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ABSTRACT 
 
Electrochemical corrosion rate (ECR) probes were constructed and exposed along with mass loss coupons 
in a N2/O2/CO2/H2O environment to determine ECR probe operating characteristics.  Temperatures 
ranged from 450º to 800ºC and both ECR probes and mass loss coupons were coated with ash.  Results 
are presented in terms of the probe response to temperature, the measured zero baseline, and the 
quantitative nature of the probes.  The effect of Stern-Geary constant and the choice of electrochemical 
technique used to measure the corrosion rate are also discussed.  ECR probe corrosion rates were a 
function of time, temperature, and process environment and were found to be quantitative for some test 
conditions.  Measured Stern-Geary constants averaged 0.0141 V/decade and the linear polarization 
technique was found to be more quantitative than the electrochemical noise technique. 

INTRODUCTION 
 

Increasing the efficiency of the Rankine cycle in coal combustors 
can be accomplished by increasing heat exchanger steam 
temperatures and pressures, as is done in supercritical and ultra 
supercritical units.  The benefits of increasing energy conversion 
efficiencies are reduced consumption of fossil fuels (coal, oil, 
and gas) and reduced emission of greenhouse gases (CO2).  In 
order to achieve both of these benefits, it is necessary to 
overcome technological challenges related to materials of 
construction.  New materials or material/coating combinations 
with adequate strength, creep, fatigue, and corrosion resistance 
will need to be developed.  Additional issues are present when 
alternate fuels are used.  While heat exchanger tubes in coal-fired 
plants using clean high quality fuel may last 20 to 30 years, tubes 
in coal-fired plants using lower quality fuel and in some coal 
gasification plants last only 3 to 5 years. 
 
Problems occur when equipment designed for either oxidizing or 
reducing conditions is exposed to alternating oxidizing and 
reducing conditions.  This can happen especially near the burners 
pictured in Figure 1.  The use of low NOx burners is becoming 
more commonplace and can produce reducing environments that 
accelerate corrosion.  Complicating the development of 

corrosion-resistant materials for fireside applications is the influence of ash deposits and thermal 
gradients on the corrosion mechanism.  Ash deposits and thermal gradients have a synergism that greatly 
increases the corrosive attack on heat exchanging equipment such as waterwalls, reheaters, and 

Figure 1- Possible locations for 
corrosion sensors in boilers.
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superheaters.  One method of addressing corrosion of these heat exchange surfaces is the use of corrosion 
sensors, as pictured in Figure 1, to monitor when process changes cause corrosive conditions.  In such a 
case, corrosion rate could become a process control variable that directs the operation of a coal 
combustion or coal gasification system.  Alternatively, corrosion sensors could be used to provide an 
indication of total metal damage and thus a tool to schedule planned maintenance outages. 
 
A number of research efforts have been aimed at developing high temperature corrosion probes for 
various industries.  The majority of the research has been based on the use of electrochemical noise (EN)1-

6 techniques.  Others have considered the use of electrochemical impedance spectroscopy (EIS)3-5 and 
linear polarization resistance (LPR)6, zero resistance ammetry (ZRA)4, and electrical resistance (ER)4. 
However, only a limited effort has been made to quantify2 the operation of corrosion rate probes.  For 
these probes to be accepted routinely in the power generation industries, it will be necessary to determine 
if they accurately measure corrosion and the changes in corrosion rate that occur in environments of 
interest, if the sensor materials have an optimum composition for the intended exposure, and if the 
sensitivity or accuracy of the sensor changes with exposure time in fireside environments.  Once this is 
established, electrochemical corrosion rate sensors can be used extensively and will allow corrosion rate 
to become a process variable for power plant operators. 
 
Most electrochemical corrosion rate measurement techniques measure a resistance that is representative 
of the rate of the corrosion reaction.  This is true of the LPR, EN, and EIS techniques.  These resistances 
are related to corrosion rate by the Stern-Geary linear approximation to the Butler-Volmer equation, 
 

( )( ) ( )corrcacorr

ca

applied
np i

B
ii

ERR =
+

=
∆

∆
==

ββ
ββ

303.2                         (1) 

 
where Rp is a resistance obtained from the LPR and EIS techniques, Rn is a resistance obtained from the 
EN technique, B is the Stern-Geary constant, βa and βc are the anodic and cathodic Tafel constants, 
respectively, and icorr is the corrosion current density from which a corrosion rate may be calculated.  The 
Stern-Geary constant (determined by the Tafel constants) is the only variable that is normally not 
measured, but commonly assumed to be a value of 0.020 to 0.030 V/decade.  Because B is related to 
Tafel constants, it can be measured using either standard electrochemical polarization techniques or the 
harmonic distortion analysis (HDA) technique that is used in this report. 
 
The purpose of the research presented here is to address some of the issues that impact the understanding 
and the use of ECR probes.  This report is part of an effort to characterize the long-term stability and 
performance of probes, and to optimize the choice of sensor materials. 
 

EXPERIMENTAL DETAILS 
 
Electrochemical corrosion rate (ECR) probes were designed and constructed for laboratory experiments 
using a mild carbon steel (CS), 304L stainless steel (SS), and 316L SS sensors or electrodes, Table 1.   

 
Table 1 – Compositions of alloys used to make ECR probes. 

Concentration, wt % Alloy Fe Cr Ni Mo Cu Si Mn 
Mild Steel 97.8 0.13 0.14 0.024 0.35 0.22 0.82 
304L SS 69.5 18.43 9.7 0.14 0.21 0.53 1.2 
316L SS 67.8 16.84 11.1 2.1 0.12 0.47 1.3 
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The probes were covered with ash and 
exposed, along with mass loss coupons made 
from the same material, to a mixed gas 
environment and temperatures that ranged 
from 450 to 800ºC.  The purpose was to 
determine the operating characteristics of 
probes and to compare integrated or average 
corrosion rates obtained from ECR probes to 
those obtained from mass loss coupons. 
 
Three-sensor electrochemical corrosion rate 
probes were fabricated using the components 
shown in Figure 2.  The cylindrical piece of 
ceramic served as the form to contain the 
sensors.  The stainless steel tubing served to 
isolate the wires from the test environment 
and provided a path for the wires to exit the 
high temperature environment.  Sensors were 
embedded within the ceramic form first using 
an alumina cement and later using Ceramcast 
586, a zirconia/magnesia potting compound.  After curing at room temperature for 12 to 18 hours, the 
ECR probe was cured at 93ºC for 4 hours and then at 121ºC for 3 hours.  Final preparation included hand 
polishing the sensors to a 9 µm finish.  The finished probe is shown in Figure 2. 

 
 
Figure 2 – A completed high temperature 
corrosion rate probe and the components of 
construction. 
 

 
Experiments were conducted using an ash coating and a mixed gas environment identical to those 
reported previously7.  The ash was obtained from a municipal incinerator and analyses showed high 
concentrations of corrosion-causing elements such as S, Cl, Pb, and K.  The gas mixture consisted of 68 
vol% N2, 15 vol% H2O, 9 vol% O2, and 8 vol% CO2. Temperatures ranged from 450 to 600ºC. Uncoated 
probes were tested to 800ºC.  Typical test periods were 100 to 180 hours. 

 

 
Figure 3 – Electrochemical corrosion rate probe 
and mass loss coupons prior to testing but after the 
application of a layer of ash.  One coupon (far 
right) intentionally ash free. 
 

Tests designed to determine the 
quantitative nature of ECR probes involved 
exposing four mass loss coupons and the 
probe to the corrosive environment.  Three 
of the four mass loss coupons were coated 
with ash on one side while one was left ash 
free.  A slurry of the ash was applied to 
each of the ash-covered coupons and to the 
probe.  Water was originally used to make 
the ash slurry; however, methanol was 
used for later tests.  Two of the ash-
covered coupons were used to determine 
the mass loss corrosion rate for comparison 
to the ECR probe corrosion rate.  The third 
ash-covered coupon was cross-sectioned 
for analyses to provide mechanistic 
information.  Figure 3 shows the ash-
covered probe and ash-covered and ash-
free mass loss coupons. 
 
Following exposure to the corrosive 
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environment, ash was scraped from the surface of the mass loss coupons in preparation for chemical 
cleaning.  The CS mass loss coupons were cleaned at 60ºC in a 12 vol% H2SO4 plus 0.25 vol% Rodine 95 
(inhibitor) solution; the 304L and 316L SS mass loss coupons were cleaned at 25ºC in a 10 vol% HNO3 
solution containing 2 vol% HF. 
 
The corrosion measurement equipment used for this research was the SmartCET system.  This system 
applies three techniques, EN, LPR, and HDA, to the measurement of corrosion.  The application of the 
three techniques and the appropriate data analysis produces a set of corrosion measurements 
approximately every 7 minutes.  Data, which include EN, LPR, and HDA corrosion rates, an EN pitting 
factor, and Tafel and Stern-Geary constants from the HDA technique, are collected, displayed, and stored 
using FieldCET software.  A number of other variables, such as solution resistance, skew, and kurtosis, 
are collected and available for use.  The ECR probe corrosion rates were determined by integrating the 
corrosion rates measured every 7 minutes to calculate the mass loss, which was then divided by exposure 
time and converted to units of a penetration rate of mm/y. 
 

RESULTS AND DISCUSSION 
 
The major emphasis of the research presented here is to evaluate the quantitative nature of ECR 
probes.  In doing so, it became apparent that there were a number of variables that could affect 
that evaluation.  Some of the variables that were considered, electrolyte, zero baseline, 
electrochemical technique, and Stern-Geary factor, are discussed below. 
 
ECR PROBE -- RESPONSE AND ELECTROLYTE 
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Figure 4 – Typical response of corrosion rate to time and temperature  

Because an ECR probe is electrochemical in nature, all parts of an electrochemical cell must be present in 
order for the technique to work.  For the probes used here, that includes the working, counter, and 
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reference electrodes shown in Figure 2, and also an electrolyte that electrically connects the three 
electrodes.  Other investigators8 have applied salt films to act as the initial electrolyte.  In the research 
presented here, it is the ash layer and then possibly the ash plus corrosion film layers that act as the 
electrolyte as the corrosion reaction progresses.  Figure 4 shows the response of an ECR probe with mild 
steel sensors to time and temperature.  This was the type of behavior that was observed for most of the 
experiments conducted.  This type of response suggests that an electrolyte was present because 
electrochemical techniques were able to measure corrosion rates and changes in corrosion rates.  Except 
for the initial start up time, ECR probe corrosion rates decreased with time to the end of the plus 100-hour 
exposure period, Figure 4.  This decrease in corrosion rate is the type of response that is typical of 
materials that form semi-protective corrosion films where the corrosion reaction may be dependant on 
diffusion of reactants or corrosion products. 
 
ECR PROBES -- ZERO BASELINE 
 
An important property of ECR probes is to have a relatively low baseline corrosion rate when 
there is no corrosion occurring or when there is no electrolyte present.  In order to measure the  
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Figure 5 – Zero baseline measured on a 316L SS ECR probe with no ash 

zero baseline response, a test was run in which an ECR probe was inserted in a nitrogen-filled 
furnace without any ash or salt film to act as electrolyte.  Ideally, the corrosion rates should be zero 
because there is no electrolyte and no gaseous species to cause corrosion.  This was not, however, the 
case.  Figure 5 shows the results of a zero baseline test in which the temperature was raised stepwise from 
500 to 800ºC.  The corrosion rate was zero during part of the heat-up phase of the experiment but started 
increasing as the temperature exceeded 400ºC and then increased to an average value of 0.9 mm/y (36 
mpy).  After approximately 20 hours at 500ºC the corrosion rate decreased to near zero and stayed there 
as the temperature was stepped from 500 to 800ºC. 
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There are two possible reasons for these non-zero corrosion rates.  The first is the formation of a 
corrosion product that covered and electrically connected the three sensor electrodes.  For the results 
presented here, this does not seem likely because there was no visible corrosion product on the ECR 
probe surface after removing it from the test.  A second and more likely possibility is that, at the test 
temperature, the ceramic potting compound surrounding the sensor electrodes was sufficiently electrically 
conductive to act as the electrolyte for the electrochemical measurement of corrosion rate.  Additionally, 
the species responsible for the corrosion rate peak either dissipated or became depleted over the 
approximately 20 hour exposure at 500ºC.  This suggests than an additional curing step should be added 
to the ECR fabrication process. 
 

ECR PROBES -- QUANTITATIVE NATURE 
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Figure 6 – Comparison of ECR probe to mass loss corrosion rates 
 

 
 Experiments were conducted to compare ECR probe corrosion rates with actual mass loss corrosion rates 
for coupons and probes exposed in exactly the same environment.  Mass loss coupons were cleaned of all 
ash and scale and corrosion rates were calculated.  Data similar to that in Figure 4, for all of the 
alloys tested, was integrated to determine a cumulative mass loss.  This was then used to calculate a 
corrosion rate for the ECR probe. The corrosion rates in Figure 6 show a good comparison between the 
ECR and the mass loss corrosion rates for all of the alloys except for the mild steel.  Some possible 
explanations are differences between the ECR probe and the mass loss coupons, corrosion attack that is 
non-electrochemical in nature (eg, internal corrosion that can remove whole grains from the matrix 
without reacting the material) among others.  Studies8 conducted using different conditions (probe 
construction, coating, and gaseous environment) but with the same SmartCET equipment had good 
agreement between ECR probe and mass loss corrosion rates.  Research is being conducted to determine 
the reasons for such differences.  One change being considered is the use of a profilometer to measure the 
actual material lost from the ECR probe electrodes rather than relying on mass loss coupons. 
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ECR PROBES -- ELECTROCHEMICAL TECHNIQUE 
 
There are a number of electrochemical techniques that can be used to measure the corrosion rates of ECR 
probes.  All of the currently significant techniques were mentioned earlier in this report.  Of those, data 
from the LPR technique was compared to data from the EN technique because the current research 
equipment generates both types of data and makes the comparison possible.  The comparison is shown in 
Figure 7 for all of the materials and test conditions used in this research.  EN corrosion rates were 
consistently lower than LPR corrosion rates by an average factor of 6-7.  Thus if EN corrosion rates were 

plotted instead of LPR corrosion rates in Figure 6, the comparison to mass loss corrosion rates would 
have been worse.  For the equipment used here, it is concluded that LPR corrosion rates better represent 
the actual corrosion reaction.  Other researchers2 have used EN probe data and profilometry to measure 
the corrosion penetration rate of their probe surfaces in an effort to quantify their electrochemical 
corrosion rates.  Still others4 have used EIS data for the probe measurement and the SEM to measure the 
metal lost from the actual probe.  Both of these research groups generated mass loss and electrochemical 
probe corrosion rates that differed by only about 50%. 
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Figure 7 – Comparison of electrochemical noise to linear polarization corrosion rates. 
 

 
ECR PROBES -- STERN GEARY CONSTANT 
 
The choice of the Stern-Geary (B) constant may be the most important factor affecting reported 
electrochemical corrosion rates.  As can be seen in equation 1, corrosion rate (icorr) is directly proportional 
to B.  Within reason, a B value could be chosen to make the ECR probe corrosion rates coincide with 

Table 2 – Stern-Geary constants measured by the HDA technique. 
 

Stern Geary Constant (B), V/decade Alloy 450ºC 500ºC 600ºC 
4130 CS 0.0117 0.0130 – 
304L SS – 0.0156 0.0182 
316L SS – 0.0130 0.0130 

– = not measured 
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mass loss corrosion rates.  For the data reported here, the B values measured using the HDA technique 
were used to calculate the corrosion rates.  Other studies1,2 of ECR probes did not report the method used 
to calculate corrosion rates or the value of B used 
 
Table 2 shows that the Stern-Geary constants measured for all of the experiments ranged from 0.0117 to 
0.0182 V/decade.  The average value of B was 0.0141V/decade.  This average is approximately 50% of 
the normally assumed values of 0.020 to 0.030 V/decade.  The actual values, and not the average value, 
were used to calculate the LPR and EN corrosion rates that are shown in Figures 6 and 7.  One use for this 
measured value of B is to allow a more accurate calculation of corrosion rate when using equation (1).  
The Stern-Geary constant and the Tafel constants that are used to calculate B can also be coupled with 
other information, such as scale analyses and electrochemical data from other techniques, to help explain 
corrosion mechanisms. 
 

SUMMARY 
 
Results presented here show that validation of ECR probes for use in high temperature fossil energy 
applications requires an understanding of probe construction and how that affects the zero baseline 
response, the correlation between mass loss and ECR probe corrosion rates, the measurement and use of 
the most representative value of the Stern-Geary constant, and the choice of the most appropriate 
electrochemical technique to use with the ECR probes. 
 

 CONCLUSIONS 
 

• LPR-based ECR probes are able to measure corrosion rates that are sensitive to temperature and 
process changes. 

• The HDA technique is able to measure a unique value of the Stern-Geary constant. B averaged 
0.0141 V/decade in the high temperature corrosion environments reported here.  

• Both 304L and 316L SS produced ECR probe corrosion rates that were similar to their mass loss 
corrosion rates. 

• There were relatively large differences between the mass loss and ECR probe corrosion rates for 
the CS coupons and probes. 

• A stable zero baseline (near 0 mm/y) was achieved for ECR probes fabricated using a 
zirconia/magnesia potting compound and an additional curing step at 500ºC for 20 hours. 

• Based on using the hardware/software combination reported here, LPR corrosion rates appeared 
to measure more accurate (compared to mass loss corrosion rates) corrosion rates than the EN 
technique. 
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