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Preface to the Series

The RIKEN BNL Research Center was established this April at Brookhaven National Labo-
ratory. It is funded by the “Rikagaku Kenkysho” (Institute of Physical and Chemical Research)
of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin
physics, lattice QCD and RHIC physics through nurturing of a new generation of young physicists.

For the first year, the Center will have only a Theory Group, with an Experimental Group to
be structured later. The Theory Group will consist of about 12-15 Postdocs and Fellows, and plans
to have an active Visiting Scientist program. A 0.6 teraflop parallel processor will be completed at
the Center by the end of this year. In addition, the Center organizes workshops centered on specific
problems in strong interactions.

Each workshop speaker is encouraged to select a few of the most important transparencies
from his or her presentation, accompanied by a page of explanation. This material is collected at
the end of the workshop by the organizer to form a proceedings, which can therefore be available
within a short time.

T.D. Lee
July 4, 1997
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Introduction

The title of the workshop, “The QCD Phase Transitions”, in
fact happened to be too narrow for its real contents. It would
be more accurate to say that it was devoted to different phases
of QCD and QCD-related gauge theories, with strong emphasis
on discussion of the underlying non-perturbative mechanisms
which manifest themselves as all those phases.

Before we go to specifics, let us emphasize one important as-
pect of the present status of non-perturbative Quantum Field
‘Theory in general. It remains true that its studies do not get at-
tention proportional to the intellectual challenge they deserve,
and that the theorists working on it remain very fragmented.
The efforts to create Theory of Everything including Quantum
Gravity have attracted the lion share of attention and young tal-
ent. Nevertheless, in the last few years there was also a tremen-
dous progress and even some shift of attention toward empha-
sis on the unity of non-perturbative phenomena. For example,
we have seen some efforts to connect the lessons from recent
progress in Supersymmetric theories with that in QCD, as de-
rived from phenomenology and lattice. Another example is Mal-
dacena conjecture and related development, which connect three
things together, string theory, super-gravity and the (N=4) su-
persymmetric gauge theory. Although the progress mentioned
is remarkable by itself, if we would listen to each other more
we may have chance to strengthen the field and reach better
understanding of the spectacular non-perturbative physics.




That is why the workshop was an attempt to bring together
people which normally belong to different communities and even
cultures (they use different tools, from lattice simulations to
models to exact solutions), in order to discuss common physics.
It was a very successful, eye-opening meeting for many partic-
ipants, as some of them said in the last round of discussions.
Even organizers (who of course have contacted many speakers
in advance) were amazed by completely unexpected things which
were popping out of one talk after another. Extensive afternoon
discussion, in which we always return back to the morning talks,
has helped to clarify many issues.

One specific issue which appeared in many talks at the work-
shop was the surprisingly dominant role of instantons. We hear
about that from lattice practitioners, people who make models
for vacuum and extreme QCD, and even in the discussion of the
physical origin of the now famous anti-deSitter 5-d space. In
these (admittedly very different situations) people find that re-
stricting ourselves to instanton-induced effects, one can actually
reproduce results known from other methods (or experiment).

The enclosed copies of some main transparencies were re-
ordered compared to the workshop schedule and divided into 5
major subjects, (i) High density QCD, (ii) High temper-
ature QCD, (iii) Lattice instantons, (iv) QCD at large
number of flavors, (v) The lessons from Supersymme-
try, (vi) Topological effects in Applications which we now

discuss subsequently.
Finally, we are grateful to RIKEN/BNL Center for its sup-
port, and to all the speakers for their inspiring work.
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P Extremé QCD in the Instanton Model

Thomas Schdfer
Institute for Advanced Study
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Symmetry Breaking by Instantons at Finite Density
Gregory W. Carter * # and Dmitri Diakonov °

2Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen @, Denmark
®NORDITA, Blegdamsvej 17, 2100 Copenhagen @, Denmark

We analyze the phases of QCD at zero temperature and finite quark density. An
effective action which features instanton-induced interactions is used to consider the pos-
sibilites of chiral and diquark condensation. Since these two channels arise from the same
interaction, their relative strengths are constrained by a coupling constant, itself dyanam-
ically determined. A coupled set of Schwinger-Dyson-Gorkov equations is constructed
and solved to first order in the instanton packing fraction. The resulting mean-field solu-
tions are compared thermodynamically in order to specify the ground state as a function
of chemical potential. Although a phase of mixed symmetry breaking is obtained, the
primary thermodynamic competition is between a state of exclusively chiral symmetry
breaking and one of color breaking alone. At low density, we recover the standard vac-
uum picture of spontaneously broken chiral symmetry. However, at high density the color
superconducting state becomes favored and a first-order phase transition separates the
equilibria. This transition occurs at a chemical potential of u. = 335 MeV, which corre-
sponds to a jump in quark density from 0.06 fm™ to 1.14fm™>. As an intermediate step in
the density calculation, we calculate the quark occupation numbers as functions of spatial
momentum. This analysis illustrates the different physics at work in each phase, in that
chiral symmetry breaking leads to an effective quark mass which reduces the radius of the
fermi surface, whereas quark pairing smears the surface itself through a redistribution of
the states.

*Speaker at the workshop, RIKEN BNL Research Center, 04 November 1998
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The phase diagram of two colors QCD
Marie-Paola Lombardo
Istituto Nazionale di Fisica Nucleare,
Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ)

We discuss the phase diagram of two colours QCD in the temperature-
chemical potential-mass space, using lattice results for bulk thermodynam-
ics, susceptibilities / condensates, interquark potential and spectrum. We
derive the level ordering at y = 0 showing that pion, scalar diquark and
antidiquark are mutually degenerate, and so are the sigma, pseudoscalar
diquark and antidiquark. We carry out a finite density spectroscopy calcu-
lation in analogy with what done in past quenched SU(3) studies and we
discuss the pattern of chiral symmetry using either susceptibilities in the rel-
evant channels (pseudoscalar and scalar mesons and diquarks) and masses.
On a cold lattice our exploratory calculations give hints of deconfinement
at p = my /2, diquarks appear to condense as expected of phenomenological
models, and we find four nearly degenerate, bound states for ¢ > m,/2, in
particular the ap particle and the pion seem degenerate even at non-zero
mass. On a warmer lattice, close to the chiral deconfinement tramnsition,
the rotation of the chiral condensate in the chiral sphere is still evident,
however the number density follows u3, suggesting either that the critical
temperature for diquark condensation is (slightly) below T, or that the di-
quark condensate has little impact on the equation of state. The observed
particle spectrum is significantly distinct from that of quenched models : in
the quenched case the energies of particles carrying baryon number always
equate the Fermi level, here we find significant deviations. We further assess
the role of the chemical potential in the dynamics by carrying out a partial
quenched calculation. We observe that diquarks propagators for p > mg /2
resemble that of quenched SU(3), in agreement with random matrix models
results. We speculate that, even if spectrum and symmetries of finite density
QCD are dramatically N, dependent, some features of real QCD might be
obtained by “extrapolating” from the limiting case N, = 2..

These exploratory results call for a detailed investigation of the vacuum
structure at nonzero density, e.g. instanton distributions, gluonic conden-
sates and correlation of the topological charge, which are being planned,
while related studies and refinements of the work presented here are in
progress. I would like to thank my collaborators: Ian Barbour, Peter Cromp-
ton, Simon Hands, John Kogut and Susan Morrison.
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Imaginary chemical potential as a
tool for lattice QCD
M. Alford, A. Kapustin, F. Wilczek

Standard lattice gauge theory algorithms run into the well-known “sign
problem” at real chemical potential, since they try to weight configurations by
det M(p), which is complex. The Glasgow method uses the p = 0 ensemble, which
is then reweighted with a factor det M(u)/det M(0). Unfortunately it has not
been able to reproduce the simplest feature of QCD at finite density, namely the
onset of baryon density at u = mp/3. This problem is believed to be caused by
 measure-mismatch: the p = 0 ensemble is dominated by quark number N = 0
sectors, and has very little overlap with the finite quark number sectors. The
Glasgow method therefore needs very high statistics, since it slowly builds up the
correct results from rare but large fluctuations. At moderate statistics, before the
large fluctuations begin to occur, the Glasgow method can give very misleading
results with apparently small statistical error bars.

Recently, we have investigated the use of imaginary chemical potential u = iv.
This avoids the measure-mismatch problem, since det M (iv) is always real. Monte-
Carlo methods can be used to compute ratios of the partition function, so one can
calculate Z(iv)/Z(ivy), using the p = 1vy measure, for some range of imaginary
chemical potential v close to vy. By chosing several “patches”, each centered
on a different 14y, one can calculate ratios of the partition function at different v
without encountering any overlap problems. The canonical partition functions Zy
can then be obtained by a Fourier transform. This is where the main limitation of
the imaginary chemical potential method arises: the Fourier transform will become
very sensitive to errors in Z(iv) for large N. Unlike Glasgow, it will be clear when
this method is not working, since the error bars from the Fourier transform will
become large.

As a feasibility study, we performed a Monte-Carlo calculation of the partition
function of the two-dimensional Hubbard model with imaginary chemical potential.
The results for Z(iv) and its Fourier transform Zy are given in the transparencies.
It is encouraging that we were able to obtain the first few Z with reasonable
errors. The imaginary chemical potential ensemble is not biased toward finite
baryon number, and relies, like Glasgow, on fluctuations to explore N # 0 sectors.
However, for QCD, we only need to measure the first two canonical partition
functions Zy and Z; in order to obtain the onset chemical potential u,, since
Z3/Zy = exp(—3uo/T). Moreover, at temperatures close to the phase transition,
the baryon becomes light (at least in the 2 flavor case), and so thermal fluctuations
will explore the N $# 0 sectors.




II. Lattice QCD at finite density

Z(w) = Y Zye N

Z det M e~ SsaueelU]

U(z) configs sampling weight

Sterm = fx QZMZb

M= ~*D,+rD?+m+ uy

When can we guarantee that the sampling weight is positive?
If we have Ny flavors, each with matrix M,

det M € R and Npg even
M' ~ M |

M*~M

“Sign Problem:” for p £ 0, M + MT,
so det M is not necessarily real (let alone positive).




ITI. Imaginary chemical potential

M= ~*D,+rD?>+m+ivy
Mt = —y#D, +rD? + m — ivyy = ys M~y

So with imaginary chemical potential y = tv, det M is real.

Z(iwv) < det M (iv) >
Z(iVupdate) det M(iVUPdate) K=tVypdate

det M (iv)
det M(il/update) )

— S &5 det M (ivupene)
U(z) >

sampling weight

Unlike the Glasgow algorithm, we don’t have to use x =0
measure, which requires high statistics as the correct expectation
value builds up from rare fluctuations.

We can make the fluctuations arbitrarily small, using patches

Vupdate = Y0, V1 - - -

¢
!
\

? .
Vo Vi V2

What do we do with Z(iv)?
Fourier transform to get

3 2n/B

ZN dv Z (iv)e PV,

_271' 0

This is the difficult part.
If Z1 < Zgy then it will be hard to extract.

But some physics may be visible directly in Z(iv). ..
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The Hubbard model

Can we do this with real Monte-Carlo data? The simplest
system with a “sign problem” is the repulsive Hubbard
model: non-relativistic electrons on a lattice with a hopping

term and on-site repulsion.

U | )
H=-K ) a’f:'roa’ja__Z— D (ahay —ajjay)*+u Y ala;,
7 1,0

(1,3),0

By a particle-hole transformation, p = 0 gives half-filling.

Z(p) =Y e /2 det M(u) det M(—p)
A(z)

For real u, M are real matrices.
For u zero or imaginary, this is | det M|?, and is positive.

Again, we can calculate ratios of partition functions

| det M (iv)|?
| det M (ivp)|?

Z(iv) _ o= A%/2 de )2

and use several values of 1y to reduce measure-mismatch.

48




Hubbard model Z(iv)
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Zn for Hubbard m.odel

We fit our preliminary Z(iv) data to
exp(—av?) x spline,

and Fourier transform it:

In Z(N)




High temperature QCD




Results on Deconfinement and Chiral Symmetry Restoration
from Lattice QCD

Frithjof Karsch
Fakultat fiir Physik, Universitdt Bielefeld, D-33615 Bielefeld, Germany

The QCD phase transition from a low temperature hadronic phase to the high temperature
quark gluon plasma phase does show features related to deconfinement (liberation of many
new degrees of freedom, sudden change in the asymptotic behavior of the heavy guark
potential...) as well as chiral symmetry restoration (vanishing of the chiral condensate,
degeneracy of thermal screening masses of scalar and pseudoscalar mesons...).

The order of the transition has been analyzed in the heavy quark mass (pure gauge)
* limit as well as for light quarks with different numbers of light flavors (ny). To a large
extent it has been found to agree with predictions based on general universality arguments
which relate the 4-d gauge theories to 3-d spin models with the same global symmetries.
In particular, in the pure gauge sector (my; — oco) it has been verified that in the case
of second order transition the critical behaviour is controlled by the relevant universality
class of 3-d spin models with the same global symmetry.

In the case of QCD with two and three light flavors the situation, however, is still
not completely clarified. In the ny = 3 case it seems to be clear that the transition
is first order. However, on the quantitative level conflicting results from Wilson and
staggered fermion- calculations exist. While the former suggests the existence of a first
order transition up to rather large values of the quark mass the latter suggest a first order
transition only for rather small quark masses, m,/T<0.1. These latter findings have been
confirmed in recent calculations with improved staggered fermion actions. They suggest
that also in the “real world”, i.e. for the case of two light quarks and a heavier strange
quark, m,/T, ~ 1, the transition will be continuous. :

For ny = 2 the chiral transition seems to be continuous. At least there is no evidence
for a first order transition for all values of the quark mass analyzed so far, m,/T > 0.04.
On the other hand the current analyses did not reproduce the expected critical behavior
for a system in the universality class of the 3-d, O(4)-symmetric spin models. As different
observables yield inconsistent results for critical exponents it may, however, be speculated
that theses analyses are still influenced by finite lattice artifacts and/or the use of too
large quark masses. One thus may hope that the situation will improve with the use of
improved discretization schemes for the fermions. Moreover, it has to be clarified in more
detail, in how far the approximate restoration of the Us(1) symmetry can influence the
transition. The current analysis of screening masses and susceptibilities suggests that the
U4(1) remains broken at T,. However, the amount of breaking does seem to be strongly
reduced and may even influence the order of the transition for small quark masses.

So far lattice studies of the QCD phase transition have successfully been performed
only at vanishing baryon number density. At non-zero baryon number density most
calculations so far explored the formulation of QCD with a non-vanishing chemical po-
tential. This leads to a complex fermion determinant and prohibits the application of
conventional Monte Carlo techniques. It therefore may be worthwhile to explore other
approaches, which have been around since quite some time, however have not been ex-
plored in any greater detail. In particular, one may look again at the formulation of QCD
with a non-vanishing baryon number. This formulation has the advantage of leading to
a real determinant. However, the difficulties enter again through the need of performing
an additional Fourier integration which again introduces a strongly oscillating integrant.
It remains to be seen in how far such an approach is applicable also on large lattices.
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T Mg — OO| pure SU(N,) gauge theory a

detailed lattice calculations with control over finite size aud
_finite cut-off eﬁects - (extrapolations to continuum lmit,
improved actions) I S

N, = 2'  Z(2), Ising model
294 grder for d=3, 4

"N.=3 Z(3) , Potts model |
o B an_or-der for d=3
1%t - order for d=4

N.>3, d=4: 1% order - ~ SU(4) = Wingate

'0._69 2) ,SU(2),d=4
 T¢/v/o={0.63-066 ,SU(3),d=4 |
| | 0.98 (2) , SU(3),d=3

Tt ~ \/g/(d—z)w string models

SU(3) , d =4: equation of state

e small latent heat e /Ta=14(1)
e low critical energy density ¢} /T4 = 2.5 (5)
® signiﬁcant deviations from ideal gas even .for T >> Te:

e/ T < 0.9 = electric and magnetic screening
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Critical Temperature'in units of th_e String Tension |

for 2-flavour QCD with varying guark mass
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mq — 0] QCD with light quarks

lattice calculatmns still struggle w1th strong cut-off / volume_
dependence
' = Wilson vs. staggered formulation

(domain wall fermions = Mawhinney)

C ny >3, Nc‘-—— 3 st brder for mq/T <01
disappearance.of xSB for ns > ?

ng=4, N.= 3 reduction of xSB at T =0, , .
_ (RD Mawhinney. NPB (Proc.Suppl.) 63 (98) 71")_
N¢=2 no indication for a 1% order transition

- at least for my/T > 0.06

ng=2, N.=3 continuous transition (for m, /T 2> 0 04)
|  O(4) exponents ?
Uja(1) breaking small  (non-zZero?)

T./v/o drops significantly with decreasing m,

T./Vo ~ 0.4

#d.of. - QCD

(E.O-S)QCD ~ (BE.0.8)su #d.of. — SU(3)
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* JLQCD, hep-lat/9809102; Columbia, Phys.Rev.Lett 65 (1990) 2491
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Critical Behavior at the High Temperature QCD
Phase Transition — Summary of Talk
Carleton DeTar

University of Utah

o Question: At the chiral phase transition with two zero mass quark flavors, zero baryon

density, high temperature, and two flavors, we expect O(4) critical behavior.

e Studies at N; = 4 with staggered fermions by the JLQCD, Bielefeld, and MILC col-
laborations have raised doubts. The MILC collaboration has extended its studies to
larger lattices: 243 x 4 and smaller quark masses: am = 0.008 and continues to find
strong deviations from O(4), O(2) and mean field predictions for critical exponents

and the scaling equation of state.

o At N; = 6, 8, and 12 we see somewhat better agreement, suggesting that lattice
artifacts may play a role in the N; = 4 discrepancy. However, all of these weaker

coupling studies were done at N,/N; = 2, so not as exhaustively as N; = 4.

e Nonetheless, we may view the V; = 4 lattice theory as a chiral model without reference
to continuum limits. In that case we would still expect O(2) critical behavior, barring

additional complications.

e Recent simulations of an N; = 4 chiral QCD model by Kogut, Lagaé, and Sinclair
find a first order chiral/deconfining phase transition at zero quark mass when a small
four-fermion coupling is turned on. These results suggest the possible proximity of
a first-order phase transition at N, = 4 that could spoil the expected O(2) critical

behavior of the N; = 4 system.

e We hope improved actions will lead us out of these difficulties.
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Domain Wall Fermion Thermodynamics
Robert D. Mawhinney!

We report on simulations of QCD (both quenched and full) using domain wall
fermions (DWF). This fermion formulation uses an extra, fifth dimension for the fermions
and has the full global symmetry of continuum QCD when the extent of the fifth di-
mension is infinite. In particular, the formulation has a U4 (1) symmetry, which should
be anomalously broken by the dynamics.

The first slide shows the value the chiral condensate (1) as a function of the quark
mass for smooth lattice instanton configurations. The expected 1/m divergence, due
to zero modes, is clearly seen for small masses. (The symbols which do not diverge,
are for very small lattice extents in the fifth dimension where true zero modes are not
expected.)

On quenched ensembles of lattices, the 1/m term is also present in the quenched
chiral condensate, since there is no fermionic determinant to suppress zero modes. The
second slide shows the chiral condensate on a zero temperature 8% x 32 lattice. For a
16® x 32 volume with the rest of the parameters the same, the coefficient of the 1/m
term drops by a factor of 6.

The third slide shows the situation just above T, once again quenched. Here the
1/m term is visible, but it is independent of the volume for the two volumes studied.
Also notice that there is a constant (mass independent) term, indicating chiral symmetry
breaking, even though we are above T, as can seen by the change in value for the Wilson
line. As the temperature is increased, we have seen this constant term decrease.

For full QCD, we have done a simulation with DWF to determine whether U,(1) is
broken. The fourth slide shows the difference in the susceptibilities for pion (r: isovector,
pseudoscalar) and delta (4: isovector, scalar) screening masses. (The susceptibilities are
proportional to [ d*z{r(z)x(0)) and f d*z(6(x)d(0)).) One sees the expected quadratic
dependence on the quark mass and a statistically non-zero value for m — 0.

The fifth slide shows a similar result for the screening masses themselves. Once again
there is a non-zero value for m — 0, although it is less than 10% of the value of either
screening mass individually. We have seen that U,(1) is broken above T, for domain
wall fermions, although the size of the breaking is small.

1This work is done in collaboration with Ping Chen, Norman Christ, George Fleming, Adrian
Kaehler, Catalin Malareanu, Gabriele Siegert, ChengZhong Sui and Pavlos Vranas. It is supported
in part by the DOE.
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8°x32, B=5.85, quenched, 200 configs
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B=5.71, quenched, 128/20 configs
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SU(4) Yang-Mills: Phase Transition and String Tensions
Matthew Wingate', in collaboration with Shigemi Ohtal»?

IRIKEN BNL Research Center and 2KEK

In this talk I surnmarize the motivation for and results of our exploratory SU(4) Yang-
Mills simulations [1]. Ref. [2] suggests that a second—order SU(co) deconfinement transition
would reconcile simple large N, arguments with lattice SU(3) results: the cubic term in the
effective 3~d Lagrangian for SU(3) could be solely responsible for the first—order behavior.
Also of interest are ratios of string tensions [3]. N, = 4 is the smallest number of colors where
one expects string tensions to be different between fundamental and diquark representations
at large separations. For this study, we work at N; = 6 and compute the plaquette, the
Polyakov loop in different representations, and the corresponding Polyakov loop correlators.

Slide 1 shows the magnitude of the fundamental Polyakov loop L4 and the plaquette as
one increases the gauge coupling 3 = 8/¢g? ~ T. The deconfinement transition occurs at
Bc = 10.76 = 1, which should be well separated from the artificial bulk transition around
10.3. Slide 2 is a plot of the deconfinement fraction which also indicates a breaking of Z(4)
symmetry at 8.. In slide 3 we plot histograms of z — arg(L4), the angle between arg(L,)
and its nearest Z(4) symmetry axis, as well as histograms of |L4|. The latter would show
a two state signal if there is a first—order transition at §,. With ~ 4000 measurements on
the 122 lattice, we cannot locate such a two state signal. For SU(3) larger volumes were
necessary to locate such a signal. Therefore the only conclusion we draw presently is that
a very strong first—order SU(4) deconfinement transition is unlikely.

In slide 4 we turn to our 16 lattice calculations at f = 10.65 and 10.7 where we
compute 04 and gg, the string tensions between static fundamental and anti-symmetric
diquark charges, respectively. From our best fits, we find 1 < og/04 < 2. However, this
result should be taken with care since our volume may not be large enough to be sure that
only the string tension remains at our largest separation.

These results, while not definitive, are exciting and encouraging. An understanding of
SU(N.) Yang-Mills with N, > 3 would shed some light on real world QCD.

References

[1] S. Ohta and M. Wingate, poster at “International Symposium on Lattice Field Theory
1998”, Boulder, CO, USA, hep-lat/9808022.

[2] R. Pisarski and M. Tytgat, proceedings of the XXV Hirschegg Workshop on “QCD
Phase Transition”, Jan. 1997, hep-ph/9702340.

[3] M. Strassler, plenary talk at “International Symposium on Lattice Field Theory 1998”,
Boulder, CO, USA, hep-1at/9810059; and these proceedings.
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deconfinement fraction
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Polyakov loop correlation

‘ T ] T T

R= 065, (Sate 3

(La(r)Lqa(0)")

i1 lIHlll | ] lllllvll 1t []Illl’l | Illllll i J_IlIIIII

T lllll||| Ijlllllll T Il|l|I|| T IIHIIII ¥ llllll|l VT TTI

(@)
_
)]

Polyakov loop correlation

ll‘l—fll ll'll—lll![

P TTTin

i Illlllll At L ppt

LI ) lllllll

¥ IIHHII
I IIIIIII'

(La(r)Lqg(0)")
1 ||uu|

T lvlllllrr T Iﬁlllll

11 lIlIIII




S{’f‘?"j medel <?2$3r6k1 3 Alvaree "%2) =

~ 2 ) =
= ,, (-
&Q?“AS M‘3 oN A:Meﬁs‘tdﬁ_ .

F-M F T M ‘% "3\\( 345\1—(&-.2

Te 0. 64 (=)

~ -

o (T=) D. 63 ~ 0.66

Tws  works i Su(«)

2 e 3.5 0

/(: x — , =

2 o) 0.5%
0.ex

Su(z)
s«(3)

@-:- 1.6
(p: (6. 65

F: (O.F

%& HB Aech T=0 5‘\"’}/\3 Yengcom |

79




Deconfinement in SU(2) Yang-Mills theory
as a center vortex percolation transition*
(Summary)

M. Engelhardt

Institut fiir Theoretische Physik, Universitat Tiibingen
Auf der Morgenstelle 14, 72076 Tiibingen, Germany

Summary of talk presented at the RIKEN BNL Workshop on “QCD Phase Transi-
tions”, Brookhaven National Laboratory, USA, November 4-7, 1998. Work per-
formed in collaboration with K. Langfeld, H. Reinhardt and O. Tennert. For

a preliminary account of some of this work and pertinent references, see eprint
hep-lat/9805002.

The center vortex picture of confinement generates an area law for the Wilson loop by invoking the presence
of vortices in typical configurations entering the Yang-Mills functional integral. These vortices are closed
two-dimensional surfaces in four-dimensional space-time. They carry flux such that they contribute a
factor —1 (for the SU(2) color case considered here) to any Wilson loop whenever they pierce its minimal
area. Random intersections of vortices with Wilson loop areas generate an area law (cf. 1% transparency).
The present work investigates whether and how this picture can generate a deconfinement transition. It
is observed that randomness in the above sense demands that vortex clusters percolate in space-time.
Imposing a maximal cluster length leads to a perimeter law (cf. 1% transparency). It is conjectured that
vortices cease to percolate in the deconfined phase.

The tools which allow to test this conjecture have only become available recently through the work of
Faber, Greensite, and collaborators. In analogy to ’t Hooft’s Abelian gauges and Abelian projection,
they define maximal center gauges and center projection to localize vortices on the dual lattice (cf. 27¢
transparency). It has been verified that the vortices defined thus generate the full Yang-Mills string tension
(so-called center dominance) at zero and at finite temperatures.

Using these techniques, one can measure planar densities of points at which vortices pierce two-dimensional
planes in the lattice. One observes a certain polarization of the vortices into the time direction as tem-
perature is increased (cf. 3¢ transparency). More importantly, vortices indeed cease to percolate at the
deconfinement transition, cf. the middle plots on the 37 transparency, which show the percentage of
available vortex material concentrated in clusters of a given extension (measured in units of the size of
the universe). These plots apply to the vortex lines obtained in a cut of the universe in which one space
coordinate is fixed. If one instead considers a time slice, percolation persists in the deconfined phase, cf.
the bottom plot on the 3™ transparency. This in particular explains the presence of a spatial string tension
above the deconfinement temperature.

" One obtains an intuitive picture of the dominant configurations in the respective regimes which is sum-
marized on the 4™ transparency. The short vortices which dominate the deconfined phase wind around
the lattice in time direction. These configurations are not available in the low temperature regime due to
the different shape of (Euclidean) space-time. It is observed that the picture obtained here is dual to the
electric flux tube picture, in which electric flux percolates in the deconfined phase and does not percolate
in the confined phase.

In a lattice model of vortices as random surfaces, one can understand the percolation transition in terms
of an action-entropy competition. One of the questions deserving further inquiry (cf. 5% transparency)
is whether such a random surface model indeed emerges as a low-energy effective theory from Yang-Mills
theory. Also, besides generalizing the present work to SU(3) color, continuum formulations of the random
surface model need to be investigated, along with the inclusion of fermions in such a model.

* Supported in part by DFG under contract Re 856/1-3.




center vortex picture — Heuristics
Vortices: Closed 2-D world-sheets in 4-D space-time
Contribution (-1) to Wilson loop when minimal area
pierced
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Tools: Locating vortices in lattice configurations

Idea: 1. Choose gauge such that relevant physical infor-
mation concentrated optimally on collective de-
grees of freedom under investigation

2. Project onto collective degrees of freedom

E.g. Maximal Abelian gauge, Abelian projection
— Dual superconductor picture

Here: 1. Mlaximal center gauge

max Y [tr U;]?
?

Links as close as possible to center elements

2. Center projection

U— signtr U

—— Lattice of center elements
— Vortices on dual lattice

Question: Is information relevant for confinement
indeed concentrated on vortices?

Answer empirically: — Center dominance




li Vortex properties: Density
;
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Typical configurations in the confined
and deconfined phases
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— understand also the spatial string tension

Comparison to electric flux picture
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Fic. 3. Flux tubss berween static quarks in SU(2) pure gauge theory: (a) at low temperatures: (b) at ig®
temperatures.
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Outlook: Dynamics of vortices

Model: Vortices as random surfaces on the dual lattice

e Bianchi constraint organizes magnetic flux into
vortices

e In all other respects, expect magnetic degrees of
freedom to weakly interact at large distances

Deconfinement understandable in such a model in
terms of an action-entropy competition

- Further investigation:

e Emergence of random surface model as low-energy
effective theory from Yang-Mills theory?

e Generalization to SU(3) color
e Continuum version of random surface model

e Including fermions (Bianchi constraint does not
rigidly couple vortices and sources!)




Insight from the Lattice into the Role of Instantons

J.W. Negele
RIKEN BNL Workshop on QCD Phase Transitions, November 1998

Lattice QCD provides strong evidence that instantons play a major role in quark propagation in the
vacuum and in light hadron structure.

e Two-point vacuum correlation functions of hadron currents display behavior expected from the
"t Hooft interaction and instanton liquid models.

e Calculations with all gluons and only instantons agree for vacuum correlation functions, hadron
density-density correlation functions, and the nucleon axial change.

e Quark zero modes are observed in quenched and full QCD.

o Truncation of the quark propagator to the zero mode zone accounts for the p, 7, and 7’
contributions to vacuum correlation functions and for the topological charge.

e Quark localization is observed at instantons in uncooled configurations.

Consistent results for the instanton content of the QCD vacuum have been obtained by a variety of
methods.

e Average instanton size:

0 ~ 0.39 £ 0.05 fm when extrapolated to the uncooled vacuum
p ~ 0.54 £ 0.05 fm when cooled to N/V ~ 3 fm™*

¢ Methods for measuring topological susceptibility agree and are consistent with the
Veneziano-Witten formula.
The heavy quark potential has been measured in an instanton liquid to ~ 3 fm.
¢ Linear for small p, constant for large p.
o Slope ~ 150 at N/V = 1fm™* and 5 = 0.33 fm
~catN/V ~10fm™*, 5=033fmor N/V ~ 1 fm™*, 5 = 0.59 fm
The topological susceptibility has been measured at nonzero T for quenched and full QCD.
e p decreases ~ 25% by 1.3 T,

o Qualitative agreement with Debye screening observed.

A new class of calorons comprised of monopoles has been discovered for T # 0 and
Polyakov loop # +1. :

Details are given in hep-1at/9810053.




R(x)/Ro(x)

x (fm)

Vector (V) and Pseudoscalar (P) correlation functions are shown in the upper and lower panels
respectively. Lattice results are denoted by the solid points with error bars and fit by the solid
curves, which may be decomposed into-continuum and resonance components denoted by short
dashed and dotted curves respectively. Phenomenological results determined by dispersion
analysis of experimental data are shown by long dashed curves, and the open circles denote the
results of the random instanton model. [From hep-lat 9804017]
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Contributions of low Dirac eigenmodes to the vector (upper graph) and pseudoscalar
(1ower graph) vacuum correlation functions. The upper graph shows the contributions of 18,
32, 64, 96, and 128 eigenmodes compared with the full correlation function for an unquenched
configuration with a 63 MeV valence quark mass. The lower graph compares 128 eigenmodes
with the full correlation function for a quenched configuration with a 23 MeV quark mass.
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Comparison of rho observables calculated with all gluon configurations and only instan-
tons. The upper left-hand plot shows the vacuum correlator in the rho channel calculated
with all gluons and the upper right-hand plot shows the analogous result with only in-
stantons. The lower plot shows the ground state density-density correlation function for
the rho with all gluons (solid circles) and with only instantons (open circles). Error bars
for the solid circles are comparable to the open circles and have been suppressed for
clarity. [From hep-lat 9804017
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Studies of the instanton content of the SU(3) Vacuum

N

B Lattice Method PN/V Pextrap v Reference
(fm) (fm) (fm™4)
6.0 163 x 48 Underrelaxed 0.60(5)2 0.37(5)% 55-3.2 Smith,
323 x 64 Cooling Teper
6.2 243 x 48
6.4 323 x 64
5.85 124 APE Smearing 0.32¢ 1.1 A. Hasenfratz,
6.0 124, 164 Nieter
6.1 164
5.85 124 Improved < 0.53(5)¢ 3.3-0.38 de Forcrand, Pérez
6.0 164 Cooling Hetrick, Stamatescue
57 16° x 24 Cooling > 0.39¢ 0.59-0.28/ | Chu, Grandy,
Huang, Negele
5.85 16* Relaxation 0.50(5)8 0.43(5)%8 5.3-1.48 Ivanenko,
unquenched, «=0.16 Negele
55 | 16* 0.52(5)8 0.42(5)>¢ 6.5-1.8%
Summary 0.54(5) 0.39(5)

@ Value 0.56(5) at N/ V= 8.5 for 8 =6.4 evolved to N/V=3.2 using 8 = 6.0 data.
b Extrapolation sketched in the figure on p. 6.

¢ Value 0.3 scaled 5.6% using a(/c = 440 MeV).
4 From graphs of N/V =1.81 and 1.43 data. Evolution to 3.2 would reduce p further.
¢ Value 0.36 scaled 9% using a(./o = 440MeV). Correlation function range underes-
timates average p.

f Lattice spacing increased 9% using a(,/o = 440 MeV).

g Lattice spacing from hadron masses increased 18% using a(./o = 440 MeV).
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Sketch of extrapolations of the average instanton size to n. = 0 cooling steps for data
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denote quenched and full QCD respectively.

Topological Susceptibility

x /4% (MeV) Method Reference
SU(2)
230 (30) RG Cycling DeGrand, A. Hasenfratz, Kovacs
220 (6) APE Smearing - DeGrand, A. Hasenfratz, Kovacs
200 (15) Improved Cooling de Forcrand, Pérez, Stamatescu
198 (8) APE + Renorm.
Geometric + Renorm. Allés, D’Elia, DiGiacomo, Kerchner
226 (4) Spectral Flow Edwards, Heller, Narayan
SUB)
187 (14) Underrelaxed Cooling Smith, Tepper
192 (5) APE Smearing A. Hasenfratz, Nieter
185 (9) Improved Cooling de Forcrand, Pérez, Hetrick, Stamatescu
175 (5) APE + Renorm. Allés, D’Elia, DiGiacomo
197 (4) Spectral Flow Edwards, Heller, Narayanan
180 Veneziano-Witten
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Instantons and Fermions: Chiral Symmetry and
Optimized Actions

Thomas DeGrand, Anna Hasenfratz, and Tamas G. Kovacs
Physics Department, University of Colorado,
Boulder, CO 80309 USA

1 From QCD to Instanton

What features of QCD are responsible for chiral symmetry breaking? Or, to
prejudice the question, how do instantons and fermions interact in “real” (aka
lattice) QCD? The lattice vacuum is filled with UV noise whick swamps most
direct tests of these questions. We have investigated a number of techniques for
desigining variables which filter out this noise to reveal IR physics. This allows
us to see individual instantons in the vacuua and measure their properties. We
study the role of instantons by creating multi-instanton background fields which
have exactly the same instanton content as the filtered QCD vacuum, but of
course lack all other IR, physics.

Fig. 1 shows the potential for SU(2) gauge theory from locally smoothed
gauge variables and from multi-instanton backgrounds. It also shows the lattice
(b} for staggered fermions on smoothed and in instanton background config-
urations. (%) in the instanton background tracks the value of (¢4) measured
on the smoothed configurations quite closely, down to small quark mass. Fig 2
contrasts the pseudoscalar correlator on the two ensembles. It appears that the
instantons, present in equilibrium gauge field configurations of the QCD vacuum
generated by Monte Carlo, are breaking chiral symmetry by themselves. How-
ever, by themselves, instantons do not produce a spectrum which qualitatively
resembles the world as we see it.
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Figure 1: (Left) The heavy-quark potential measured on the QaTiomes cycled
real configurations (octogons), the randomly (crosses) and the parallel (squares)
oriented instantons. (Right) {¥¢) from raw configurations (diamonds), 9-cycled
configurations (squares), and instanton-background configurations which are
parallel (crosses) and randomly oriented (octagons), vs. bare quark mass amyg.
The line shows the free-field value, 2myp.
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Figure 2: (Left) The pseudoscalar propagator from smoothed cotnﬁgurations,
with staggered fermions of bare mass amy = 0.05. (Right) The pseudoscalar
propagator in (randomly rotated) instanton background configurations, with
staggered fermions of bare mass amg = 0.05. The curve is a fit to a single
propagating particle plus the ¢4 branch cut.

2 From Instanton to QCD

The results of the first section suggest that one might think of constructing ac-
tions with good chiral behavior by replacing the usual links by some kind of “fat”
link, and that by tuning the action to respect the instantons, we might design an
improved action for QCD simulations. Justification for such an approach comes
from considering the axial Ward identity and how Wilson fermions break chiral
symmetry, explicit studies of instantons and the low-lying real eigenmodes of
the lattice Dirac operator, and fixed point fermions and how they implement
the Ginzsparg-Wilson relation.

We optimized actions by tuning them to have a good spectrum of real eigen-
values on background instanton configurations and in the QCD vacuum. Along
the way, we made two discoveries: First, if the lattice spacing is too large,
it is not possible to tune the actions—the fermions cannot see the instantons.
This represents a fundamental barrier of a maximum lattice spacing for im-
provement, of about @ =~ (p) =~ 0.2 fm. Second, we think we know why the
commonly-used nonperturbatively-improved clover action has s many excep-
tional configurations: for large values of the clover term the real eigenmodes
of the Dirac operator which are accessible to fermions at physical values of the
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Figure 3: (Left) The instanton size (in units of the lattice spacing) vs. the
eigenvalue of the corresponding (Wilson action) fermionic real mode on smooth
instantons (crosses) and on real Monte Carlo generated configurations at 8 = 6.0
(squares). The horizontal line indicates —m, for the 8 = 6.0 quenched ensemble.
(Right) The real fermionic eigenvalue of the clover action versus the clover
coefficient on instantons of sizes p/a = 1.2,1.4,1.6,2.0,2.5. Bigger symbols
correspond to larger instantons.

pion mass are connected not with large instantons, (as they are with the Wilson
action) but with small ones.

We have tested a number of UV insensitive fermion actions. They all have
small additive quark mass renormalization. The renormalization factors for
their vector and axial vector currents are quite close to unity. Their scaling
behavior appears to be quite good. Wilson-like versions of these actions appear
to be largely free of exceptional configurations down to small 7/p msas values.
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at fixed m/p = 0.7 comparing staggered fermions, nonperturbatively improved
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Instantons and Quarks in QCD
Anna Hasenfratz

The QCD vacuum is filled with instantons. Their role in solving the U(1)
anomaly problem is long known. They are also considered to be essential for
spontaneous chiral symmetry breaking and the low energy hadron spectrum.
Instanton Liquid Models provide a successful phenomenological description
of the instanton vacuum. At this time only lattice QCD calculations can
describe the vacuum from first principles. There are two basic approaches
to study instanton effects in lattice QCD. One can study instantons directly
using a topological charge operator constructed from the gauge field. Alter-
nately, one can consider the effect of instantons on the quarks and study them
through the spectrum of the Dirac operator. Several methods based on the
first approach have been developed and used over the last few years. In the
first part of this talk I describe one such method and some results obtained
with it. The second part of the talk considers the second approach. I describe
how quarks can reveal the topological structure of the vacuum. I compare
the two methods and argue that the latter one gives information more di-

rectly, without distorting the vacuum. That is important if we want to study
the spatial distribution of instantons, like formation of molecules and spatial
ordering of molecules at finite temperatures in dynamical configurations.
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Yang-Mills, T' = 0:

- - dense ensemble of largish instantons
- consistent with homogeneous spatial distribution

QCD, Ny =2, m,/mp~0.6,T ~ 0.9 —1.27:

e precise check of Banks-Casher

e Good agreement between Dirac eigenmodes
(original config.) and Instantons (cooled config.),
at a ~ 0.1fm, even on I-A pairs after long cooling
—> Validation of improved cooling o

e Puzzle: what happens above T ?
mstanton flt prefers zero lnstantons
- Q =0 =~ always — neutral excitations
- some evidence for space-time asymmetry, fragile
under cooling. Geometric factor only 77
- no-asymmetry in Fourier top. charge density

\— other excitations than Schaefer-Shuryak ?
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Quenching, QCD Dirac spectra and localization transition

Jac Verbaarschot
Department of Physics and Astronomy, SUNY, Stony Brook, New York 11 794

Abstract

Eigenvalues and eigenfunctions of the QCD Dirac operator are studied for gauge field
configurations given by a liquid of instantons. We find that the fermion determinant
has a strong effect on the value of the chiral condensate. In particular, we find that the
spectral density diverges in the quenched limit, and behaves as (N fz — 4)|A| near A = 0.
The Dirac spectrum follows from a QCD partition function that in addition to the usual
degrees of freedom contains a valence quark and its superpartner both with the same
mass that is different from the sea quark masses. The corresponding low energy effective
partition function is based on the Riemannian symmetric superperspace GI(N; + 1[1).
The zero momentum sector of this theory reduces to chiral Random Matrix Theory.
Taking into account the nonzero momentum modes results in the small-A behavior found
in instanton liquid simulations. This effective partition function also describes disordered
two sublattice condensed matter systems. This leads to the question to what extent
phenomena observed in disordered systems, such as for example a localization transition,
are realized in QCD. We argue that the essential difference between QCD and disordered
condensed matter systems is the presence of a fermion determinant. Based on an extension
of an argument given by Parisi to the chiral effective partition function, we conclude that
an Anderson localization transition is only possible in quenched systems.

1] J.C. Osborn and J.J.M. Verbaarschot, Phys. Rev. Lett. 81 (1998) 268.
2] J.C. Osborn and J.J.M. Verbaarschot, Nucl. Phys. B525 (1998) 738.
]

[
[
(3] J.C. Osborn, D. Toublan and J.J.M. Verbaarschot, hep-th/9806110, Nucl. Phys. B)
(in press).

[4] P.H. Damgaard, J.C. Osborn, D. Toublan and J.J.M. Verbaarschot, (coming soon).
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The conformal window in QCD and supersymmetric QCD*

Einan Gardi and Georges Grunberg

Centre de Physique Théorique de 1’Ecole Polytechniquef
91128 Palaiseau Cedex, France
email: gardi@cpht.polytechnique.fr, grunberg@cpht.polytechnique.fr

Abstract

In both QCD and supersymmetric QCD (SQCD) with Ny flavors there are conformal
windows where the theory is asymptotically free in the ultraviolet while the infrared physics
is governed by a non-trivial fixed-point. In SQCD, the lower N; boundary of the conformal
window, below which the theory is confining is well understood thanks to duality. In. QCD
there is just a sufficient condition for confinement based on superconvergence. Studying
the Banks-Zaks expansion and analyzing the conditions for the perturbative coupling to
have a causal analyticity structure, it is shown that the infrared fixed-point in QCD is
perturbative in the entire conformal window. This finding suggests that there can be no
analog of duality in QCD. On the other hand the infrared fixed-point in SQCD is strictly
non-perturbative in the lower part of the conformal window, in agreement with duality.
Nevertheless, we show that it is possible to interpolate between the Banks-Zaks expansions
in the electric and magnetic theories, for quantities that can be calculated perturbatively in
both. This interpolation is explicitly demonstrated for the critical exponent that controls
the rate at which a generic physical quantity approaches the fixed-point.

*The talk in the Workshop on QCD Phase Transitions is based on hep-th/9810192.
fCNRS UMR C7644
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~ QCD at large number of flavors
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Summary (1)

e We study the chiral phase transition for vector like SU(N) gauge theories as
functions of the number of quark flavors Ny by making use of an anomaly
induced effetive potential.

e The effective potential depends explicitly on the full S-function and the anoma-
lous discussion 7y of the quark mass operator.

e Using this potential we argue that chiral symmetry is restored for v < 1.

e A perturbative evaluation of v leads to the conclusion that the transition takes

place at a value of Ny ~ 4N.
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Summary (2)

e We investigate the physical spectrum of vector-like SU(N) gauge theories with
infrared coupling close to but above the critical value for a conformal phase
transition. -

e We use dispersion relations, the momentum dependence of the dynamical ferm-
ion mass and resonace saturation.

e It is shown that the second spectral function sum rule is substantially effected
by the continuum contribution, allowing for a reduction of the axial vector-
vector mass splitting with respect to QCD-like theories.

o In technicolor theories, this feature can result in a small or even negative con-

tribution to the electroweak S parameter.




Moatthos Jtrasser @ Mo on SUSY and QCD

g

Summary

e C(lassify CFTs by the dimensions of their relevant and
lowest-dim irrelevant operators [in addition to their
symmetries, of course] is an important goal.

e Determine how RG flow from relevant perturbations
carries one CFT to another or to a different phase

e Unitarity is an important constraint on operator
dimensions in CFTs — can be useful for discovering edge
of conformal phase

e SUSY theories suggest many examples of phenomena in
2,3,4 dimensions which are both familiar and unfamiliar.
Do these really occur? We can look for them or their
analogues in the non-SUSY case: relevant multi-fermion
operators, irrelevant fermion masses, gauge beta functions

which change sign, quantum enhancement of symmetries in
CFTs.

e Applications beyond particle physics?
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Simple application of unitarity

Suppose we have a sequence of similar CFTs that
come from similar field theories [perhaps SU(N) QCD
for several values of Ny.]

Suppose that a certain operator [perhaps (1)?] has a
dimension in these theories which decreases along the
sequence.

Since its dimension cannot be less than one, the
sequence of CFTs must end before this happens, and a
new phase [possibly a different-looking set of CFTs,
possibly confinement, possibly something unknown]|
must kick in instead.

Thus, a gauge invariant operator of large canonical
dimension but with CFT dimension near 1 may
indicate that the CFT lies near the edge of a phase
boundary.
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Dangerous Irrelevant Operators

at g = 0, irrelevant
at g = g«, relevant

Temptation to ignore them is ill-advised.
Example: QCD /technicolor
The operators
()%, ()Y - )
may be relevant in IR — but fof what range of NV, N¢7

and what is their effect when added to Lagrangian?

N =1 SU(N) with N;

Meson mass: O = (QQ)?

do ZG(I—N/Nf) < 3 for Nf < 2N,
Baryon: O = QY

do < 3 for Ny < N(Ny — N)/2




Dependence of Phase on Dangerous Relevant Ops

Consider SU(4) with N, flavors Q;, Q¢ v;, 0. Take
W = hQ1Q2Q3(4+ and add dimension-six terms

(6)

Z 6@ aczg 8Q:0Q; V¥ aczz

o Ny > 8: perturbation irrelevant, as in classical limit
[SCFT unchanged]

e N; = T: theory driven from expected interacting fixed

point to a different one
[SCFT(1) — SCFT(2)]

e Ny = 6: instead of flowing to free dual SU(2) gauge
theory, the theory flows to an interacting fixed point
[Free magnetic — SCFT(3)]

e Ny = 5: perturbation causes chiral symmetry breaking
[Confinement (no xSB) — Confinement (with xSB)]

There are hundreds of other interesting examples.
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Harmless Relevant Operators

at g = 0, relevant
at g = g«, irrelevant

Temptation to include them is ill-advised.
D = 3 Example
U(1) with &,®,5 of charge 1,—1,0; W = hS®d

define M = &®; vortex creation operators V, V.
Vacuum equations: M = ®® = 0 in SCFT [redundant]

claim (mirror symmetry [dBOOY,AHISS,dBOO])
the theory is in same universality class as We;s(V,V) =0
(free vorticial phase again) with S < VV

The mass term AW = mS? is relevant in the free theory.
Drives theory toward theory without S.

But at SCFT 5% ~ (VV)?, dg2 = 2: marginal; in fact
marginally irrelevant perturbation of free vorticial phase.

Can check: consistent with previous example.
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Quanton Aceidedal Sﬁmm@-@ﬂ‘e s

This is a common phenomenon in SCFTs:

‘Quantum effects cause the operators of the theory to

reorganize themselves into multiplets with an enhanced
symmetry that could not be guessed classically.

The enhanced symmetry is called quantum [since it is
quantum mechanical] and accidental [since it is only
obeyed in the far infrared and is not a symmetry of the
whole theory.]

A D = 3 example with a discrete symmetry:
U(1) with &, ® of charge 1,—1, W =0

at SCFT: Wosr = MVV
This theory has a quantum accidental triality symmetry

permuting

a) positronium M = ®&

b) the vortex V with magnetic flux +1
c) the vortex V with flux —1

Can we find an example using lattice gauge theory?
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Vacuum Energy in Large Nf QCD and
Instanton Molecules

Momchil Velkovsky (BNL)
The I valley
“Classical molecules” and finite T

The instanton ensemble for QCD with
Ny flavors |

Vacuum energy of a dilute molecular gas

Separating the non-perturbative contribution
- a complex saddle point 4+ other tricks

Perturbation series asymptotic for the
vacuum energy




“Classical molecules” and finite T

At sufficiently high temperatures - stable config-
-uration (real saddle point).

0<7<1/T

Adding fermions makes the molecules stable at
even lower temperatures (about 110 MeV for
Ng=2). |

.025

.02

.01

005 |




Vacuum energy of a dilute molecular gas

Z?T?,(.}l.ga.s == eXp(—V(4)Emol'gas) — exp(Znon.pert),

mol

Znon.pert — ( Zmol _ Zpert) / zpert

mol

Fes — Y C2p* [ d*RAQ(—p?|Tyr(R, )2 exp(—Sime (R, Q)

= AT 3 S0 ex0(-50),

TIf) — fd4:17¢}(33 — ZJ, QI) E¢f(w - z]—aQ barI)7

At T = 0, semi-classically there is no stable IT
configuration .

Still one can separate the non-perturbative con-
tribution for Nf >> 11




Units of A,No. =3,p =

Results

1

din pIdlin 0

161

3A
d°E 2
N | Regpistos | [ —moboss I(Ny)
2 0. —.5098 %« 10~° | —.2690 % 10~
3 | —-.3668%10"" | —.5474 %10~ | —-.2833 %10~
4 | —-.1917%10~" | —.5330%10~° | —.1991 %10~
5 |—.1027%x10~' 6464 x 1075 1178 x 10—~
6 0. 1520 % 10~ 7 7913 %1074
7 5067 x 10— ' 1127 %107 7147 x 1074
8 0. —2714 %1072 | —-.2292 % 10"“
9 |[—-.1898x% 103 1368« 10—~ 2067 x 1072
10 0. 3365 x 10~ 4 4120
11 . 1093 x10°° 2421 x 105 .1480
12 0. —.6030 % 10—1! —132.8
with I(Nf) — I'm dzEmol.gas 625’05‘"4NC+(3/2)Nf—1




Perturbation series asymptotic for the vacuum energ

EpT = =L [5° B Im(Bn e (g))

CE™ 4 _1 [ dg sndNe—(3/2NpH1 e £ I(N)
din p:din pgp — wd gt g2 f

k/2 roo _ _
= —I(N)Z ()% [5 4 (So) (So)*NmG/ANrtk/2 g=25,

Yet another saddle point integral with a saddle point at
Sog =2N.—3/4Ns 4+ k/4.

PET k)2
dlnpldlnpzp = —I(Ny) (871'2) X

<4Nc—(3/2>zvf+k/z)4-\'=-(3/2>Nf+k/2+1/2
< 2

k+1 ‘
= — s (&) T(4N. - (3/2)Ny + k/2 + 1).

But the renormalons produce bigger coefficients.

Compare to Faleev and Silvestrov:

Rete—shadrons = 3 —813(3280.5k)~35/%(10 + k/2)1.L"




Padé-Summation Representations of the MS B-Function for n, = 0 QCD

Victor Elias

Department of Applied Mathematics
University of Western Ontario
London, Ontario N6A 5B7

Canada

Kogan and Shifman have argued that in the absence of matter fields, the exact 8-function
for supersymmetric SU(N) gluodynamics exhibits a pole which allows a double-valued coupling,
indicative of an additional strong phase in the ultraviolet domain.! After reviewing successes of
asymptotic Padé-approximant predictions, as applied to the B-function of massive ¢* scalar-field
theory as well as the scalar current correlation function within QCD, we address whether Padé-
summations of the MS B-function for n, = 0 QCD exhibit B-function structure similar to that of
supersymmetric gluodynamics, as opposed to a more conventional picture in which the strong
coupling freezes out at low momenta to an infrared fixed-point value. We find that [2 | 1], [1 | 21,
and the ‘entire set of possible [2 | 2] Padé-summation expressions whose Maclaurin expansions
reproduce the presently-known four-loop B-function series, regardless of the magnitude of the
unknown five-loop term, always exhibit a positive pole prior to the occurrence of their first
positive zero, consistent with a double-valued coupling in the ultraviolet domain, and precluding
identification of this first positive zero as an infrared fixed point. Moreover, specific [2 |21, 11131,
and [3|1] Padé summations obtained from asymptotic Padé-approximant predictions of the
unknown 5-loop 8-function term also have a positive pole preceding their first positive zero.

We conclude that there is no evidence for a positive infrared fixed point from Padé-
summations of the gluodynamic (n, = 0 QCD) B-function. All such Padé summations appear to
be consistent with the B-function properties of supersymmetric gluodynamics, in which a weak
and strong coupling-constant phase share a common infrared attractor.

' 1. Kogan and M. Shifman, Phys. Rev. Lett. 75 (1995) 2085.
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Mz 31;‘)(_2 — %{x} (X.E—'o(,/n')

3(Xzr )= O

Xt

/Von F(‘rT

o

TRFP. Cvuf/"»r/o Freezes Ouv? 7o

nonZ¢ero ra /u( a /' low momenfwr,
(ﬂa#fnjly & Stevensen’ ’(IR = 0. 82 /Ti)

[N/M]..PQ,J?‘APID"U'XI‘MGI!?L W;'}L4,},/>)_7(:/"(’L,'M ’

ﬁ;(x) = -—/3; Xz[, ta,xe...+ayXx
ns

J
,'I"b‘x‘-l- ....+Anx

¥

For IRFP o occur (as abow ).

l/ First po;o’?".'re' Zlrp OSF Aumeralse
’'s af Xy

.0_'14 2/ DPﬂamr‘nafor- Aas Ho ZIaf‘O ’:’7
rang e OL X< Xrp

| ’ e es O 6/58 ﬂ C‘OW &f}q./
Briusl > o

164




SU[M/ 5Uf}/ G/UDJ/na‘m I'Cf [ﬂ/av,'ﬁ}ogf//ﬁwn/ Mdyj/ﬁ;_
ZdH&raV/

wrde = /3(4']:-'-2&"2[/4-1_‘/,\' +_”,2.r2+--]
7 [T 7

J/I:.
= —jﬂkz / Exc(‘T
T [/ - NYZ] [201] Bl

N[3>CD (5'5(%;(/

v % B<O (weak phose]

ri
L]
Mo

e

AL

Y. ts c/oué/( ~ Vva /UPc/ . Tu/'a ]0445(0; (
(Kogons ShiFman PRL 75 (19952085

.—):'R“'f‘fj ron (64 <',4{C) ;s T NRCCESSIBLE
| (onless & is Cabrf)tﬂx) |
QCO? p[‘x/ = -Bx3f1tax+ cetayx”
; 3 [ ”]

/fé,xf- ....&6"x

F'Dr l(ajon - IAI.FMO’I Scenar ro f‘o 6((00—/.
~irsT poO setive =Zero of T Jl’nqmmazr-. |
myst bo £ma//rr- 1% o9 ANY

e nuvmeraler

Po.s P e ZEro 'O’lz’

& 0" e




é/uoojznq»;/'(‘j (/),C=0 @(ﬂj X= ds/m

Bx)= -1 &2 [ [+2.31918x + 8. [[£98x2 + 9/, 53837
9 . y
Kyx'e ]

[1+Rx+ R x*+ R, x? ] sufficimt &
preo/c'r r [2 //J and [ //2] q/ofron'vvoqf}'

3 =~y L2 1 2.7%7x -3 7775‘,:7
[207 v [— 5.1l 78x

TREP? st Numeorator Zero © %= 0.263 2(=%/7)
| Dfﬂ@"?l.ﬂdZLd" Lero | = 0./ 95_‘7,
ConsistenT™ with A/ojan ~ 54 Fman Scenarto

B — -—-//Xz l" £9572X | _
L1]2] iy [ | —~8.295Yxrilo%x* [

IRFPP Nu'neﬁafqr Zero - x=0. (676
First Posi?ivie Denow (nalorZero . xX=0.1519
/4-541 ;'1 ) (onf/}fgn,f W/.f'é ’%j‘z" - 5/ ,54,,% 5'(,,”,,'0:

@z




. g/Uoo{ynam}'c; Con?d .
45)/»7. Error Formv/a /Dr-eo/r'c/% R:/ = 302.2
[/ tRx + Ryx® +Ryx” + R, Jff] SOFAL e ton T

7] /”80/"4’% [2/27 a/o/or‘oy/'ma'/f.‘
Y = -1 ,2[ 1~ 2¢2%x +7.37527x%
EYEY, 7 [—1).9%7 7% +23.9/352

I/QF—P,? Efff f3051.7L/ ve ﬂ/u»'mr‘a]gf‘ Zero., X=0. 1072

First Fositive Denominalor Zere [ X=0, /0{3
/(ayd/) —541Fman Scenario /

L€7L' /?1-[ ée, arél'fraf‘g. :

~ =/ 2 [+, X +a, x*
/3[‘2/2_7 .‘_/-_x [/-f-é,x +AJ«\—;]
= [3.4903 - 0.0762(5 Ry

2= 722,915 40.0%0/¢¢ R,

= /).089-0.07¢215R.,
= ~84727 + O0.24085 R,

a
Al
b,

2

@ﬂ/AS o _ 167




=0 (QCO

ZEéros 07[ /3£1/2] nNnumeralsr an/ d{cnomindfor;

\

| T PR SN

200  -150  -100 .5

100 150 200

4

For a(l valuws of Ry L, The Firs?- positive

Zero of &o Je/ra'yz};o/&r pr‘ecc’a/c’f e

£res?” /005/'7‘;}/( Zrro a)'t /%e m/meraf'or)

Cﬂﬂﬂlf]?/!.f wi A kajza/y - .%3{/;744

SCenar,p




Topological effects in Applications
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Topological Defects, Baryogenesis and CP odd Bubbles in QCD.
Ariel R. Zhitnitsky
(The University of British Columbia, Vancouver, Canada)

o1 We generalize the large V. Di Vecchia-Veneziano-Witten effective chi-
ral Lagrangian to the case of finite N,.

o2 The picture of 6§ dependence in QCD which follows from this La-
grangian is more complicated than suggested by the large N, approach or
instanton arguments.

o3 Generically, the vacuum energy F,..(8) is a multi-valued function of
8 admitting the existence of metastable states and domain walls separating
these metastable vacua from the lowest energy vacuum.

o4 We discuss applications of the obtained results to the axion physics.
Specifically, we argue, that in general, an arbitrary |8)- state would be created
in the heavy- ion collision, similarly to the creation of the disoriented chiral
condensate (DCC) with an arbitrary direction. Therefore, the heavy -ion
collisons give us a unique chance for a new axion search experiment.

o5 We propose a new mechanism for baryogenesis which takes place at
the QCD scale and is based on the existence of domain walls. We argue that
these new objects (B-shells) might be also respounsible for the origin of the
dark matter in the Universe. We emphasise that the suggested mechanism
can be, in principle, experimentally tested at RHIC.

Relevant papers on the subject.

1) BARYOGENESIS WITH QCD DOMAIN WALLS. By R. Branden-
berger, I. Halperin, A. Zhitnitsky hep-ph/9808471.

2) DOMAIN WALLS AND © DEPENDENCE IN QCD WITH AN EF-
FECTIVE LAGRANGIAN APPROACH. By Todd Fugleberg, Igor Halperin,
Ariel Zhitnitsky hep-ph/9808469

3) AXION POTENTIAL, TOPOLOGICAL DEFECTS AND CP ODD
BUBBLES IN QCD. By Igor Halperin, Ariel Zhitnitsky hep-ph/98073353, to
appear in Phys. Lett. B

4) ANOMALOUS EFFECTIVE LAGRANGIAN AND © DEPENDENCE
IN QCD AT FINITE N(C). By Igor Halperin, Ariel Zhitnitsky hep-ph/9803301,
to.appear in Phys. Rev. Lett. 1998

5) CAN % DEPENDENCE FOR GLUODYNAMICS BE COMPATIBLE
WITH 27 PERIODICITY IN ©? By Igor Halperin, Ariel Zhitnitsky Pub-
lished in Phys.Rev.D58:1998, hep-ph /9711398

170




e

& f#mce f anpiss o P
o .
;

4f e infepraZ: - /e//:
(\Q-W/‘(, ﬂ/V-'eZ 73 caS[ [(©- ¢ ja/@z’a/,a

\ iy 7e (Mf/'f‘““/

- /

™ e ""p(<‘7’*?>!

@) La j’t&y-bh /45 —a/z%/&?e@?'
/‘Zdhc/es 4 P meadiera / |

4{/ - G r27 ¢S ek/?/"u

o) T s 3

pY/4 teSee(ES a/a wol ﬂ/e/
) / ga/t(c'oy , A(,/h'/ /ﬂ
5/Jec: ; A/ 7[& VVW Z?éa

¢ foe 4Y° / .

‘an £s te,/owa{(ce/ ’

o) f’/g c/aj/e/;// > 4y : /o -,/Jaé/ay

£) M e«\’cs?@nce. 0//8»' #e cadma cm/a/er f/z
o fassifovats on /8,85

cie //
g/ a& ~ /‘90 ﬂe'zc @/ze /ma ea

171




- i,
ZqJN—;

Figure 5: Domain wall profile.

2;;—’:;7/ E 7 Yasctan f tanl,, Z )7l
7 |

§]

Y
= A > Xo

ge- S//(/ //2/)7/2:. g‘/\{; ojfsl“"

é. 2 (P/X/ X € Ao 2 ¢ Jé

= 2;’ //;;f; ehexaofo/y .Cﬂl'hc"é-f 'w/,'z% ke 0
/I P —

Y bots o °
1) /‘/K( wal Sutface -Z/e”"(‘”'/ ;/"’ <32rf"

(/ cos

ﬁ,\, ex/)(-




)-” /4/9/5/'ca24?9hs
/ DCD scale and Ks wofe
aéueéomea/ / f& emf % ./aese)

1. JPS - state A ohe -7
H//e e,\;oe/ f/aj‘// z%yqehe/?a// /5?> ~S’Z/a/2’é
;Woaé/é c teares (.é; "é/"’”}

2. Axlon ZO//VS/CS |

Ao s a /JM e whid soles Lo
s‘z/wi (p-/o@&//m. Arcon - s a ke sma7foe
candiore wiil o o ~ 0"V

Avions will b peoduced af CHIE when
/8S ~stale s '}a/an},y fo B-0

3, 50%/07@/72&5 ns../y,5 | y 0
~ 70

725 pumbes s ,///MA/ exolbcte
/éfd«.?e / CegiL iy €S /wz e (/0 Vz'aM’afr
/Sak/dear// WAJ /'S rIows z/p é Qmﬂ//

o o b(’/é‘&é)/ 173




VAR A LR VR A
Doma.u uaa// eon/iﬂaéy“,z/,?“ Il = e,‘o((?s)

Ao =/(+7) - (~-)a ~.;t"

/5eca-a.se ‘% fée | /aéﬂa/l %&mme /?/
7/ é /M/., ’s edleced {: f/e 22 -7220/{/»;

w30 w5
. _ L

Xe (?éml ) X--@éﬂé

) c/?vc//?-’
4/

Aol )

BY = 5% =- P
( ,4/151/ weh z/wzzém; A1) #ﬂz '
ﬁﬂ&éﬂa/ Mﬂ/éf/:d Y28 Ao 07 04 fée Z(o/oo/ 80/ Zén )




VEI Ba&/{genes?s (?ua(;“(:a'(:lve 4fes{;'ma es)

2 Vs
S <K ~ 16-2.
L @:g]:‘“‘ %= 3"3’.—.2( L\v&) 0

& - Zée cnalwced %’4&3{3/44/ /dg/oh c//a?e.
’Zese‘q(‘;y o~ z/Ze c/ama/n W/a// agcea S.

Q. 7-02(4/ ares (S

<S> = \-;7_( Rillle, 193¢, 5 - connelefon et

| V- Hullle volume :

s Affos Ty<7 Lhe domain wall mework
w il Ceone e it Ll wwale | samawm{ég
’zg}m: o/ o ﬁée L Cecersrr. | |
4 Whew B=z0 @ 70%/ number p/ B and B

[8 e;mz/ A/awel/%/ /n any & -0 aZ/
T<To only one wind ”f/ Somams wif
7 2

4 3
/1 g‘ NAoc k)
t -— . 0(0 - Qb (0
wemarn ! QO o fve&"‘ ( )<< A

5 Bs e concenlratod on Zhe Sosma's ka/é .
M.&/ , @,Venzzcmgy fecome /:3: “5’4e//s,

175




. 6. %%&C& Swé /s ?eéra,,zz.y :

/ezZ £ - ﬂ/e}?sv? a/ B - she/’s i e Lmier
C;) ~ Koo c/a%?ef
/MU - Zhels sasses

18] e

/ fé:’s o?’e;? Scales fiee mallese ~
V)ozé ,//:ee ma/f%'oq ~ 7_‘7/

7;; -
o e aa/ mazé(&t ana’
o

&z

.Iﬁ/ ~-5:“V~ 103 ~ well knowir swns et

\ \k - ts Hhe z‘eu/oﬂra/wfe

/ra’h

We com Live Zweo e/wza/z«/’ars: a) ()’.

— e | hp) L < _(_?T_'D —S M ~
= (Hg)s = 8% = &=tV

Moval:  [>-shell il weabhff as maZZes

fence | They can conlurbcle fo Lhe derk
matfes o/ Sfhe Lo ekse. 176 :




BNL Workshop on ”QCD Phase Transitions” ’98

Production of baryons as topological defects
in chiral symmetry restoring phase transition

Mariusz P. Sadzikowski
Institute of Nuclear Physcis, Cracow, Poland

Based on J. Dziarmaga, MPS, hep-ph /9809313
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R. D. Pisarski and F. Wilczek, PRD29(1984)338
F. Wilczek, Int.J. Mod.P.A7(1992)3911
K. Rajagopal and F. Wilczek, NP399(1993)395

We cosider N; = 2 case. ‘

1. 2 @ /\ I
F=[d {ia*@aa,-@a + %@ o+ (2 3,)? — Hcr}
@ = (o, 7).

p2(T) = 0,2 > 0,H > 0

tential at T=C, 160 MeV and Fluctuations




]

e The QGP comes to thermal equilibrium around 77 = 1 fm.
e Partons are relevant degrees of freedom above T n¢

e Chiral fields are relevant degrees of freedom below T, f

g Tconf ~ Ten,

The chiral fields enter the T' < T, stage in the state of thermal
equilibrium.

Flactuation squared of & around its avarage:

M,(T,) 4nkidk T,
s = ([ — oo Tu)) = ;7 Ch

0 @r) MZ+k
TchMa(Tch> T
— 1~ =
2T ( 4)

g is an avarage of o over its correlation domain

Gaussian distribution:

£0) = —

S\ 2T

(@ - Uo(Tch))T

exp {—— 542

where G is an avarage of ¢ over its correlation domain.
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If the domain avaraged 7 = 0 and the domain avaraged & is to the
left of the top of the zero temperature potential the fields roll down
to the bottom of the sombrero potential in the (—1,0) direction.




Numerical estimation

At T=0:

T = 0: H=(119MeV)3, A = 20, 1? = A(87.4MeV)?
At Ty, = 160 MeV:

H(Teh)=H, A\(Ten) = A, p*(Tep) = 0
Correlation lengthes:

£ =11fm and &, = 0.6 fm.
Quench approximation:

—-11.2

Plg < —11.2MeV] = [~ f(5; u)do = 0.01

Halperin formula for density of zeros:

_jantibaryons

fm
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Conclusions

e The probability of the topological defects formation
is exponentialy suppresed by the explicit symmetry
breaking parameter presents in the free energy de-
scribing the phase transition

e The light quarks massess break chiral symmetry. Hardly
any antibaryons will be then produced in the chiral
restoring phase transition.

o We expect 10™* antibaryons/fm?

Presentation is based on J. Dziarmaga, M. Sadzikowski, hep-ph/9809313
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Spontaneous violation
~of P and CP invariances in hot QCD
and its experimental signatures

Dmitri Kharzeev

RIKEN-BNL Research Center
Brookhaven National Laboratory,
Upton NY 11973, USA

In a recent work with Rob Pisarski and Michel Tytgat, we argue that for QCD
in the limit of a large number of colors, the axial U(1) symmetry of massless
quarks is effectively restored at the deconfining phase transition. We find that as
a consequence of this, metastable states in which parity and CP invariances are
" spontaneously broken can appear in the hadronic phase. In this talk, I discuss also
possible manifestations of this phenomenon in future experiments at Relativistic
Heavy Ion Collider.

References

[1] D. Kharzeev, R.D. Pisarski and M.H.G. Tytgat, Phys.Rev.Lett.81:512-
515,1998.

[2] D. Kharzeev, R.D. Pisarski and M.H.G. Tytgat, HEP-PH 9808366.
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We argue that for QCD in the limit of a large number of colors, the axial U(l) symmetry of
massless quarks is effecuvely restored at the deconfining phase transition. If this transition is of second
order, metastable states in which parity is spontaneously broken can appear in the hadromc phase.
These metastable states have dramatic ‘signatures, including enhanced production of 9 and %' mesons,
which can decay through parity violating decay processes such as 7 — w%°, and global parity odd
asymmetncs for charged pxons {S0031-9007(98)06613-7}
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SUMMARY OF THE WORKSHOP
“THE QCD PHASE TRANSITIONS”

Brookhaven National Laboratory,
November 4-7 1998

Edward Shuryak
Department of Physics and Astronomy
State University of New York, Stony Brook Ny 11794, USA

December 22, 1998

1 Overview

As it was already mentioned in the Introduction, the subject of the meeting
was non-perturbative dynamics of gauge theories, manifesting itself in form
of various “phases” such theories have. _

For QCD one of the main source of “input” remains experimental data
about hadrons. The second, now nearly as important as the first, is pro-
vided by numerical lattice simulations. Those can also consider various flavor
contents, change the quark masses, easily access finite temperatures (finite
density remains so far a problem). Furthermore, they can study observables
not in average, but on configuration-by-configuration basis, and reveal more
details about a dynamics. The third major input is provided by exactly
solvable (or partially solvable) models, mostly the Super-symmetric (SUSY)
ones. :

Let me on the onset indicate some similarity between various approaches
discussed on the workshop. Many (if not most) of the talks in this way
or another separate “quantum noise” (the perturbative phenomena) from
“smooth” or even classical fields, related to non-perturbative dynamics. The
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tools used for this general aim are however very different: (i) Blocking lattice
configurations, or “cooling” them; (ii) Considering super-symmetric theories
in which many diagrams cancel; (iii) Considering large N, limit, in which
there should be some “master field” dominating the path integrals (Mattis
again); (iv) going to complex-valued configurations, which are some non-
trivial saddle points (Velkovsky).

But whatever the tools, the classical configurations themselves revealed in
those analysis happened to be nothing else but our old friend, the instanton.
Their ensemble saturates the topological susceptibility, solving the U(1) problem®.
They also do saturate the lowest Dirac eigenmodes, explaining chiral sym-
metry breaking (again quantitatively, producing accurate value for the quark
condensate) and even hadronic correlators, see recent review [1]. I will argue
below that instantons explain also the origin of the famous “chiral scale”
1 GeV in QCD [5]. Furthermore, recently instantons emerged as the main
driving force in Color Superconductivity.

Instantons also provide few exact results for SUSY theories. They repro-
duce expansion of the Seiberg-Witten “elliptic curve” for N=2 SUSY QCD
[4], and also provide the “master field” of the N=4 theory [6], as discussed
here by Mattis.

However many properties of the instanton ensemble are far from being
clear. The major example (discussed especially by de Forcrand) is compli-
cated behavior near the critical temperature T,: qualitative changes in their
ensemble are obvious but the structure above 7, is not yet understood.

The only exceptional non-perturbative phenomenon which instantons do
not explain is confinement {7, 8]: this issue was discussed by Negele.

2 High density QCD

The field of high density QCD was mostly dormant since late-70’s-early 80’s,
when implications of perturbative QCD for this case was worked out. How-
ever realization last year (simultaneously by “Stony Brook” and “Princeton”
groups [17, 18] ) that instantons can induced not only strong pairing of
quarks with anti-quark in vacuum and break chiral symmetry, but also a
quark-quark pairing at high density, has created a splash of activity. Such

INot “in principle” (which *t Hooft did back in 1976), but for real, quantitatively
reproduces the value needed to explain correct 1’ mass.
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Color Super-Conducting (CSC) phase was under very intense discussion at
the workshop.

It was introduced in the first review talk by F.Wilczek (Princeton), who
emphasized the so called color-flavor locking phase [19] which appears for
three massless quarks (Ny = 3). Discussion of its rather unusual qualitative
features was continued by T.Schafer (Princeton), who has presented some
quantitative results [20] following from account for instanton interaction.
One important result was a demonstration that, as one increase the mass of
the strange quark and goes back to the Ny = 2 theory, no phase transitions
actually happens and interpolation between two different structures of CSC
is in fact continuous. Another interesting issue, for Ny = 3 case, is whether
there can in principle be a continuous transition from hadronic to CSC phase.
Schaefer and Wilczek [22] suggested that the answer is positive.

G.Carter (Copenhagen) had further discussed the N; = 2 case in the in-
stanton model in some details [21], including correct instanton-induced form-
factors. R.Rapp (Stony Brook) have provided another view on this subject
[20], using statistical rather than mean field description of the instanton en-
semble, and discussing the role of instanton-anti-instanton molecules in this
transition.

After the workshop an interesting paper written by Son [23] have shown
that in the high densitv (weak coupling) limit (when the instantons are
Debye-screened) the leading behavior is not provided by electric (Coulomb)
part of the one-gluon exchange, but by a magnetic one.

The talks have so many details that I would not go into it. In summary,
.QCD demonstrate a kind of “triality”. There are three major phases of QCD:
(i) hadronic, dominated by gq attraction leading to chiral symmetry breaking;
(ii) CSC at high density, dominated by qq attraction and condensation, and
(iii) QGP at high T, in which there are no condensates but instantons and
anti-instantons themselves are bound by a fermion-induced forces.

A complementary approach to high density QCD, now based on random
matrix model, was reviewed by M.Stephanov (Stony Brook). He outlined
what exactly goes wrong in “quenched” QCD at finite density, and also
how the correct behavior of the Dirac eigenvalue at increasing p should look
like: the resulting picture resembles “a dividing chromosome”, rather than a
“cloud” coming from quenched theory. He also pointed out the existence of
the tri-critical point at the phase diagram of the random matrix model [24],
as well as importance and even possible ways to search for it in heavy ion
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collisions [25].

Various ideas of how one can proceed to study the high density on the
lattice were also discussed. At the end of the talk F.Karsch described new ap-
proach, with finite baryon density (instead of chemical potential). M.Alford
(MIT) has described possible analytic continuation to complex chemical po-
tential. v

Finally M-P.Lombardo (Gran Sasso) had presented very interesting data
for 2-color QCD. In this theory the determinant is real even with chemical
potential, and so the usual lattice calculations are possible. The results are
consistent with CSC phase being developed. '

3 High temperature QCD

Lattice results on finite temperature transitions were reviewed by F.Karsch
(Bielefeld) and also by C.DeTar (U. of Utah) . Excellent data for pure gauge
theories exist by now, and they show transition at T, = 260MeV . The ratio
to the string tension T,/c'/? is close to (3/(d — 2)7)'/? as predicted by the
string model of deconfinement. M.Wingate (RIKEN/BNL) has presented
new data for deconfinement in 4-color gauge theory, which also support this
trend.

However, as it is well known by now, QCD with light quarks show much
smaller critical temperature T,. This suggests that it has nothing to do with
deconfinement, as it is described by the string model.

For 2 light quarks (N; = 2) T, =~ 150MeV and is driven by chiral symme-
try restoration. The order of the transition in the Ny = 2 theory is second,
as expected, but “current analysis did not reproduced the expected criti-
cal behavior for a system in the universality class of O(4)-symmetric spin
models”, Karsch concluded. The situation remains to be quite confusing,
the current set of indices do not fit into any of the established universality
classes. Maybe the issue is complicated by “approximate restoration of the
U(1) symmetry” [32] which add 4 more light (although still massive) modes.
If so, the transition may be driven to weak first order instead. DeTar have
also shown how lattice artifacts present for /V; = 4 and creating doubts about
relevance of this case for continuous limit, are actually dissolves for larger
values of IV; (up to 12) studied.

DeTar also mentioned interesting simulations by Kogut et al [33] who
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found weak first order in a simulation in which on top of standard lattice
action a small 4-fermion term was added. Let me comment on it: Kogut et
al have considered this interaction as a pure methodical tool, they did not
specified or speculated about its possible structure. I have however made
a point that in fact there is the natural reason why such small interaction
should exist: there are small-size (p ~ a) instantons which “fall through the
lattice”. Their contribution should therefore be explicitly added, as another
operator into the lattice action.

For the Ny = 4 theory, discussed by Mawhinney, the condensate is so
small that the critical temperature is not even measured yet. It however
supports a prediction of the instanton liquid model {1] that instanton-induced
chiral symmetry breaking should be small at Ny = 4 and gone by N; = 5,
even at 7' = 0. -

The central part of the talk by R.Mawhinney (Columbia) was first re-
sults on chiral restoration phase transition using new “domain wall” lattice
fermions [34]. The first result is that in this case the chiral symmetry is very
accurate?, and so one can clearly recognize some zero modes of instantons.

In particularly, he discussed also an old question: what happens in the
quenched (pure gauge) theory above T,?. Without a determinant, there is no
reason for the instantons to be strongly correlated, and if they are more or
less random the chiral symmetry should not be restored. That contradicted
to earlier lattice data, who concluded that chiral symmetry is restored above
the deconfinement transition.

One well-understood issue arise here, which may affect recent (not so
large-volume) simulations. The total topological charge of the configuration
with randomly placed instantons is Q=|N, — N_| ~ /N, + N_. Therefore
spectrum of the Dirac eigenmodes of quenched configurations should have a

term
dN
dA
where V} is the 4-volume. According to Banks-Casher formula dN/dA(0) =
7| < @g > |/ V4, but this density does not lead to infinite condensate because
it drops out in the thermodynamical limit.
New Columbia data shown by Mawhinney are consistent with this inter-
pretation for T < T,, but above T, the comparison for few volumes available

=5(\) * O(V}"?)

2Tt is broken only by an exponentially small tails of the fermionic wave functions, bound
to “plus” and “minus” walls.
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suggested that the coefficient was actually O(V'), and the contribution to the
condensate therefore is there. He concluded that < gg > is in fact infinite
above T,, not zero as people have claimed before. This is in sharp contrast
to earlier works: the measured condensate has changed from 0 to oo!

This result can probably be resolved as follows3. At high T the over-
lap matrix elements between instantons are qualitatively different: instead
of decreasing with distance as R™3 (as at T=0), there appear exponential
suppression ezp(—nT'r) for spatial distance r. Therefore, the whole zone of
instanton-related modes shrinks and it looks as O(V)4(A) if the quark mass
is not small compared to its width.

True shape of the the zone based on weakly overlapping instantons and
anti-instantons® was discussed by Verbaarschot Stony Brook). His result
[36] (recently also confirmed by M.Teper et al[37]) is that in quenched QCD
the eigenvalue density actually does grow indefinitely at the origin, but as
dN/d) = O(V)logA.

What this means for Columbia results is that for sufficiently small masses
(or large length in the 5-th dimension) the singularity in the condensate is
going to change from 1/m to log(m). The same behavior should also be there
at low T as well, so the quenched theory always has an infinite condensate.

I.Zahed (Stony Brook) has discussed new ideas [35] about “chiral disor-
der”, connecting motion of light quarks in the QCD vacuum to that of elec-
trons in “dirty metals”. He also proposed two potentially possible regimes
for chiral restoration (i) fractal support for the chiral condensate; (ii) either
some intermediate phase or specific places on the phase diagram where finite
< gq > (density of eigenvalues) coexist with zero F;; = 0 (no conductivity)
due to eigenmodes localization.

J.Verbaarschot (Stony Brook) have discussed a number of topics about
the Dirac eigenvalues. The main point was that zero-momentum sector re-
duces to Chiral Random Matrix Theory, but it deviates from it at larger
eigenvalues [38] He disagreed with Zahed on his last point, arguing (following
Parisi) that the localized modes are independent and therefore the fermionic
determinant should be a product of the eigenvalues. It strongly mis-favored
by any unquenched theory due to smaliness of the fermionic determinant,

3This comment was made in the discussion by T.Schaefer.
4Tt is better to consider the case when their number is exactly the same, Q=0, so that
there are no exactly zero topological modes.
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and so he concluded localization scenario is not viable.
M.Engelhardt (Tubingen) have argued that the deconfinement in pure
gauge theory can be described de to vortex percolation, rather than monopoles.

4 Lattice instantons at zero and non-zero T

The issue was reviewed by J.Negele (MIT), see [13]. He shown that topologi-
cal susceptibility is stabilized in many simulations, and the value (dominated
by instantons) agrees well with Witten-Veneziano formula. The measure-
ments of the size, defined by extrapolation to the uncooled vacuum, give
p = .39=x0.05 fm. This number, as well as the shape of the size distribution,
agrees well with the phenomenology and the instanton liquid calculations.
For finite T the size decreases by about 25% by T' = 1.3T1,, and shrinks
at higher T, also in good agreement with the Debye screening mechanism
[15, 16].

Negele has shown that most of the smallest fermionic zero modes are
related to instantons, both in quenched and full simulations. The important
conclusion is that the quark condensate is definitely completely dominated
by instantons. Furthermore, restricting the quark propagator to contribution
of the lowest modes only, one actually reproduces the correlation functions,
not only for such “collective mode” as pions but also for other channels, in
particularly p. Again, this is in agreement which we have found previously
by doing correlators in the instanton liquid models.

Another issue Negele discussed based on {7] was the role of instantons
in the heavy quark potential and confinement. The conclusion is that the
“instanton liquid” does not confine, and contribute to heavy quark potential
at the 10-20 % level. The potential found agrees well with other numeri-
cal calculations done before, and with analytical one due to Diakonov and
Petrov.

There are however three extra points which can be made in connection
to this issue. One is that we have found during this investigation that the
potential is sensitive to the shape of the Wilson loop, and only if its time
dimension T is much larger than spatial one L one gets a correct potential.
Diakonov and Petrov recently wrote a rather provocative paper[8], arguing
that all existing lattice measurements of the confinement at distances above 1
fm are actually from loops with L >> T, and are therefore suspicious. Unfor-
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tunately, simple statistical argument shows that it is practically impossible
to go to large enough L in a correct way. '

The second point is related with another idea, suggested by Diakonov
et al [40], namely that a tail of the distribution at the large-size side may
decrease as dN/dp ~ p~2 and lead to infinite confining potential. I think it
cannot work, or rather in any way explain what we know about confinement
from the lattice. One basic reason is that it would not generate small-size
strings, and also generate long-range gluonic correlators. The other is that
huge configuration-per-configuration fluctuations of the string tension would
be the case, again contrary to to observations.

My third comment is a phenomenological observation, which is by no
means new but I think reveal something profoundly important. It is found
that quarkonia made of heavy quarks (c,b) and related to confining (and
Coulomb) potential have surprisingly small interactions with light quark
hadrons. Examples are numerous, let me give one only. Compare two decays
with the same quantum numbers of the participants and about the same
released energv. p° — prw and ¢ — ¢Yww. The ratio of widths is about a
factor 1000! Where this huge factor come from? Only from very different
nature of light-quark hadrons (collective excitations of the quark condensate,
in a way, as Negele demonstrated) and quarkonia, bound by the confining
strings. Why this interaction is so small remains unknown.

T.DeGrand and A.Hasenfratz (Boulder) have presented different aspects
of their extensive studies of lattice instantons using improved actions [29)].

DeGrand reached conclusions similar to Negele’s about instantons dom-
inating the smallest eigenvalues, but has shown that instantons alone lead
to bad results for the correlators, even the pion one. The difference should
be due to different lattice fermions (KS in his work, Wilson in Negele’s): in
the debate to follow I made a point that in XS case lattice artifacts forbid
“collectivisation” of eigenmodes (leading to a scenario similar to what was
advocated by Zahed).

A.Hasenfratz (Boulder) described the current status of their work aimed
to used “perfect lattice actions” to revealed the true soft content of the
quantum configurations. Impressive results for topological observables such .
as instanton size distribution were presented. The instanton sizes were shown
to drift upward, presumably due to mutual attraction, and so the “extrapo-
lation back” seem like a good idea. She had also demonstrated that maybe
the best way to “hunt for instantons” is not via very noisy gauge fields, but
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from lowest fermionic eigenmodes.

One issue discussed in connection to this talks was related to what we
actually mean by “ total” instanton density. It is clear that as it is done it
depends on particular program recognizing instantons. Closed I pairs (or
“fluctons” as I have called them in studies of tunneling in quantum mechanics
[30]) can only be separated from perturbative fluctuations by some ad hoc
condition, since there is no real difference between the two. Still, let me point
out, to a large extent such pairs can still be well described by semi-classical
fields: only instead of the classical fields (minima of the action) we should
look at the “streamline” configurations. Their shapes (and references to the
previous works) can be found in [39]: those can well be used for “flucton
recognition”.

In summary: the instanton-antiinstanton pairs form the famous valley of
Q=0 configurations, going smoothly to zero field one. Its population in the
vacuum may and can be studied, especially in connection to the long-pending
question about understanding of “non-perturbative” aspects of high-order
perturbative terms. However, those close pairs do not provide the main
object of the instanton physics, the lowest Dirac eigenmodes, and so they
would be simply ignored by any fermionic algorithms (like the one discussed
by Hasenfratz).

Ph.de Forcrand (Zurich) had also described his version of the “improved
cooling” as a way to look for the instantons. He has also observed good
agreement between Banks-Casher relation used for the instanton eigenmodes,
and the value of the quark condensate. The main topic of his talk however
is related with a puzzling question, what happens at T > T, for QCD with
dynamical quarks?

The proposal by Ilgenfritz and myself [26] was that the ensemble of in-
stantons is broken into so called instanton-anti-instanton molecules. This
idea has worked well in the instanton liquid model simulations, see review
1.

However, de Forcrand et al results [27] neither disprove nor completely
supported this scenario. On the pro side, de Forcrand had demonstrated us
that all configuration there have Q=0, and that the Dirac eigenvalue spec-
trum even develops something like a forbidden gap. Many of the smallest
eigenmodes do indeed display two maxima in space-time, corresponding to
instanton and anti-instanton. There is also some support to our prediction
that the molecules should be predominantly oriented in time direction. How-
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ever, on the con side, as seen from de Forcrand’s movie displaying instantons
at different T, pure inspection of the action does not provide any clear identi-
fication of the IT pairs or other clusters in this ensemble. Therefore a change
in the spectrum remains a mystery.

In connection to this issue, let me recall recent work by Ilgenfritz and
Thurner [28]. Although for quenched configurations only, they have devel-
oped a way to correlate relative color orientations of instanton and anti-
instanton. They have measured distribution of the following quantity®

< G (21 UG (27)UT >
|G o (21) || G (27) |

where U is transport between centers 2y, z;. The surprising result is that the
distribution is very different at low T and T > T,: the former correspond to
random distribution, with cosf peaked around 0, while in the latter case it is
peaked at 1 and -1. It probably means, that even in quenched theory without
the determinant there is some formation of the “molecules”.

Let me summarize the somewhat puzzling situation once again: de For-
crand et al have found only marginal support for the molecular scenario in
full theory (where it was predicted), while Ilgenfritz and Thurner seem to
find them in guenched theory (where we did not expected to find them).
New simulations, with smaller quark masses (or better, with domain wall
fermions) and new way of analysis are needed to clarify it.

“6050” —

5 QCD at larger number of flavors

This is one more direction of the QCD phase diagram, in which we expect
chiral symmetry restoration. As it is well known, right below the line at
which asymptotic freedom disappears (Ny = 11 * N./2) the new phase must
be a conformal theory because the beta function crosses zero and therefore
the theory has an infrared fixed point. We do not however know till what
Ny this phase exists, and whether its disappearance and the appearance ap-
pearance of the usual hadronic phase (with confinement and chiral symmetry
breaking) is actually the same line, or some intermediate phase may also exist
in between.

5In fact in order it to be non=zero, it is also necessary to flip sign of the electric
component in one of the fields.
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'F.Sannino (Yale)® has started this discussion. Based on the gap equation
with the one-gluon exchange, Appelquist and collaborators [41] have argued
that it should happen close to the line Ny = 4N, or 12 flavors in SU(3).
Another idea suggested by Appelquist et al is the so called “thermodynamical
inequality”, according to which the number of massless hadronic degrees of
freedom N(T = 0) can never be larger than the number of fundamental
degrees of freedom N(T = oco). The corresponding numbers at temperature
T are defined as

N = —F(T) = (90/7°T*)

If the saturation of it, N(0) = N(o0), indicates the boundary of hadronic
world’, one can compare the number of pions N, = (N7—1) to the number of
gluons and quarks (taken with the coefficient 7/8) and get the same boundary
as above.

One may compare these ideas to the boundary found by Seiberg based
on his duality considerations and 't Hooft matching anomaly conditions.
According to those, the lower boundary of the conformal phase in N=1 SUSY
QCD? is at Ny = (3/2)N.. The “thermodynamical inequality” of Appelquist
remarkably reproduces it!

However (as pointed out by Appelquist et al themselves) he one gluon
exchange gap equation actually indicate a dif ferent point, and, even more
important, a completely different pattern of massless particles. The gap
equation leads to quark and gluino chiral condensation, but the Seiberg phase
has a different set of massless hadrons which are not Goldstones, related
to chiral symmetry breaking. It probably meansthat this approach is too
naive. Len me made a suggestion here: one can also get gap equations for
the channels favored by Seiberg and see if those can make massless hadrons
instead.

As we already mentioned in the section about finite T transition, the
instantons can restore chiral symmetry by breaking the random liquid into
finite clusters, e.g. I] molecules. With increasing N; this is also happens:
it is easy to see if one consider any fermionic line between them as a kind of

6He partially presenting his own talk and also substituted T.Appelquist who got ill
right before the talk

7Although I do not understand the reasoning here, sorry. It may somehow be related
to ’t Hooft matching anomaly conditions, but I was not able to work it out.

80f course, the ordinary and SUSY QCD have different multiplets and beta functions,
so we do not mean compare the numbers literally.
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additional chemical binding bond. At some critical number of those, the en-
tropy of the random phase is no longer able to compensate for binding energy.
Explicit simulations suggest it to be at Ny = 5, above which the instanton-
induced chiral symmetry breaking disappears. This number agrees with a
rapid change of the condensate value between Ny = 3 and 4 (Mawhinney)
and it is also much closer to lattice indications (Iwasaki et al) to the critical
point at Ny = 7. On the other hand, formation of instanton molecules by
no means prevents chiral symmetry breaking by a gluon exchange or any
other mechanism (confinement?), and so strictly speaking there is no direct
contradiction between two approaches. One may have a strong decrease in a
condensate, but not to zero at such Ny =5~ 7.

M.Velkovsky (BNL) discussed a calculation [31] of the vacuum energy
density due to such JT molecules. He concluded that for N; > 6 there is a
difference between even and odd Ny: while for the former the contribution
vanishes, for the later it oscillate, changing the sign. It may lead to different
(or even alternating) phases at some intermediate V.

A very interesting question discussed by Sannino [42](see also [43]) was a
question about behavior near the conformal phase boundary. He emphasized
that the transition should be infinite order, with not just few but al{ hadronic
masses going to zero (see also [43]).

One particular pair of the correlators was discussed by Sannino in particu-
lar: those are of two vector and axial correlators. In QCD they are related to
rho and al excitations, with their parameters approximately related to each
other by two Weinberg sum rules® should look like. He has shown that as one
becomes close to the transition in question, there appear three separate mo-
menta scales: (i) “partonic” one, p > A, (ii) “hadronic” one p < | < gg > |/,
and (iii) conformal window in between. The contribution of the part (iii) to
Weinberg sum rule, if non-zero, may deform the “hadronic” theory compared
to the usual QCD.

V.Elias (U. of Western Ontario) using Pade-summation for beta function,
in SUSY and non-SUSy theories E.Gardi (I’Ecole Polytechnique) to penetrate
to the boundary of the conformal window, and how far in N;/N, can the
perturbative theory can actually be used. He concluded that for low Ny such
as zero Pade approximant show no indications fro infrared fixed point. He

9Those have zero r.h.s. because QCD have no operators of dimension 2, and also

because in the chiral limit the operator of the dimension 4, G2,, cancels in the difference.
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also discussed Kogan-Shifman scenario which appears due to a pole (rather
than zero) in the beta function.

E.Gardi also considered the boundary of the conformal window, both in
the ordinary and SUSY QCD. He emphasized that bottom of the window
correspond to v = 0. He concluded in particularly that QCD remains weakly
couple in the whole window, which excluded dual description. In SUSY QCD,
on the other hand, does become strongly coupled inside the window.

There was a discussion on how exactly people should look for this transi-
tion on the lattice. As the transition itself is of “infinite order” because the
scale of chiral symmetry breaking is going to the infrared, it should look like
rapid decrease of the condensate, with unusual extrapolation to zero. The
demonstration of the “conformal window” is much however more straightfor-
ward, as it amounts to finding power-like correlators. One more way to see
it is to study scaling and construct lattice beta function: it should vanish in
the conformal window. In principle, it should converge to the same behavior
in the infrared no matter what is the initial charge in the lattice Lagrangian.
In reality, the closer it is to the fixed point the better.

6 Some lessons from Supersymmetric Theo-
ries

On the onset, let me emphasize one general point. SUSY theories are not a
separate class of gauge theories, but rather a particular points on the phase
diagrams. One can always enlarge this theories breaking the supersymmetry
(e.g. consider the same fundamental fields but different coupling constants).
Therefore all features which are not directly caused by SUSY should be
true in general. Our general aim is to understand those general dynamical
features, to the extent known results in SUSY points can help.

M.Mattis (Los Alamos) had reviewed the status of the instanton calculus
for the super-symmetric theories. For N=2 SUSY QCD (“Seiberg-Witten
theory”) it agrees with expansion of the elliptic curves if Ny < 2N, but not
for the case Ny = 2N,.

Let me inject here a discussion of the amusing similarity between QCD
and (its relative) the N=2 SUSY QCD have been recently demonstrated in
[5]. It is related to the issue of already mentioned “chiral scale” 1 GeV. In
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QCD it is phenomenologically known that this scale is not only the upper
bound of effective theory but also the lower bound on parton model descrip-
tion. However, one cannot really see it from the perturbative logs: 1 GeV is
several times larger than their natural scale, Agcp ~ 200MeV. In the N=2
SUSY QCD the answer is known: effective theory at small a (known also
as “magnetic” formulation) is separated from perturbative region of large a
by a singularity, at which monopoles become massless and also the effective
charge blows up. How it happens also follows from Seiberg-Witten solution,
see Fig.2. Basically the perturbative log becomes cancelled by instanton ef-
fects, long before the charge blows up due to “Landau pole” at p ~ A. It
happens “suddenly” because instanton terms have strong dependence on a:
therefore perturbative analysis seems good nearly till this point.

For comparison, in QCD we have calculated effective charge with the
instanton correction, as defined by Callan-Dashen-Gross expression. All we
did was to put into it the present-day knowledge of the instanton density. The
resulting curve is astonishingly similar to the one-instanton one in N=2 SUSY
QCD. Note, that in this case as well, the “suddenly appearing” instanton
effect blows up the charge, making perturbation theory inapplicable, and
producing massless pions, the QCD “magnetic” objects. Moreover, it even
happens at about the same place! (Which is probably a coincidence.)

The behavior is shown in Fig.1, where we have included both a curve
which shows the full coupling (thick solid line), as well as a curve which
illustrates only the one-instanton correction (thick dashed one). Because we
will want to compare the running of the coupling in different theories, we
have plotted bg?/8n? (b=4 in this case is the one-loop coefficient of the beta
function) and measure all quantities in units of A, so that the one-loop charge
blows out -at 1. The meaning of the scale can therefore be determined by
what enters in the logarithm.

The title of Mattis talk is actually ” The Physicist’s proof of the Maldacena
conjecture”. In essence, this work [6] is a semi-classical calculation of some
specific Green functions in N = 4 super-symmetric gauge theory!?, in the
large number of colors limit. The multi-instanton “molecules” in this limit
becomes dominated by a configuration in which all instantons are at the
same place z and have the same size p: there is enough space in color space

10F.g. in-N=4 theory considered by Mattis all logs are gone and beta function is just
zero.
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Figure 1: The effective charge b g2;;(1) /87 (b is the coefficient of the one-
loop beta function) versus normalization scale yx (in units of its value at
which the one-loop charge blows up). The thick solid line correspond to
exact solution (3] for the N=2 SUSY YM, the thick dashed line shows the
one-instanton correction. Lines with symbols (as indicated on figure) stand
for N=0 QCD-like theories, SU(2) and SU(3) pure gauge ones and QCD
itself. Thin long-dashed and short-dashed lines are one and two-loop results.

not to worry about their overlap. So, instanton is the “master field” of
this approach. The answer obtained is in perfect agreement with Maldacena
conjecture and IIB SUGRA calculation, since it looks like classical Green
function in which all field propagate from the origination points ...z, to
a point in the AdS; space, which is nothing but!! d*zdp/p°. Additional Ss
also appears, but as a non-trivial space of diquark “condensates” created by
such molecules.

117,et me recall that when I found it, I had a feeling similar to the famous Mollier
character, who just discovered that in all his previous life what he was saying and writing

was “prose”.




7 'Topological effects in Applications

There were other workshops around (including two October RIVEN work-
shops and November one in Nordita) dealing with QGP and the phase transi-
tion as studied in heavy ion collisions. For that reason we only included in our
workshop those talks which have significant overlap with other discussions,
such as topology'? and/or CP violating phases in the 8 direction.

A.Zhitnitsky (Vancouver) had literally shocked the audience by his bold
proposal that the baryon asymmetry of the Universe is not due to baryon
number violation but rather a large scale baryon charge separation in the
cosmological QCD transition [44]. He also proposed that all anti-quarks
are get locked in the surface of what he calls B-shell, now making the dark
matter. The reason it is locked is similar to domain wall fermions: it is a
topological bound state resulting from different vacua inside and outside the
ball. The sign of the charge is always the same, he explained, because the
vacuum inside has a particular CP phase. This meta-stable vacuum related
to the (so far rather murky) subject of “other brunches” of QCD vacua as a
function of # parameter.

This development is at its early stage, and it is not poss1ble to tell if it
can survive. In a very lovely dlscu§§1on to follow, several critical comments
were made. One of them I made aze related to safety issues related to fall on
by one of those shells. According to some estimates presented, the baryon
charge of the ball is about B ~ 10%°, or a mass of the order of a gram. If its
energy is released in annihilation with matter, it is about an atomic bomb.
However Zhitnitsky argued that because the B-shells are large bubbles of
another vacuum, the probability of the annihilation should be small.

M.Sadzikowski [45] (Cracow) has demonstrated that earlier estimates of
multiple production of baryons and anti-baryons in hadronic and nuclear
collisions as a topological defects in chiral models was actually too opti-
mistic. Including realistic quark masses and fluctuations in the same model
significantly reduce the rate. His prediction for the rate is about 10~ anti-
baryons/fm3.

D.Kharzeev (BNL) addressed the issue of the non-trivial vacuum bubbles
with effectively different 6 and CP violation [46]. Unlike Zhitnitsky, however,
he discussed heavy ion collisions, not cosmology. He argued that high-degree

12Not directly related to instantons, which are discussed in other sections.
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of U(1) restoration may make it possible, although in small vicinity of T,.
The estimates of what the probability of such bubble production are very
uncertain. However some ideas how one should look for it were discussed.
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