3 const RealVector & approximation_coefficients() [ protected, virtual]

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.96 SurfpackApproximation Class Reference 487

Vector of values representing the identity of the Surfpack surface. Return value of this function is not yet mean-
ingful. The format of such a vector of values is not yet defined for all Surfpack classes.

The value returned from this function is currently meaningless.

Todo
: Provide an appropriate list of coefficients for each surface type

Reimplemented from Approximation.

10.96.3.4 const RealMatrix & get_hessian (const RealVector & x) [ protected, virtual]
retrieve the approximate function Hessian for a given parameter vector x

Todo
Make this acceptably efficient

Reimplemented from Approximation.

10.96.3.5 void checkForEqualityConstraints () [ pri vat e]

If anchor_point is present, create equality constraints from a particular point, gradient, and/or hessian.

If there is an anchor point, add an equality constraint for its response value. Also add constraints for gradient and
hessian, if applicable.

Todo
improve efficiency of conversion

10.96.3.6 SurfData * surrogates_to_surf data() [pri vate]

copy from SurrogateDataPoint to SurfPoint/SurfData

Copy the data stored in Dakota-style SurrogateDataPoint objects into Surfpack-style SurfPoint and SurfData ob-
jects.

The documentation for this class was generated from the following files:

o SurfpackApproximation.H
o SurfpackApproximation.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



488 DAKOTA Class Documentation

10.97 SurrBasedOptStrategy Class Reference

Strategy for provably-convergent surrogate-based optimization.

Inheritance diagram for SurrBasedOptStrategy::

Strategy

SurrBasedOptStrategy

Public Member Functions

e SurrBasedOptStrategy (ProblemDescDB &problem_db)
constructor

e ~SurrBasedOptStrategy ()
destructor

e void run_strategy ()

Performs the surrogate-based optimization strategy by optimizing local, global, or hierarchical surrogates over a
series of trust regions.

const Variables & variable_results () const

return the SBO final solution (variables)

const Response & response_results () const
return the SBO final solution (response)

Private Member Functions

e void run_surrogate_based_optimization ()

the core SBO algorithm, as called from run_strategy()

e Dbool tr_bounds (RealVector &c_vars_center, const StringArray &c_vars_labels, const RealVector
&global_lower_bnds, const RealVector &global_upper_bnds, RealVector &tr_lower_bnds, RealVector
&tr_upper_bnds)

compute current trust region bounds

e void find_center_truth (Response &response_center_truth, const Real Vector &c_vars_center, const Iterator
&dace_iterator, Model &truth_model)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.97 SurrBasedOptStrategy Class Reference 489

retrieve response_center_truth if possible, evaluate it if not

void find_center_approx (Response &response_center_approx, const Response &response_center_truth)

retrieve response_center_approx if possible, evaluate it if not

void hard_convergence_check (const Response &response_truth, const RealVector &c_vars, const
RealVector &lower_bnds, const Real Vector &upper_bnds)

check for hard convergence (norm of projected gradient of merit function near zero)

void tr_ratio_check (const RealVector &c_vars_center, const RealVector &c_vars_star, const RealVector
&tr_lower_bounds, const RealVector &tr_upper_bounds, const Response &response_center_truth, const
Response &response_center_approx, const Response &response_star_truth, const Response &response_-
star_approx)

compute trust region ratio for accepting/rejecting SBO iterate and sizing next trust region and check for soft con-
vergence (diminishing returns)

void update_penalty (const RealVector &fns_center_truth, const RealVector &fns_star_truth)
initialize and update the penaltyParameter

void update_lagrange_multipliers (const Real Vector &fn_vals, const RealMatrix &fn_grads)
initialize and update Lagrange multipliers for basic Lagrangian

void update_augmented_lagrange_multipliers (const Real Vector &fn_vals)
initialize and update the Lagrange multipliers for augmented Lagrangian

bool update_filter (const RealVector &fn_vals)
update a filter from a set of function values

Real lagrangian_merit (const RealVector &fn_vals)

compute a Lagrangian function from a set of function values

void lagrangian_gradient (const RealMatrix &fn_grads, RealVector &lag_grad)
compute the gradient of the Lagrangian function

Real augmented_lagrangian_merit (const RealVector &fn_vals)

compute an augmented Lagrangian function from a set of function values

void augmented_lagrangian_gradient (const RealVector &fn_vals, const RealMatrix &fn_grads,
RealVector &alag_grad)

compute the gradient of the augmented Lagrangian function

Real penalty_merit (const Real Vector &fn_vals)

compute a penalty function from a set of function values

void penalty_gradient (const RealVector &fn_vals, const RealMatrix &fn_grads, RealVector &pen_grad)
compute the gradient of the penalty function

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



490 DAKOTA Class Documentation

e Real objective (const RealVector &fn_vals)

compute a single objective value from one or more objective functions

e Real constraint_violation (const RealVector &fn_vals, const Real &constraint_tol)

compute the constraint violation from a set of function values

e void relax_constraints (const Response &response_truth, const RealVector &c_vars, const RealVector
&lower_bnds, const Real Vector &upper_bnds)

relax constraints by updating bounds when current iterate is infeasible

Static Private Member Functions

e static void hom_objective_eval (int &mode, int &n, double *u, double &f, double xgrad_f, int &)
static function used by NPSOL as the objective function in the homotopy constraint relaxation formulation.

e static void hom_constraint_eval (int &mode, int &ncnln, int &n, int &nrowj, int *xneedc, double *xu, double
*c, double *cjac, int &nstate)

static function used by NPSOL as the constraint function in the homotopy constraint relaxation formulation.

Private Attributes

e Model surrogateModel
the surrogate model (a SurrogateModel object)

e [terator selectedlterator

the optimizer used on surrogateModel

e Real trustRegionFactor

the trust region factor is used to compute the total size of the trust region — it is a percentage, e.g. for trustRegion-
Factor = 0.1, the actual size of the trust region will be 10% of the global bounds (upper bound - lower bound for
each design variable).

e Real minTrustRegionFactor

a soft convergence control: stop SBO when the trust region factor is reduced below the value of minTrustRegion-
Factor

e Real convergenceTol

the optimizer convergence tolerance; used in several SBO hard and soft convergence checks

e Real constraintTol

a tolerance specifying the distance from a constraint boundary that is allowed before an active constraint is con-
sidered to be a violated constraint.

e Real trRatioContractValue

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.97 SurrBasedOptStrategy Class Reference 491

trust region ratio min value: contract tr if ratio below this value

e Real trRatioExpandValue

trust region ratio sufficient value: expand tr if ratio above this value

e Real gammaContract

trust region contraction factor

e Real gammaExpand

trust region expansion factor

e Real gammaNoChange
factor for maintaining the current trust region size (normally 1.0)

e bool trConstraintRelax

flag to use trust region constraint relaxation for infeasible starting points

e int trConstraintRelaxMethod
type of trust region constraint relaxation for infeasible starting points: NONE (default=0) or HOMOTOPY (1)

e int meritFnType

type of merit function used in trust region ratio logic: BASIC_PENALTY, ADAPTIVE_PENALTY, BASIC_-
LAGRANGIAN, or AUGMENTED_LAGRANGIAN

e int acceptLogic
type of iterate acceptance test logic: FILTER or TR_RATIO

e RealVectorList sboFilter

Set of response function vectors defining a filter (objective vs. constraint violation) for iterate selection/rejection.

e RealVector lagrangeMult

Lagrange multipliers for basic Lagrangian calculations.

e RealVector auglagrangeMult

Lagrange multipliers for augmented Lagrangian calculations.

e Real penaltyParameter

the penalization factor for violated constraints used in quadratic penalty calculations; increased in
update_penalty()

e int penaltylterOffset
iteration offset used to update the scaling of the penalty parameter for adaptive_penalty merit functions

e int sbolterNum
SBO iteration number.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



492

DAKOTA Class Documentation

int sbolterMax

maximum number of SBO iterations

short convergenceFlag
code indicating satisfaction of hard or soft convergence conditions

size_t numFns

number of response functions

size_t numVars

number of active continuous variables

short softConvCount
number of consecutive candidate point rejections. If the count reaches softConvLimit, stop SBO.

short softConvLimit
the limit on consecutive candidate point rejections. If exceeded by softConvCount, stop SBO.

bool gradientFlag

flags the use of gradients within the SBO process

bool hessianFlag

flags the use of Hessians within the SBO process

bool correctionFlag

flags the use of surrogate correction techniques at the center of each trust region

bool globalApproxFlag

flags the use of a global data fit surrogate (rsm, ann, mars, kriging)

bool localApproxFlag
flags the use of a local data fit surrogate (Taylor series)

bool hierarchApproxFlag
flags the use of a hierarchical surrogate

bool newCenterFlag
flags the acceptance of a candidate point and the existence of a new trust region center

bool daceCenterPtFlag
flags the availability of the center point in the DACE evaluations for global approximations (CCD, Box-Behnken)

bool multiLayerBypassFlag

flags the simultaneous presence of two conditions: (1) additional layerings w/i actual_model (e.g., surrogateModel
= layered/nested/layered -> actual_model = nested/layered), and (2) a user-specification to bypass all layerings
within actual_model for the evaluation of truth data (response_center_truth and response_star_truth).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.97 SurrBasedOptStrategy Class Reference 493

e bool useGradsFlag

flags the "use_gradients" specification in which gradients are to be evaluated for each DACE point in global surro-
gate builds.

e size_t numObjFns

number of objective functions

e size_t numNonlinlneqConstr

number of nonlinear inequality constraints

e size_t numNonlinEqConstr

number of nonlinear equality constraints

e size_t nonlinlneqOffset

index offset to nonlinear constraint functions

e size_t nonlinEqOffset
index offset to nonlinear constraint functions

e RealVector multiObjWts

vector of multiobjective weights.

e RealVector nonlinlneqLowerBnds
vector of current nonlinear inequality constraint lower bounds

e RealVector nonlinlneqUpperBnds
vector of current nonlinear inequality constraint upper bounds

e RealVector nonlinEqTargets

vector of current nonlinear equality constraint targets

e Real bigRealBoundSize
cutoff value for continuous bounds

e RealVector nonlinlneqLowerBndsSlack

vector of true nonlinear inequality constraint lower bounds

e RealVector nonlinlneqUpperBndsSlack

vector of true nonlinear inequality constraint upper bounds

e RealVector nonlinEqTargetsSlack
vector of true nonlinear equality constraint targets

e Real tau
constraint relaxation parameter

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



494 DAKOTA Class Documentation

e Real alpha

constraint relaxation parameter backoff parameter (multiplier)

e int npsolDerivLevel
derivative level for NPSOL executions (1 = analytic grads of objective fn, 2 = analytic grads of constraints, 3 =
analytic grads of both).

e Variables bestVariables

best variables found in SBO

e Response bestResponses

best responses found in SBO

Static Private Attributes

e static SurrBasedOptStrategy * sboOptlnstance

pointer to SBO strategy used in static member functions

10.97.1 Detailed Description

Strategy for provably-convergent surrogate-based optimization.

This strategy uses a SurrogateModel to perform optimization based on local, global, or hierarchical surrogates.
It achieves provable convergence through the use of a sequence of trust regions and the application of surrogate
corrections at the trust region centers.

10.97.2 Member Function Documentation

10.97.2.1 void run_strategy () [virtual]

Performs the surrogate-based optimization strategy by optimizing local, global, or hierarchical surrogates over a
series of trust regions.

Trust region-based strategy to perform surrogate-based optimization in subregions (trust regions) of the parameter
space. The optimizer operates on approximations in lieu of the more expensive simulation-based response func-
tions. The size of the trust region is varied according to the goodness of the agreement between the approximations
and the true response functions.

Reimplemented from Strategy.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.97 SurrBasedOptStrategy Class Reference 495

10.97.2.2 void hard_convergence_check (const Response & response_truth, const RealVector & c_vars,
const RealVector & lower_bnds, const RealVector & upper_bnds) [ pri vat e]

check for hard convergence (norm of projected gradient of merit function near zero)

The hard convergence check computes the gradient of the merit function at the trust region center, performs a
projection for active bound constraints (removing any gradient component directed into an active bound), and
signals convergence if the 2-norm of this projected gradient is less than convergenceTol.

10.97.2.3 void tr_ratio_check (const RealVector & ¢_vars_center, const RealVector & ¢_vars_star,
const RealVector & tr_lower_bounds, const RealVector & tr_upper_bounds, const Response
& response_center_truth, const Response & response_center_approx, const Response &
response_star_truth, const Response & response_star_approx) [ pri vat e]

compute trust region ratio for accepting/rejecting SBO iterate and sizing next trust region and check for soft
convergence (diminishing returns)

Compute soft convergence metrics (trust region ratio, number of consecutive failures, min trust region size, etc.)
and use them to assess whether the convergence rate has decreased to a point where the process should be termi-
nated (diminishing returns).

10.97.2.4 void update_penalty (const RealVector & fns_center_truth, const RealVector & fns_star_truth)
[ private]

initialize and update the penaltyParameter

Scaling of the penalty value is important to avoid rejecting SBO iterates which must increase the objective to
achieve a reduction in constraint violation. In the basic penalty case, the penalty is ramped exponentially based
on the iteration counter. In the adaptive case, the ratio of relative change between center and star points for the
objective and constraint violation values is used to rescale penalty values.

10.97.2.,5 void update_lagrange_multipliers (const RealVector & fn_vals, const RealMatrix & fn_grads)
[private]

initialize and update Lagrange multipliers for basic Lagrangian

For the Rockafellar augmented Lagrangian, simple Lagrange multiplier updates are available which do not require
the active constraint gradients. For the basic Lagrangian, Lagrange multipliers are estimated through solution of
a nonnegative linear least squares problem.

10.97.2.6 void update_augmented_lagrange_multipliers (const RealVector & fn_vals) [ pri vat e]

initialize and update the Lagrange multipliers for augmented Lagrangian

For the Rockafellar augmented Lagrangian, simple Lagrange multiplier updates are available which do not require
the active constraint gradients. For the basic Lagrangian, Lagrange multipliers are estimated through solution of
a nonnegative linear least squares problem.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



496 DAKOTA Class Documentation

10.97.2.7 bool update_filter (const RealVector & fn_vals) [ pri vat e]

update a filter from a set of function values

Update the sboFilter with fn_vals if new iterate is non-dominated.

10.97.2.8 Real lagrangian_merit (const RealVector & fn_vals) [ pri vat e]

compute a Lagrangian function from a set of function values

The Lagrangian function computation sums the objective function and the Lagrange multipler terms for inequal-
ity/equality constraints. This implementation follows the convention in Vanderplaats with g<=0 and h=0.

10.97.2.9 Real augmented_lagrangian_merit (const RealVector & fn_vals) [ pri vat e]

compute an augmented Lagrangian function from a set of function values

The Rockafellar augmented Lagrangian function sums the objective function, Lagrange multipler terms for in-
equality/equality constraints, and quadratic penalty terms for inequality/equality constraints. This implementation
follows the convention in Vanderplaats with g<=0 and h=0.

10.97.2.10 Real penalty_merit (const RealVector & fn_vals) [ pri vat e]

compute a penalty function from a set of function values

The penalty function computation applies a quadratic penalty to any constraint violations and adds this to the
objective function(s) p=f+r_pcv.

10.97.2.11 Real objective (const RealVector & fn_vals) [ pri vat e]

compute a single objective value from one or more objective functions

The objective computation sums up the contributions from one of more objective functions using the multiobjec-
tive weights.

10.97.2.12 Real constraint_violation (const RealVector & fn_vals, const Real & constraint_tol)
[ private]
compute the constraint violation from a set of function values

Compute the quadratic constraint violation defined as cv = g+T g+ + h+"T h+. This implementation supports
equality constraints and 2-sided inequalities. The constraint_tol allows for a small constraint infeasibility (used
for penalty methods, but not Lagrangian methods).

10.97.2.13 void hom_objective_eval (int & mode, int & n, double x u, double & f, double * grad_f, int &)
[static, private]

static function used by NPSOL as the objective function in the homotopy constraint relaxation formulation.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.97 SurrBasedOptStrategy Class Reference 497

NPSOL objective functions evaluator for solution of homotopy constraint relaxation parameter optimization. This
constrained optimization problem performs the update of the tau parameter in the homotopy heuristic approach
used to relax the constraints in the original problem .

10.97.2.14 void hom_constraint_eval (int & mode, int & ncnin, int & n, int & nrowj, int x needc, double
u, double * ¢, double * cjac, int & nstate) [static, private]
static function used by NPSOL as the constraint function in the homotopy constraint relaxation formulation.

NPSOL constraint functions evaluator for solution of homotopy constraint relaxation parameter optimization.
This constrained optimization problem performs the update of the tau parameter in the homotopy heuristic ap-
proach used to relax the constraints in the original problem .

The documentation for this class was generated from the following files:

o SurrBasedOptStrategy.H
e SurrBasedOptStrategy.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



498 DAKOTA Class Documentation

10.98 SurrogateDataPoint Class Reference

Container class encapsulating basic parameter and response data for defining a "truth" data point.

Public Member Functions

e SurrogateDataPoint ()

default constructor

e SurrogateDataPoint (const RealVector &x, const Real &fn_val, const RealBaseVector &fn_grad, const
RealMatrix &fn_hess)

standard constructor

e SurrogateDataPoint (const SurrogateDataPoint &sdp)

copy constructor

e ~SurrogateDataPoint ()

destructor

e SurrogateDataPoint & operator= (const SurrogateDataPoint &sdp)

assignment operator

e bool operator== (const SurrogateDataPoint &sdp) const

equality operator

e const RealVector & continuous_variables () const

return continuousVars

e const Real & response_function () const

return responseFn

e const RealBaseVector & response_gradient () const

return responseGrad

e const RealMatrix & response_hessian () const

return responseHess

e bool is_null () const

function to check sdpRep (does this handle contain a body)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.98 SurrogateDataPoint Class Reference 499

Private Attributes

e SurrogateDataPointRep * sdpRep
pointer to the body (handle-body idiom)

10.98.1 Detailed Description

Container class encapsulating basic parameter and response data for defining a "truth" data point.

A list of these data points is contained in each Approximation instance (Approximation::currentPoints) and pro-
vides the data to build the approximation. A handle-body idiom is used to avoid excessive data copying overhead.

The documentation for this class was generated from the following file:

e DakotaApproximation.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



500 DAKOTA Class Documentation

10.99 SurrogateDataPointRep Class Reference

The representation of a surrogate data point. This representation, or body, may be shared by multiple
SurrogateDataPoint handle instances.
Private Member Functions

e SurrogateDataPointRep (const RealVector &x, const Real &fn_val, const RealBaseVector &fn_grad, const
RealMatrix &fn_hess)

constructor

e ~SurrogateDataPointRep ()

destructor

Private Attributes

e RealVector continuousVars

continuous variables

e Real responseFn

truth response function value

e RealBaseVector responseGrad

truth response function gradient

e RealMatrix responseHess

truth response function Hessian

e int referenceCount

number of handle objects sharing sdpRep

Friends

e class SurrogateDataPoint

the handle class can access attributes of the body class directly

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.99 SurrogateDataPointRep Class Reference 501

10.99.1 Detailed Description

The representation of a surrogate data point. This representation, or body, may be shared by multiple
SurrogateDataPoint handle instances.

The SurrogateDataPoint/SurrogateDataPointRep pairs utilize a handle-body idiom (Coplien, Advanced C++).

The documentation for this class was generated from the following file:

o DakotaApproximation.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



502 DAKOTA Class Documentation

10.100 SurrogateModel Class Reference

Base class for surrogate models (DataFitSurrModel and HierarchSurrModel).

Inheritance diagram for SurrogateModel::

| Model |

T

| SurrogateM odel |
t

| DataFitSurrModel | |HierarchSurrModeI|

Protected Member Functions

e SurrogateModel (ProblemDescDB &problem_db)
constructor

e ~SurrogateModel ()

destructor

e void compute_correction (const Response &truth_response, const Response &approx_response, const
RealVector &c_vars)

compute the correction required to bring approx_response into agreement with truth_response

void apply_correction (Response &approx_response, const RealVector &c_vars, bool quiet_flag=false)

apply the correction computed in compute_correction() to approx_response

void check_submodel_compatibility (const Model &sub_model)

verify ~ compatibility  between  SurrogateModel  attributes and  attributes of the  submodel
(DataFitSurrModel::actualModel or HierarchSurrModel::highFidelityModel)

bool force_rebuild ()
evaluate whether a rebuild of the approximation should be forced based on changes in the inactive data

e void auto_correction (bool correction_flag)

sets autoCorrection to on (true) or off (false)

bool auto_correction ()

returns autoCorrection setting

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.100 SurrogateModel Class Reference 503

Protected Attributes

bool mixedResponseSet

flag for mixed approximate/actual responses

IntArray surrogateFnlds
for mixed response sets, this array specifies the response function subset that is approximated

ResponseArray correctedResponseArray
array of corrected responses used in derived_synchronize() functions

IntResponseMap correctedResponseMap
list of corrected responses used in derived_synchronize_nowait() functions

IntReal VectorMap rawCVarsMap

map of raw continuous variables used by apply_correction(). Model::varsList cannot be used for this purpose since
it does not contain lower level variables sets from finite differencing.

String correctionType

approximation correction approach to be used: additive or multiplicative

short correctionOrder

approximation correction order to be used: 0, 1, or 2

bool autoCorrection

a flag which controls the use of apply_correction() in DataFitSurrModel and HierarchSurrModel approximate
response computations

bool correctionComputed
flag indicating whether or not a correction has been computed and is available for application

String approxType
approximation type identifier string: global, local, or hierarchical

size_t approxBuilds
number of calls to build_approximation()

bool surrogateBypass

a flag which allows bypassing the approximation for evaluations on the underlying truth model.

String rebuildControl
flag controlling the rebuild of approximations when changes occur to the active/inactive variable values/bounds.

Real Vector fitCLBnds

stores a copy of the active continuous lower bounds when the approximation is built; used to detect when a rebuild
is required.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



504 DAKOTA Class Documentation

e RealVector fitCUBnds

stores a copy of the active continuous upper bounds when the approximation is built; used to detect when a rebuild
is required.

e IntVector fitDLBnds

stores a copy of the active discrete lower bounds when the approximation is built; used to detect when a rebuild is
required.

e IntVector fitDUBnds

stores a copy of the active discrete upper bounds when the approximation is built; used to detect when a rebuild is
required.

e RealVector fitlnactCVars

stores a copy of the inactive continuous variables when the approximation is built; used to detect when a rebuild is
required.

e IntVector fitlnactDVars

stores a copy of the inactive discrete variables when the approximation is built; used to detect when a rebuild is
required.

e RealVector fitlnactCLBnds

stores a copy of the inactive continuous lower bounds when the approximation is built; used to detect when a rebuild
is required.

e RealVector fitlnactCUBnds

stores a copy of the inactive continuous upper bounds when the approximation is built; used to detect when a rebuild
is required.

e IntVector fitlnactDLBnds

stores a copy of the inactive discrete lower bounds when the approximation is built; used to detect when a rebuild
is required.

e IntVector fitlnactDUBnds

stores a copy of the inactive discrete upper bounds when the approximation is built; used to detect when a rebuild
is required.

Private Member Functions

e void apply_additive_correction (RealVector &alpha_corrected_fns, RealMatrix &alpha_corrected_grads,
RealMatrixArray &alpha_corrected_hessians, const Real Vector &c_vars, const ActiveSet &set)

internal convenience function for applying additive corrections

e void apply_multiplicative_correction (RealVector &beta_corrected_fns, RealMatrix &beta_corrected_-
grads, RealMatrixArray &beta_corrected_hessians, const RealVector &c_vars, const ActiveSet &set)

internal convenience function for applying multiplicative corrections

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.100 SurrogateModel Class Reference 505

Private Attributes

bool badScalingFlag

flag used to indicate function values near zero for multiplicative corrections; triggers an automatic switch to addi-
tive corrections

bool combinedFlag
flag indicating the combination of additive/multiplicative corrections

bool computeAdditive

flag indicating the need for additive correction calculations

bool computeMultiplicative

flag indicating the need for multiplicative correction calculations

RealVector addCorrFns
Oth-order additive correction term: equals the difference between high and low fidelity model values at x=x_center.

RealMatrix addCorrGrads

1st-order additive correction term: equals the gradient of the high/low function difference at x=x_center.

RealMatrixArray addCorrHessians
2nd-order additive correction term: equals the Hessian of the high/low function difference at x=x_center.

Real Vector multCorrFns

Oth-order multiplicative correction term: equals the ratio of high fidelity to low fidelity model values at x=x_center.

RealMatrix multCorrGrads
1st-order multiplicative correction term: equals the gradient of the high/low function ratio at x=x_center.

RealMatrixArray multCorrHessians

2nd-order multiplicative correction term: equals the Hessian of the high/low function ratio at x=x_center.

Real Vector combineFactors

factors for combining additive and multiplicative corrections. Each factor is the weighting applied to the additive
correction and 1.-factor is the weighting applied to the multiplicative correction. The factor value is determined by
an additional requirement to match the high fidelity function value at the previous correction point (e.g., previous
trust region center). This results in a multipoint correction instead of a strictly local correction.

Real Vector correctionCenterPt

The point in parameter space where the current correction is calculated (often the center of the current trust region).
Used in calculating (x - x_c) terms in 1st-/2nd-order corrections.

Real Vector correctionPrevCenterPt

copy of correctionCenterPt from the previous correction cycle

RealVector approxFnsCenter

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



506 DAKOTA Class Documentation

Surrogate function values at the current correction point which are needed as a fall back if the current surrogate
function values are unavailable when applying 1st-/2nd-order multiplicative corrections.

RealVector approxFnsPrevCenter

copy of approxFnsCenter from the previous correction cycle

RealMatrix approxGradsCenter

Surrogate gradient values at the current correction point which are needed as a fall back if the current surrogate
function gradients are unavailable when applying 1st-/2nd-order multiplicative corrections.

Real Vector truthFnsCenter

Truth function values at the current correction point.

e RealVector truthFnsPrevCenter

copy of truthFnsCenter from the previous correction cycle

10.100.1 Detailed Description

Base class for surrogate models (DataFitSurrModel and HierarchSurrModel).

The SurrogateModel class provides common functions to derived classes for computing and applying corrections
to approximations.

10.100.2 Member Function Documentation

10.100.2.1 void compute_correction (const Response & truth_response, const Response &
approx_response, const RealVector & c_vars) [ protected, virtual]

compute the correction required to bring approx_response into agreement with truth_response

Compute an additive or multiplicative correction that corrects the approx_response to have Oth-order consistency
(matches values), 1st-order consistency (matches values and gradients), or 2nd-order consistency (matches values,
gradients, and Hessians) with the truth_response at a single point (e.g., the center of a trust region). The Oth-order,
Ist-order, and 2nd-order corrections use scalar values, linear scaling functions, and quadratic scaling functions,
respectively, for each response function.

Reimplemented from Model.

10.100.2.2 bool force_rebuild () [ prot ect ed]

evaluate whether a rebuild of the approximation should be forced based on changes in the inactive data

This function forces a rebuild of the approximation according to the approximation type, the rebuildControl
setting, and which active/inactive data has changed since the last build.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.100 SurrogateModel Class Reference 507

10.100.3 Member Data Documentation

10.100.3.1 bool autoCorrection [ prot ect ed]
a flag which controls the use of apply_correction() in DataFitSurrModel and HierarchSurrModel approximate
response computations

SurrBasedOptStrategy must toggle this value since compute_correction() no longer automatically backs out an
old correction.

10.100.3.2 size_tapproxBuilds [ prot ect ed]

number of calls to build_approximation()

used as a flag to automatically build the approximation if one of the derived compute_response functions is called
prior to build_approximation().

10.100.3.3 String rebuildControl [ pr ot ect ed]

flag controlling the rebuild of approximations when changes occur to the active/inactive variable values/bounds.

A setting of "all" denotes that the approximation should be rebuilt every time the inactive variables change (e.g.,
for each instance of {d} in OUU). A setting of "region" denotes that the approximation should be rebuilt every
time the bounded region for the inactive variables changes (e.g., for each new trust region on {d} in OUU).

The documentation for this class was generated from the following files:

e SurrogateModel. H
e SurrogateModel.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



508 DAKOTA Class Documentation

10.101 SysCallAnalysisCode Class Reference

Derived class in the AnalysisCode class hierarchy which spawns simulations using system calls.

Inheritance diagram for SysCall AnalysisCode::

AnalysisCode

SysCallAnalysisCode

Public Member Functions

e SysCallAnalysisCode (const ProblemDescDB &problem_db)

constructor

~SysCallAnalysisCode ()

destructor

e void spawn_evaluation (const bool block_flag)

spawn a complete function evaluation

e void spawn_input_filter (const bool block_flag)
spawn the input filter portion of a function evaluation

e void spawn_analysis (const int &analysis_id, const bool block_flag)

spawn a single analysis as part of a function evaluation

e void spawn_output_filter (const bool block_flag)
spawn the output filter portion of a function evaluation

const String & command_usage () const

return commandUsage

Private Attributes

e String commandUsage

optional command usage string for supporting nonstandard command syntax (supported only by SysCall analysis
codes)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.101 SysCallAnalysisCode Class Reference 509

10.101.1 Detailed Description

Derived class in the AnalysisCode class hierarchy which spawns simulations using system calls.

SysCallAnalysisCode creates separate simulation processes using the C system() command. It utilizes
CommandShell to manage shell syntax and asynchronous invocations.

10.101.2 Member Function Documentation

10.101.2.1 void spawn_evaluation (const bool block_flag)

spawn a complete function evaluation

Put the SysCallAnalysisCode to the shell using either the default syntax or specified commandUsage syntax. This
function is used when all portions of the function evaluation (i.e., all analysis drivers) are executed on the local
processor.

10.101.2.2 void spawn_input_filter (const bool block_flag)

spawn the input filter portion of a function evaluation

Put the input filter to the shell. This function is used when multiple analysis drivers are spread between processors.
No need to check for a Null input filter, as this is checked externally. Use of nonblocking shells is supported in
this fn, although its use is currently prevented externally.

10.101.2.3 void spawn_analysis (const int & analysis_id, const bool block flag)

spawn a single analysis as part of a function evaluation

Put a single analysis to the shell using the default syntax (no commandUsage support for analyses). This function
is used when multiple analysis drivers are spread between processors. Use of nonblocking shells is supported in
this fn, although its use is currently prevented externally.

10.101.2.4 void spawn_output_filter (const bool block_flag)

spawn the output filter portion of a function evaluation

Put the output filter to the shell. This function is used when multiple analysis drivers are spread between proces-
sors. No need to check for a Null output filter, as this is checked externally. Use of nonblocking shells is supported
in this fn, although its use is currently prevented externally.

The documentation for this class was generated from the following files:

o SysCallAnalysisCode.H
e SysCallAnalysisCode.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



510 DAKOTA Class Documentation

10.102 SysCallAppliclnterface Class Reference

Derived application interface class which spawns simulation codes using system calls.

Inheritance diagram for SysCall ApplicInterface::

| Interface |

T

| ApplicationInterface |

T

| SysCallAppliclnterface |

Public Member Functions

o SysCallAppliclnterface (const ProblemDescDB &problem_db)

constructor

e ~SysCallAppliclnterface ()
destructor

e void derived_map (const Variables &vars, const ActiveSet &set, Response &response, int fn_eval_id)
Called by map() and other functions to execute the simulation in synchronous mode. The portion of performing an
evaluation that is specific to a derived class.

e void derived_map_asynch (const ParamResponsePair &pair)
Called by map() and other functions to execute the simulation in asynchronous mode. The portion of performing
an asynchronous evaluation that is specific to a derived class.

e void derived_synch (PRPList &prp_list)

e void derived_synch_nowait (PRPList &prp_list)

e int derived_synchronous_local_analysis (const int &analysis_id)

e const StringArray & analysis_drivers () const

retrieve the analysis drivers specification for application interfaces

Private Member Functions

e void spawn_application (const bool block_flag)

Spawn the application by managing the input filter, analysis drivers, and output filter. Called from derived_map()
& derived_map_asynch().

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.102 SysCallAppliclnterface Class Reference 511

e void derived_synch_kernel (PRPList &prp_list)
Convenience function for common code between derived_synch() & derived_synch_nowait().

e Dbool system_call_file_test (const String &root_file)
detect completion of a function evaluation through existence of the necessary results file(s)

Private Attributes

e SysCallAnalysisCode sysCallSimulator

SysCallAnalysisCode provides convenience functions for passing the input filter, the analysis drivers, and the output
filter to a CommandShell in various combinations.

e IntSet sysCallSet
set of function evaluation id’s for active asynchronous system call evaluations

e IntShortMap failCountMap
map linking function evaluation id’s to number of response read failures

10.102.1 Detailed Description

Derived application interface class which spawns simulation codes using system calls.

SysCallApplicInterface uses a SysCallAnalysisCode object for performing simulation invocations.

10.102.2 Member Function Documentation

10.102.2.1 void derived_synch (PRPList & prp_list) [inline, virtual]

Check for completion of active asynch jobs (tracked with sysCallSet). Wait for at least one completion and
complete all jobs that have returned. This satisifies a "fairness" principle, in the sense that a completed job will
_always_ be processed (whereas accepting only a single completion could always accept the same completion -
the case of very inexpensive fn. evals. - and starve some servers).

Reimplemented from ApplicationInterface.

10.102.2.2 void derived_synch_nowait (PRPList & prp_list) [i nline, virtual]

Check for completion of active asynch jobs (tracked with sysCallSet). Make one pass through sysCallSet &
complete all jobs that have returned.

Reimplemented from ApplicationInterface.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



512 DAKOTA Class Documentation

10.102.2.3 int derived_synchronous_local_analysis (const int & analysis_id) [i nline, virtual]

This code provides the derived function used by ApplicationInterface::serve_analyses_synch().
Reimplemented from ApplicationInterface.

The documentation for this class was generated from the following files:

e SysCallApplicInterface.H
e SysCallAppliclnterface.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.103 TANA3Approximation Class Reference 513

10.103 TANA3Approximation Class Reference

Derived approximation class for TANA-3 two-point exponential approximation (a multipoint approximation).

Inheritance diagram for TANA3Approximation::

| Approximation |

T

| TANAS3Approximation |

Public Member Functions

o TANA3Approximation ()
default constructor

o TANA3Approximation (ProblemDescDB &problem_db, const size_t &num_acv)
standard constructor

o ~TANA3Approximation ()
destructor

Protected Member Functions

e int num_coefficients () const

return the minimum number of samples required to build the derived class approximation type in numVars dimen-
sions

e int num_constraints () const

return the number of constraints to be enforced via anchorPoint

e void find_coefficients ()

calculate the data fit coefficients using currentPoints and anchorPoint

e const Real & get_value (const Real Vector &x)
retrieve the approximate function value for a given parameter vector

e const RealBaseVector & get_gradient (const Real Vector &x)
retrieve the approximate function gradient for a given parameter vector

void clear_current ()

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



514 DAKOTA Class Documentation

Private Member Functions

e void find_scaled_coefficients ()

compute TANA coefficients based on scaled inputs

e void offset (const RealVector &x, RealVector &s)
based on minX, apply offset scaling to x to define s

Private Attributes

e RealVector pExp

the vector of exponent values

Real Vector minX

the vector of minimum parameter values used in scaling

RealVector scX1

the vector of scaled x1 values

RealVector scX2
the vector of scaled x2 values

e Real H
the scalar Hessian value in the TANA-3 approximation

10.103.1 Detailed Description

Derived approximation class for TANA-3 two-point exponential approximation (a multipoint approximation).

The TANA3Approximation class provides a multipoint approximation based on matching value and gradient
data from two points (typically the current and previous iterates) in parameter space. It forms an exponential
approximation in terms of intervening variables.

10.103.2 Member Function Documentation

10.103.2.1 void clear_current() [protected, virtual]

Redefine default implementation to support history mechanism.
Reimplemented from Approximation.

The documentation for this class was generated from the following files:

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.103 TANA3Approximation Class Reference 515

o TANA3Approximation.H
o TANA3Approximation.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



516 DAKOTA Class Documentation

10.104 Taylor Approximation Class Reference

Derived approximation class for first- or second-order Taylor series (a local approximation).

Inheritance diagram for TaylorApproximation::

| Approximation |

T

| TaylorApproximation |

Public Member Functions

e TaylorApproximation ()
default constructor

e TaylorApproximation (ProblemDescDB &problem_db, const size_t &num_acv)

standard constructor

o ~TaylorApproximation ()

destructor

Protected Member Functions

e int num_coefficients () const

return the minimum number of samples required to build the derived class approximation type in numVars dimen-
sions

e void find_coefficients ()

calculate the data fit coefficients using currentPoints and anchorPoint

e const Real & get_value (const Real Vector &x)

retrieve the approximate function value for a given parameter vector

e const RealBaseVector & get_gradient (const Real Vector &x)

retrieve the approximate function gradient for a given parameter vector

e const RealMatrix & get_hessian (const RealVector &x)

retrieve the approximate function Hessian for a given parameter vector

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.104 TaylorApproximation Class Reference 517

e void second_order_flag (bool flag)
set the Approximation’s secondOrderFlag, if present

Private Attributes

e bool secondOrderFlag
flag to indicate a 2nd-order Taylor series with a Hessian term

10.104.1 Detailed Description

Derived approximation class for first- or second-order Taylor series (a local approximation).

The TaylorApproximation class provides a local approximation based on data from a single point in parameter
space. It uses a first- or second-order Taylor series expansion: f(x) = f(x_c) + grad(x_c)’ (x - x_c) + (X - X_¢)’
Hess(x_c) (x-x_c)/2.

10.104.2 Member Function Documentation

10.104.2.1 void second_order_flag (bool flag) [i nline, protected, virtual]

set the Approximation’s secondOrderFlag, if present
Redefined by TaylorApproximation to set secondOrderFlag.
Reimplemented from Approximation.

The documentation for this class was generated from the following files:

e TaylorApproximation.H
e TaylorApproximation.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



518 DAKOTA Class Documentation

10.105 Variables Class Reference

Base class for the variables class hierarchy.

Inheritance diagram for Variables::

| Variables |
i

[ 1 1
AllVariables | |Di$1inctVariabIes| |MergedVariabIes

Public Member Functions

e Variables ()
default constructor

Variables (const ProblemDescDB &problem_db)
standard constructor

e Variables (const pair< short, short > &view)

alternate constructor

Variables (const Variables &vars)
copy constructor

e virtual ~Variables ()
destructor

Variables operator= (const Variables &vars)

assignment operator

e virtual size_t tv () const

Returns total number of vars.

e virtual const RealVector & continuous_variables () const

return the active continuous variables

e virtual void continuous_variables (const RealVector &c_vars)
set the active continuous variables

e virtual const IntVector & discrete_variables () const

return the active discrete variables

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.105 Variables Class Reference 519

e virtual void discrete_variables (const IntVector &d_vars)

set the active discrete variables

e virtual const StringArray & continuous_variable_labels () const

return the active continuous variable labels

e virtual void continuous_variable_labels (const StringArray &cv_labels)
set the active continuous variable labels

e virtual const StringArray & discrete_variable_labels () const

return the active discrete variable labels

e virtual void discrete_variable_labels (const StringArray &dv_labels)
set the active discrete variable labels

e virtual const RealVector & inactive_continuous_variables () const
return the inactive continuous variables

e virtual void inactive_continuous_variables (const RealVector &i_c_vars)

set the inactive continuous variables

e virtual const IntVector & inactive_discrete_variables () const

return the inactive discrete variables

e virtual void inactive_discrete_variables (const IntVector &i_d_vars)
set the inactive discrete variables

e virtual const StringArray & inactive_continuous_variable_labels () const

return the inactive continuous variable labels

e virtual void inactive_continuous_variable_labels (const StringArray &i_c_vars)
set the inactive continuous variable labels

e virtual const StringArray & inactive_discrete_variable_labels () const
return the inactive discrete variable labels

e virtual void inactive_discrete_variable_labels (const StringArray &i_d_vars)

set the inactive discrete variable labels

e virtual size_t acv () const

returns total number of continuous vars

e virtual size_t adv () const

returns total number of discrete vars

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



520 DAKOTA Class Documentation

e virtual RealVector all_continuous_variables () const

returns a single array with all continuous variables

e virtual void all_continuous_variables (const Real Vector &a_c_vars)

sets all continuous variables using a single array

e virtual IntVector all_discrete_variables () const
returns a single array with all discrete variables

e virtual void all_discrete_variables (const IntVector &a_d_vars)

sets all discrete variables using a single array

e virtual StringArray all_continuous_variable_labels () const
returns a single array with all continuous variable labels

e virtual StringArray all_discrete_variable_labels () const

returns a single array with all discrete variable labels

e virtual StringArray all_variable_labels () const

returns a single array with all variable labels

e virtual void read (istream &s)

read a variables object from an istream

e virtual void write (ostream &s) const

write a variables object to an ostream

e virtual void write_aprepro (ostream &s) const

write a variables object to an ostream in aprepro format

e virtual void read_annotated (istream &s)

read a variables object in annotated format from an istream

e virtual void write_annotated (ostream &s) const

write a variables object in annotated format to an ostream

e virtual void write_tabular (ostream &s) const

write a variables object in tabular format to an ostream

e virtual void read (BiStream &s)

read a variables object from the binary restart stream

e virtual void write (BoStream &s) const

write a variables object to the binary restart stream

e virtual void read (MPIUnpackBuffer &s)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.105 Variables Class Reference 521

read a variables object from a packed MPI buffer

e virtual void write (MPIPackBuffer &s) const
write a variables object to a packed MPI buffer

e size_t cv () const
Returns number of active continuous vars.

e size_t dv () const

Returns number of active discrete vars.

e size_ticv () const

returns number of inactive continuous vars

e size_tidv () const
returns number of inactive discrete vars

Variables copy () const
for use when a true copy is needed (the representation is _not_ shared).

e const IntList & merged_integer_list () const
returns the list of discrete variables merged into a continuous array

e const pair< short, short > & view () const

returns variablesView

e pair< short, short > get_view (const ProblemDescDB &problem_db) const
defines variablesView from problem_db attributes

e const String & variables_id () const
returns the variables identifier string

e const StringArray & continuous_variable_types () const

return the active continuous variable types

e const StringArray & discrete_variable_types () const

return the active discrete variable types

e const IntArray & continuous_variable_ids () const
return the active continuous variable position identifiers

e const IntArray & inactive_continuous_variable_ids () const
return the inactive continuous variable position identifiers

e const IntArray & all_continuous_variable_ids () const
return the all continuous variable position identifiers

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



522 DAKOTA Class Documentation

Protected Member Functions

e Variables (BaseConstructor, const ProblemDescDB &problem_db, const pair< short, short > &view)

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

Protected Attributes

o IntList mergedIntegerList
the list of discrete variables for which integrality is relaxed by merging them into a continuous array

e pair< short, short > variablesView

the variables view pair containing active (first) and inactive (second) view enumerations

StringArray continuousVarTypes
array of variable types for the active continuous variables

StringArray discreteVarTypes
array of variable types for the active discrete variables

e IntArray continuousVarlds

array of position identifiers for the active continuous variables

o IntArray inactiveContinuousVarlds

array of position identifiers for the inactive continuous variables

IntArray allContinuousVarlds
array of position identifiers for the all continuous variables array

RealVector emptyReal Vector
an empty real vector returned in get functions when there are no variables corresponding to the request

IntVector emptyIntVector
an empty int vector returned in get functions when there are no variables corresponding to the request

StringArray emptyStringArray
an empty label array returned in get functions when there are no variables corresponding to the request

Private Member Functions

e virtual void copy_rep (const Variables *vars_rep)
Used by copy() to copy the contents of a letter class.

e Variables * get_variables (const ProblemDescDB &problem_db)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.105 Variables Class Reference 523

Used by the standard envelope constructor to instantiate the correct letter class.

e Variables * get_variables (const pair< short, short > &view) const

Used by the alternate envelope constructor, by read functions, and by copy() to instantiate a new letter class.

Private Attributes

e String idVariables

variables identifier string from the input file

e Variables x variablesRep

pointer to the letter (initialized only for the envelope)

e int referenceCount

number of objects sharing variablesRep

Friends

e Dbool operator== (const Variables &varsl, const Variables &vars2)

equality operator

e Dbool operator!= (const Variables &vars1, const Variables &vars2)

inequality operator

10.105.1 Detailed Description

Base class for the variables class hierarchy.

The Variables class is the base class for the class hierarchy providing design, uncertain, and state variables for
continuous and discrete domains within a Model. Using the fundamental arrays from the input specification,
different derived classes define different views of the data. For memory efficiency and enhanced polymorphism,
the variables hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the
base class (Variables) serves as the envelope and one of the derived classes (selected in Variables::get_variables())
serves as the letter.

10.105.2 Constructor & Destructor Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



524 DAKOTA Class Documentation

10.105.2.1 Variables ()

default constructor

The default constructor: variablesRep is NULL in this case (a populated problem_db is needed to build a mean-
ingful Variables object). This makes it necessary to check for NULL in the copy constructor, assignment operator,
and destructor.

10.105.2.2 Variables (const ProblemDescDB & problem_db)

standard constructor

This is the primary envelope constructor which uses problem_db to build a fully populated variables object. It
only needs to extract enough data to properly execute get_variables(problem_db), since the constructor overloaded
with BaseConstructor builds the actual base class data inherited by the derived classes.

10.105.2.3 \Variables (const pair< short, short > & view)

alternate constructor

This is the alternate envelope constructor for instantiations on the fly. Since it does not have access to problem_db,
the letter class is not fully populated. This constructor executes get_variables(view), which invokes the default
constructor of the derived letter class, which in turn invokes the default constructor of the base class.

10.105.2.4 Variables (const Variables & vars)

copy constructor

Copy constructor manages sharing of variablesRep and incrementing of referenceCount.

10.105.2.5 ~Variables() [virtual]

destructor

Destructor decrements referenceCount and only deletes variablesRep when referenceCount reaches zero.

10.105.2.6 Variables (BaseConstructor, const ProblemDescDB & problem_db, const pair< short, short >
& view) [ protected]

constructor initializes the base class part of letter classes (BaseConstructor overloading avoids infinite recursion
in the derived class constructors - Coplien, p. 139)

This constructor is the one which must build the base class data for all derived classes. get_variables() instantiates
a derived class letter and the derived constructor selects this base class constructor in its initialization list (to avoid
the recursion of the base class constructor calling get_variables() again). Since the letter IS the representation, its
representation pointer is set to NULL (an uninitialized pointer causes problems in ~Variables).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.105 Variables Class Reference 525

10.105.3 Member Function Documentation

10.105.3.1 \Variables operator= (const Variables & vars)

assignment operator

Assignment operator decrements referenceCount for old variablesRep, assigns new variablesRep, and increments
referenceCount for new variablesRep.

10.105.3.2 \Variables copy () const

for use when a true copy is needed (the representation is _not_ shared).

Deep copies are used for history mechanisms such as bestVariables and data_pairs since these must catalogue
copies (and should not change as the representation within currentVariables changes).

10.105.3.3 \Variables x get_variables (const ProblemDescDB & problem_db) [ pri vat e]

Used by the standard envelope constructor to instantiate the correct letter class.

Initializes variablesRep to the appropriate derived type, as given by problem_db attributes. The standard derived
class constructors are invoked.

10.105.3.4 \Variables x get_variables (const pair< short, short > & view) const [ pri vat €]

Used by the alternate envelope constructor, by read functions, and by copy() to instantiate a new letter class.

Initializes variablesRep to the appropriate derived type, as given by view. The default derived class constructors
are invoked.

10.105.4 Member Data Documentation

10.105.4.1 IntArray continuousVarlds [ prot ect ed]

array of position identifiers for the active continuous variables

These identifiers define positions of the active continuous variables within the total variable sequence.
10.105.4.2 IntArray inactiveContinuousVarlds [ prot ect ed]

array of position identifiers for the inactive continuous variables

These identifiers define positions of the inactive continuous variables within the total variable sequence.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



526 DAKOTA Class Documentation

10.105.4.3 IntArray allContinuousVarlds [ pr ot ect ed]

array of position identifiers for the all continuous variables array
These identifiers define positions of the all continuous variables array within the total variable sequence.

The documentation for this class was generated from the following files:

e DakotaVariables.H
e DakotaVariables.C

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.106 VariablesUtil Class Reference 527

10.106 VariablesUtil Class Reference

Utility class for the Variables and Constraints hierarchies which provides convenience functions for variable vec-
tors and label arrays for combining design, uncertain, and state variable types and merging continuous and discrete
variable domains.

Inheritance diagram for VariablesUtil::

VariablesUtil

I I I I I ]
AllConstraints | | AllVariables | |DistinctConstraints| | DistinctVariables | |MergedConstraints| | MergedVariables

Public Member Functions

e VariablesUtil ()

constructor

e ~VariablesUtil ()
destructor

Protected Member Functions

e void update_merged (const RealVector &c_array, const IntVector &d_array, Real Vector &m_array) const

combine a continuous array and a discrete array into a single continuous array through promotion of integers to
reals (merged view)

void update_all_continuous (const RealVector &c1_array, const RealVector &c2_array, const Real Vector
&c3_array, RealVector &all_array) const

combine 3 continuous arrays (design, uncertain, state) into a single continuous array (all view)

void update_all_discrete (const IntVector &d1_array, const IntVector &d2_array, IntVector &all_array)
const

combine 2 discrete arrays (design, state) into a single discrete array (all view)

void update_from_merged (const Real Vector &m_array, RealVector &c_array, IntVector &d_array) const

extract a continuous array and a discrete array from a single continuous array through truncation of reals to
integers (merged view)

void update_from_all_continuous (const Real Vector &all_array, RealVector &c1_array, RealVector &c2_-
array, RealVector &c3_array) const

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



528 DAKOTA Class Documentation

extract 3 continuous arrays (design, uncertain, state) from a single continuous array (all view)

void update_from_all_discrete (const IntVector &all_array, IntVector &d1_array, IntVector &d2_array)
const

extract 2 discrete arrays (design, state) from a single discrete array (all view)

void update_labels (const StringArray &l11_array, const StringArray &I12_array, StringArray &all_array)
const

combine 2 label arrays into a single label array (merged or all views)

void update_labels (const StringArray &11_array, const StringArray &I2_array, const StringArray &13_-
array, StringArray &all_array) const

combine 3 label arrays (design, uncertain, state) into a single label array (all view)

void update_labels_partial (size_t num_items, const StringArray &src_array, size_t src_start_index,
StringArray &tgt_array, size_t tgt_start_index) const

update a portion of one label array from a portion of another label array (all view)

10.106.1 Detailed Description

Utility class for the Variables and Constraints hierarchies which provides convenience functions for variable vec-
tors and label arrays for combining design, uncertain, and state variable types and merging continuous and discrete
variable domains.

Derived classes within the Variables and Constraints hierarchies use multiple inheritance to inherit these utilities.

The documentation for this class was generated from the following file:

e VariablesUtil.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.107 Vector Class Template Reference 529

10.107 Vector Class Template Reference

Template class for the Dakota numerical vector.

Inheritance diagram for Vector::

BaseVector< T >

Vector

Public Member Functions

e Vector ()
Default constructor.

Vector (size_t len)
Constructor which takes an initial length.

Vector (size_t len, const T &initial_val)

Constructor which takes an initial length and an initial value.

Vector (const Vector< T > &a)
Copy constructor.

Vector (const T xp, size_t len)
Constructor which copies len entries from Tx.

~Vector ()
Destructor.

Vector< T > & operator= (const Vector< T > &a)
Normal const assignment operator.

Vector< T > & operator= (const T &ival)
Sets all elements in self to the value ival.

operator T * () const
Converts the Vector to a standard C-style array. Use with care!

void read (istream &s)

Reads a Vector from an input stream.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



530 DAKOTA Class Documentation

e void read (istream &s, Array< String > &label_array)
Reads a Vector and associated label array from an input stream.

e void read_partial (istream &s, size_t start_index, size_t num_items)

Reads part of a Veector from an input stream.

e void read_partial (istream &s, size_t start_index, size_t num_items, Array< String > &label_array)
Reads part of a Vector and the corresponding labels from an input stream.

e void read_tabular (istream &s)

Reads a Vector from a tabular text input file.

e void read_annotated (istream &s, Array< String > &label_array)
Reads a Vector and associated label array in annotated from an input stream.

e void write (ostream &s) const

Writes a Vector to an output stream.

e void write (ostream &s, const Array< String > &label_array) const
Writes a Vector and associated label array to an output stream.

e void write_partial (ostream &s, size_t start_index, size_t num_items) const
Writes part of a Vector to an output stream.

e void write_partial (ostream &s, size_t start_index, size_t num_items, const Array< String > &label_array)
const

Writes part of a Vector and the corresponding labels to an output stream.

e void write_aprepro (ostream &s, const Array< String > &label_array) const

Writes a Vector and associated label array to an output stream in aprepro format.

e void write_partial_aprepro (ostream &s, size_t start_index, size_t num_items, const Array< String >
&label_array) const

Writes part of a Vector and the corresponding labels to an output stream in aprepro format.

e void write_annotated (ostream &s, const Array< String > &label_array) const

Writes a Vector and associated label array in annotated form to an output stream.

e void write_tabular (ostream &s) const
Writes a Vector in tabular form to an output stream.

e void write_partial_tabular (ostream &s, size_t start_index, size_t num_items) const
Writes part of a Vector in tabular form to an output stream.

e void read (BiStream &s, Array< String > &label_array)

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



10.107 Vector Class Template Reference 531

Reads a Vector and associated label array from a binary input stream.

e void write (BoStream &s, const Array< String > &label_array) const

Writes a Vector and associated label array to a binary output stream.

e void read (MPIUnpackBuffer &s)

Reads a Vector from a buffer after an MPI receive.

e void read (MPIUnpackBuffer &s, Array< String > &label_array)

Reads a Vector and associated label array from a buffer after an MPI receive.

e void write (MPIPackBuffer &s) const

Writes a Vector to a buffer prior to an MPI send.

o void write (MPIPackBuffer &s, const Array< String > &label_array) const

Writes a Vector and associated label array to a buffer prior to an MPI send.

10.107.1 Detailed Description
template<class T> class Dakota::Vector< T >

Template class for the Dakota numerical vector.

The Dakota:: Vector class is the numeric vector class. It inherits from the common vector class Dakota::Base Vector
which provides the same interface for both the STL and RW vector classes. If the STL version of BaseVector
is based on the valarray class then some basic vector operations such as + , % are available. This class adds
functionality to read/write vectors in a variety of ways

10.107.2 Constructor & Destructor Documentation

10.107.2.1 Vector (const T « p, size_tlen) [inline]

Constructor which copies len entries from Tx.

Assigns size values from p into array.

10.107.3 Member Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



532 DAKOTA Class Documentation

10.107.3.1 Vector< T > & operator=(const T &ival) [i nline]

Sets all elements in self to the value ival.
Assigns all values of array to ival. If STL, uses the vector assign method because there is no operator=(ival).
Reimplemented from BaseVector.

The documentation for this class was generated from the following file:

e DakotaVector.H

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 11

DAKOTA File Documentation

11.1 JEGAEvaluator.C File Reference

Contains the implementation of the JEGAEvaluator class.

Namespaces

e namespace Dakota
e namespace JEGA::Logging
e namespace JEGA::Algorithms

11.1.1 Detailed Description

Contains the implementation of the JEGAEvaluator class.



534

DAKOTA File Documentation

11.2 JEGAEvaluator.H File Reference

Contains the definition of the JEGAEvaluator class.

Namespaces

e namespace Dakota

11.2.1 Detailed Description

Contains the definition of the JEGAEvaluator class.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



11.3 JEGAOptimizer.C File Reference 535

11.3 JEGAOptimizer.C File Reference

Contains the implementation of the JEGAOptimizer class.

Namespaces

e namespace Dakota
e namespace eddy::utilities

Functions

e template<typename T> string asstring (const T &val)
Creates a string from the argument "val" using an ostringstream.

11.3.1 Detailed Description

Contains the implementation of the JEGAOptimizer class.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



536

DAKOTA File Documentation

11.4 JEGAOptimizer.H File Reference

Contains the definition of the JEGAOptimizer class.

Namespaces

namespace JEGA

namespace JEGA::Utilities
namespace JEGA::FrontEnd
namespace Dakota

11.4.1 Detailed Description

Contains the definition of the JEGAOptimizer class.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



11.5 keywordtable.C File Reference 537

11.5 keywordtable.C File Reference

file containing keywords for the strategy, method, model, variables, interface, and responses input specifications
from dakota.input.spec
Variables

e const struct KeywordHandler idrKeywordTable [ ]

Initialize the keyword table as a vector of KeywordHandler structures (KeywordHandler declared in idr-keyword.h).
A null KeywordHandler structure signifies the end of the keyword table.

11.5.1 Detailed Description

file containing keywords for the strategy, method, model, variables, interface, and responses input specifications
from dakota.input.spec

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



538

DAKOTA File Documentation

11.6 main.C File Reference

file containing the main program for DAKOTA

Functions

e int main (int argc, char xargv[ ])
The main DAKOTA program.

11.6.1 Detailed Description

file containing the main program for DAKOTA

11.6.2 Function Documentation

11.6.2.1 intmain (int argc, char = argv[])

The main DAKOTA program.

Manage command line inputs, input files, restart file(s), output streams, and top level parallel iterator communi-
cators. Instantiate the Strategy and invoke its run_strategy() virtual function.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



11.7 restart_util.C File Reference

539

11.7 restart_util.C File Reference

file containing the DAKOTA restart utility main program

Namespaces

e namespace Dakota

Functions

e void print_restart (int argc, char **argv, String print_dest)

print a restart file

e void print_restart_tabular (int argc, char *xargv, String print_dest)

print a restart file (tabular format)

e void read_neutral (int argc, char xxargv)

read a restart file (neutral file format)

e void repair_restart (int argc, char x*argv, String identifier_type)

repair a restart file by removing corrupted evaluations

e void concatenate_restart (int argc, char **argv)

concatenate multiple restart files

e int main (int argc, char xargv[ ])

The main program for the DAKOTA restart utility.

11.7.1 Detailed Description

file containing the DAKOTA restart utility main program

11.7.2 Function Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



540 DAKOTA File Documentation

11.7.2.1 void print_restart (int argc, char *x argv, String print_dest)

print a restart file
Usage: "dakota_restart_util print dakota.rst"
"dakota_restart_util to_neutral dakota.rst dakota.neu"

Prints all evals. in full precision to either stdout or a neutral file. The former is useful for ensuring that duplicate
detection is successful in a restarted run (e.g., starting a new method from the previous best), and the latter is used
for translating binary files between platforms.

11.7.2.2 void print_restart_tabular (int argc, char =x argv, String print_dest)

print a restart file (tabular format)
Usage: "dakota_restart_util to_pdb dakota.rst dakota.pdb"”
"dakota_restart_util to_tabular dakota.rst dakota.txt"

Unrolls all data associated with a particular tag for all evaluations and then writes this data in a tabular format
(e.g., to a PDB database or MATLAB/TECPLOT data file).

11.7.2.3 void read_neutral (int argc, char *x argv)

read a restart file (neutral file format)
Usage: "dakota_restart_util from_neutral dakota.neu dakota.rst"

Reads evaluations from a neutral file. This is used for translating binary files between platforms.

11.7.2.4 void repair_restart (int argc, char x argv, String identifier_type)

repair a restart file by removing corrupted evaluations
Usage: "dakota_restart_util remove 0.0 dakota_old.rst dakota_new.rst"
"dakota_restart_util remove_ids 2 7 13 dakota_old.rst dakota_new.rst"

Repairs a restart file by removing corrupted evaluations. The identifier for evaluation removal can be either a
double precision number (all evaluations having a matching response function value are removed) or a list of
integers (all evaluations with matching evaluation ids are removed).

11.7.2.5 void concatenate_restart (int argc, char xx argv)

concatenate multiple restart files
Usage: "dakota_restart_util cat dakota_1.rst ... dakota_n.rst dakota_new.rst"

Combines multiple restart files into a single restart database.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



11.7 restart_util.C File Reference 541

11.7.2.6 int main (int argc, char x argv[])

The main program for the DAKOTA restart utility.

Parse command line inputs and invoke the appropriate utility function (print_restart(), print_restart_tabular(),
read_neutral(), repair_restart(), or concatenate_restart()).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



542 DAKOTA File Documentation

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 12

Recommended Practicesfor DAKOTA
Development

12.1 Introduction

Common code development practices can be extremely useful in multiple developer environments. Particular
styles for code components lead to improved readability of the code and can provide important visual cues to
other developers.

Much of this recommended practices document is borrowed from the CUBIT mesh generation project, which in
turn borrows its recommended practices from other projects. As a result, C++ coding styles are fairly standard
across a variety of Sandia software projects in the engineering and computational sciences.

12.2 Style Guidelines

Style guidelines involve the ability to discern at a glance the type and scope of a variable or function.

12.2.1 Class and variable styles

Class names should be composed of two or more descriptive words, with the first character of each word capital-
ized, e.g.:

cl ass Cl assNane;

Class member variables should be composed of two or more descriptive words, with the first character of the
second and succeeding words capitalized, e.g.:

doubl e cl assMenber Vari abl e;



544 Recommended Practices for DAKOTA Development

Temporary (i.e. local) variables are lower case, with underscores separating words in a multiple word temporary
variable, e.g.:

int tenporary_vari abl e;

Constants (i.e. parameters) are upper case, with underscores separating words, e.g.:

const doubl e CONSTANT_VALUE;

12.2.2  Function styles

Function names are lower case, with underscores separating words, e.g.:

int function_nanme();

There is no need to distinguish between member and non-member functions by style, as this distinction is usu-
ally clear by context. This style convention allows member function names which set and return the value of a
similarly-named private member variable, e.g.:

i nt menber Vari abl e;
voi d nmenber _variable(int a) { // set
nmenber Vari abl e = a;

}
int nenber_variable() const { // get
return nenber Vari abl e;

}

In cases where the data to be set or returned is more than a few bytes, it is highly desirable to employ const
references to avoid unnecessary copying, e.g.:

voi d continuous_vari abl es(const Real Vector& c_vars) { // set
conti nuousVari ables = c_vars;

}

const Real Vector & continuous_vari abl es() const { /'l get
return continuousVari abl es;

}

Note that it is not necessary to always accept the returned data as a const reference. If it is desired to be able
change this data, then accepting the result as a new variable will generate a copy, e.g.:

const Real Vector& c_vars = nodel . continuous_variables(); // reference to continuousVariabl es cannot be changed
Real Vector c_vars = nodel.continuous_vari abl es(); /'l local copy of continuousVariables can be changed

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



12.2 Style Guidelines 545

12.2.3 Miscellaneous

Appearance of typedefs to redefine or alias basic types is isolated to a few header files (dat a_t ypes. h,
t enpl at e_def s. h), so that issues like program precision can be changed by changing a few lines of type-
defs rather than many lines of code, e.g.:

typedef doubl e Real;

xemacs is the preferred source code editor, as it has C++ modes for enhancing readability through color (turn
on "Syntax highlighting"). Other helpful features include "Paren highlighting" for matching parentheses and the
"New Frame" utility to have more than one window operating on the same set of files (note that this is still the
same edit session, so all windows are synchronized with each other). Window width should be set to 80 internal
columns, which can be accomplished by manual resizing, or preferably, using the following alias in your shell
resource file (e.g., .cshrc):

al i as xemacs "xemacs -g 81x63"

where an external width of 81 gives 80 columns internal to the window and the desired height of the window
will vary depending on monitor size. This window width imposes a coding standard since you should avoid line
wrapping by continuing anything over 80 columns onto the next line.

Indenting increments are 2 spaces per indent and comments are aligned with the code they describe, e.g.:

voi d abort_handl er (i nt code)
{
int initialized = 0;
MPl _Initialized(& nitialized);
if (initialized) {
/1 coment aligned to block it describes
int size;
MPI _Conm si ze( MPI _COVM WORLD, &si ze);
if (size>1)
MPI _Abort (MPI _COW WORLD, code);
el se
exi t(code);
}

el se
exit(code);

Also, the continuation of a long command is indented 2 spaces, e.g.:

const String& iterator_scheduling
= probl em db. get _string("strategy.iterator_scheduling");

and similar lines are aligned for readability, e.g.:

cout << "Nunerical gradients using " << finiteDiffStepSize*100. << "%
<< finiteDi ffType << " differences\nto be cal culated by the "
<< nethodSource << " finite difference routine." << endl;

Lastly, #ifdef’s are not indented (to make use of syntax highlighting in xemacs).

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



546 Recommended Practices for DAKOTA Development

12.3 File Naming Conventions

In addition to the style outlined above, the following file naming conventions have been established for the
DAKOTA project.

File names for C++ classes should, in general, use the same name as the class defined by the file. Exceptions
include:

e with the introduction of the Dakota namespace, base classes which previously utilized prepended Dakota
identifiers can now safely omit the identifiers. However, since file names do not have namespace protec-
tion from name collisions, they retain the prepended Dakota identifier. For example, a class previously
named DakotaModel which resided in DakotaModel.[CH], is now Dakota::Model (class Model in names-
pace Dakota) residing in the same filenames. The retention of the previous filenames reduces the possibility
of multiple instances of a Model.H causing problems. Derived classes (e.g., NestedModel) do not require a
prepended Dakota identifier for either the class or file names.

e inafew cases, it is convenient to maintain several closely related classes in a single file, in which case the file
name may reflect the top level class or some generalization of the set of classes (e.g., DakotaResponse.[CH]
files contain Dakota::Response and Dakota::ResponseRep classes, and DakotaBinStream.[CH] files contain
the Dakota::BiStream and Dakota::BoStream classes).

The type of file is determined by one of the four file name extensions listed below:

e .H A class header file ends in the suffix .H. The header file provides the class declaration. This file does not
contain code for implementing the methods, except for the case of inline functions. Inline functions are to
be placed at the bottom of the file with the keyword inline preceding the function name.

e .C A class implementation file ends in the suffix .C. An implementation file contains the definitions of the
members of the class.

e .h A header file ends in the suffix .h. The header file contains information usually associated with proce-
dures. Defined constants, data structures and function prototypes are typical elements of this file.

e .C A procedure file ends in the suffix .c. The procedure file contains the actual procedures.

12.4 Class Documentation Conventions

Class documentation uses the doxygen tool available from htt p://wwv. doxygen. or g and employs the
JAVA-doc comment style. Brief comments appear in header files next to the attribute or function declaration.
Detailed descriptions for functions should appear alongside their implementations (i.e., in the .C files for non-
inlined, or in the headers next to the function definition for inlined). Detailed comments for a class or a class
attribute must go in the header file as this is the only option.

NOTE: Previous class documentation utilities (class2frame and class2html) used the "//-" comment style and
comment blocks such as this:

/- Cass: Model

//- Description: The nodel to be iterated by the Iterator. Contains Variables, Interface, and
/- Omner: M ke El dred

//- Version: $ld: Dev_Recomm Pract.dox 3615 2006- 05-10 17: 39: 26Z nsel dre $

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006

Response obj ects.



12.4 Class Documentation Conventions 547

These tools are no longer used, so remaining comment blocks of this type are informational only and will not
appear in the documentation generated by doxygen.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



548 Recommended Practices for DAKOTA Development

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 13

|nstructions for Modifying DAKOTA's
| nput Specifi cation

13.1 Modify dakota.input.spec

The master input specification resides in dakota.input.spec in SDAKOTA/src. As part of the Input Deck Reader
(IDR) build process, a soft link to this file is created in $DAKOTA/VendorPackages/idr. The master input specifi-
cation can be modified with the addition of new constructs using the following logical relationships:

{} for required individual specifications

() for required group specifications

[]1 for optional individual specifications

[]1 for optional group specifications

| for "or" conditionals

These constructs can be used to define a variety of dependency relationships in the input specification. It is
recommended that you review the existing specification and have an understanding of the constructs in use before
attempting to add new constructs.

Warning:

e Do not skip this step. Attempts to modify the keywordtable.C and ProblemDescDB.C files in
$DAKOTA/src without reference to the results of the code generator are very error-prone. Moreover,
the input specification provides a reference to the allowable inputs of a particular executable and should
be kept in synch with the parser files (modifying the parser files independent of the input specification
creates, at a minimum, undocumented features).

e All keywords in dakota.input.spec are currently lower case by convention. All user inputs are converted
to lower case by the parser prior to keyword match testing, resulting in case insensitive parsing. [To



550 Instructions for Modifying DAKOTA’s Input Specification

allow keywords with capitalization and case sensitive parsing, IDR_NO_CONVRSN should be passed
in idr_init() and uses of idr_case_convert() within idr.c should be reviewed.]

o Since the Input Deck Reader (IDR) parser allows abbreviation of keywords, you must avoid adding a
keyword that could be misinterpreted as an abbreviation for a different keyword within the same key-
word handler (the term "keyword handler" refers to the strategy_kwhandler(), method_kwhandler(),
variables_kwhandler(), interface_kwhandler(), and responses_kwhandler() member functions in the
IDRProblemDescDB class). For example, adding the keyword "expansion" within the method spec-
ification would be a mistake if the keyword "expansion_factor" already was being used in this specifi-
cation.

e Since IDR input is order-independent, the same keyword may be reused multiple times in the specifica-
tion if and only if the specification blocks are mutually exclusive. For example, method selections (e.g.,
dot _frcg,dot _bf gs) can reuse the same method setting keywords (e.g., opt i m zati on_t ype)
since the method selection blocks are all separated by logical "or"’s. If dot _f r cg and dot _bf gs
were not exclusive and could be specified at the same time, then association of the opt i mi zati on_-
t ype setting with a particular method would be ambiguous. This is the reason why repeated spec-
ifications which are non-exclusive must be made unique, typically with a prepended identifier (e.g.,
cdv_initial_point,ddv_initial _point).

13.2 Rebuild IDR

cd $DAKOTA/ Vendor Packages/ i dr
nake cl ean
make

These steps regenerate keywordtable.C and idr-gen-code.C in the SDAKOTA/VendorPackages/idr/<canonical_-
build_directory> directory for use in updating keywordtable.C and IDRProblemDescDB.C in $DAKOTA/src.

13.3 Update keywordtable.C in $DAKOTA/src

Do not directly replace the keywordtable.C in $DAKOTA/src using the one from idr, as there are important
differences in the kwhandler bindings. Rather, update the keywordtable.C in $DAKOTA/src using the one from
idr as a reference. Once this step is completed, it is a good idea to verify the match by diff’ing the 2 files. The
only differences should be in comments, includes, and kwhandler declarations.

13.4 Update IDRProblemDescDB.C in $DAKOTA/src

Find the keyword handler functions (e.g., variables_kwhandler()) in $DAKOTA/Vendor-
Packages/idr/< canonical_build_directory>/idr-gen-code.C and $DAKOTA/src/IDRProblemDescDB.C which
correspond to your modifications to the input specification. The idr-gen-code.C file is the result of a code
generator and contains skeleton constructs for extracting data from IDR. You will be copying over parts of
this skeleton to IDRProblemDescDB.C and then adding code to populate attributes within Data class container
objects.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



13.4 Update IDRProblemDescDB.C in $DAKOTA/src 551

13.4.1 Replace keyword handler declarations and counter loop
Rather than trying to update these line by line, it is recommended to delete the entire block starting with the key-
word declarations and ending at the bottom of the keyword counter loop. The declarations assign -1 to keywords

and look like this:

Int cdv_descriptor = -1;
Int cdv_initial_point = -1;

They start after the line "Int cntr;". The keyword counter loop looks like this:

for ( cntr=data_len; cntr--; ) {
if (idr_find_id( &dv_descriptor, cntr,
"cdv_descriptor”, id_str, kw.str ) ) continue;

if (idr_find_id( &wv_dist_upper_bounds, cntr,
"wuv_di st _upper_bounds", id_str, kw._str ) ) continue;

Once the old keyword declarations and keyword counter loop have been deleted, replace them with the corre-
sponding blocks from idr-gen-code.C containing the updated keyword declarations and counter loop.

13.4.2 Update keyword handler logic blocks

For the newly added or modified input specifications, copy the appropriate skeleton constructs from idr-gen-
code.C and paste them into the corresponding location in IDRProblemDescDB.C.

The next step is to add code to these skeletons to set data attributes within the Data class object used by the
keyword handler. At the top of the method, variables, interface, and responses keyword handlers, a Data class
object is instantiated in order to store attributes, e.g.:

Dat aMet hod dat a_net hod;

and within the strategy keyword handler, a reference to the strategySpec data class object is used to store attributes.
Each of these data class objects is a simple container class which contains the data from a single keyword handler
invocation. Within each skeleton construct, you will extract data from the IDR data structures and then use this
data to set the corresponding attribute within the Data class.

Integer, real, and string data are extracted using the i data, rdata, and cdat a arrays provided by
IDR. These arrays are indexed using a bracket operator with the keyword as an index. Lists of inte-
ger, list of real, and list of string data are extracted using the IDRProblemDescDB::idr_get_int_table(),
IDRProblemDescDB::idr_get_real_table(), and IDRProblemDescDB::idr_get_string_table() functions, respec-
tively.

Example 1: if you added the specification:
[met hod_setting = <REAL>]
you would copy over

if ( method_setting >= 0 ) {
}

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



552 Instructions for Modifying DAKOTA’s Input Specification

from idr-gen-code.C into IDRProblemDescDB.C and then populate the if block with a call to set the corresponding
attribute within the dat a_net hod object using data extracted using the r dat a array:

if ( method_setting >= 0 ) {
dat a_net hod. net hodSetting =
}

rdat a[ met hod_setting];

Use of a set member function within DataMethod is not needed since the data is public. The data is
public since ProblemDescDB already provides sufficient encapsulation (ProblemDescDB::dataMethodList,
ProblemDescDB::dataModelList, ProblemDescDB::dataVariablesList, = ProblemDescDB::datalnterfaceList,
ProblemDescDB::dataResponsesList, and ProblemDescDB::strategySpec are private attributes), and public
access reduces the amount of code to manage when performing input specification modifications by omitting the
need to add/modify set/get functions.

Example 2: if you added the specification

[ met hod_setting = <LI STof ><REAL>]

you would copy over

if ( method_setting >= 0 ) {
{ I'nt idr_table_len;
Real ** idr_table = idr_get_real _table( parsed_data, nethod_setting,
idr_table len, 1, 1);

from idr-gen-code.C into IDRProblemDescDB.C and then populate it with a loop which extracts each entry of
the table and populates the corresponding attribute within the dat a_net hod object. The i dr _t abl e_| en
attribute is used for the loop limit and to size the dat a_met hod object.

if ( method_setting >= 0 ) {
{ I'nt idr_table_len;
Real ** idr_table = idr_get_real _table( parsed_data, nethod_setting,
idr_table_len, 1, 1);

dat a_mnet hod. met hodSet ti ng. reshape(i dr_tabl e_| en);
for (int i = 0; i<idr_table_len; i++)
dat a_met hod. met hodSetting[i] = idr_table[O][i];

}
}

Attention:
If no new data attributes have been added, but instead there are only new settings for existing attributes, then
you’re done with the database augmentation at this point (you just need to add code to use these new settings
in the places where the existing attributes are used).

13.5 Update ProblemDescDB.C in $DAKOTA/src

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



13.6 Update Corresponding Data Classes 553

13.5.1 Augment/update get_<data_type>() functions

The next update step involves extending the database retrieval functions in ProblemDescDB.C. These retrieval
functions accept an identifier string and return a database attribute of a particular type, e.g. a RealVector:

const Real Vector& get_drv(const String& entry_nane);

The implementation of each of these functions has a simple series of if-else checks which return the appropriate
attribute based on the identifier string. For example,

if (entry_nane == "vari abl es. conti nuous_design.initial _point")
return (*dbRep->dataVari abl eslter).continuousDesi gnVars;

appears at the top of ProblemDescDB::get_drv(). Based on the identifier string, it returns the cont i nuous-
Desi gnVar s attribute from a DataVariables object. Since there may be multiple variables specifications, the
dat aVari abl esl t er list iterator identifies which node in the list of DataVariables objects is used. In par-
ticular, dat aVari abl esLi st contains a list of all of the dat a_vari abl es objects, one for each time
vari abl es_kwhandl| er () has been called by the parser. The particular variables object used for the data
retrieval is managed by dat aVari abl esl t er, which is set in a set _db_| i st _nodes() operation that
will not be described here.

There may be multiple DataMethod, DataModel, DataVariables, Datalnterface, and/or DataResponses objects.
However, only one strategy specification is currently allowed so a list of DataStrategy objects is not needed.
Rather, ProblemDescDB::strategySpec is the lone DataStrategy object.

To augment the get_<data_type>() functions, add el se blocks with new identifier strings which retrieve the
appropriate data attributes from the Data class object. The style for the identifier strings is a top-down hi-
erarchical description, with specification levels separated by periods and words separated with underscores,
e.g. "keyword. group_specification.individual _specification". Use the (xdbRep->list-
Iter).attribute syntax for variables, interface, responses, and method specifications. For example, the met hod_ -
set t i ng example attribute would be added to get _dr v() as:

else if (entry_nane == "met hod. met hod_nane. met hod_setting")
return (*dbRep->dat aMet hodlter). nmet hodSetti ng;

A strategy specification addition would not use a (xdbRep->listlter) syntax, but would instead look like:

else if (entry_nane == "strategy.strategy_nane.strategy_setting")
return dbRep->strategySpec. strategySetting;

13.6 Update Corresponding Data Classes

In this step, we extend the Data class definitions (DataStrategy, DataMethod, DataModel,
DataVariables, Datalnterface, and/or DataResponses) to include the new attributes referenced in
Update keyword handler logic blocks and Augment/update get_<data_type>() functions.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



554 Instructions for Modifying DAKOTA’s Input Specification

13.6.1 Update the Data class header file

Add a new attribute to the public data for each of the new specifications. Follow the style guide for class attribute
naming conventions (or mimic the existing code).

13.6.2 Update the .C file

Define defaults for the new attributes in the constructor initialization list. Add the new attributes to the assign()
function for use by the copy constructor and assignment operator. Add the new attributes to the write(MPIPack-
Buffer&), read(MPIUnpackBuffer&), and write(ostreamé&) functions, paying careful attention to the use of a
consistent ordering.

13.7 Useget_<data_type>() Functions

At this point, the new specifications have been mapped through all of the database classes. The only remain-
ing step is to retrieve the new data within the constructors of the classes that need it. This is done by invok-
ing the get_<data_type>() function on the ProblemDescDB object using the identifier string you selected in
Augment/update get_<data_type>() functions. For example:

const String& interface_type = probl emdb.get_string("interface.type");

passes the "i nt er f ace. t ype" identifier string to the ProblemDescDB::get_string() retrieval function, which
returns the desired attribute from the active Datalnterface object.

Warning:
Use of the get_<data_type>() functions is restricted to class constructors, since only in class constructors
are the data list iterators (i.e., dat aMet hodl t er , dat aWbdel | t er, dat aVari abl esl t er, dat a-
I nterfacelter,and dat aResponseslt er) guaranteed to be set correctly. Outside of the construc-
tors, the database list nodes will correspond to the last set operation, and may not return data from the desired
list node.

13.8 Update the Documentation

Doxygen comments should be added to the Data class headers for the new attributes, and the reference manual
sections describing the portions of dakota.input.spec that have been modified should be updated.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



13.8 Update the Documentation 555

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



556 Instructions for Modifying DAKOTA’s Input Specification

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 14

|nterfacing with DAKOTA asalLibrary

14.1 Introduction

Some users may be interested in linking the DAKOTA toolkit into another application for use as an algorithm
library. While this is not the primary usage model for DAKOTA, certain facilities are in place to allow this type
of integration.

As part of the normal DAKOTA build process, where Dakot a/ confi gur e - prefi x=' pwd‘ has been run
prior to make && make i nstal |, ali bdakot a. a is created and a copy of it is placed in Dakot a/ | i b.
This library contains all source files from Dakot a/ sr ¢ excepting the main.C and restart_util.C main pro-
grams. This library may be linked with another application through inclusion of - | dakot a on the link line.
Library and header paths may also be specified using the - L and - | compiler options (using Dakot a/ | i b and
Dakot a/ i ncl ude, respectively). Depending on the configuration used when building this library, other li-
braries for the vendor optimizers and vendor packages will also be needed to resolve DAKOTA symbols for DOT,
NPSOL, OPT++, SGOPT, LHS, Epetra, etc. Copies of these libraries are also placed in Dakot a/ | i b. An XML
specification of library names and paths is also available in Dakot a/ dependency.

Warning:
While users are free to interface DAKOTA as a library within other software applications for their own
internal use, the GNU GPL license stipulates that any application linked with DAKOTA in this way defines
a "derivative work" and can only be distributed externally under the same GNU GPL open source license.
Refer to ht t p: // www. gnu. org/ | i censes/ gpl . ht m or contact the DAKOTA team for additional
information.

Attention:
The use of DAKOTA as an algorithm library should be distinguished from the linking of simulations within
DAKOTA using the direct application interface (see DirectFnApplicInterface). In the former, DAKOTA is
providing algorithm services to another software application, and in the latter, a linked simulation is providing
analysis services to DAKOTA. It is not uncommon for these two capabilities to be used in combination,
resulting in a "sandwich" implementation.

The procedure for utilizing DAKOTA as a library within another application involves a number of steps that



558 Interfacing with DAKOTA as a Library

are similar to those used in the stand-alone DAKOTA application. The stand-alone procedure can be viewed
in the file main.C, and the differences for the library approach are most easily explained with reference to that
file. The basic steps of executing DAKOTA include instantiating the ParallelLibrary, CommandLineHandler,
and ProblemDescDB objects; managing the DAKOTA input file (ProblemDescDB::manage_inputs()); specify-
ing restart files and output streams (ParallelLibrary::specify_outputs_restart()); and instantiating the Strategy and
running it (Strategy::run_strategy()). When using DAKOTA as an algorithm library, the operations are quite sim-
ilar, although command line information (argc, argv, and therefore CommandLineHandler) will not in general be
accessible. In particular, main.C can pass argc and argv into the ParallelLibrary and CommandLineHandler
constructors and then pass the CommandLineHandler object into ProblemDescDB::manage_inputs() and
ParallelLibrary::specify_outputs_restart(). In an algorithm library approach, a CommandLineHandler object is
not instantiated and overloaded forms of the ParallelLibrary constructor, ProblemDescDB::manage_inputs(), and
ParallelLibrary::specify_outputs_restart() are used.

The overloaded forms of these functions are as follows. For instantiation of the ParallelLibrary object, the default
constructor may be used. This constructor assumes that MPI is initialized elsewhere in the parent application.
That is, the instantiation

Paral l el Li brary parallel _lib(argc, argv);

is replaced with

Paral l el Library parallel _lib;

In the case of specifying restart files and output streams, the call to

paral l el _lib.specify outputs_restart(cnd_|line_handler);

should be replaced with its overloaded form in order to pass the required information through the parameter list

parallel _|ib.specify_outputs_restart(std_output_filenanme, std_error_fil enane,
read_restart_filename, wite_restart_filenane, restart_evals);

where file names for standard output and error and restart read and write as well as the integer number of restart
evaluations are passed through the parameter list rather than read from the command line of the main DAKOTA
program. The definition of these attributes is performed elsewhere in the parent application (e.g., specified in the
parent application input file or GUI).

With respect to alternate forms of ProblemDescDB::manage_inputs(), the two following sections describe differ-
ent approaches to populating data within DAKOTA’s problem description database. It is this database from which
all DAKOTA objects draw data upon instantiation.

14.2 Problem database populated through input fi le parsing

The simplest approach to linking an application with the DAKOTA library is to rely on DAKOTA’s normal parsing
system to populate DAKOTA’s problem database (ProblemDescDB) through the reading of an input file. The
disadvantage to this approach is the requirement for an additional input file beyond those already required by the
parent application.

In this approach, the call to

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



14.3 Problem database populated through external means 559

probl em db. manage_i nput s(cnd_I i ne_handl er);

should be replaced with its overloaded form
probl em db. nanage_i nput s(dakota_i nput _file);

where the file name for the DAKOTA input is passed through the parameter list rather than read from the command
line of the main DAKOTA program. Again, the definition of the DAKOTA input file name is performed elsewhere
in the parent application (e.g., specified in the parent application input file or GUI).

14.3 Problem database populated through external means

This approach is more involved than the previous approach, but it allows the application to publish all needed data
to DAKOTA’s database directly, thereby eliminating the need for the parsing of a separate DAKOTA input file.
In this case, ProblemDescDB::manage_inputs() is not called. Rather, DataStrategy, DataMethod, DataModel,
DataVariables, Datalnterface, and DataResponses objects must be instantiated and populated with the desired
problem data. These objects are then published to the problem database using ProblemDescDB::insert_node(),

e.g..
/1 instantiate the data object

Dat aMet hod dat a_net hod;

/] set the attributes within the data object
dat a_met hod. net hodNarme = "nond_sanpl i ng";

/1 publish the data object to the Probl enDescDB
probl em db. i nsert_node(dat a_net hod);

The data objects are populated with their default values upon instantiation, so only the non-default values
need to be specified. Refer to the DataStrategy, DataMethod, DataModel, DataVariables, Datalnterface, and
DataResponses class documentation and source code for lists of attributes and their defaults.

The default strategy is Si ngl e_net hod, which runs a single iterator on a single model, and the default
model is Si ngl e, so it is not necessary to instantiate and publish a DataStrategy or DataModel object if ad-
vanced multi-component capabilities are not required. Rather, instantiation and insertion of a single DataMethod,
DataVariables, Datalnterface, and DataResponses object is sufficient for basic DAKOTA capabilities.

Once the data objects have been published to the ProblemDescDB object, a call to

probl em db. check_i nput () ;

will perform basic database error checking.

14.4 Instantiating the strategy

With the ProblemDescDB object populated with problem data, we may now instantiate the strategy.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



560 Interfacing with DAKOTA as a Library

/] instantiate the strategy
Strategy sel ected_strategy(problemdb);

Following strategy construction, all MPI communicator partitioning has been performed and the ParallelLibrary
instance may be interrogated for parallel configuration data. For example, the lowest level communicators in
DAKOTA’s multilevel parallel partitioning are the analysis communicators, which can be retrieved using:

Il retrieve the set of analysis communicators for sinmulation initialization:
/1 one anal ysis conm per Parallel Configuration (PC), one PC per Mdel.
Array<MPl _Com anal ysis_conmms = parallel _lib.analysis_intra_comunicators();

These communicators can then be used for initializing parallel simulation instances, where the number of MPI
communicators in the array corresponds to one communicator per ParallelConfiguration instance, where there is
one ParallelConfiguration instance per Model.

14.5 Déefi ning the direct application interface

When employing a library interface to DAKOTA, it is frequently desirable to also use a direct interface between
DAKOTA and the simulation. There are two approaches to defining this direct interface.

14.5.1 Extension

The first approach involves extending the existing DirectFnApplicInterface class to support additional direct sim-
ulation interfaces. In this case, a new simulation interface function can be added to Dakota/src/DirectFnApplic-
Interface.[CH] for the simulation of interest. If the new function will not be a member function, then the following
prototype should be used in order to pass the required data:

int sin(const Dakota::Variabl es& vars, const Dakota::ActiveSet& set,
Dakot a: : Response& response);

If the new function will be a member function, then this can be simplified to
int sinm);

since the data access can be performed through the DirectFnAppliclnterface class attributes.

This simulation can then be added to the logic blocks in DirectFnApplicInterface::derived_map_ac(). In addition,
DirectFnApplicInterface::derived_map_if() and DirectFnApplicInterface::derived_map_of() can be extended to
perform pre- and post-processing tasks if desired, but this is not required.

While this approach is the simplest, it has the disadvantage that the DAKOTA library may need to be recompiled
when the simulation or its direct interface is modified. If it is desirable to maintain the independence of the
DAKOTA library from the host application, then the following derivation approach should be employed.

14.5.2 Derivation

The second approach is to derive a new interface from DirectFnAppliclnterface in order to redefine several virtual
functions. A typical derived class declaration might be

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



14.5 Defining the direct application interface 561

nanmespace Sl M {
class Direct FnAppliclnterface: public Dakota::Direct FnAppliclnterface
public:

/] Constructor and destructor

Di rect FnAppl i cl nterface(const Probl enDescDB& probl em db, const size_t& numfns);
~Direct FnAppliclnterface();

pr ot ect ed:
/1 Virtual function redefinitions

int derived_map_if(const DakotaString& i f_nane);
int derived_nmap_ac(const DakotaString& ac_nane);
int derived_nmap_of (const DakotaString& of _nane);

private:

/| Data
}

} // namespace SIM

where the new derived class resides in the simulation’s namespace. Similar to the case of
Extension, the DirectFnAppliclnterface::derived_map_ac() function is the required redefinition, and
DirectFnApplicInterface::derived_map_if() and DirectFnApplicInterface::derived_map_of() are optional.

The new derived interface object (from namespace SIM) must now be plugged into the strategy. In the simplest
case of a single model and interface, one could use

/1l retrieve the interface of interest

Model Li st & al | _nmbdel s = probl em db. nodel _list();

Model & first_nodel *al | _nodel s. begi n();

Interface& i nterface = first_nodel .interface();

/1 plug in the new direct interface instance (DB does not need to be set)
interface.assign_rep(new SIM:DirectFnAppliclnterface(problemdb), false);
/'l repropagate parallel configuration data down to the new interface
first_nodel.reset_conmmuni cators();

In a more advanced case of multiple models and multiple interface plug-ins, one might use

/] retrieve the list of Mddels fromthe Strategy
Mbdel Li st & nodel s = probl em db. nodel _list();
/] iterate over the Mdel Iist
for (ModelLIter m _iter = nodels.begin(); m _iter != nodels.end(); nml _iter++) {
Interface& interface = m _iter->interface();
if (interface.interface_type() == "direct" &&
interface.analysis_drivers().contains("SIM) ) {
/1 set the correct list nodes within the DB prior to new instantiations
probl em db. set _db_nodel _nodes(m _iter->nodel _id());
/1 plug in the new direct interface instance
interface. assign_rep(new SIM:Direct FnAppliclnterface(problemdb, numfns), false);
/'l repropagate parallel configuration data down to the new interface
m _iter->reset_comunicators();

}
}

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



562 Interfacing with DAKOTA as a Library

New direct interface instances inherit various attributes of use in configuring the simulation. In particular, the
ApplicationInterface::parallelLib reference provides access to MPI communicator data (e.g., the analysis commu-
nicators discussed in Instantiating the strategy), DirectFnApplicInterface::analysisDrivers provides the analysis
driver names specified by the user in the input file, and DirectFnApplicInterface::analysisComponents provides
additional analysis component identifiers (such as mesh file names) provided by the user which can be used to
distinguish different instances of the same simulation interface.

14.6 Executing the strategy

Finally, with simulation configuration and plug-ins completed, we execute the strategy:

/1 run the strategy
sel ected_strategy.run_strategy();

14.7 Retrieving data after arun

After executing the strategy, final results can be obtained through the use of Strategy::variable_results() and
Strategy::response_results(), e.g.:

/] retrieve the final paraneter val ues
const Variabl es& vars = sel ected_strategy.variable_results();

/'l retrieve the final response val ues
const Response& resp = selected_strategy.response_results();

In the case of optimization, the final design is returned, and in the case of uncertainty quantification, the final
statistics are returned.

14.8 Summary

To utilize the DAKOTA library within a parent software application, the basic steps of main.C and the order of
invocation of these steps should be mimicked from within the parent application. Of these steps, ParallelLibrary
instantiation, ProblemDescDB::manage_inputs() and ParallelLibrary::specify_outputs_restart() require the use of
overloaded forms in order to function in an environment without direct command line access and, potentially,
without file parsing. Additional optional steps not performed in main.C include the extension/derivation of the
direct interface and the retrieval of strategy results after a run.

DAKOTA’s library mode has stabilized and is now being used successfully by several Sandia and external simu-
lation codes/frameworks.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



14.8 Summary 563

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



564 Interfacing with DAKOTA as a Library

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



Chapter 15

Performing Function Evaluations

Performing function evaluations is one of the most critical functions of the DAKOTA software. It can also be
one of the most complicated, as a variety of scheduling approaches and parallelism levels are supported. This
complexity manifests itself in the code through a series of cascaded member functions, from the top level model
evaluation functions, through various scheduling routines, to the low level details of performing a system call,
fork, or direct function invocation. This section provides an overview of the primary classes and member functions
involved.

15.1 Synchronous function evaluations

For a synchronous (i.e., blocking) mapping of parameters to responses, an iterator invokes
Model::compute_response() to perform a function evaluation. This function is all that is seen from the it-
erator level, as underlying complexities are isolated. The binding of this top level function with lower level
functions is as follows:

o Model::compute_response() utilizes Model::derived_compute_response() for portions of the response com-
putation specific to derived model classes.

e Model::derived_compute_response() directly or indirectly invokes Interface::map().

e Interface::map() utilizes ApplicationInterface::derived_map() for portions of the mapping specific to de-
rived application interface classes.

15.2 Asynchronous function evaluations

For an asynchronous (i.e., nonblocking) mapping of parameters to responses, an iterator invokes
Model::asynch_compute_response() multiple times to queue asynchronous jobs and then invokes either
Model::synchronize() or Model::synchronize_nowait() to schedule the queued jobs in blocking or nonblocking
fashion. Again, these functions are all that is seen from the iterator level, as underlying complexities are isolated.
The binding of these top level functions with lower level functions is as follows:



566 Performing Function Evaluations

e Model::asynch_compute_response() utilizes Model::derived_asynch_compute_response() for portions of
the response computation specific to derived model classes.

e This derived model class function directly or indirectly invokes Interface::map() in asynchronous mode,
which adds the job to a scheduling queue.

e Model::synchronize() or Model::synchronize_nowait() utilize Model::derived_synchronize() or
Model::derived_synchronize_nowait() for portions of the scheduling process specific to derived model
classes.

e These derived model class functions directly or indirectly invoke Interface::synch() or
Interface::synch_nowait().

e For application interfaces, these interface synchronization functions are responsible for performing evalua-
tion scheduling in one of the following modes:

— asynchronous local mode (using ApplicationInterface::asynchronous_local_evaluations() or
Applicationlnterface::asynchronous_local_evaluations_nowait())

— message passing mode (using ApplicationInterface::self_schedule_evaluations()
or  ApplicationInterface::static_schedule_evaluations() on the iterator ~ master and
Applicationlnterface::serve_evaluations_synch() or ApplicationInterface::serve_evaluations_peer()
on the servers)

— hybrid mode (using ApplicationInterface::self_schedule_evaluations() or
Applicationlnterface::static_schedule_evaluations() on the iterator master and
Applicationlnterface::serve_evaluations_asynch() on the servers)

e These scheduling functions utilize ApplicationInterface::derived_map() and
ApplicationInterface::derived_map_asynch() for portions of asynchronous job launching spe-
cific to derived application interface classes, as well as ApplicationInterface::derived_synch() and
Applicationlnterface::derived_synch_nowait() for portions of job capturing specific to derived application
interface classes.

15.3 Analyseswithin each function evaluation

The discussion above covers the parallelism level of concurrent function evaluations serving an iterator. For
the parallelism level of concurrent analyses serving a function evaluation, similar schedulers are involved
(ForkApplicInterface::synchronous_local_analyses(), ForkApplicInterface::asynchronous_local_analyses(),
Applicationlnterface::self_schedule_analyses(), Applicationlnterface::serve_analyses_synch(),
ForkAppliclnterface::serve_analyses_asynch()) to support synchronous local, asynchronous local, message
passing, and hybrid modes. Not all of the schedulers are elevated to the ApplicationInterface level since the
system call and direct function interfaces do not yet support nonblocking local analyses (and therefore support
synchronous local and message passing modes, but not asynchronous local or hybrid modes). Fork interfaces,
however, support all modes of analysis parallelism.

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



15.4 Todo List 567

154 TodoList

Member SurfpackApproximation(ProblemDescDB &problem_db, const size_t &num_acv) The dakota
data structures like RealVector inherit from std::vector.

Member SurfpackApproximation(ProblemDescDB &problem_db, const size_t &num_acv) Add RBFNet
surface fit interface

Member num_coefficients() const : Check to make sure that the number of points required does not

Member num_coefficients() const : The reported number of points required is computed in a rather

Member find_coefficients() Right now, we’re completely deleting the old data and then

Member approximation_coefficients() : Provide an appropriate list of coefficients for each surface type

Member get_hessian(const RealVector &x) Make this acceptably efficient

Member checkForEqualityConstraints() improve efficiency of conversion

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



| ndex

/home/mseldre/dev/Dakota/src/ Directory Refer-

ence, 29
~ Approximation
Dakota::Approximation, 96
~BiStream
Dakota::BiStream, 113

~Constraints

Dakota::Constraints, 145
~Interface

Dakota::Interface, 254
~Iterator

Dakota::Iterator, 263
~Model

Dakota::Model, 331
~ProblemDescDB

Dakota::ProblemDescDB, 435
~Strategy

Dakota::Strategy, 475
~Variables

Dakota:: Variables, 520
_model

Dakota::JEGAEvaluator, 274
_theOptimizer

Dakota::JEGAEvaluator, 274

A

Dakota:: CONMINOptimizer, 139
actualModel

Dakota::DataFitSurrModel, 154
actualModelPointer

Dakota::DataFitSurrModel, 154
add_datapoint

Dakota::Graphics, 234
adjust_user_scales

Dakota::Minimizer, 309
AllConstraints

Dakota::AllConstraints, 68
allContinuousVarlds

Dakota:: Variables, 521
AllVariables

Dakota::All Variables, 72

approxBuilds

Dakota::SurrogateModel, 503
Approximation

Dakota:: Approximation, 96, 97
approximation_coefficients

Dakota::Surfpack Approximation, 482
Array

Dakota::Array, 104
array

Dakota::BaseVector, 110
assign_rep

Dakota::Interface, 255

Dakota::Iterator, 265

Dakota::Model, 334
asynchronous_local_analyses

Dakota::ForkApplicInterface, 217
asynchronous_local_evaluations

Dakota::ApplicationInterface, 90
asynchronous_local_evaluations_nowait

Dakota::ApplicationInterface, 91
augmented_lagrangian_merit

Dakota::SurrBasedOptStrategy, 492
autoCorrection

Dakota::SurrogateModel, 503

B

Dakota:: CONMINOptimizer, 138
BaseVector

Dakota::BaseVector, 108
begins

Dakota::String, 479
BiStream

Dakota::BiStream, 112, 113
BoStream

Dakota::BoStream, 116, 117
BPA

Dakota::NonDEvidence, 371
BPAC

Dakota::NonDEvidence, 372
build_approximation

Dakota:: ApproximationInterface, 101



INDEX 569

build_global concatenate_restart

Dakota::DataFitSurrModel, 154 Dakota, 61
build_local_multipoint restart_util.C, 536

Dakota::DataFitSurrModel, 154 conminInfo

Dakota:: CONMINOptimizer, 136

C constraintO_evaluator

Dakota:: CONMINOptimizer, 138 Dakota::SNLLOptimizer, 467
cdf_beta_Pinv constraint1_evaluator

Dakota::NonDReliability, 393 Dakota::SNLLOptimizer, 467
check_status constraint1_evaluator_gn

Dakota::ForkAnalysisCode, 214 Dakota::SNLLLeastSq, 460
checkForEqualityConstraints constraint? evaluator

Dakota::Surfpack Approximation, 483 Dak ot;: :SNLLOptimizer, 467
clear_all

Kota:: . constraint2_evaluator_gn
Dakota:: Approximation, 97 Dakota::SNLLLeastSq, 461
clear_current . olati
Dakota:: Approximation, 97 constraint_vio‘ation
- ’ Dakota::SurrBasedOptStrategy, 492
Dakota::TANA3Approximation, 510 arota::ourrmasedpiotrategy
constraintMappingIndices

Clone ..
B Dakota::CONMINOptimizer, 136
Dakota::JEGAEvaluator, 274 Dakota::DOTOptimizer, 210

close_streams constraintMappingMultipliers
Dakota::ParallelLi 42
akota::ParallelLibrary, 420 Dakota::CONMINOptimizer, 136

CMAX L
Dakota::NonDEvidence, 372 Dakota:: DOTOptimizer, 210
CMIN ’ constraintMappingOffsets

Dakota:: CONMINOptimizer, 137

Dakota::NonDEvidence, 372 A
Dakota::DOTOptimizer, 211

COLINOptimizer< coliny::APPS >::set_method_-

parameters Constraints
Dakota, 59 Dakota::Constraints, 145
COLINOptimizer<  coliny::Cobyla  >::set_- constraintValues o
method_parameters Dakota:: CONMINOptimizer, 136
Dakota, 59 Dakota::DOTOptimizer, 210
COLINOptimizer<  coliny::DIRECT  >::set_- contains
method_parameters Dakota::List, 291
Dakota, 59 Dakota::String, 478
COLINOptimizer<  coliny::EAminlp  >::set_- continuous Varlds
method_parameters Dakota:: Variables, 521
Dakota, 60 copy
COLINOptimizer< coliny::PatternSearch >::set - Dakota:: Variables, 521
method_parameters copy_results
Dakota, 59 Dakota::ResponseRep, 448
COLINOptimizer< coliny::PatternSearch >::set_- count
runtime_parameters Dakota::List, 292
Dakota, 59 create_plots_2d
COLINOptimizer< coliny::SolisWets =~ >::set_- Dakota::Graphics, 234
method_parameters create_tabular_datastream
Dakota, 60 Dakota::Graphics, 234
ColinPoint, 124 CreateEvaluator
compute_correction Dakota::JEGAOptimizer::EvalCreator, 281
Dakota::SurrogateModel, 502 CT

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



570

INDEX

Dakota::CONMINOptimizer, 137

CtelRegexp, 147

Dakota, 35

COLINOptimizer< coliny::APPS  >::set_-
method_parameters, 59

COLINOptimizer< coliny::Cobyla >::set_-
method_parameters, 59

COLINOptimizer< coliny::DIRECT >::set_-
method_parameters, 59

COLINOptimizer< coliny::EAminlp >::set_-
method_parameters, 60

COLINOptimizer< coliny::PatternSearch
>::set_method_parameters, 59

COLINOptimizer< coliny::PatternSearch
>::set_runtime_parameters, 59

COLINOptimizer< coliny::SolisWets >::set_-
method_parameters, 60

concatenate_restart, 61

eval_id_compare, 60

eval_id_sort_fn, 60

flush, 60

operator==, 60

print_restart, 60

print_restart_tabular, 61

read_neutral, 61

repair_restart, 61

vars_set_compare, 60

Dakota::ActiveSet, 63
Dakota::ActiveSet

derivVarsVector, 65
requestVector, 65

Dakota::AllConstraints, 66
Dakota::AllConstraints

AllConstraints, 68

Dakota::All Variables, 69
Dakota::All Variables

AllVariables, 72

Dakota::AnalysisCode, 73
Dakota::Analyzer, 77

evaluate_parameter_sets, 79
print_vbd, 79
var_based_decomp, 79
volumetric_quality, 79

Dakota::ApplicationInterface, 81
Dakota::ApplicationInterface

asynchronous_local_evaluations, 90
asynchronous_local_evaluations_nowait, 91
duplication_detect, 89

init_serial, 87

map, 88

self_schedule_analyses, 89

self_schedule_evaluations, 90

serve_analyses_synch, 89

serve_evaluations, 88

serve_evaluations_asynch, 91

serve_evaluations_peer, 91

serve_evaluations_synch, 91

static_schedule_evaluations, 90

stop_evaluation_servers, 89

synch, 88

synch_nowait, 88

synchronous_local_evaluations, 90
Dakota:: Approximation, 92

~Approximation, 96

Approximation, 96, 97

clear_all, 97

clear_current, 97

get_approx, 97, 98

operator=, 97

second_order_flag, 97
Dakota:: ApproximationInterface, 99
Dakota:: ApproximationInterface

build_approximation, 101

functionSurfaces, 101

update_approximation, 101
Dakota::Array, 102

Array, 104

data, 105

operator T %, 104

operator(), 105

operator=, 104

operator[], 105
Dakota::BaseConstructor, 106
Dakota::BaseVector, 107
Dakota::BaseVector

array, 110

BaseVector, 108

data, 109

length, 109

operator(), 109

operator[], 109

reshape, 109
Dakota::BiStream, 111
Dakota::BiStream

~BiStream, 113

BiStream, 112, 113

operator>>, 113
Dakota::BoStream, 115

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



INDEX

571

Dakota::BoStream

BoStream, 116, 117

operator<<, 117
Dakota::COLINApplication, 118

DoEval, 119

map_response, 120

next_eval, 120

synchronize, 120
Dakota::COLINOptimizer, 121

find_optimum, 123

set_standard_method_parameters, 123
Dakota::CommandLineHandler, 125
Dakota::CommandShell, 127
Dakota::CommandShell

flush, 128
Dakota::ConcurrentStrategy, 129
Dakota::ConcurrentStrategy

self_schedule_iterators, 130

serve_iterators, 131
Dakota:: CONMINOptimizer, 132

A, 139

B, 138

C, 138

conminlnfo, 136

constraintMappingIndices, 136

constraintMappingMultipliers, 136

constraintMappingOffsets, 137

constraintValues, 136

CT, 137

DF, 138

Gl1, 138

G2, 138

1C, 139

ISC, 139

MSI1, 138

N1, 137

N2, 137

N3, 137

N4, 137

NS5, 137

optimizationType, 136

printControl, 136

S, 138

SCAL, 138
Dakota::Constraints, 140

~Constraints, 145

Constraints, 145

get_constraints, 146

manage_linear_constraints, 146

operator=, 146
Dakota::DataFitSurrModel, 149
Dakota::DataFitSurrModel

actualModel, 154

actualModelPointer, 154

build_global, 154

build_local_multipoint, 154

derived_asynch_compute_response, 152

derived_compute_response, 152
derived_init_communicators, 153
derived_synchronize, 153
derived_synchronize_nowait, 153
evaluation_id, 153
update_actual_model, 153
Dakota::Datalnterface, 155
Dakota::DataMethod, 159
Dakota::DataModel, 169
Dakota::DataResponses, 173
Dakota::DataStrategy, 177
Dakota::DataVariables, 181
Dakota::DDACEDesignCompExp, 188
Dakota::DDACEDesignCompExp
DDACEDesignCompExp, 190
resolve_samples_symbols, 190
Dakota::DirectFnApplicInterface, 191
Dakota::DirectFnApplicInterface
derived_map_ac, 195

derived_synchronous_local_analysis, 195

Dakota::DistinctConstraints, 198
Dakota::DistinctConstraints
DistinctConstraints, 201
Dakota::DistinctVariables, 202
Dakota::DistinctVariables
DistinctVariables, 206
operator==, 206
Dakota::DOTOptimizer, 207
constraintMappingIndices, 210
constraintMappingMultipliers, 210
constraintMappingOffsets, 211
constraintValues, 210
dotFDSinfo, 209
dotlnfo, 209
dotMethod, 209
intCntlParmArray, 210
optimizationType, 210
printControl, 210
realCntlParmArray, 210
Dakota::ForkAnalysisCode, 213
Dakota::ForkAnalysisCode

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



572

INDEX

check_status, 214
Dakota::ForkAppliclnterface, 215
Dakota::ForkAppliclnterface

asynchronous_local_analyses, 217

derived_synchronous_local_analysis, 216

fork_application, 216

serve_analyses_asynch, 217

synchronous_local_analyses, 217
Dakota::FSUDesignCompExp, 218
Dakota::FSUDesignCompExp

enforce_input_rules, 220

FSUDesignCompExp, 220
Dakota::FunctionCompare, 222
Dakota::GaussProc Approximation, 223
Dakota::GaussProcApproximation

GPmodel_apply, 226
Dakota::GetLongOpt, 228
Dakota::GetLongOpt

enroll, 230

GetLongOpt, 229

parse, 230

retrieve, 230

usage, 230
Dakota::Graphics, 232

add_datapoint, 234

create_plots_2d, 234

create_tabular_datastream, 234

new_dataset, 234

show_data_3d, 234
Dakota::GridApplicInterface, 236
Dakota::GridApplicInterface

derived_synchronous_local_analysis, 237
Dakota::Hermite Approximation, 239
Dakota::HierarchSurrModel, 241
Dakota::HierarchSurrModel

derived_asynch_compute_response, 244

derived_compute_response, 243

derived_synchronize, 244

derived_synchronize_nowait, 244

evaluation_id, 244
Dakota::IDRProblemDescDB, 245
Dakota::IDRProblemDescDB

derived_manage_inputs, 247
Dakota::Interface, 248

~Interface, 254

assign_rep, 255

get_interface, 255

Interface, 254

operator=, 255

rawResponseArray, 255
rawResponseMap, 256

Dakota::Iterator, 257

~Iterator, 263

assign_rep, 265
derived_post_run, 265
derived_pre_run, 265
fdGradStepSize, 266
fdHessByFnStepSize, 266
fdHessByGradStepSize, 266
get_iterator, 265

Iterator, 262, 263
operator=, 263

post_run, 264

pre_run, 264
print_results, 264

run, 263

run_iterator, 264

Dakota::JEGAEvaluator, 267

_model, 274

_theOptimizer, 274

Clone, 274

Description, 270

Evaluate, 273

GetContinuum Variable Values, 270, 271
GetDescription, 273

GetDiscrete Variable Values, 271
GetName, 273
GetNumberLinearConstraints, 272
GetNumberNonLinearConstraints, 272
JEGAEvaluator, 269

Name, 270

RecordResponses, 272
SeparateVariables, 271

Dakota::JEGAOptimizer, 275

find_optimum, 279
GetBestMOSolution, 278
GetBestSolution, 278
GetBestSOSolution, 279
JEGAOptimizer, 277
LoadTheAlgorithmConfig, 278
LoadTheConstraints, 278
LoadTheDesignVariables, 278
LoadTheObjectiveFunctions, 278
LoadTheProblemConfig, 278
ReCreateTheAlgorithmConfig, 277
ReCreateTheProblemConfig, 277

Dakota::JEGAOptimizer::EvalCreator, 280
Dakota::JEGAOptimizer::EvalCreator

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



INDEX

573

CreateEvaluator, 281
EvalCreator, 280

Dakota::JEGAOptimizer::JEGAProbDescDB, 282

Dakota::JEGAOptimizer::JEGAProbDescDB
Dump, 285, 286
GetBoolean, 284
GetDouble, 283
GetDoubleMatrix, 285
GetDoubleVector, 284
Getlntegral, 283
GetlntList, 285
GetIntVector, 284
GetSizeType, 284
GetString, 284
GetStringList, 285
GetString Vector, 285
JEGAProbDescDB, 283

Dakota::LeastSq, 287

Dakota::LeastSq
LeastSq, 288
print_results, 288
run, 288

Dakota::List, 289
contains, 291
count, 292
find, 291
get, 290
index, 291, 292
insert, 291
operator[], 292
remove, 291
removeAt, 291
sort, 292

Dakota::Matrix, 294
operator=, 296

Dakota::MergedConstraints, 297

Dakota::MergedConstraints
MergedConstraints, 299

Dakota::Merged Variables, 300

Dakota::MergedVariables
Merged Variables, 303

Dakota::Minimizer, 304
adjust_user_scales, 309
initialize_scaling, 309
lin_coeffs_modify_n2s, 309
Minimizer, 309
response_modify_n2s, 309

Dakota::Model, 311
~Model, 331

assign_rep, 334
derivative_concurrency, 334
estimate_derivatives, 334
estimate_message_lengths, 333
get_model, 334
init_communicators, 333
init_serial, 333
interface, 332
local_eval_concurrency, 333
local_eval_synchronization, 333
manage_asv, 335
Model, 331
operator=, 332
subordinate_iterator, 332
subordinate_models, 333
surrogate_model, 332
synchronize_derivatives, 335
truth_model, 332
update_quasi_hessians, 335
update_response, 335
Dakota::MPIPackBuffer, 337
Dakota::MPIUnpackBuffer, 340
Dakota::MultilevelOptStrategy, 343
Dakota::MultilevelOptStrategy
run_coupled, 344
run_uncoupled, 345
run_uncoupled_adaptive, 345
Dakota::NestedModel, 346
Dakota::NestedModel
derived_asynch_compute_response, 349
derived_compute_response, 349
derived_init_communicators, 350
derived_master_overload, 350
evaluation_id, 350
response_mapping, 350
subModel, 351
Dakota::N12Misc, 352
Dakota::NL2SOLLeastSq, 353
Dakota::NL2SOLLeastSq
minimize_residuals, 355
Dakota::NLPQLPOptimizer, 356
Dakota::NLSSOLLeastSq, 362
Dakota::NoDBBaseConstructor, 364
Dakota::NonD, 365
Dakota::NonDEvidence, 369
Dakota::NonDEvidence
BPA, 371
BPAC, 372
CMAX, 372

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



574 INDEX

CMIN, 372 Dakota::NonDSampling
1P, 372 NonDSampling, 399
MAXINTVLS, 371 sampling_reset, 399
NCMB, 371 Dakota::NPSOLOptimizer, 400
NI, 372 Dakota::Optimizer, 403
NV, 371 multi_objective_modify, 405
VMAX, 372 multi_objective_retrieve, 405
VMIN, 372 Optimizer, 404
X, 372 print_results, 405
Y, 371 run, 405
Dakota::NonDLHSSampling, 374 Dakota::ParallelConfiguration, 406
Dakota::NonDLHSSampling Dakota::ParallelLevel, 408
NonDLHSSampling, 375 Dakota::ParallelLibrary, 411
quantify_uncertainty, 376 Dakota::ParallelLibrary
Dakota::NonDPCESampling, 377 close_streams, 420
Dakota::NonDReliability, 379 increment_parallel_configuration, 420
Dakota::NonDReliability init_communicators, 420
cdf_beta_Pinv, 393 manage_outputs_restart, 420
dg_ds_eval, 389 ParallelLibrary, 419
g_eval, 389 resolve_inputs, 420
hessian_d2X_dU?2, 392 specify_outputs_restart, 419
hessian_d2X_dZ2, 392 Dakota::ParamResponsePair, 422
initial_taylor_series, 388 Dakota::ParamResponsePair
initialize_class_data, 388 evalld, 425
initialize_level_data, 388 idInterface, 425
initialize_mpp_search_data, 388 ParamResponsePair, 424
initialize_random_variables, 387 read, 424
jacobian_dU_dX, 391 write, 425
jacobian_dX_dS, 392 Dakota::ParamStudy, 426
jacobian_dX_dU, 391 Dakota::ProblemDescDB, 429
jacobian_dX_dZ, 391 Dakota::ProblemDescDB
jacobian_dZ_dX, 391 ~ProblemDescDB, 435
numerical_design_jacobian, 392 get_db, 436
Phi, 393 manage_inputs, 436
Phi_inverse, 393 operator=, 435
probability, 393 ProblemDescDB, 435
reliability, 393 Dakota::PStudyDACE, 437
trans_correlations, 392 Dakota::PStudyDACE
trans_grad_X_to_U, 390 print_results, 439
trans_hess_X_to_U, 391 run, 438
trans_U_to_X, 389 Dakota::Response, 440
trans_U_to_Z, 389 Response, 443
trans_X_to_U, 390 Dakota::ResponseRep, 444
trans_X_to_Z, 390 Dakota::ResponseRep
trans_Z_to_U, 390 copy_results, 448
trans_7Z_to_X, 390 read, 447, 448
update_level_data, 388 read_annotated, 447
update_mpp_search_data, 388 read_tabular, 447
Dakota::NonDSampling, 395 reset, 449

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



INDEX

575

reset_inactive, 449
reshape, 449
ResponseRep, 446, 447
write, 447, 448
write_annotated, 447
write_tabular, 448

Dakota
Dakota
Dakota
Dakota
Dakota

::SingleMethodStrategy, 450
::SingleModel, 452
::SNLLBase, 455
::SNLLLeastSq, 458
::SNLLLeastSq

constraintl_evaluator_gn, 460
constraint2_evaluator_gn, 461
nlf2_evaluator_gn, 460

Dakota

::SNLLOptimizer, 462

surrogates_to_surf_data, 483

Dakota::SurrBasedOptStrategy, 484
Dakota::SurrBasedOptStrategy
augmented_lagrangian_merit, 492

constraint_violation, 492

hard_convergence_check, 490

hom_constraint_eval, 493
hom_objective_eval, 492
lagrangian_merit, 492
objective, 492
penalty_merit, 492
run_strategy, 490
tr_ratio_check, 491

update_augmented_lagrange_multipliers, 491

update_filter, 491

constraintQ_evaluator, 467
constraint]_evaluator, 467
constraint2_evaluator, 467
nlf0_evaluator, 466
nlf1_evaluator, 466
nlf2_evaluator, 467

update_lagrange_multipliers, 491

update_penalty, 491

Dakota::SurrogateDataPoint, 494
Dakota::SurrogateDataPointRep, 496
Dakota::SurrogateModel, 498

Dakota::SurrogateModel

SNLLOptimizer, 466

Dakota
Dakota
Dakota

::SOLBase, 468
::SortCompare, 471
::Strategy, 472

~Strategy, 475
free_communicators, 476

ge

t_strategy, 476

init_communicators, 476
initialize_graphics, 476
operator=, 475
run_iterator, 475
Strategy, 474, 475

Dakota

::String, 477

begins, 479

contains, 478

data, 479

ends, 479

lower, 478

operator const char *, 478
upper, 478

Dakota::Surfpack Approximation, 480
::Surfpack Approximation

approximation_coefficients, 482
checkForEqualityConstraints, 483

Dakota

find_coefficients, 482
get_hessian, 483
num_coefficients, 482
SurfpackApproximation, 481

approxBuilds, 503
autoCorrection, 503
compute_correction, 502
force_rebuild, 502
rebuildControl, 503

Dakota::SysCallAnalysisCode, 504
Dakota::SysCallAnalysisCode

spawn_analysis, 505
spawn_evaluation, 505
spawn_input_filter, 505
spawn_output_filter, 505

Dakota::SysCallAppliclnterface, 506
Dakota::SysCallApplicInterface

derived_synch, 507
derived_synch_nowait, 507

derived_synchronous_local_analysis, 507
Dakota:: TANA3Approximation, 509

clear_current, 510

Dakota::TaylorApproximation, 512
Dakota::TaylorApproximation

second_order_flag, 513

Dakota:: Variables, 514

~Variables, 520
allContinuousVarlds, 521
continuous Varlds, 521
copy, 521

get_variables, 521

inactiveContinuousVarlds, 521

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



576 INDEX
operator=, 521 Dakota::SysCallApplicInterface, 507
Variables, 519, 520 derivVarsVector

Dakota:: VariablesUtil, 523 Dakota::ActiveSet, 65

Dakota::Vector, 525 Description
operator=, 527 Dakota::JEGAEvaluator, 270
Vector, 527 DF

data Dakota:: CONMINOptimizer, 138
Dakota::Array, 105 dg_ds_eval
Dakota::BaseVector, 109 Dakota::NonDReliability, 389
Dakota::String, 479 DistinctConstraints

DDACEDesignCompExp Dakota::DistinctConstraints, 201
Dakota::DDACEDesignCompExp, 190 DistinctVariables

derivative_concurrency Dakota::DistinctVariables, 206
Dakota::Model, 334 DoEval

derived_asynch_compute_response Dakota:: COLINApplication, 119
Dakota::DataFitSurrModel, 152 dotFDSinfo
Dakota::HierarchSurrModel, 244 Dakota::DOTOptimizer, 209
Dakota::NestedModel, 349 dotInfo o

derived_compute_response Dakota::DOTOptimizer, 209
Dakota::DataFitSurrModel, 152 dotMethod o
Dakota::HierarchSurrModel, 243 Dakota::DOTOptimizer, 209
Dakota::NestedModel, 349 Dump o

derived init communicators Dakota::JEGAOptimizer::JEGAProbDescDB,

eafa-- 285, 286

Dakota::DataFitSurrModel, 153
Dakota::NestedModel, 350
derived_manage_inputs
Dakota::IDRProblemDescDB, 247
derived_map_ac
Dakota::DirectFnAppliclnterface, 195
derived_master_overload
Dakota::NestedModel, 350
derived_post_run
Dakota::Iterator, 265
derived_pre_run
Dakota::Iterator, 265
derived_synch
Dakota::SysCallApplicInterface, 507
derived_synch_nowait
Dakota::SysCall ApplicInterface, 507
derived_synchronize
Dakota::DataFitSurrModel, 153
Dakota::HierarchSurrModel, 244
derived_synchronize_nowait
Dakota::DataFitSurrModel, 153
Dakota::HierarchSurrModel, 244
derived_synchronous_local_analysis
Dakota::DirectFnApplicInterface, 195
Dakota::ForkAppliclnterface, 216
Dakota::GridApplicInterface, 237

duplication_detect
Dakota::ApplicationInterface, 89

ends
Dakota::String, 479
enforce_input_rules
Dakota::FSUDesignCompExp, 220
enroll
Dakota::GetLongOpt, 230
ErrorTable, 212
estimate_derivatives
Dakota::Model, 334
estimate_message_lengths
Dakota::Model, 333
eval_id_compare
Dakota, 60
eval_id_sort_fn
Dakota, 60
EvalCreator
Dakota::JEGAOptimizer::EvalCreator, 280
evalld
Dakota::ParamResponsePair, 425
Evaluate
Dakota::JEGAEvaluator, 273
evaluate_parameter_sets
Dakota::Analyzer, 79

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



INDEX 577
evaluation_id get_iterator
Dakota::DataFitSurrModel, 153 Dakota::Iterator, 265
Dakota::HierarchSurrModel, 244 get_model
Dakota::NestedModel, 350 Dakota::Model, 334
get_strategy
fdGradStepSize Dakota::Strategy, 476
Dakota::Iterator, 266 get_variables
fdHessByFnStepSize Dakota::Variables, 521
Dakota::Iterator, 266 GetBestMOSolution
fdHessByGradStepSize Dakota::JEGAOptimizer, 278
Dakota::Iterator, 266 GetBestSolution
find Dakota:-List. 291 Dakota::JEGAOptimizer, 278
ota::List :
] ’ GetBestSOSolution
find_coefficients . . Dakota::JEGAOptimizer, 279
Dakota::Surfpack Approximation, 482 GetBoolean
find_optimum . Dakota::JEGAOptimizer::JEGAProbDescDB,
Dakota::COLINOptimizer, 123 184
a hDakota::JEGAOptlmlzer, 279 GetContinuum Variable Values
us Dakota. 60 Dakota::JEGAEvaluator, 270, 271
3 GetDescription
forceDil;otia}.d.CommandShell, 128 Dakota::JEGAEvaluator, 273
D ak(l)lta"SurrogateMo del. 502 GetDiscrete Variable Values
. ’ Dakota::JEGAEvaluator, 271
fork_application ’
. GetDouble
Dakota::ForkAppliclnterface, 216 ..
h axota:.rioreapplcintertace Dakota::JEGAOptimizer::JEGAProbDescDB,
ree_communicators 183
Dakota::Strategy, 476 .
FSUDesignCompExp GetDlgultleM?};éAo imizer::JEGAProbDescDB
Dakota::FSUDesignCompExp, 220 a O;‘S' ptmizer: TobLiescb,
functionSurfaces i
Dakota::ApproximationInterface, 101 GetDoubleVector L
Dakota::JEGAOptimizer::JEGAProbDescDB,
G1 284
Dakota:: CONMINOptimizer, 138 Getlntegral
G2 Dakota::JEGAOptimizer::JEGAProbDescDB,
Dakota:: CONMINOptimizer, 138 283
g_eval GetlntList
Dakota::NonDReliability, 389 Dakota::JEGAOptimizer::JEGAProbDescDB,
Dakota::List, 290 GetIntVector
get_approx Dakota::JEGAOptimizer::JEGAProbDescDB,
Dakota::Approximation, 97, 98 284
get_constraints GetLongOpt
Dakota::Constraints, 146 Dakota::GetLongOpt, 229
get_db GetName

Dakota::ProblemDescDB, 436
get_hessian

Dakota::Surfpack Approximation, 483
get_interface

Dakota::Interface, 255

Dakota::JEGAEvaluator, 273
GetNumberLinearConstraints

Dakota::JEGAEvaluator, 272
GetNumberNonLinearConstraints

Dakota::JEGAEvaluator, 272

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



578 INDEX
GetSizeType Dakota::NonDReliability, 388
Dakota::JEGAOptimizer::JEGAProbDescDB, initialize_mpp_search_data
284 Dakota::NonDReliability, 388
GetString initialize_random_ variables
Dakota::JEGAOptimizer::JEGAProbDescDB, Dakota::NonDReliability, 387
284 initialize_scaling
GetStringList Dakota::Minimizer, 309
Dakota::JEGAOptimizer::JEGAProbDescDB, insert
285 Dakota::List, 291
GetString Vector intCntlParmArray
Dakota::JEGAOptimizer::JEGAProbDescDB, Dakota::DOTOptimizer, 210
285 Interface
GPmodel_apply Dakota::Interface, 254
Dakota::GaussProcApproximation, 226 interface
Dakota::Model, 332
hard_convergence_check P
Dakota::SurrBasedOptStrategy, 490 Dakota::NonDEvidence, 372
hessian_d2X_dU?2 ISC
Dakota::NonDReliability, 392 Dakota::CONMINOptimizer, 139
hessian_d2X_dZ2 Iterator
DakotaNonDRehablhty, 392 Dakota::Iterator, 262, 263
hom_ constraint_eval
Dakota::SurrBasedOptStrategy, 493 jacobian_dU_dX
hom_objective_eval Dakota::NonDReliability, 391
Dakota::SurrBasedOptStrategy, 492 jacobian_dX_dS
Dakota::NonDReliability, 392
IC jacobian_dX_dU
Dakota:: CONMINOptimizer, 139 Dakota::NonDReliability, 391
idInterface jacobian_dx_dz
Dakota::ParamResponsePair, 425 Dakota::NonDReliability, 391
inactiveContinuous Varlds jacobian_dZ_dX
Dakota::Variables, 521 Dakota::NonDReliability, 391
increment_parallel_configuration JEGAEvaluator
Dakota::ParallelLibrary, 420 Dakota::JEGAEvaluator, 269
index JEGAEvaluator.C, 529
~ Dakota:List, 291, 292 JEGAEvaluator.H, 530
1nit_communicators JEGAOptimizer
Dakota::Model, 333 Dakota::JEGAOptimizer, 277
Dakota::ParallelLibrary, 420 JEGAOptimizer.C, 531
Dakota::Strategy, 476 JEGAOptimizer.H, 532
init_serial JEGAProbDescDB
Dakota:: ApplicationInterface, 87 Dakota::JEGAOptimizer::JEGAProbDescDB,
Dakota::Model, 333 283

initial_taylor_series
Dakota::NonDReliability, 388
initialize_class_data
Dakota::NonDReliability, 388
initialize_graphics
Dakota::Strategy, 476
initialize_level data

keywordtable.C, 533

lagrangian_merit
Dakota::SurrBasedOptStrategy, 492
LeastSq
Dakota::LeastSq, 288

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



INDEX

579

length
Dakota::BaseVector, 109
lin_coeffs_modify_n2s
Dakota::Minimizer, 309
LoadTheAlgorithmConfig
Dakota::JEGAOptimizer, 278
LoadTheConstraints
Dakota::JEGAOptimizer, 278
LoadTheDesignVariables
Dakota::JEGAOptimizer, 278
LoadTheObjectiveFunctions
Dakota::JEGAOptimizer, 278
LoadTheProblemConfig
Dakota::JEGAOptimizer, 278
local_eval_concurrency
Dakota::Model, 333
local_eval_synchronization
Dakota::Model, 333
lower
Dakota::String, 478

main
main.C, 534
restart_util.C, 536
main.C, 534
main, 534
manage_asv
Dakota::Model, 335
manage_inputs
Dakota::ProblemDescDB, 436
manage_linear_constraints
Dakota::Constraints, 146
manage_outputs_restart
Dakota::ParallelLibrary, 420
map
Dakota::ApplicationInterface, 88
map_response
Dakota::COLINApplication, 120
MAXINTVLS
Dakota::NonDEvidence, 371
MergedConstraints
Dakota::MergedConstraints, 299
Merged Variables
Dakota::MergedVariables, 303
minimize_residuals
Dakota::NL2SOLLeastSq, 355
Minimizer
Dakota::Minimizer, 309
Model
Dakota::Model, 331

MSI1
Dakota:: CONMINOptimizer, 138
multi_objective_modify
Dakota::Optimizer, 405
multi_objective_retrieve
Dakota::Optimizer, 405

N1

Dakota:: CONMINOptimizer, 137
N2

Dakota::CONMINOptimizer, 137
N3

Dakota:: CONMINOptimizer, 137
N4

Dakota::CONMINOptimizer, 137
N5

Dakota:: CONMINOptimizer, 137
Name

Dakota::JEGAEvaluator, 270
NCMB

Dakota::NonDEvidence, 371
new_dataset

Dakota::Graphics, 234
next_eval

Dakota:: COLINApplication, 120
NI

Dakota::NonDEvidence, 372
nlf0_evaluator

Dakota::SNLLOptimizer, 466
nlf1_evaluator

Dakota::SNLLOptimizer, 466
nlf2_evaluator

Dakota::SNLLOptimizer, 467
nlf2_evaluator_gn

Dakota::SNLLLeastSq, 460
NonDLHSSampling

Dakota::NonDLHSSampling, 375
NonDSampling

Dakota::NonDSampling, 399
num_coefficients

Dakota::Surfpack Approximation, 482
numerical_design_jacobian

Dakota::NonDReliability, 392
NV

Dakota::NonDEvidence, 371

objective
Dakota::SurrBasedOptStrategy, 492
operator const char
Dakota::String, 478

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



580

INDEX

operator T
Dakota::
operator()
Dakota::
Dakota::
operator<<<
Dakota::
operator=
Dakota::
Dakota::
Dakota::
Dakota::
Dakota::
Dakota::
Dakota::
Dakota::
Dakota::
Dakota::
Dakota::
operator==
Dakota,
Dakota::
operator>>
Dakota::
operator([]
Dakota::
Dakota::
Dakota::

Array, 104

Array, 105
BaseVector, 109

BoStream, 117

Approximation, 97
Array, 104
Constraints, 146
Interface, 255
Iterator, 263
Matrix, 296
Model, 332
ProblemDescDB, 435
Strategy, 475
Variables, 521
Vector, 527

60
DistinctVariables, 206

BiStream, 113
Array, 105

BaseVector, 109
List, 292

optimizationType

Dakota::

Dakota::
Optimizer

Dakota::

CONMINOptimizer, 136
DOTOptimizer, 210

Optimizer, 404

ParallelLibrary

Dakota::

ParallelLibrary, 419

ParamResponsePair

Dakota::ParamResponsePair, 424
parse

Dakota::GetLongOpt, 230
penalty_merit

Dakota::SurrBasedOptStrategy, 492

Phi
Dakota
Phi_inverse
Dakota
post_run
Dakota
pre_run
Dakota

::2NonDReliability, 393
::NonDReliability, 393
::Iterator, 264

::Iterator, 264

print_restart

Dakota, 60

restart_util.C, 535
print_restart_tabular

Dakota, 61

restart_util.C, 536
print_results

Dakota::Iterator, 264

Dakota::LeastSq, 288

Dakota::Optimizer, 405

Dakota::PStudyDACE, 439
print_vbd

Dakota::Analyzer, 79
printControl

Dakota::CONMINOptimizer, 136

Dakota::DOTOptimizer, 210
probability

Dakota::NonDReliability, 393
ProblemDescDB

Dakota::ProblemDescDB, 435

quantify_uncertainty
Dakota::NonDLHSSampling, 376

rawResponseArray
Dakota::Interface, 255
rawResponseMap
Dakota::Interface, 256
read
Dakota::ParamResponsePair, 424
Dakota::ResponseRep, 447, 448
read_annotated
Dakota::ResponseRep, 447
read_neutral
Dakota, 61
restart_util.C, 536
read_tabular
Dakota::ResponseRep, 447

realCntlParmArray
Dakota::DOTOptimizer, 210

rebuildControl
Dakota::SurrogateModel, 503

RecordResponses

Dakota::JEGAEvaluator, 272
ReCreateTheAlgorithmConfig
Dakota::JEGAOptimizer, 277
ReCreateTheProblemConfig
Dakota::JEGAOptimizer, 277
reliability
Dakota::NonDReliability, 393

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



INDEX

581

remove
Dakota::List, 291
removeAt
Dakota::List, 291
repair_restart
Dakota, 61
restart_util.C, 536
requestVector
Dakota::ActiveSet, 65
reset
Dakota::ResponseRep, 449
reset_inactive
Dakota::ResponseRep, 449
reshape
Dakota::BaseVector, 109
Dakota::ResponseRep, 449
resolve_inputs
Dakota::ParallelLibrary, 420
resolve_samples_symbols
Dakota::DDACEDesignCompExp, 190
Response
Dakota::Response, 443
response_mapping
Dakota::NestedModel, 350
response_modify_n2s
Dakota::Minimizer, 309
ResponseRep
Dakota::ResponseRep, 446, 447
restart_util.C, 535
concatenate_restart, 536
main, 536
print_restart, 535
print_restart_tabular, 536
read_neutral, 536
repair_restart, 536
retrieve
Dakota::GetLongOpt, 230
run
Dakota::Iterator, 263
Dakota::LeastSq, 288
Dakota::Optimizer, 405
Dakota::PStudyDACE, 438
run_coupled
Dakota::MultilevelOptStrategy, 344
run_iterator
Dakota::Iterator, 264
Dakota::Strategy, 475
run_strategy
Dakota::SurrBasedOptStrategy, 490

run_uncoupled
Dakota::MultilevelOptStrategy, 345

run_uncoupled_adaptive
Dakota::MultilevelOptStrategy, 345

S

Dakota:: CONMINOptimizer, 138
sampling_reset

Dakota::NonDSampling, 399
SCAL

Dakota:: CONMINOptimizer, 138
second_order_flag

Dakota::Approximation, 97

Dakota::TaylorApproximation, 513
self_schedule_analyses

Dakota:: ApplicationInterface, 89
self _schedule_evaluations

Dakota:: Applicationlnterface, 90
self schedule_iterators

Dakota::ConcurrentStrategy, 130
SeparateVariables

Dakota::JEGAEvaluator, 271
serve_analyses_asynch

Dakota::ForkApplicInterface, 217
serve_analyses_synch

Dakota::ApplicationInterface, 89
serve_evaluations

Dakota:: ApplicationInterface, 88
serve_evaluations_asynch

Dakota:: ApplicationInterface, 91
serve_evaluations_peer

Dakota::ApplicationInterface, 91
serve_evaluations_synch

Dakota:: Applicationlnterface, 91
serve_iterators

Dakota::ConcurrentStrategy, 131
set_standard_method_parameters

Dakota::COLINOptimizer, 123
show_data_3d

Dakota::Graphics, 234
SIM, 62
SIM::DirectFnApplicInterface, 196
SNLLOptimizer

Dakota::SNLLOptimizer, 466
sort

Dakota::List, 292
spawn_analysis

Dakota::SysCallAnalysisCode, 505
spawn_evaluation

Dakota::SysCallAnalysisCode, 505

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



582

INDEX

spawn_input_filter

Dakota::SysCallAnalysisCode, 505
spawn_output_filter

Dakota::SysCallAnalysisCode, 505
specify_outputs_restart

Dakota::ParallelLibrary, 419
static_schedule_evaluations

Dakota::Applicationlnterface, 90
stop_evaluation_servers

Dakota::ApplicationInterface, 89
Strategy

Dakota::Strategy, 474, 475
subModel

Dakota::NestedModel, 351
subordinate_iterator

Dakota::Model, 332
subordinate_models

Dakota::Model, 333
SurfpackApproximation

Dakota::Surfpack Approximation, 481
surrogate_model

Dakota::Model, 332
surrogates_to_surf_data

Dakota::Surfpack Approximation, 483
synch

Dakota::ApplicationInterface, 88
synch_nowait

Dakota::ApplicationInterface, 88
synchronize

Dakota::COLINApplication, 120
synchronize_derivatives

Dakota::Model, 335
synchronous_local_analyses

Dakota::ForkAppliclnterface, 217
synchronous_local_evaluations

Dakota:: ApplicationInterface, 90

tr_ratio_check
Dakota::SurrBasedOptStrategy, 491
trans_correlations
Dakota::NonDReliability, 392
trans_grad_X_to_U
Dakota::NonDReliability, 390
trans_hess_X_to_U
Dakota::NonDReliability, 391
trans_U_to_X
Dakota::NonDReliability, 389
trans_U_to_Z
Dakota::NonDReliability, 389
trans_X_to_U

Dakota::NonDReliability, 390
trans_X_to_Z

Dakota::NonDReliability, 390
trans_7Z_to_U

Dakota::NonDReliability, 390
trans_7Z_to_X

Dakota::NonDReliability, 390
truth_model

Dakota::Model, 332

update_actual_model
Dakota::DataFitSurrModel, 153
update_approximation
Dakota:: ApproximationInterface, 101
update_augmented_lagrange_multipliers
Dakota::SurrBasedOptStrategy, 491
update_filter
Dakota::SurrBasedOptStrategy, 491
update_lagrange_multipliers
Dakota::SurrBasedOptStrategy, 491
update_level_data
Dakota::NonDReliability, 388
update_mpp_search_data
Dakota::NonDReliability, 388
update_penalty
Dakota::SurrBasedOptStrategy, 491
update_quasi_hessians
Dakota::Model, 335
update_response
Dakota::Model, 335
upper
Dakota::String, 478
usage
Dakota::GetLongOpt, 230

var_based_decomp
Dakota::Analyzer, 79
Variables
Dakota:: Variables, 519, 520
vars_set_compare
Dakota, 60
Vector
Dakota::Vector, 527
VMAX
Dakota::NonDEvidence, 372
VMIN
Dakota::NonDEvidence, 372
volumetric_quality
Dakota::Analyzer, 79

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



INDEX 583

write
Dakota::ParamResponsePair, 425
Dakota::ResponseRep, 447, 448
write_annotated
Dakota::ResponseRep, 447
write_tabular
Dakota::ResponseRep, 448

X
Dakota::NonDEvidence, 372

Y
Dakota::NonDEvidence, 371

DAKOTA Version 4.0 Developers Manual generated on October 13, 2006



DISTRIBUTION:

8 MS 1318 M. S. Eldred, 1411
2 MS 9018 Central Technical Files, 8944

2 MS 0899 Technical Library, 4536

o84



	DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 4.0 Developers Manual
	Abstract
	Contents
	Chapter 1 - DAKOTA Developers Manual
	Chapter 2 - DAKOTA Directory Hierarchy
	Chapter 3 - DAKOTA Namespace Index
	Chapter 4 - DAKOTA Hierarchical Index
	Chapter 5 - DAKOTA Class Index
	Chapter 6 - DAKOTA File Index
	Chapter 7 - DAKOTA Page Index
	Chapter 8 - DAKOTA Directory Documentation
	Chapter 9 - DAKOTA Namespace Documentation
	Chapter 10 - DAKOTA Class Documentation
	Chapter 11 - DAKOTA File Documentation
	Chapter 12 - Recommended Practices for DAKOTA Development
	Chapter 13 - Instructions for Modifying DAKOTA’s Input Specification
	Chapter 14 - Interfacing with DAKOTA as a Library
	Chapter 15 - Performing Function Evaluations
	Index
	DISTRIBUTION



