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Abstract I. RF GUN DESIGNG} S T |

In recent years, advances in the rf gun technoloy have
made it possible to produce smaill beam emittances suitable for
short period microundulators which take advantage of the low
emittance beam to reduce the wavelength of FELs. At the
Advanced Photon Source, we are studying the design of a com-
pact 50-MeV superconducting mm-wave linac-based FEL for
the production of short wavelengths (~ 300 nm) to carry out
FEL demonstration experiments. The electron source consid-
ered for the linac is a 30- GHz, 3 1/2-cell n—mode photocath-
ode rf gun. For cold model rf measurements a 15-GHz
prototype structure was fabricated. Here we report on the
design, numerical modelling and the initial cold-model rf mea-
surement results on the 15-GHz prototype structure.

The rf gun considered for this project is a 30-GHz 3 1/2-
cell structure. However, for ease of the initial fabrication and
assembly, a prototype 15-GHz structure was designed and built
as a first test structure. Although there are many technical diffi-
culties associated with high-frequency rf gun structures, a 30-
GHz photocathode rf gun allows us to reach very high gradient
in excess of 500 MV/m. This drastically reduce the effects of
space-charge forces and allows high-brightness beams. For a
cylindrically symmetrical structure, the transvrse magnetic
field (TM modes) can be unniquely determined by the axial
electric field, E, [3]:
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Short wavelength FELs impose stringent requirements on E (zr) = - 4r (20) - h, 2 + O( r 5) , @
the quality of the electron beams. The key factor in obtaining a r 2dz 2 16
single-pass UV or x-ray FEL is the generation of small emit-

tance elcetron beams with ultra-high brightness. In the past pr p,.3 ( 5)

decade, a termendous amount of R&D has taken place to Bplzr)) = 7L, (2 0) —1-h (D + O (P}, 3
improve the performance of rf gun design [1-2]. With the '

emergence of new photocathode materials with good quantum  where h(z) satisfies

efficiencies and improvements in laser technology to produce

ultra-short pulses, it is now possible to produce small emit- dz 2

tance electron beams suitable for short wavelength FEL appli- h@ = dz_2 *p Ez (z0) . “)

cations. The linac structure being considered is a 60-GHz
constant gradient superconducting stucture fabricated by using
a precision microfabrication process known LIGA (Lithogra-
phie, Galvanoformung, Abformung).
The limitations on the emittance and beam brightness of J(
r=

For ideal cavity shape it is required to make both h(z) and
h’(z) zero. In this case, the cavity’s radius is given by [4]

a2 - (%)zlog( sing-;-)) 5)

As z goes to zero, it requires that r approaches infinity. In a
real situation one can optimize the cells’ geometry and the
of 600 A/cm?®. These cathodes may be operated at pulse shape of the cavity around the exit in a way which is close to
lengths ranging from a few picoseconds to microseconds at the ideal shape. The effects of nonlinear rf forces and self-
high pulse repitition rates. However, excellent vacuum (~10"° fields of the electrons on the emittance growth of the electron
Torr ) must be maintained. Field emission array (FEA) cath- beam has been described in detail by K.-J. Kim {5]. Emittance
growth due to nonlinear rf forces can be controlled by ensuring
that nonlinear transverse components of the rf fields are mini-
mized. This can be achieved by placing a thick disk between
cells and adjusting the diameter of the apertures so as to mini-
mize nonlinear transverse components.The effects of nonlinear
space charge forces are reduced since the initial electron distri-
* Work supported by the U.S. Department of Energy, Office of Basic  bution from the cathode are launched in a high gradient electric
Energy Sciences, under Contract No. W-31-109-ENG-38. field and the space charge beam blowup scales as the inverse of
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T‘ E R of 2 ps is chosen. MAFIA [6] numerical codes were used to
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an electron gun are mainly due to nonlinear electomagnetic
forces, space charge forces, and the maximum current density
that can be obtained from the cathode. Alkali semiconductors
photocathode such as Cs3Sb can produce peak current density

odes could produce current density in excess of 100 Alcm?.
However, at the present time, their limited liftime due to vari-
ous breakdown modes does not make them attractive for accel-
erator applications.
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model the 3 1/2-cell rf gun including particle-in-cell simula-
tions. The main parameters of the prototype photocathode rf

gun are listed in Table 1.

Table 1: 15 GHz Prototype Gun RF Parametters

generate astanding wave field pattern. An on-axis hole was

At R m TR

Parameter Value
Frequency 15 GHz
Peak accelerating gradient 200 MV/m
Exit beam energy 4 MeV
Charge per bunch 1 nC
Cathode radius 0.5 mm
Emittance 2 mm-mrad
Shunt impedance 254 MS¥meter
Q 7000

The gun’s cell radius and aperture diameter were optimized to
provide the correct longitudinal aceelerating field for the
desired n-mode. For particle-in-cell simulations, a Gaussian
bunch of 2-ps length (FWHM) and a total number of particles

of 6 x-10° (total charge/bunch = 1 nC) is assumed to be ejected
from the copper cathode surface of radius 0.5 mm. The initial
velocity of the bunch is assumed to be v=0.01 ¢ with a peak
rf accelerating gradient of 200 MV/m. Figure 1 shows the lon-
gitudinal field pattern for the accelerated bunched beam. Fig-

ure 2 is a plot of the particles energy (y—distribution) along the
Z-axis.

III. PROTOTYPE GUN RF MEASUREMENTS

The field perturbation method was employed to determine
the axial field distributions of the excited modes in the 15-GHz
prototype rf gun structure. The perturbation is achieved by
using small cylindrical aluminum beads deposited on nylon
lines and optical fibers with a diameter of ~100 um. A step-
ping motor with a 0.1-um minimum step size was used to pull
the bead through the structure. For a bead having dimension
that is small compared to the structure wavelength, the pertur-
bation relation is given by [7]
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where E; (E;) and Hy (H, ) are the electric and magnetic fields
parallel (perpendicular) to the perturbing object axis and F,
(n=1,2,3,4) are the perturbational form factors. For a metallic
sphere, these form factors are all equal to 1 [6].

The measurement setup (Figure 3) consists of two shorting
plates located at the entrance and the exit of the structure to
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Figure 2: Particle beam energy distribution

drilled in each plate to provide an opening for the bead’s travel
path. To excite the longitudinal electric field, a field probe of
1.194- mm outer diameter was fabricated. An identical probe
was used as a pickup. Two fiber chuck holders held the ends of
the fiber line while the bead was pulled through the struc-
ture.The bead was advanced through the structure in small




‘increments (~94 pm/step) through computer control of the
stepper motor. At each bead position, the phase of the trans-
mission coefficient, S, , was measured using an HP 8510 net-
work analyzer with an automatic data acuisition system.
Figure 4 is the frequency spectrum of the excited modes in the
structure.and Figure 5 is a plot of perturbation measurement
results of the t—mode.
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Figure 3: Bead pull field measurement setup

IV. SUMMARY AND DISCUSSION

A 30-GHz photocathode rf gun is being considered as a
low emittance electron source for a short-wavelength 50-MeV
single pass linac-driven FEL. To understand the rf properties of
high-frequency rf gun, a 15-GHz 3 1/2-cell copper structure
was fabricated and bench tested. Numerical modeling result
using MAFIA give a resonant frequency of 15 GHz for the
desired n-mode accelerating field with a shunt impedance of
254MQ /m (Q=7000). Beadpull measurements of the rf gun
resulted in 15.5 GHz for the n-mode with a shunt impedance of
3.4 MQ/m (Q = 312). The huge discrepancy beween the calcu-
lated and measured shunt impedance are mainly due to
mechanical imperfections of the cavity during fabrication. This
structure was fabricated in many separate pieces with relaxed
tolerances and was put together in a “Lego-Block” manner and
pressed fitted inside a copper block with a set of bolts and nuts
to hold it together at both end. This resulted in poor f contacts
between pieces (cells) which severely affected the rf measure-
ments. Improvements on the structural fabrication and mea-
surement methods are planned.
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Figure 4: Frequency spectrum of the excited modes
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Figure 5: Perturbation measurement result for x-mode
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