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@ Prepare Thermal Hydrological Near-Field/In-Drift Model

> Develop a multi-scale, coupled seepage model that accounts for
natural convection processes in the emplacement drifts

> Use TOUGH2 code for rock mass and MULTIFLUX code for in-drift
processes

> Apply an efficient NTCF methodology for coupling in-rock and in-
drift model elements

> Study two application scales:

>>  Mountain-scale/drift-scale model to provide temperature and relative
humidity evolutions along representative drifts

>>  Small-scale, high-resolution seepage model to evaluate evaporation
impact on seepage predictions

o Study the Impact of Natural Convection on Seepage with
mmmp Less conservatism in seepage predictions

mmm) More realistic performance estimate of natural barrier
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o Configure a thermal-hydrological — natural-ventilation
model for simulating temperature, humidity, and
condensate distributions in the coupled domains of
in-drift airspace and near-field rockmass. Rokmass
model: TOUGHZ2, in-drift model: MULTIFLUX (MF)

@ Obtain meaningful results from the model for a
practical application in which the beneficial effects of
unheated drift sections are analyzed.

o Study the sensitivity to the axial dispersion
coefficient with the model.
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ool Moelsling with MULTIRLUC sl fe)le);

Convection Models Rock Models
Textbook MF
FLUENT Empirical CFD | A ()
User’s selection and transport User’s selection for NTCF surrogate
coefficient/parameters determination model-building

MULTIFLUX
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Lumped-parameter CFD DISAC NTCF

OUTPUT:

CFD ~Computational Fluid dynamics

Ten‘]perature fIEId HU midity fleld LBNL - Lawrence Berkeley National Laboratory
H'Efat ﬂOW f|e|d MC}'StU!-e ﬂD\N ﬂEid NTCF - Numerical Transport Code Functionalization
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Drift-Scale embedded, fine-scale
TOUGH2-based NTCF
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Current model example:
Number of drift sections in 3D mountain slice: 24
Number of drift sections in WP-scale NTCF model: 454
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»EP wall temperature and partial vapor pressure vectors
»qh, gm : heat and moisture fluxes from TOUGH2

>, Pe; central input boundary conditions

»qh¢, gm¢:  central output fluxes from TOUGH2, for T=T¢ and
P=P°

»hh , hm :  dynamic admittance matrices for heat flow

»mh,mm :  dynamic admittance matrices for moisture flow
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Heat Flux (W/m)

Mois ture Flux x 10° (kg/s-m)
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Splare)y szllzifics Equzition in itz CFD Wads) of YIF

The energy balance equation in the CFD model of MF for “x”
directional flow 1n “dy” by “dz” cross-section is:

oT oT 0°’T 0°’T T -
c— 4+ pev,——= ped + pca + pca +
R P L T R oy° e
where,

v, - velocity
p - density of moist air
¢ - specific heat of moist air

4p - latent heat source or sink for condensation or evaporation
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The simplified moisture transport convection-diffusion
equation in the CFD model of MF for “x” directional flow in

“dy” by “dz” cross-section is:

2 2 2
Py ; Py _ 0 Py 0 P, 0 P,
ot Ox ox° oy”* 0z"

where,

+ qc'!?? + me

v, - velocity
D - molecular or eddy diffusivity for vapor
4 sm - moisture source or sink due to condensation or evaporation

dcm - vapor flux in superheated steam form
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a, : airnodesj=12,...6 radiation
W : waste package nodes ﬁ ;
L : liner nodes

[ - invert nodes ~ Heat conduction

S :drip shield nodes e } heat convection
KOST&I H air movement
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liner A—p drift wall
O A = T N R "<t

drin shield

A(i+2)

\ invert invert

. ﬁ moisture dispersion/diffusion
A; : airnodesj=12,...6

W : waste package nodes - — _.) moisture convection

S : drip shield nodes
H air movement
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mmmm Moisture transfer connection seal-off




Simplifise Bocjie Flovy Crizirt of Couoline lo-Pj
GED) zipe) [n=Rosic NTGE Yloes] Slaran)is

Temperature, humidity, airflow,
and condensate histories
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AU =R Pro g o5, VAR T3S

COBHIC mthe GEDINVode!

D= %1+76Ragofw 1+0. 05( )R <3 o |}

L, - gap-width characteristic length

Ray;. 45, - calculated with the gap-width characteristic length, L_, and
temperature difference in radial direction

L - axially connected length

Ra;, 47, - calculated with the same characteristic length but with a

temperature difference over the axially connected distance, L
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Fit of Dispersic

Proposed and P

Without Temperature Tilt With Temperature Tilt
1000 Yrs 3000 Yrs 1000 Yrs 3000 Yrs
Published | 4 506 0.007 0.007 0.009
Under results
Drip Shield
proposed 0.004 0.004 0.009 0.008
published |, 104 0.004 0.1 0.1
Outside results
Drip Shield
proposed 0.004 0.004 0.1 0.081
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Phase |: Boiling Conditions

Vapor Transpon

ik o A S % O el Bt Wet Rock
= Dry'Rocl: . . . v . » Cundeetaio 1
— — S——— More drying of rock mass and
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Water Drains Off

Phase |I: Non-Boiling Conditions
(still elevated temperature in emplacement section)

Evaporation Wet Rock
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@ A fully-coupled, in-drift and near-field, in-rock model is configured
and applied for the solution of a complex thermo-hydrologic-airflow
problem at YM.

O

As a coupled thermal-hydrologic model exercise, the beneficial
effect of elongated, unheated emplacement drift sections at both
ends was studied and comparatively evaluated.

@ No condensation was found around the WPs, and an improvement
to the results for a drift arrangement without the long unheated
sections was achieved in the high axial dispersion coefficient case.

o Lower condensation rates and fewer condensation locations in the
emplacement drift are predicted with the present model than those
obtained using an approximate, and basically uncoupled
condensation model.
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@ The current result illustrates the benefit of maintaining unheated, low-

temperature sections in the drift airspace in order to lower the relative
humidity in the active emplacement drift section.

o Significant sensitivity to the axial dispersion coefficient in the
emplacement drift is found. This fact underlines the importance of a fast-
running, efficient modeling method, since input data variations will likely
be needed in future studies and design exercises.

@ The range of the values for axial dispersion coefficient arches over three
orders of magnitude from molecular diffusion to turbulent dispersion in an
emplacement drift.

o In order to reduce uncertainties, it will be important to use location-
specific, temperature-field dependent coefficients in the lumped-parameter
CFD model instead of overall constants for the entire drift in future studies
using a dispersion coefficient model example proposed in the current

paper.
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O

Seepage of water into emplacement drifts is important
for performance assessment (PA)

O

Seepage predictions in PA are currently conducted
using a conservative assumption of 100% relative
humidity (RH) in emplacement drifts (no evaporation)

@ Natural convection processes in
emplacement drifts will create
evaporative potential over long
drift sections
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sSimulation

External PMHC | =
interface data (TOUGH2, . ) r\

2 External imterface
Data preparation (Text editor, utility macro)
DISAC CFD
input deck input deck
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