

NO_x Control for Utility Boiler OTR Compliance

Quarterly Technical Report

For the Period
October 1, 2003 through December 31, 2003

Prepared by:

Hamid Farzan
Phone: 330-860-6628
Fax: 330-860-6676
E-mail: HFarzan@babcock.com

Date Issued: February 2004

DOE Award No.: DE-FC26-03NT41722
B&W Contract No.: RCD-1449

The Babcock & Wilcox Company (B&W)
B&W Research Center
1562 Beeson Street
Alliance, Ohio 44601

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

LEGAL NOTICE

This report was prepared by the Babcock & Wilcox Company (B&W) for the U.S. Department of Energy (DOE). Neither DOE, B&W, nor any person acting on their behalf:

- a) Makes any warranty or representations, express or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe on privately owned rights; or
- b) Assumes any liabilities with respect to the use of, or for damage resulting from the use of, any information, apparatus, method or process disclosed in this report.

ABSTRACT

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NO_x control. The system is comprised of B&W's DRB-4ZTM ultra low-NO_x pulverized coal (PC) burner technology and Fuel Tech's NO_xOUT[®], a urea-based selective non-catalytic reduction (SNCR) technology.

Development of the low-NO_x burner technology has been a focus in B&W's combustion program. The DRB-4ZTM burner is B&W's newest low-NO_x burner capable of achieving very low NO_x. The burner is designed to reduce NO_x by controlled mixing of the fuel and air. Based on data from several 500 to 600 MW_e boilers firing PRB coal, NO_x emissions levels of 0.15 to 0.20 lb/ 10⁶ Btu have been achieved from the DRB-4ZTM burners in combination with overfire air ports. Although NO_x emissions from the DRB-4ZTM burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO_x/10⁶ Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO_x emission levels facing them.

Large-scale testing is planned in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO_x level below 0.15 lb/10⁶ Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4ZTM low-NO_x pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO_xOUT[®].

During this period B&W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

TABLE OF CONTENTS

	PAGE
1 INTRODUCTION.....	1
2 EXPERIMENTAL.....	2
3 RESULTS AND DISCUSSION	3
4 CONCLUSION	3
5 REFERENCES.....	3
6 LIST OF ACRONYMS AND ABBREVIATIONS	4

1 INTRODUCTION

The Babcock & Wilcox Company (B&W), and Fuel Tech are teaming to evaluate an integrated solution for NO_x control comprised of B&W's DRB-4ZTM low-NO_x pulverized coal (PC) burner technology and Fuel Tech's NO_xOUT[®], a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO_x/10⁶ Btu. Promising results have been obtained from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO_x emission of 0.19 lb/10⁶ Btu has been achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO_x emissions was as low as 0.09 lb/10⁶ Btu. Improved performance is possible with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes. Convective pass lances represent the current state-of-the-art in SNCR and should be evaluated in order to assess the full potential of the combined technologies.

Since SNCR performs very well in low load conditions, a hybrid selective catalytic reduction (SCR)/SNCR technology can be developed to take advantage of the strength of both technologies. SCR can achieve over 90% reduction in full load, but there are concerns about catalyst poisoning at low loads due to ammonia bisulfate deposits on the catalyst. By using SNCR in low load and SCR in full load, the hybrid system will use the strength of both technologies.

This proposed project is expected to last 14 months from the start of activity in December 2003 until approval of the final report in January 2005.

The objective of the project is to achieve a NO_x level below 0.15 lb/10⁶ Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4ZTM low-NO_x pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO_xOUT[®]. Commercial installations of B&W's low-NO_x burner in

combination with overfire air ports using PRB coal has demonstrated a NO_x level of 0.15 to 0.2 lb/10⁶ Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO_x level at 0.15 lb/10⁶ Btu. The NO_x reduction goal for SNCR is 25% from the low-NO_x combustion emission levels. Therefore, overall NO_x emissions could approach a level of 0.11 lb/10⁶ Btu. In addition, we will evaluate an SCR/SNCR hybrid technology using SCR at full load and SNCR at low load conditions. Since the majority of existing commercial SCR units use ammonia, we will obtain SNCR data with ammonia at low load conditions to allow hybrid SNCR/SCR evaluation with ammonia as a NO_x reducing agent.

2 EXPERIMENTAL

During this period we prepared and submitted the project hazardous substance plan and project management plan. We concluded that no hazardous substance will be generated in the project, and there is no need for treatment of the substance. We will be using urea and ammonia for the SNCR process in the CEDF testing. The remaining aqueous urea solution, with the permission from the city authorities, will be slowly discharged to the sanitary sewer (since it is not a hazardous material). The remaining ammonia will be shipped back to the industrial gas supply company.

Project planning continued by performing management activities. B&W and Fuel Tech discussed the project. We decided to have a site visit during first quarter of 2004 to plan for fabrication of the Multiple Nozzle Lance (MNL) and other site preparation activities such as man-power planning and having Fuel Tech's trailer reserved for testing. Our current plan calls for testing during May. There could be a schedule conflict with Fuel Tech, because they will be starting several commercial SNCR systems just before the ozone season. We are currently thinking about getting the trailer during June and performing the SNCR testing in the June/July timeframe. CEDF general maintenance and instrument calibration will be started in January. The schedule of each task and major milestones is shown in Figure 1.

NOx CONTROL FOR UTILITY BOILER OTR COMPLIANCE																		
TASK	Sep 2003	Oct 2003	Nov 2003	Dec 2003	Jan 2004	Feb 2004	Mar 2004	Apr 2004	May 2004	Jun 2004	Jul 2004	Aug 2004	Sep 2004	Oct 2004	Nov 2004	Dec 2004	Jan 2005	
TASK 1 SITE PREPARATION																		
Subtask 1.1 - Coal Procurement																		
Subtask 1.2 - CEDF Preparation																		
Subtask 1.3 - SNCR System Preparation																		
TASK 2 LOW NOx BURNER/SNCR TESTING																		
Subtask 2.1 - Combustion Tests																		
Subtask 2.2 - SNCR Tests																		
TASK 3 DATA ANALYSIS																		
Subtask 3.1 - Combustion System and SNCR Analysis																		
Subtask 3.2 - Commercial Plant Nox Reductions Predictions																		
TASK 4 SITE RESTORATION																		
Subtask 4.1 - Restoration of CEDF																		
Subtask 4.2 - SNCR System																		
TASK 5 REPORTING & PROJECT MANAGEMENT																		
Subtask 5.1 - Planning and Coordination																		
Subtask 5.2 - Reporting		X			X			X			X			X				
- Progress Report																		
- Draft Final Report																		
- Final Report																		

FIGURE 1 - Project Schedule & Milestone Plan

3 RESULTS AND DISCUSSION

No results have been obtained yet.

4 CONCLUSION

No conclusions have been derived.

5 REFERENCES

None.

6 LIST OF ACRONYMS AND ABBREVIATIONS

B&W	The Babcock & Wilcox Company
CEDF	Clean Environment Development Facility
DOE	The United States Department of Energy
MNL	Multiple Nozzle Lance
NETL	National Energy Technology Laboratory
OTR	Ozone Transport Rule
PC	Pulverized Coal
SCR	Selective Catalytic Reduction
SNCR	Selective Non-Catalytic Reduction