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ABSTRACT

Magnetized Target Fusion (MTF) efforts are based on calculations showing that
the addition of a closed magnetic field reduces the driver pressure and rise time
requirements for inertial confinement fusion by reducing thermal conductivity. In-
stabilities that result in convective bulk transport at the Alphen time scale are of
particular concern since they are much faster than the implosion time. Such in-
stabilities may occur during compression due to, for example, an increase in the
plasma-magnetic pressure ratio β or, in the case of a rotating plasma, spin-up due
to angular momentum conservation. Details depend on the magnetic field topology
and compression geometry.
A hard core z pinch with purely azimuthal magnetic field can theoretically be

made that relaxes into a wall supported diffuse profile satisfying the Kadomtsev
criterion for the stability of m = 0 modes, which is theoretically preserved during
cylindrical outer wall compression. The center conductor radius and current must
also be large enough to keep the β below stability limits to stabilize modes with
m > 0. The stability of m > 0 modes actually improves during compression. A dis-
advantage of this geometry, though, is plasma contact with the solid boundaries. In
addition to the risk of high Z impurity contamination during the (turbulent) relax-
ation process, contact thereafter can cause plasma pressure near the outer surface
to drop, violating the Kadomtsev criterion locally. The resultant m = 0 instability
can then convect impurities inward. Also, the center conductor (which is not part of
the Kadomtsev profile) can go m = 0 unstable, convecting impurities outward. One
way to mitigate impurity convection is to instead use a Woltjer-Taylor minimum
magnetic energy configuration (spheromak). The sheared magnetic field inhibits
convection, and the need for the center conductor is eliminated. The plasma, how-
ever, would likely still have to be wall supported due to unfavorable β scaling during
quasispherical (3-D) compression otherwise.
Use of a Field Reversed Configuration (FRC) substantially resolves the wall

contact issue, but at the cost of introducing a new (rotational) instability. An
FRC has an open magnetic field outside a separatrix which effectively diverts wall
material. However, FRC particles diffusing across the separatrix have a preferred
angular momentum, causing the FRC within to counter-rotate in response. When
the FRC’s rotational-diamagnetic drift frequency ratio α reaches a critical value
of order unity, the FRC undergoes a rotational instability that results in rapid
particle loss. The instability is exacerbated by cylindrical compression since β ∼
R−2/5 during this phase, assuming angular momentum conservation. A multipole
magnetic field frozen into the solid liner during compression may stabilize this mode
directly and/or by impeding spin-up without significantly perturbing the implosion’s
azimuthal symmetry.
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HARD CORE Z PINCH

The adiabatic ideal MHD response of a hard core z pinch with purely azimuthal
magnetic field and inner radius a to an outer conductor of initial radius r = b0
compressing to r = b may be determined from the radius r = r (r0) of fluid el-
ements initially at radii r0 (a Lagrangian parameterization). If the compression
occurs slowly enough that the plasma approximates an equilibrium at all times,
this satisfies[11]
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The “0” subscript will identify an initial profile property, except for Q0 and µ0.
This ordinary differential equation (ODE) may be rewritten in terms of u = r2

vs. r0, and solved for u00 = d2u/dr20. Given an arbitrary initial equilibrium state,
then, u (r0) for a compressed state may be evaluated numerically given boundary
conditions u (a) = a, and some value of u0 = du/dr0 at r0 = a. From this, one then
finds u00 (a) from the ODE. u (a+4r0) and u0 (r0 +4r0) may then be parabolically
and linearly extrapolated, respectively, where 4r0 is a small increment. Plugging
these back into the ODE, one then finds u00 (a+4r0), from which one may proceed
to extrapolate u0 (a+ 24r0) and u00 (a+ 24r0). The process is repeated until one
reaches r0 = b0, at which time the value of b =

p
u (r0) of the solution is determined

ex post facto.
Density ρ, magnetic field B, pressure p, and β = 2µ0p/B

2 may then be found
from[11]
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The Kadomtsev criteria[5] for stability of all azimuthal modes {m} for the com-
pressed state are then used to determine stability

Q0 =
−(6+5β)
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Q1 = −β r
p
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dr < 1 (m ≥ 1) (3)

The above solution is required in general. In the rest of this section, though, we
will focus on the special case of an initial “Kadomtsev profile”, which, except for
the numerical evalution a two key parameters, has an analytic solution. This is of
special interest because a hard core z-pinch can theoretically be made that relaxes
roughly into this profile that marginally satisfies the Kadomtsev criteria by having
Q0 = 1 everywhere[6]. Given this profile for our initial state, we have the following
properties parameterized by β0,
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Here and elsewhere, subscripts “a” and “b” identify property values at r = a and
r = b, respectively. Q1 falls off from monotonically from it’s maximum at r0 = a.
The configuration is marginally stable to m ≥ 1, with Qa1 = 1, if βa0 = 2/5.
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The time invariant mass and magnetic flux per unit axial length within a fluid
element of a general ideal MHD pinch bounded by r0 and r0+dr0 during compression
are 2πrρdr0 and Bdr0, respectively. The ratio, then, is a time invariant of the
fluid element (parameterized by r0) called the Kadamtsev parameter K = K (r0).
Expressing in terms of p instead of ρ via the adiabatic invariant pρ−5/3, we have

K (r0) =
p3/5r

B
(5)

One finds from substitution that K (r0) is uniform for a Kadomtsev profile so, when
adiabatically compressed,
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is a constant of both time and space.
If we furthermore assume that the plasma remains in equilibrium, Eq. 6 and

the definition of β may be used to express the pressure balance equation
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as a differential equation in p with reference to β, with the solution being a Kadomt-
sev profile. That is, the uniformity of p3/5r/B implies and is implied by (is equiv-
alent to) a Kadomstev profile, and the plasma remains in one during compression.
So,
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Q0 = 1 is preserved and m = 0 remains marginally stable.
Solutions to βa, Ba, pa, Q1, and other properties such as ρ and T needed to

complete the description and stability analysis of the compressed state are found
first by choosing a value of βa and solving for those properties in terms of it. One
finds from Eq. 6 solved at r = a and the definition of β, for example,

Ba

Ba0
=

µ
βa0
βa

¶3
pa
pa0

=

µ
βa0
βa

¶5
(9)

From this one sees that compression, which causes Ba and pa to rise, results in
βa < βa0. Since βa ≤ 2/5 is the criterion from the stability of m ≥ 1 for a
Kadomtsev profile, a configuration initially stable to these modes is stable under
compression too. All modes, then, remain stable.
As with the general problem (Eq. 1), the value of b for this solution is found ex

post facto. From the Kadomtsev r profile,
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But for this we need βb too. To this end, we derive a relationship between a given
fluid element’s β and its initial value β0 from the fact that flux interior to that
element is preserved, Z β
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Plugging in the initial and compressed Kadomstev profiles (Eqs. 4 and Eqs. 8),
and making use of Eq. 6 and definition of β, the result is
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Solved numerically for β (β0) (given βa0 and βa), we have βb = β (βb0) needed
to find b, where βb0 is determined by numerically solving for it from the initial
Kadomstev r profile evaluated at r = b0,
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Incidentally, having β (β0) also allows one to calculate ρ (β0) and T (β0) from its
initial profile via the adiabatic invariant,
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Listed below are the results of a marginally stable Kadomtsev profile (βa0 = 2/5)
initially with b0/a = 10 compressed to the point where βa = 0.17, subsequently
determined to correspond to b/a = 1.2. This example was chosen to match the
parameters of a published MHD simulation intended to represent this case.[11]
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The results are consistent with the reference’s Fig. 5. In addition the general prop-
erties already discussed, one noteworthy feature is the much greater compression
and heating at larger radii.
In MHD simulations which include thermal conductivity, contact with the liner

causes plasma pressure near the outer surface to drop, violating the Kadomtsev cri-
terion locally. The resultant localized m = 0 instability can then convect impurities
inward, at least a small distance. Also, the center conductor (which is not part of
the Kadomtsev profile) can go m = 0 unstable, convecting impurities outward[6].
One question then is the radial extent of transport from the unstable walls, as sug-
gested in Fig. 1. The effect of impurities can be significantly mitigated significantly
if the walls are coated with Li or, better yet, frozen D2.
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Figure 1. Hypothetical consequences of Kadomtsev unstable layer near wall.

A Woltjer-Taylor minimum magnetic energy configuration (spheromak) is an
option that can mitigate such transport. The sheared magnetic field inhibits con-
vection, and the need for the center conductor is eliminated. Such a configuration,
however, is only stable for low β if plasma pressure at the wall is to be kept small.
To make matters worse, β ∼ R−1 during quasispherical (3-D) flux conserving self-
similar compression, where R is the liner radius. The plasma, therefore, would likely
still have to be wall supported.

FIELD REVERSED CONFIGURATION

Use of a an FRC substantially resolves the wall contact issue, but at the cost
of introducing a new (rotational) instability. An FRC has an open magnetic field
outside a separatrix which effectively diverts wall material. However, FRC particles
diffusing across the separatrix have a preferred angular momentum, causing the FRC
within to counter-rotate in response.[1] When the FRC’s rotational-diamagnetic
drift frequency ratio α reaches a critical value of order unity, the FRC undergoes
a rotational instability that results in rapid particle loss. This instability can be
understood conceptually in terms of a simplified FLR treatment. Roberts and
Taylor[8] show that for the planar R-T case where density ρ0 increases with height
as exp (λx) in a gravitational field of acceleration g, R-T modes are stable for
magnetically transverse wave numbers k provided

g ≤ ν2λk2 ν =
kBTi
2ZeB

(16)

Here, ν is the “gyroviscosity” coefficient, with kB , Z, e, and B being the Boltzmann
constant, mean ionization level, elementary charge, and magnetic field magnitude,
respectively.
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To apply this result to a rotating cylindrical plasma column with an axial mag-
netic field of characteristic magnitude B, note that the ion diamagnetic drift fre-
quency is

ΩDi = −
vDi

r
vDi = −

∇pi ×B
eZniB2

(17)

where vDi is the diamagnetic drift velocity, and pi and ni are the ion pressure and
number density, respectively. Using centripetal acceleration for g at the characteris-
tic radius of the column R1 (magnetic null radius), and wrapping the mode “plane”
around the circumference, we have, then, the characteristic values,
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Our stability criterion g ≤ ν2λk2 is, then,
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2
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Given a characteristic density gradient scale length of 1/λ ≈ R1, stability requires
α . 1 for the least stable mode n = 2. Technically, n = 1 goes unstable first, but the
(planar) model applied to cylindrical geometry does not conserve lateral linear mo-
mentum for this mode, so is inapplicable. The threshold is respectably close to the
threshold value observed[4] and described by more sophisticated modeling[2][9][3],
given the geometrical liberties taken.
The dynamics of the n = 2 mode is of particular concern for the MTF appli-

cation because α theoretically increases significantly during wall compression by
a conducting cylindrical liner. To show this, firstly, ΩR increases in proportion
to R−2s from angular momentum conservation where Rs is the separatrix radius.
Meanwhile, xs ≡ Rs/Rc is conserved during cylindrical wall compression, where Rc

is the liner inner radius (Tuszewski, p. 2058).[12] Given this, plasma β is conserved
(Tuszewski, Eq. 10).[12] Given this and flux conservation, ΩDi is proportional to
Ti, (Shimamura, Eq. 7 with Ω∗ = −ΩDi).[10] The FRC’s characteristic volume
V = πR2sls, meanwhile, decreases as R

N
s , where ls is the separatrix length, and N

is the dimensionality of compression. Assuming adiabatic compression, TiV (5/3)−1

is conserved. Therefore, ΩDir
2N/3
s = constant, and ΩDi increases in proportion to

R
−2N/3
s . α, then, increases in proportion to R−2s /R

−2N/3
s = R

−2(1−N/3)
s . N = 12/5

for cylindrical wall compression (Tuszewski, Table V)[12], so α increases in propor-
tion to R−2/5s or, equivalently, R−2/5c . The (target) factor of 10 radial compression,
then, increases α by a factor of 102/5 ≈ 2.5.
A multipole magnetic field frozen into the solid liner during compression may

stabilize this mode directly and/or by impeding spin-up without significantly per-
turbing the implosion’s azimuthal symmetry.[7]

SUMMARY

The effect on compression on the most problematic instabilities of the two lead-
ing candidates for MTF are discussed. For a hard-core pinch, radial convection
of wall material is expected from the destabilization of an initial Kadomtsev pro-
file, though further investigation is needed to assess its significance. Mitigation
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strategies such as using an overstabilized initial state and/or low Z wall loading
are possible. For an FRC, disintegration during compression is expected due to
unfavorable scaling of rotation n = 2 instability’s stabilitiy threshold parameter α.
Use of multipole stablization of the n = 2 instability is an option that needs further
investigation.
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