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ABSTRACT 

The e l e c t r i c  and magnetic f i e l d s  s c a t t e r e d  by a three-dimensional  

inhomogeneity i n  a conduct ing e a r t h  r e s u l t  1 a r g e l y  from c u r r e n t -  

gather ing,  a boundary p o l a r i z a t i o n  charge phenomenon t h a t  becomes 

i n c r e a s i n g l y  impor tan t  as frequency fa1 1s. Boundary charges cause 

normal ized e l e c t r i c  f i e l d  magnitudes, and thus  tenso r  apparent 

r e s i s t i v i t i e s  and magnitudes o f  v e r t i c a l  admit tance elements, t o  remain 

anomalous as  frequency approaches zero. However, these E- f ie1  d 

d i s t o r t i o n s  be l  ow c e r t a i n  f requenc ies  are  e s s e n t i a l l y  in-phase w i t h  t h e  

i n c i d e n t  e l e c t r i c  f i e l d .  I n  a d d i t i o n ,  secondary magnetic f i e l d  

ampl i tudes over  a body u l t i m a t e l y  d e c l i n e  i n  p r o p o r t i o n  t o  t h e  l aye red  

hos t  impedance. It f o l l o w s  t h a t  t i p p e r  element magnitudes and a l l  MT 

f u n c t i o n  phases become m in ima l l y  a f f e c t e d  a t  low f requenc ies  by an 

inhomogeneity. 

R e s i s t i v i t y  s t r u c t u r e  i n  n a t u r e  i s  a c o l l e c t i o n  of inhomogeneit ies 

o f  var ious  scales, and t h e  small s t r u c t u r e s  i n  t h i s  c o l l e c t i o n  can have 

MT responses as s t rong as those o f  t h e  l a r g e  s t ruc tu res .  Hence, a severe 

d i s t o r t i o n  due t o  cu r ren t -ga the r ing  i n  any nearby, smal l -sca le  geo log ica l  

no i se  can be superimposed t o  a r b i t r a r i l y  1 ow f requenc ies  upon t h e  

apparent r e s i s t i v i t i e s  and v e r t i c a l  admit tance magnitudes o f  b u r i e d  

t a r g e t s .  On t h e  o t h e r  hand, t h e  MT responses o f  small  and l a r g e  bodies 

have frequency dependencies t h a t  are, i n  general,  separated as t h e  square 

of t h e  geometric s c a l e  f a c t o r  d i s t i n g u i s h i n g  t h e  d i f f e r e n t  bodies. 

1 



Therefore, t i p p e r  element magnitudes as w e l l  as t h e  phases o f  a l l  MT 

f u n c t i o n s  due t o  smal l -sca le  geo log ica l  no i se  w i l l  be l i m i t e d  t o  h i g h  

frequencies, so t h a t  one may ''see through" geo log ica l  no i se  w i t h  these  

f u n c t i o n s  t o  ta r 'ge t  responses occu r ing  a t  1 ower f requencies.  

The appl i cab i  1 i t y  o f  2 - D  t r ansve rse  e l e c t r i c  (TE)  model i ng 

a lgo r i t hms  i s  very  l i m i t e d ,  s i n c e  t h i s  2 - D  mode i n v o l v e s  no boundary 

charges and hence no cur ren t -ga ther ing .  Furthermore, 3 - D  bodies i n  

l aye red  hos ts  t y p i c a l  i n  nature,  w i t h  l a y e r  r e s i s t i v i t i e s  t h a t  inc rease 

w i t h  depth i n  t h e  upper 10 o r  more km, a r e  even l e s s  amenable t o  2 - D  TE 

i n t e r p r e t a t i o n  than a r e  s i m i l a r  3 - D  bodies i n  un i fo rm hal f -spaces. 

However, c e n t r a l l y  l o c a t e d  p r o f i l e s  across e longate  3 - D  pr isms may be  

modeled a c c u r a t e l y  w i t h  a 2 - D  t r ansve rse  magnetic (TM) a lgor i thm,  which 

i m p l i c i t l y  i n c l u d e s  cu r ren t -ga the r ing  i n  i t s  f o rmu la t i on .  I n  d e f i n i n g  

apparent r e s i s t i v i t y  and impedance phase f o r  TM modeling o f  such bodies, 

we recommend a coo rd ina te  system de r i ved  us ing  t i p p e r - s t r i k e ,  c a l c u l a t e d  

a t  t h e  frequency f o r  which t i p p e r  magnitude due t o  t h e  s t r u c t u r e  o f  

i n t e r e s t  i s  l a r g e  r e l a t i v e  t o  t h a t  due t o  any nearby geo log ica l  noise. 
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INTRODUCTION 

M a g n e t o t e l l u r i c  (MT) measurements a r e  s e n s i t i v e  t o  t h e  r e s i s t i v i t y  

s t r u c t u r e  o f  t h e  ear th ,  p o t e n t i a l l y  t o  depths exceeding 100 km 

(Cagniard, 1953; S w i f t ,  1967; Word e t  a l . ,  1971; Vozoff ,  1972; Jupp and 

Vozoff, 1976; Larsen, 1975, 1981).  Recent advances i n  i n s t r u m e n t a t i o n  

and data processing (e.g. Gamble e t  a l . ,  1979; Weinstock and Overton, 

1981;  Stodt ,  1982) have enabled procurement o f  very  accurate t e n s o r  MT 

data. However, t h e  s k i  Is necessary t o  t r a n s l a t e  these measurements 

i -n to t r u s t w o r t h y  models o f  subsurface r e s i s t i v i t y  have been slow i n  

devel opi  ng. 

MT data are,  s t r i c t l y  speaki ng , responses from three-dimensional  

(3-D) r e s i s t i v i t y  s t r u c t u r e  i n  t h e  ear th ,  bu t  t r a d i t i o n a l l y  have been 

i n t e r p r e t e d  us ing l - D  and sometimes 2-D model s t r u c t u r e s  ( f o r  exampl e, 

P e t r i c k  e t  a l . ,  1977; Stanley e t  al., 1977; Rooney and Hut ton,  1977; 

Parker  and Whaler, 1981). There a r e  two reasons f o r  t h i s .  Fi r s t ,  3-D 

model i ng r o u t i n e s  r e q u i r e  cons iderab le  computing resources t o  hand1 e 

canplex e a r t h  s t r u c t u r e ,  resources n o t  r e a d i l y  a v a i l a b l e .  

reason, r e l a t e d  t o  t h e  f i r s t ,  i s  t h e  l a c k  o f  concensus on t h e  

The second 

i n t e r p r e t i v e  e r r o r s  which occur when l - D  and 2-D computat ional  a ids  are 

used i n  3-D areas. 

We favor  keeping t h e  i n t e r p r e t a t i o n  o f  observat ions as s imple as 

poss ib le .  Th is  ph i losophy u n d e r l i e s  t h e  major purposes o f  t h i s  paper, 

3 



which are as follows: f i r s t ,  develop magnetotelluric theory for 3-D 

bodies in layered earths t o  establish the fundamental controls on 

observed responses; and  second, investigate the u t i l i t y  of I-D and 2-D 

algorithms for interpreting 3-D geology. T h i s  l a t t e r  goal i s  achievable 

only through rigorous, three-dimensional model studies,  which we perform 

using the computer program of Wannamaker and  Hohmann (1982).  
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MAGNETOTELLURIC THEORY FOR 

BODIES I N  LAYERED 

It i s  our i n t e n t  here  t o  o u t l i n e  t h e  

HREE-DIMENSIONAL 

EARTHS 

essen t i  a1 s t h a t  determi ne 

The f i r s t  m a g n e t o t e l l u r i c  (MT) s igna tu res  o f  a r b i t r a r y  3-D bodies. 

subsect ions on e lec t romagnet ic  (EM) f i e l d  re1 a t i o n s  and tensor  MT 

quan t i  t i e s  focus  upon s i n g l e  3-D inhomogenei t i e s  i n  1 ayered ea r ths ,  

t h e  

two 

w i t h  

spec ia l  a t t e n t i o n  pa id  t o  low-frequency 1 i m i t s  o f  MT responses. 

a re  f o l l o w e d  b y  an a p p l i c a t i o n  o f  bas i c  EM s c a l i n g  concepts t o  measured 

MT func t i ons ,  i n  o rde r  t o  d i s t i n g u i s h  t h e  anomaly o f  a l a r g e  s t r u c t u r e ,  

which may rep resen t  an e x p l o r a t i o n  t a r g e t ,  f rom t h a t  o f  a small one, 

which may c o n s t i t u t e  geo log ica l  noise.  Magnetotel l u r i c  observa t ions  i n  

na ture ,  o f  course, r e s u l t  f rom coupled inhomogeneit ies,  and we address 

t h i s  m a t t e r  i n  t h e  f i n a l  t h e o r e t i c a l  subsec t ion  w i t h  an acci i rate 

approx imat ion  t o  mu1 t i  p l  e body responses. 

Electromagnet ic F ie1  d Re1 a t i o n s  

These 

A three-dimensional  body i n  t h e  e a r t h  i s  a source o f  sca t te red  

e l e c t r i c  and magnetic f i e l d s .  Estab i s h i n g  r e l a t i o n s  between t h e  

i n c i d e n t  p lane wave f i e l d s  and t h e  sca t te red  and t o t a l  f i e l d s ,  as w e l l  

as e x p l o r i n g  t h e  behav io r  o f  these r e l a t i o n s  as  frequency v a r i e s ,  i s  a 

s tep  toward r e s o l v i n g  the  r o l e s  o f  t h e  inhomogeneity and t h e  hos t  

1 aye r i  ng i n c r e a t  i ng anomal ous MT quant i  t i es . 

Governing Equations. - A 3-D body i n  an n- layered e a r t h  i s  shown i n  

5 
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i w  t F igu re  1. 

Maxwel l ' s  equat ions,  

For p lane  wave e x c i t a t i o n  and an e t ime dependence, 

and 

d e f i n e  t h e  t o t a l  e l e c t r i c  and magnetic f i e l d s  ( t t ,  it) as a f u n c t i o n  of 

p o s i t i o n  F, where Jt = & i s  the  t o t a l  c u r r e n t  dens i t y ,  9 = 0 + i s  

t h e  a d m i t t i v i t y  and ? = i w p 0  i s  t h e  imped iv i t y .  

0 ,  t h e  d i e l e c t r i c  p e r m i t t i v i t y  E i s  assumed constant  throughout  the  

e a r t h  and t h e  f r e e  space va lue  po i s  assigned t o  t h e  magnet ic 

p e r m e a b i l i t y  everywhere. 

J 

Conduc t i v i t y  i s  denoted 

Fol 1 owi ng Wannarnaker and Hohmann (1982), (;it, i t )  a r e  decomposed 
A - L  

i n t o  an i nc ide r l t  s e t  (Ei, Hi) which a re  t h e  p l a n e  wave f i e l d s ,  and a 

sca t te red  s e t  ( € s ,  H S ) ,  c o n t r i b u t e d  by t he  inhoqoqeneity.  Helmholtz 

equat ions i n  l a y e r  2 w i t h  t h e  body i n  l a y e r  

A - L  

can be w r i t t e n  

a rid 

7 



i n  which kZ = 

across l a y e r  i n t e r f a c e s ,  s u b s c r i p t  j r e f e r s  t o  any l a y e r  c o n t a i n i n g  a 

i s  t h e  wavenumber i n  l a y e r  2.  I f  t h e  body c u t s  

p o r t i o n  of t h e  body. 

A 

I n  ( 7 )  and ( 8 ) ,  3, = (j$,-yj)Eb i s  an e q u i v a l e n t  s c a t t e r i n g  c u r r e n t  

subs t i  t u t i  ng f o r  t h e  4 nhomogenei ty, where Bb and E,, are  t h e  a d m i t t i v i t y  

and t h e  t o t a l  e l e c t r i c  f i e l d  w i t h i n  t h e  inhomogeneity. A Helmholtz 

equat ion  governing ?t, can be w r i t t e n  by summing ( 3 )  and (7), provided 

one r e a l i z e s  t h a t  Ct = Eb and t h a t  z = j i n  ( 3 ) .  However, i f  one 

assumes f o r  s i m p l i c i t y  t h a t  $b i s  cons tan t  w i t h i n  t h e  body, t h e n  t h e  sum 

of ( 3 )  and ( 7 )  can be rearranged t o  y i e l d  an a1 t e r n a t e  governing 

equat ion  f o r  Eb, which i s  

-1. 

A 

A 

-I 
I n  (7), e . 3 ,  descr ibes  a d i s t r i b u t i o n  o f  f r e e  charge p on t h e  

boundary o f  t h e  body. T h i s  boundary charge preserves c o n t i n u i t y  o f  

normal Jt, b u t  i n  doing so makes normal Zt d i scon t inuous  across t h e  

boundary o f  t h e  body, i .e., 

-L 

A + -. 
Furthermore s ince  E i  i s  cont inuous, +.E,= 

s tandpo in t ,  t h e  charge d e n s i t y  o f  (10) r e s u l t s  f rom a minute, t ime-  

harmonic divergence o f  conduct ion  c u r r e n t  3, = u tt (P r i ce ,  1973). 

From a phys i ca l  

The s o l u t i o n s  f o r  Et and it i n  ( 3 )  through ( 8 )  are g iven by t h e  

8 



integral equations 

and 

which are a1 so Val id within the body. The 3 x 3 dyadic Green's 

functions ($(?;?I) and g:(F;Fl) re la te  a vector f i e ld  a t  F in layer 2 

t o  a current element a t  F' in layer j including z = j (Wannamaker and  

Hohmann, 1982). 

Tensor Field Relations. - Considering the l inear i ty  o f  a l l  previous 

equations, we postulate 

(13) 
- L O  A 0  
E t ( ? )  = + P ~ ( F ) * E ~  

a nd 

where superscript indicates r i s  a t  the surface of the earth over 

which zy i s  constant. ::(;) and Q,(r) are 3 x 2 normalized tensors 

representing the scattered f i e l d s  unique fo r  a specified 3-D body, 

layered host and frequency, of the form 

"0 - 

and 

9 



Note t h a t  we have subdiv ided t h e  s c a t t e r e d  f i e l d  tensors  i n t o  h o r i z o n t a l  

subtensors, Po(F) and t o ( P ) ,  and v e r t i c a l  subtensors, ;;(r) and ~ ~ ( ~ ~ ,  

which p e r t a i n  r e s p e c t i v e l y  t o  h o r i z o n t a l  and v e r t i c a l  e l e c t r i c  and 

magnetic f i e l d  cmponents irlduced by the  i n c i d e n t  e l e c t r i c  v e c t o r  to  a 

Discre te ,  approximate vers ions  of P,(r) and Q s ( r )  a r e  ccnputed by 

Wannamaker and Hohmann (1982), ani1 Larsen (1975, 1977, 1981) and K l e i n  

and Larsen (1978) have a1 so considered t- and H - f  i e l  d t e n s o r  approackes. 

ry 

h h 

i 
a0 - NO - 

A 

The i n c i d e n t  f i e l d s  a t  t h e  sur face  are  r e l a t e d  through 

(Cagniard,  1953; Ward, 19G7, p. 117-124) ,  w i t h  t h e  layered e a r t h  

i mped a nce 

I n  equat ions ( 1 3 )  and ( 1 4 ) ,  ;f,"(F) and G;(F) r e f e r r e d  t o  t o t a l  

e l e c t r i c  and magnetic f i e l d s  a t  t h e  e a r t h ' s  sur face,  i n c l u d i n g  v e r t i c a l  

f i e l d  canponents. 

j u s t  t h e  h o r i z o n t a l  t o t a l  f i e l d s  a t  t h e  sur face,  s i n c e  we w i l l  need 

these f i e l d s  t o  d e f i n e  magnetotel l u r i c  tensor  q u a n t i t i e s .  Using ( 1 3 )  

through (17) ,  and w i t h  

f i e l  ds becme 

a. - A. - Subseq:iently, however, E t ( r )  arx! H t ( r )  w i l l  denote 

t h e  2 x 2 i d e n t i t y  tensor ,  t h e  h o r i z o n t a l  

10 



a nd 

Low Frequency Condi t ions.  - A t  low frequencies,  such t h a t  

l k L E l  << 1 f o r  a l l  2, where R -- t - i=' i n  F i g u r e  1 i s  t h e  observati .Dn 

d i s t a n c e  from t h e  body, t h e  Helmholtz equat ions ( 3 )  through ( 8 )  become 

- 2  A v H , z O  Z # j  , (24 )  

a nd 

which are  Laplace 's  and Po isson 's  equat ions.  

t h e  volume c u r r e n t  source t e n  22s i n  equat ion  ( 7 )  i s  n o t  present i n  

equat ion  (25 ) .  

f rm equat ions (10)  and (25) ,  i:(F) and t h u s  ?:(P) a t  low f requenc ies  

are  determined s o l e l y  by t h e  boundary charge p. 

I n  p a r t i c u l a r ,  no te  t h a t  

Th is  term, t o  f i r s t  order,  i s  p r o p o r t i o n a l  t o  o so t h a t ,  

T h i s  i s  no t  t o  say t h a t  i t  i s  n e c e s s a r i l y  v a l i d  t o  t r e a t  t h e  

secondary f i e l d s  g iven b y  ( 2 3 )  through ( 2 6 )  as  though they  were induced 

by a zero-frequency i n c i d e n t  e l e c t r i c  f i e l d .  Equations ( 9 ) ,  ( l o ) ,  and 

11 



. . 

( 2 5 )  t oge the r  show t h a t  t h e  charge dens i t y  p i s  i n t i m a t e l y  assoc iated 

w i t h  t h e  ? - f i e l d  i n s i d e  t h e  inhomogeneity. Also, t h e  : - f i e ld  i n t e r i o r  t o  

the  body d e f i n e s  js, which i n  t u r n  p rov ides  the  source f o r  t h e  secondary 

magnetic f i e l d  i n  ( 2 6 ) .  For very conduct ive inhomogeneit ies over a 

c e r t a i n  range of f requencies,  Laplace 's  equat ion may be a poor 

rep resen ta t i on  of t h e  e l e c t r i c  f i e l d  behav io r  w i t h i n  t h e  body, even 

though Lap lace 's  and Poisson 's  equat ions could be accurate e x t e r i o r  t o  

t h e  body i n  t h e  more r e s i s t i v e  host. 

s u f f i c i e n t l y  low so t h a t  wavelengths w i t h i n  t h e  inhomogeneity a re  l o n g  

We thus  r e q u i r e  f requenc ies  

canpared t o  t h e  s i z e  of t h e  inhomogeneity be fo re  a'ssuming t h a t  ( 9 )  

reduces t o  

Th is  i n t e r i o r  long-wavelength c r i t e r i o n  may be w r i t t e n  symbo l i ca l l y  

as I kbL l  < <  1, where L i s  some c h a r a c t e r i s t i c  dimension of  the  body. 

The dimension L o f  course d i f f e r s  from body t o  body; t o  q u a n t i f y  i t  

r i g o r o u s l y  requ i res  canputer s i m u l a t i o n  of t he  e lec t romagnet ic  response 

o f  t h e  p a r t i c u l a r  body under cons idera t ion .  Q u a n t i f y i n g  low-frequency 

MT reponses over r e s i s t i v i t y  s t r u c t u r e s  of i n t e r e s t  t o  t h e  geophysical 

community rece ives  major emphasis i n  t h e  model s tud ies  performed i n  t h i s  

paper. 

fundamental concept: 

and l kbL l  << 1, a r e  s a t i s f i e d ,  then P s ( r )  and "a(;) w i l l  be e s s e n t i a l l y  

r e a l  and independent o f  frequency. 

Nevertheless,  ou r  low-frequency a n a l y s i s  prov ides t h e  f o l l o w i n g  

when b o t h  long-wavelength c r i t e r i a ,  IkZl?I << 1 
NO - 

Thus, t h e  layered hos t  p lus  t h e  

i nhomogenei ty d e f i  ne t h e  frequency dependence of e lect romagnet ic  

mea s u r  em en t s . 
Perhaps the  most impor tant  conc lus ion  t o  reach f r a n  t h e  development 

12 



t o  this p o i n t  i s  t h a t  boundary polarization charges, acting through 

equation ( 2 5 ) ,  cause to(:) near a 3-D body t o  remain anomalous t o  

a rb i t r a r i l y  low frequencies. Such anomalous behavior due t o  p ,  when i t  

occurs about  conducti ve bodies, i s  referred t o  as current-gatheri ng by 

various investigators (e.g., Berdichevskiy and Dmi t r i ev ,  1976).  

t 

-*o - 
Current-gathering, however, leads t o  no such ef fec t  on Ht(r) as 

frequency f a l l s .  Over a n  a rb i t r a r i l y  layered earth,  i t  i s  not  d i f f i cu l t  

t o  show t h a t  I Z,I decreases monotonical ly w i t h  decreasing frequency (see 

Cagniard, 1953). I n  par t icular ,  f o r  a uniform half-space, we have 

N 

i ndicati ng t h a t  Z, varies as  w 

non-zero, low-frequency l imi t ,  0 i " )  = ?QP)-? = H O  w i l l  vanish as  HS(  R 1  

Hence, even though @(F) possesses a 
A i 

frequency approaches zero. 

Tensor Magnetotel lu r ic  Quant i t ies  

The tensor f i e l d  relations we have specified may be used t o  

construct MT func t ions .  

body and the layered hos t  t o  anmalous MT functions become evideat. 

Studies of MT functions over single bodies, and  i n  particular the low- 

frequency asymptotes of such quantit ies,  a r e  required before such 

functions over multiple bodies can be understood. 

I n  d o i n g  so ,  the re la t ive  contributions o f  the 

Impedance Tensor. - T h e  existence o f  the general impedance tensor 
N 

Z (  7) , defined by 

13 



where ?(F) i s  o f  t h e  form 

can be demonstrated by s u b s t i t u t i n g  (19)  and (21)) i n t o  (17).  

obt  a i  ns 

One 

Whenever obse rva t i on  p o i n t s  a re  on, and measurement axes a r e  p a r a l l e l  t o  

axes of symmetry o f  a 3-D body, ? l ( F )  i s  d iagonal  and 8;);) and ?(?) are 

ant  i d i  agonal . 
As frequency approaches zero, so t h a t  lklEl, l kbL l  and Izt(?yjI 

<< 1, equat ion  (31)  reduces t o  

?(F) [ f  + 

AII f o u r  elements zij o f  ?(F)  a re  r e  

t h a t  i n  t h i s  low-frequency l i m i t  a H 

P; (F)] - z, (32 1 

a ted  t o  Zt by r e a l  constants,  so 

1 b e r t  Transform re1  a tes  magnitude 

and phase of  Z i j  (Kunetz, 1972; Boehl e t  a1 . , 1977). 

The apparent r e s i s t i v i t i e s  a t  low f requenc ies  are, from (32),  

I 2 2 
pxx c2 Gj$&l Ip,”,I 7 ( 33a 1 

z,I * 1 I +P;x12 9 (33b) 
2 

( 3 3 4  
2 

and 

14 

(33d) 



f o r  a 3-D body. 

frequencies by boundary charge effects  and are related t o  pQ = --lZfi l 
by positive constants as given i n  (33). If  interpreted assuming a l - D  

Like Z i j ,  a l l  p i j  are distorted t o  a rb i t r a r i l y  low 
1 2 

(4-J 0 

model structure,  apparent res i s t iv i  t y  soundings distorted i n  t h i s  manner 

by a nearby 3-D body will yield model r e s i s t i v i t i e s  i n  error by a 

f ac to r  p .  . /pR and model layer thickness i n  error  by 
1 J  1 J  

1977, 1981). 

(Larsen, 

However, since Po becune real as frequency approaches zero, the i j  
phases of a l l  Z .  . ( i .e . ,  $ .  . )  asymptote to  the phase of the layered host 

impedance (sa. 

Nevertheless, this does not  mean t h a t  the parameters of the layered host 

can be recovered through one-dimensional i nversion of the impedance 

phase sounding alone. 

1 J  1 J  

and are  no longer affected by the inhomogeneity. 

I t  is well known i n  the l i t e r a tu re  ( f o r  example, 

Cagniard, 19531, and can be inferred from equations (32) and  (33),  t h a t  

a specific impedance phase sounding can correspond t o  a n  i n f in i t e  number 

of apparent r e s i s t i v i ty  soundi ngs , and t h u s  an  i nf i n i  t e  number of 

1 ayered res i s t iv i  t y  structures. 

Let us now b r i e f l y  consider a two-dimensional inhomogeneity,  whose 

s t r ike  direction corresponds t o  the x coordinate ax i s .  An x-oriented 

incident e lec t r ic  f i e l d  induces only x-oriented secondary ;-fie1 d s  about 

such a structure,  so t h a t  the total  e l ec t r i c  f i e ld  paral le ls  a l l  

r es i s t iv i ty  contacts and no boundary charges exis t .  T h i s  i s  the 

transverse e l ec t r i c  (TE)  mode of wave polarization ( S w i f t ,  1967). A t  

low frequencies f o r  the TE mode, neither volume currents nor boundary 

charges contribute as  sources for  a secondary e l ec t r i c  f i e l d ;  

therefore, PEx becomes zero and p i n  (33b) approaches pQ. S i m i l a r l y ,  X Y  

15 



a y-or ented incident e lec t r ic  f i e l d  causes only y-oriented secondary E- 
f i e l d s  over a 2-D body. 

transverse magnetic (TM) mode. However, since the incident e l ec t r i c  

f i e l d  f o r  t h i s  mode i s  normal t o  r e s i s t i v i ty  contacts in  the ear th ,  

Such a f i e l d  polarization defines the 

boundary polarization charges will be induced as sources f o r  secondary 

E-fields, Po will have a non-zero value t o  a rb i t r a r i l y  low frequencies 

and pyx remains defined by (33c). 

mode i n  the case of conductive bodies exhibits two-dimensional current- 

gathering . T h u s ,  i f  a1 1 near-surf ace geological noise were two- 

dimensional , then one-dimensional inversion of apparent  r e s i s t i v i ty  and 

-5 

YY 
Because of boundary charges, the TM 

impedance phase soundings identified as T E  would yield models of deep 

r e s i s t i v i ty  layering t h a t  are re la t ively f ree  from dis tor t ion due t o  

such noises (Word e t  a l . ,  1971; Vozoff, 1972; Berdichevsky and Dmitriev, 

1976). In  our opinion, however, geological noise in  nature i s  generally 

not  two-dimensional . 
Vertical G-Fiel d Tensors. - Vertical magnetic f i e l d  t ransfer  

functions are  defined by (Word e t  a l . ,  1971) 

and 

in whi ch 

a nd 
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I n  terms of  s c a t t e r e d  f i e l d  tenso rs  we have 

ahd 

The low frequency asymptotes o f  t h e  t e n s o r  elements a re  

and 

K Z x  -2 Qo 
J ZY 

r 1 

Note t h a t  K,, and Kzy a r e  r e l a t e d  t o  Z, by r e a l  constants,  so t h e i r  

magnitudes approach zero as f requency approaches zero. 

phases of  K,, and KZy approach 4~, as frequency f a l l s ,  s i n c e  Q v ( r )  

becomes r e a l .  However, due t o  p o l a r i z a t i o n  charges, l Y z x l  and ( Y  I ZY 

remain permanently d i s t o r t e d  as f requency drops, a l though t h e  phases 

w i l l  asymptote t o  zero ( o r  180O). 

remai ns anomal ous as f requency drops, s i  nce i n t h e  1 ow-f requency 1 i m i  t 

I n  a d d i t i o n ,  
'yo - 

N 

Even over a 2-D body, Yz(P) 

we have Y z x E Q z x  0 

The t i p p e r  (Vozof f ,  1972) has a magnitude g i ven  by 

17 



From equation (40) ,  a t  1 ow frequencies, the t ipper becomes 

ru 

which approaches zero as w -+ 0. Furthermore, because of Z,, T and 
N K,(r) contain a great deal of infomation abou t  the layered host. 

Analogous to  t ipper ,  one may define a vertical admittance function 

A ,  o f  magnitude given by 

Substitution of ( 4 1 )  i n t o  ( 4 4 )  shows t h a t  anomalies i n  A over an 

inhqmogeneity wil 1 ex is t  t o  vanish ingly  1 ow frequencies, since there i s  

no attenuation by ?, as i n  the case of the tipper. 

the absence of 7, i n  the definit ions of A and YZ(F)  means t h a t  these 

quantit ies are  determined more exclusively by the inhomogeneity as 

On the other h a n d ,  

opposed t o  the layered host t h a n  i s  the t ipper ,  though there i s  some 
“0 - information about the layering im Ps(r) and ?:(:) (Wannamaker and 

Hohmann, 1982). 

Behavior of MT Quantit ies under EM Scaling 

While our discussion t o  this point has  been confined t o  single 

bodies, we must recognize t h a t  natural r e s i s t i v i ty  structure i s  a n  

ensemble of inhomogeneities of var ious scales w i t h i n  a layered host. 

The following specific application of s t a n d a r d  electromagnetic scaling 

concepts ( S t r a t t o n ,  1941, p. 488-490; Grant and West, 1965, p. 478-482) 

can aid i n  discriminating large bodies from small bodies on the basis of 

18 



Structure A 

Structure B 

0 

Figure 2. 
scaling. 
layering have been preserved, i.e., 0 ( F  ) = CT B ( F  ‘ B  ) .  

Scaled conductivity dis t r ibut ions used in discussion o f  EM 
Values o f  conductivity a t  corresponding points in body or 

A A  
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t he  f requency dependence of t h e i r  MT responses. 

Consider geometries A and €3 o f  F igu re  2, i d e n t i c a l  except f o r  a 

dimensional s c a l i n g  af t he  second w i t h  respect  t o  the  f i r s t  by a f a c t o r  

5. We d e f i n e  t h e  c o n d u c t i v i t y  d i s t r i b u t i o n s  and 5B(rB) o f  F igu re  

2 t o  i n c l  ude b o t h  inhomogenei t y  and host  1 aye r i  ng of  geometries A and B ,  

and s e t  them equal t o  each o the r  (i.e., gB(FB) = o A ( F A ) ) .  

s t r u c t u r e s  a re  e x c i t e d  by i n c i d e n t  f i e l d s  (EYA, HPA) and (cyB, ripB) o f  

so t h a t  an i n d u c t i o n  number, 1 
z7 d i f f e r e n t  f requenc ies ,  W A  and W B  = 

The 
2 -5 

i s  preserved, where r̂ i s  a u n i t  vec to r  i n  the  F d i r e c t i o n  and we igno re  

displacement cu r ren ts  i n  t h e  ear th .  

NO - -0 - Under such s c a l i n g ,  secondary f i e l d  tensors  P s ( r )  and R S ( r ) ,  

remai n i nvar i  ant ,  where 

and 

and where $!(F) i s  o f  a form i d e n t i c a l  t o  t h a t  o f  Fi(?) and "a(?) i n  

( 1 5 )  and (16) .  I n  o the r  words, s i m i l i t u d e  requ i res  t h a t  we have 

a nd 
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This  i s  no t  so w i t h  ?2 o r  :!(?) i n d i v i d u a l l y .  I n  f a c t ,  i n  terms o f  

t h e  s t r u c t u r e s  o f  F igu re  2, one may show from Cagniard (1953) t h a t  

f o r  an a r b i t r a r i l y  l aye red  ea r th ,  and t h a t  hence from (47 )  and (49 ) ,  

However, t h e  phase o f  t h e  l aye red  hos t  impedance i s  i n v a r i a n t  t o  

scal  i ng , (Cagniard, 1953) ,  meaning 

= qme = 4p) ( 5 2 )  

One may cont inue,  us ing  (31 ) ,  (48) ,  (50)  and (Fjl), t o  show t h a t  

l e a d i n g  t o  

a nd 

Furtherinore, f rom equat ion  ( 3 8 ) ,  ( 5 0 )  and ( 5 1 ) ,  

However, (39 ) ,  (48) and ( 5 1 )  l e a d  t o  t h e  equal i t y  

( 5 7 )  

Th is  has been a r a t h e r  r e s t r i c t e d  d i scuss ion  of EM sca l ing .  I n  

2 1  



p a r t i c u l a r ,  we needed t o  sca le  l a y e r  th icknesses i n  a d d i t i o n  t o  body 

dimensions f o r  t h e  equat ions t o  be s t r i c t l y  v a l i d ,  whereas t h e  r e a l  

e a r t h  cons is t s  of  m u l t i p l e  inhomogeneit ies w i t h i n  a s i n g l e  layered 

sequence. 

circumvented t h i s  d i f f i c u l t y ,  b u t  w i t h  an a t tendan t  l o s s  o f  g e n e r a l i t y .  

The requirement t h a t  corresponding media between s t r u c t u r e s  A and B have 

equal c o n d u c t i v i t i e s  i s  a f u r t h e r  l i m i t a t i o n ,  which i s  no t  necessary i n  

a l l  a p p l i c a t i o n s  o f  s i m i l i t u d e .  

A cons ide ra t i on  o f  bodies i n  un i fo rm hal f -spaces would have 

The speci a1 i zed na tu re  o f  t h i s  development, however, does no t  

d e t r a c t  f rom t h e  fundamental conc lus ion  o f  equat ions (54 )  through 

( 5 7 ) :  

l a r g e  ones, a l though t h e  small and l a r g e  body responses have frequency 

smal 1 i nhornogeneities can have MT responses as s t rong as those o f  

dependences t h a t  are, a1 1 e l s e  being equal ,  separated as t h e  square o f  

t he  geometr ic sca le  f a c t o r  d i s t i n g u i s h i n g  t h e  d i f f e r e n t  bodies.  

except ion  i s  t he  magnitude o f  yz(F) ,  f o r  which l a r g e  s t r u c t u r e s  y i e l d  

g r e a t e r  ananal ies than do smal l  ones, a l though the  a fo resa id  separa t ion  

of responses i n  f requency s t i l l  occurs. 

An 

Coupled Body Theory 

We are  f i n a l l y  i n  a p o s i t i o n  t o  s tudy the MT responses of coupled 

inhomogeneit ies i n  a l aye red  ear th .  The forthcoming a n a l y s i s  i s  

approximate, b u t  c a l c u l a t i o n s  i n  Appendix A v e r i f y  i t s  accuracy. 

Furthermore, t h e  framework o f  t h e  devel opment i s  very  convenient  , i n  

t h a t  i t  a l lows s t r a i g h t f o r w a r d  a p p l i c a t i o n  of t he  r e l a t i o n s  o f  our EM 

scal  i ng study . 
Consider s imply  two adjacent  s t ruc tu res ,  A and D ,  f o r  example as i n  
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Figure A-1,  the l a t t e r  of a scale several times greater t h a n  the former. 

Fields scattered solely from the larger structure may be suff ic ient ly  

constant over the smaller t o  behave, with the incident plane waves, a s  

uniform t o t a l  source f i e lds  fo r  the smaller body. I t  i s  thus assumed 

t h a t  is within the larger body i s  affected negligibly by the smaller. 

I n  addition, fo r  simplicity, we consider the smaller s t ructure  A t o  be 

o u t  c rop pi ng . 
Horizontal Field Relations. - Secondary horizontal f i e lds  a t  the 

surface scattered from the smaller s t ructure  A by i t s e l f ,  i n  terms of 

the incident e lec t r ic  f i e l d ,  a re  written 

a n d  

Note t h a t  henceforth we define t:(P) and G!(F) a b o u t  e i ther  s t ructure  A 

or structure B t o  contain only h o r i z o n t a l  components. 

horizontal f i e l d s  about the larger body alone are given by 

If the total  

a n d  

then perturbed horizontal secondary f i e l d s  scattered by the smaller bod,y 

located a t  FA are 

2 3  
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and 

Th is  express ion f o r  t h e  coupled body impedance q u a n t i f i e s  t h e  

d i s t o r t i o n  of  the apparent r e s i s t i v i t y  s igna tu re  o f  a l a r g e  

i nhoinogenei t y ,  perhaps rep resen t i  ng a b u r i e d  t a r g e t ,  r e s u l t i n g  f rom 

cu r ren t -ga the r i  ng i n a smal 1-scal e near-surface inhomogeneity, which may 

c o n s t i t u t e  geo log ica l  noise. 

EM s c a l i n g  d iscuss ion  which i n d i c d t e s  t h a t  FE,q(r, nay be a s  grea t  

as P:B(F) near t h e  sma l le r  s t r u c t u r e ,  even a t  low f requencies.  

on l y  a minor e f f e c t  on t h e  impeddnce by t h e  magnetic f i e l d  o f  the  

smal le r  s t r u c t u r e  i s  l i k e l y  a t  a l l  b u t  h i g h  f requenc ies  when t h e  l a r g e r  

body i s  not  responding, s ince  equat ion  ( 5 1 )  ho lds t h a t  Go ( 7 )  i s  

genera l l y  much g rea te r  than tiA(?) . 

The key i s  equat ion  ( 3 8 )  o f  t h e  prev ious  

nJ 

However, 

hB 

The impedance phase response OF the  l a r g e r  body may s u f f e r  some 

e f f e c t  due t o  t h e  sma l le r  .body, even a t  low f requenc ies  where ?EA(') i s  

e s s e n t i a l l y  r e a l .  T h i s  i s  c h i e f l y  because i s  no t  a d iagonal  

tensor ,  as can be v e r i f i e d  by assiirning Phn(;,q) -: P h B ( r )  i n  t h e  v i c i n i t y  

of s t r u c t u r e  A and expandinq ? (? )  o f  ( 6 5 )  i n t o  i t s  i n d i v i d u a l  elements 

"0 N O  
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z i j .  
diagonal, t h i s  problem should be inconsequential , and methods o f  

ascertaining these axes i n  the presence of smal 1-scale geological noise 

If coordinate axes can be chosen such t h a t  ?hB('A) i s  nearly 

will be developed i n  upcoming sections of t h i s  paper. 

Vertical Magnetic Field Relations. - A similar analysis i s  possible 

f o r  t z ( P )  and Y z ( F ) .  Letting the vertical magnetic f i e ld  over the 

mal l e r  structure a1 one be given by 

then the perturbed vertical  f i e l d  in the presence of s t ructure  B i s  

(67 1 A01 
HzA(F)  2 o:A(F)* [ i+  P";(,(F,,]-?~ 

The vertical  f i e l d  of the larger structure B i s  

and 

t h  equations (60 )  t h r o u g h  (63) ,  ( 6 7 )  and. (65) ,  the vertical f i e l d  

t ransfer  tensors of ( 6 9 )  and (70 )  arc 

25 



and 

Equation (51) of the EM scaling concepts discussed e a r l i e r  

indicates t h a t  scattered H-field tensors i$,(P) and g;,(P) of the 

smaller structure will be of lesser  s ize  t h a n  

larger s t ructure  i n  equation ( 7 1 )  a t  a l l  b u t  high frequencies where the 

and 6:B(F) of the 

1 arger s t ructure  i s  not respondi ng. 

noise should n o t  seriously affect  estimates of F z ( F )  due  t o  a buried 

ta rge t ,  provided the s izes  of the noise and target  structures are 

suff ic ient ly  different .  

Hence, near-surface geological 

Assessment of  w h a t  consti tutes suff ic ient ly  

different  s izes  requires computer simulation of MT responses of specific 

inhomogeneities, such as we present shortly. 

However, the e l ec t r i c  f i e l d  distortion from current-gathering i n  

geological noise has a profound effect  on the magnitudes of elements 

of “y(F) since, as  explained previously w i t h  the coupled body 

impedance, P i A ( P )  may be as great as p iB(? )  near the geological noise, 

even a t  low frequencies. 

equation (57), which ignored coup1 i ng between bodies, t h a t  the 

admittance response of small structures would be dwarfed by tha t  of 

large structures. Also, a s  w i t h  ?(?) in  (65) ,  coordinate directions 

must be selected so t h a t  FiB(F,) of ( 7 2 )  i s  nearly diagonal t o  avoid 

substantial disruption of target  vertical admittance phases by the 

geological noi se. 

N 

This analysis overrules the suggestion of 
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THREE-DIMENSIONAL MAGNETOTELLURIC MODEL STUDY 

The theoretical concepts we have developed are now applied t o  

specific r e s i s t i v i ty  inhomogeneities, of which two special classes are 

examined here. The f i r s t  i s  comprised of small-scale, near-surface 

bodies, which represent geological noise. Only by a thorough cataloging 

of the MT responses of such noise, with special attention paid t o  the 

frequency dependence of these responses, can the dis tor t ions of deep 

target  signatures due t o  geol ogical noise predicted by our theoretical 

discourse be circumvented. The second class o f  bodies examined are  a l s o  

near-surface, b u t  are  of a much larger scale. These are  meant t o  

represent sedimentary basins, which can sometimes be targets  of one's 

investigations while a t  other times are of only secondary interest .  

the  course of studyi ng b o t h  classes of res i s t iv i ty  structure,  we will 

I n  

address the second major purpose stated i n  the introduction t o  t h i s  

p a p e r ,  namely t o  e s t a b l i s h  the a p p l i c a b i l i t y  of l - D  and 2-D algorithms 

for  modeling 3-0 observations. 

The following MT responses were computed using the a lgor i thm o f  

Wannamaker and Hohmann (1982) ,  capable of modeling 3-0 bodies i n  

a rb i t r a r i l y  layered hosts, w i t h  p lane  wave incident f ie lds .  

algorithm i s  an  extension of t h a t  developed by T i n g  and Hohmann (1981) ,  

which simulates the FIT responses of 3-D structures i n  uniform h a l f -  

spaces. As per Jones and  Vozoff ( 1 9 7 8 ) ,  MT quantit ies are  derived from 

t o t a l  f i e l d s  computed u s i n g  two independent polarizations of f o  

This 

A l l  i 
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c a l c u l a t i o n s  i n  the  study were performed on t h e  Prime 430 Ser ies  

minicomputer o f  t h e  Ear th  Science Labora tory /Un ivers i  t y  o f  Utah Research 

I n s t i t u t e .  

The Response o f  Smal 1-Scal e S t ruc tu res  

Geological  no ise i s  o f t e n  o f  a much sma l le r  sca le  than  one's 

s t a t i o n  spacing and thus  presents  a grave sampl ing problem f o r  MT 

measurements. For  example, t h e  shal low hydrothermal a1 t e r a t i o n  

c h a r a c t e r i s t i c  o f  geothermal resource areas of t h e  western Un i ted  States 

(Ward e t  a1 ., 1978) can be ext remely v a r i a b l e  over d is tances  of on l y  a 

few hundred meters, and o f t e n  res ides  d i r e c t l y  over  t h e  h o t  b r i n e  

r e s e r v o i r  o r  deep heat  source c o n s t i t u t i n g  t h e  t a r g e t s  o f  i n t e r e s t .  

.Even i f  present 3-D model i ng a lgor i thms coul d accommodate such c m p l  ex 

he terogene i ty  , which they cannot, i t  would be p r o h i b i t i v e l y  expensive t o  

reco rd  s u f f i c i e n t  MT data t o  d e l i n e a t e  i t s  response. 

impera t i ve  t o  d i  sc r im i  nate aqai  n s t  geo log ica l  no ise  by making increased 

I t hence becomes 

use o f  MT q u a n t i t i e s  t h a t  a r e  r e l a t i v e l y  i n s e n s i t i v e  t o  t h e  noise.  

Our model o f  near-surf  ace, conduct ive geologi  ca l  no ise  appears i n 

F igu re  3 as a smal l  pr ism, 600 m by 300 m by 300 m w i t h  a depth  t o  top  

o f  25 m. The 4 n-m body i s  enclosed i n  a 400 m t h i c k ,  moderate c o n t r a s t  

l a y e r  of 40 n-m r e s i s t i v i t y  o v e r l y i n g  a 400 n-m basement. 

s c a t t e r i  ng c u r r e n t  w i t h i n  t h e  body was approximated by 48 r e c t a n g u l a r l y  

p r i s m a t i c  c e l l s  t o  a quadrant. Contoured MT q u a n t i t i e s  shown next ,  w i t h  

coord ina te  axes para1 le1  i n g  t h e  axes o f  symmetry of  t he  body, were 

The 

der ived  from 92 v a r i o u s l y  spaced r e c e i v e r  p o i n t s  per  quadrant and 

requ i red  about 4 hours CPU t ime f o r  each f requency on t h e  Prime 400. 
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CROSS-SECTION 

Figure 3 .  
small-scale, shallow geological noise. Dashes outline the discretization 
of the conductor intc:  wctangular c e l l s ,  shown only for  the right half of  
the body in section and the upper right-hand q u d c l r a n t  in plan. 
half-space r e s i s t i v i t i e s  o f  400 and 4 a-m are considered. 

Prismatic 3-D body in a two-layered earth used t o  represent 

Basal 
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Apparent Resis t ivi t ies  and Impedance Phases. - The apparent 

r e s i s t i v i ty  signatures produced by our model of geological noise are  

displayed i n  Figure 4. 

Hz where equation (33) becomes accurate and current-gathering is  of 

particular importance, the ananal i e s  are  roughly e l ec t r i c  dipolar i n  

nature (Stratton, 1943, p. 431-434, p. 563-573), w i t h  undershoots and 

overshoots w i t h  respect t o  p a  occuring over the ends of the body for pxy 

and over the sides f o r  pyx. Note also a t  the lower frequencies t h a t  the 

anomalies are greater t h a n  those a t  100 and 1000 Hz. 

polarization charges cause apparent r e s i s t i v i t i e s  to  vary spat ia l ly  by a 

f ac to r  of nearly 100, which is  much higher t h a n  the body-host layer 

contrast ,  a l t h o u g h  such extremes are  due pa r t ly  t o  the a b r u p t  nature of 

the res i s t iv i ty  contacts uf the model and may be subdued f o r  diffuse 

boundaries. I t  i s  most important, however, t o  real ize  t h a t  current- 

gathering i n  geological noise similar t o  our model wi l l  produce s t rong  

apparent r e s i s t i v i ty  anomal ies  t h a t  actually increase to  a 1 ow frequency 

asymptote as frequency f a l l s .  

Berdichevsky and Dmitriev (1976), who considered a great variety of 

e l l i p t i ca l  ly-shaped, near-surface inhomogeneities b u t  who confined the i r  

Especially a t  the lower frequencies of 1. and 10 

Boundary 

The resul ts  complement the study of 

at tention t o  only the low-frequency l imits  of the dis tor t ions due t o  

such i nhomogenei t i  es. 

Behavior of the impedance phase i s  ent i re ly  different from t h a t  o f  

the apparent r e s i s t i v i t i e s ,  as seen i n  Figure 5. 

departures may appear i n  excess of 20' from the layered host phase 

which i s  labeled in the upper r i g h t  corner of each panel of the 

figure.  

essent ia l ly  i n  phase with the incident :-field and  the total  and 

A t  100 and 1000 Hz, 

A t  1. Hz, on the other hand,  the secondary e l ec t r i c  f i e l d  i s  
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i ncident H-f 

. . . . . . . 

elds are very nearly equa , so t h a t  impedance phase values 

deviate less  than 3' from 4g. 

model o f  small-scale geological noise peak a t  h i g h  frequencies, 

certainly i n  excess of 100 Hz, and contribute negligibly to  observed phase 

Impedance phase anomalies due t o  our 

responses below 1. Hz. 

Vertical Magnetic Field Functions. - Peak amplitudes of  around 0.15 

f o r  l K z x l  and 0.20 f o r  ( K  

i l lus t ra ted  i n  Figure 6. 

(40), values of I K  

Complicated anmalies  i n  the phase of elements of 

Figure 7 a t  100 and 1000 Hz. 

I a t  100 and 1000 Hz over this conductor a re  
ZY 

A t  1. Hz, because of the appearance of Yg i n  

!have decreased markedly and barely reach 0.10. 

(F) are seen i n  
ZY 

2 

A t  distance from the body a t  these higher 

frequencies, the rather uniform spacing of the phase contours represents 

an outwardly propagating secondary wavefront from th i s  essenti a1 l y  

e l ec t r i c  dipole scat terer .  Beyond several hundred meters, however, the 

contour spaci ng broadens, i ndicati ng we are  approachi ng the f ar-f ie l  d 

where secondary wavefronts become transverse el ectromagnetic (TEM) t o  

z. Phases a t  1. Hz, as foretold by equation (40), have approached the 

layered e a r t h  impedance phase = 31.5O. I n  conclusion, responses i n  

both magnitude and phase o f  elements of !,(P) due t o  this sor t  o f  

geological noise are most impor tan t  a t  frequencies above 100 Hz, leaving 

the signatures of any 1 arger or deeper target  re1 atively uncontaminated 

a t  lower frequencies. 

Figure 8 shows l Y z x l  and I Y  peaking a t  1. Hz, since Fo(F) and 
ZY S 

NO - QS(r) approach a maximum f o r  th i s  short 3-D body a t  low frequencies. 

The large values just inside prism corners are mostly due t o  

det[f + Ph(r)] becoming very small, and are  perhaps infrequent over more -0 - 
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100 Hz 
X 

I I  

IO Hz 

200 400 6 0 0 m  0 
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S C A L E  

X 

F i g u r e  6. 
quadrant of t h e  inhomogeneity of F i g u r e  3. 
ha1 f-space r e s i  s t i v i  t y  i s  400 Si-m and contour  Val ues a re  dimension1 ess. 

M u l t i f r e q u e n c y  p lan  maps of t i p p e r  element magnitudes l K z x l  and IK, I over  upper r i gh t -hand  
The body o u t l i n e  i n  p lan  i s  shown k t h  dashes, t h e  basal  
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diffuse res i s t iv i ty  structure. Nevertheless, as was the case f o r  the 

apparent r e s i s t i v i t i e s ,  geological noise causes strong anomalies i n  

magnitudes of vertical  admittance elements t h a t  increase t o  some low- 

frequency l imi t  as frequency f a l l s .  

a t  distance from the inhomogeneity a t  100 and 1000 Hz i s  aga in  

indicative of outwardly propagating secondary wavefronts while a t  1. Hz, 

consistent with ( 4 1 ) ,  vertical admittance phase has reduced t o  near zero 

The v a r i a t i o n  of phases i n  Figure 9 

fo r  

the 

and 

Y,, and 180" for  Y Z y ,  and i s  not  affected i n  any important manner by 

geol ogi  cal noi se. 

Figures 10 and 11 i l l u s t r a t e  the role of the layered host  i n  tZ(t) 
N 

Yz(P). A t  100 and 1000 Hz, anomalies i n  t ipper fo r  a conductive 

basement of  4 fl-m a re  essentially identical t o  those f o r  a res is t ive 

basement of 400 n-m, since a t  these h i g h  frequencies, t:(F) and ?, are  

insensit ive t o  p2. 

however, w i t h  peak anomalies f o r  p2 = 400 Q-m being greater by a factor  

o f  abou t  41/2 t h a n  those f o r  p2 = 4 n-m. 

ra t io  of the layered earth impedance magnitudes a t  1. Hz f o r  the two 

hosts ,  as exp la ined  by equat ion ( 4 0 ) .  

r e s i s t i v i t i e s  t h a t  increase w i t h  depth, t h r o u g h  the i r  effect  on Z, a s  

discussed w i t h  equation (28), tend to  prolong the anomalies i n  ! (r) t o  

lower frequencies t h a n  do layered hosts t h a t  become more conductive w i t h  

Significant differences are apparent a t  1. Hz, 

This fac tor  i s  close t o  the 

One dimensional hosts w i t h  l a y e r  
N 

2 

depth. 

I n  Figure 11, anomalies i n  the vertical admittance function A of 

equation (44)  a re  rather similar fo r  the two basements a t  a l l  

frequencies. 

does n o t  involve Z,. 

This i s  consistent with the definit ion of A i n  (44) ,  which 
rv 

A 25% di screpancy between Val ues using the two 
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Figure 9. 
q u a d r a n t  of the inhomogeneity of Figure 3. 
half-space r e s i s t i v i ty  i s  400 n-rn and contour values are in degrees. 

Multifrequency p l a n  maps of vertical admittance element phases over upper right-hand 
The body outline i n  plan i s  shown with dashes, the b a s a l  
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basements i s  ev ident  a t  1. Hz, i n d i c a t i n g  t h e  degree t o  which P g ( r )  and 

Q!(F) can be s e n s i t i v e  t o  t h e  host  l a y e r i n g  f o r  t h i s  3-D geometry. 

The Response o f  Sedimentary Basins 

Porath (1971a) warned s t e r n l y  o f  t h e  e f f e c t s  t h a t  sedimentary 

bas ins cou ld  have upon MT measurements. 

expected t o  be worse than i n  t h e  Basin and Range t e c t o n i c  p rov ince  of 

t h e  western Un i ted  States,  an area o f  pronounced horst -graben 

development s ince  mid-Miocene t ime  (Eaton, 1982). 

v igorous e x p l o r a t i o n  f o r  geothermal resources i n  t h i s  prov ince,  a 

thorough understanding o f  t h e  consequences on IvlT measurements o f  these 

la rge-sca le  inhomogeneit ies i s  imperat ive.  Also, f rom t h e  ongoing 

t,ectoni sm has evol  ved a pronounced reg iona l  r e s i s t i v i t y  p r o f  i 1 e 

determined by a v a r i e t y  o f  physio-chemical mechanisms t h a t  i s  c l o s e  t o  

one-dimensional t o  depths exceeding 40 km (Brace, 1971). 

t h i s  l - D  host  i n  c o n s t r a i n i n g  secondary f i e l d  d i s t r i b u t i o n s  around t h e  

sedimentary bas ins i s  a f u r t h e r  impor tan t  v a r i a b l e  t o  be q u a n t i f i e d .  

Nowhere i s  t h i s  problem 

I n  1 i g h t  o f  t h e  

The r o l e  o f  

We have s imulated a t y p i c a l  accumulat ion o f  graben a1 l u v i a l  f i l l ,  

which o f t e n  con ta ins  l a r g e  amounts o f  conduct ive P le is tocene l a c u s t r i n e  

c l  ays (H i  n tze,  1980), by a 1 arge p l  ate-1 i ke i nhomoyenei t y  ( F i  gure 12) .  

The phys ica l  p r o p e r t i e s  o f  t h i s  pr ism a r e  36 km length ,  14 km width,  1 

km th ickness  and 2 62-m r e s i s t i v i t y .  Al though outcropping i n  nature,  

t h i s  v a l l e y  model i s  b u r i e d  500 m t o  o b t a i n  accurate r e s u l t s  w i t h  t h e  

i n t e g r a l  equat ions a lgor i thm.  A fou r - l aye red  host ,  rep resen t ing  a 

reg iona l  r e s i s t i v i t y  p r o f i l e  proposed f o r  t h i s  t e c t o n i c  p rov ince  by 

Brace (1971), i s  a l s o  i l l u s t r a t e d  i n  F igu re  12. 

sur face  we have p1 = 400 n-m (dl = 2 kin), p 2  = 4000 n-m (d2 = 15 km), 

S t a r t i n g  f rom t h e  

4 1  
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Figure  12. 
t y p i c a l  sedimentary bas in  i n  t h e  Basin and Range t e c t o n i c  prov ince o f  t h e  
western Un i ted  States.  
conductor  i n t o  rec tangu la r  c e l l s ,  shown only f o r  t h e  right ha l f  o f  t h e  
body i n  sec t i on  and t h e  upper r igh t -hand quadrant i n  plan. 

P l a t e l i k e  3-D body i n  a fou r - l aye red  e a r t h  represent ing  a 

Dashes o u t l i n e  t h e  d i s c r e t i z a t i o n  o f  t h e  



p3 = 400 Q-m (d3 = 35 km) and a basal half-space p 4  = 40 62-m. 

The scattering current i n  t h i s  model was approximated by 110 

rectangularly prismatic ce l l s  i n  a quadrant and as many as 195 receiver 

points per quadrant were used t o  construct upcoming plots. Results 

required about 20 hours CPU time f o r  each frequency on the Prime 400. 

Regional Current-Gatheri ng. - I n an i n i t  i a1 e f for t  t o  i 11 ustrate 

the consequences of sedimentary bas ins  upon MT observations, we study 

the widespread distortion of e l ec t r i c  f ie l  d s  i n t he i r  v i  ci n i  ty. 

13 and 14  contain plan views of total e l ec t r i c  f i e l d  polarization 

e l l ipses  a t  0.032 Hz over one quadrant  of the b a s i n  f o r  x- and y- 

directed polarizations of ?;. This i s  a f a i r l y  low frequency f o r  this 

scale of structure and  the response i s  largely near-field o r  galvanic, 

Fi  gures 

so the el 1 ipses are almost 1 inear. 

A c lear  display of regional current-gathering appears i n  Figure 13, 

showing the undershoot t o  overshoot, e l ec t r i c  d i  p o l a r  behavior o f  the 

e l l ipses  expected over the end of a 3-0 body for  th i s  orientation 

of E:. 
depression of t:(F) occurs t o  the side of the basin i n  the y- 

direction. 

of E:(?) occur, locally exceeding twice the incident E-field a n d  

indicating current convergence fran a large volune of the hos t  t o  the 

smaller end of the basin. 

W i t h  the  i n c i d e n t  f i e l d  directed along the  x - a x i s ,  a regional 

Outside the corner of the prism, very large values 

The e lec t r ic  f i e l d  e l l ipses  i n  Figure 14 f o r  a y-oriented incident 
3 

E-field show behavior complementary t o  those in Figure 13. The e 

dipolar character of the e l l ipses  i s  evident over the s i d e  of the 

ec t r  

body 

C 
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F i g u r e  13. 
r i gh t -hand  quadrant o f  bas in  model a t  0.032 Hz fG6 an x -d i rec ted  i n c i d e n t  
f i e ld .  
r i gh t -hand  corner  of  t h e  diagram. 

Plan view o f  t o t a l ,  ‘ i - f i e l d  p o l a r i z a t i o n  e l l i p s e s  over upper 

The magnitude o f  t h e  l i n e a r l y  p o l a r i z e d  i s  shown i n  t h e  lower  
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f =  0.032 Hz 

F i g u r e  14. 
r ight-hand quadran t  o f  b a s i n  model a t  0.032 Hz fG6 a y - d i r e c t e d  i n c i d e n t  
f i e l d .  The magnitude of the l inear ly  p o l a r i z e d  Ei i s  shown i n  the  lower  
r ight-hand c o r n e r  o f  the diagram. 

P lan  view of t o t a l  E - f i e l d  p o l a r i z a t i o n  e l l i p s e s  over upper 



"0 f o r  t h i s  polarization of E i ,  i n  particular causing a regional 

amplification of t:(P) t o  the side of the 

Very small total  c-fi el ds appear direct ly  

polarizations of ty , w i t h  the y-directed 

somewhat more extreme anomaly. 

basin i n  the y-direction. 

over the model f o r  b o t h  

incident f i e l d  g i v i n g  a 

Specific e f fec ts  of the layering upon regional current-gathering 

can be demonstrated in  section views. I n  Figure 15, the basin model 

resides i n  a uniform half-space of 400 a-m and total  e l ec t r i c  f i e l d  

polarization e l l ipses  have been computed, a g a i n  a t  0.032 Hz, t o  a depth 

i n  excess of 20 km. 

of Et(r) in  section i s  apparent, where boundary charges e f fec t  current 

fran great depth gathering u p  t o  the valley and subsequently discharging 

The approximately e l ec t r i c  dipolar character 
'0 - 

from the f a r  end. As i n  the p l a n  views i n v o l v i n g  the layered host, very 

large values of t o t a l  t - f ie ld  are  seen near the ends of the plate. The 

under- t o  overshoot behavior of t 0 ( P )  drawn a t  the top of the f igure i s  

another view of t h i s  phenomenon; a t  distances near 40 km from the 

prism's center, li:(P)I has decayed t o  about 5% of 

S 

. 
I n  F i g u r e  16,  the model i s  returned t o  i t s  four-layered host and f -  

f i e l d  p o l a r i z a t i o n  el l i  pses are  a g a i n  cal culated. I n  the uppermost 400 

0-rn layer containing the basin model the e l l ipses  are very horizontal 

a n d  attenuate w i t h  distance much more slowly t h a n  i n  the case of the 

half-space host. The plot of E,(r) i n  the upper p a r t  of the f igure '0 - 

supports this, w i t h  Ito(r)l a t  distances near 40 km from the p la te ' s  

center exceeding l??1 by over 20%. 

attenuation, one must realize t h a t  secondary currents induced i n  the 400 

a-m layer about the b a s i n  have d i f f icu l ty  penetrating the more res i s t ive  

S 

To comprehend th i s  re la t ively slow 
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Figure 15. 
section view of t o t a l  E-field polarization ellipses t h r o u g h  one h a l f  of 
the basin a t  0.032 Hz. The incident f i e l d  i s  linearly polarized in the 
x-direction and i t s  magnitude a t  the surface i s  shown in the lower right- 
hand corner of the  diagram. , A t  the t o p  of the figure are profiled real 
and imaginary components of E:(?) normalized by I E Y l .  

The basin codel i s  enclosed in a 400 Q-m half-space for this 
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Figure 16. 
section view of total  E-field polarization e l l ipses  a t  0.032 Hz. The 
incident f ie ld  i s  again l inear ly  polarized in the x-direction and i t s  
magnitude a t  the surface i s  shown in the lower right-hand corner of the 
diagram. 
components of ES(F)  normalized by I E i  I. 

The basin codel i s  returned to  the four-layered host for  t h i s  

A t  tis t o p  of the figure SSe profiled real and imaginary 
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4000 0-rn medium, and hence can decay geomet r i ca l l y  mos t l y  i n  j u s t  the  x- 

y p lane (Wannamaker and Hohmann, 1982). By con t ras t ,  secondary c u r r e n t s  

about t h e  bas in  i n  t h e  un i fo rm 400 62-m ha l f -space can d i e  away r e a d i l y  

i n  the  z - d i r e c t i o n  as we l l .  Hence, t h e  sur face  anomaly i n  F igu re  16 i s  

observed t o  be impor tan t  t o  g r e a t e r  d is tances  f rom t h e  body than i s  t h a t  

i n  F igu re  15. 

However, d e s p i t e  t h e  f a c t  t h a t  secondary c u r r e n t  f l o w  about t h e  

b a s i n  i n  t h e  fou r - l aye red  e a r t h  has d i f f i c u l t y  i n  p e n e t r a t i n g  the  4000 

n-m medium, e l e c t r i c  f i e l d  e l l i p s e s  i n  t h i s  most r e s i s t i v e  l a y e r  i n  

F igu re  16 e x h i b i t  much s t ronger  v e r t i c a l  components than those a t  

canparable depths i n  t h e  400 0-m ha l f -space i n  F igu re  15. 

phenomenon i s  due t o  t h e  p rese rva t i on  o f  t h e  normal component o f  c u r r e n t  

Th is  

dens i t y  across l a y e r  i n t e r f a c e s ,  which i n  t u r n  means t h a t  the  v e r t i c a l  

component of secondary e l e c t r i c  f i e l d  exper iences a s tep  jump by a 

f a c t o r  o f  t e n  going fran the  400 Q-m l a y e r  down t o  t h e  4000 62-m l a y e r  

(no te  t h e r e  i s  no v e r t i c a l  component o f  t h e  pr imary f i e l d ) .  

Neverthel  ess, we emphasize t h a t  values of secondary c u r r e n t  dens i t y  i n  

t h e  4000 0-m mate r i a l  a r e  a c t u a l l y  much s m a l l e r  than  values a t  

corresponding p o s i t i o n s  i n  the  l e s s  r e s i s t i v e ,  400 a2-m ha l f -space 

host. 

i n  F i g u r e  16 i n  the  deep 1100 0-m l a y e r  extending from 1 5  t o  35 km, 

showing t h a t  deep reg iona l  c u r r e n t  f l ow  i s  e s s e n t i a l l y  i n s u l a t e d  by t h e  

4000 Q-m l a y e r  from the  e f f e c t s  of  t he  conduct ive basin.  

Th is  i s  c l e a r l y  conf i rmed by t h e  very f l a t  na ture  o f  t h e  e l l i p s e s  

Magneto te l l  u r i c  S t r i  ke Est imat ions.  - P r i n c i p a l  coord ina te  

d i r e c t i o n s  of  t enso r  MT q u a n t i t i e s  p rov ide  measures of  p r e f e r r e d  

g e o e l e c t r i c  o r i e n t a t i o n s .  A l l  MT s t r i k e  es t imators ,  however, a r e  no t  
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equal i n  t h e i r  a b i l i t y  t o  d e p i c t  t r u e  e a r t h  r e s i s t i v i t y  t rends  o r  i n  

t h e i r  ab i  1 i t y  t o  d i s t i n g u i s h  p r e f e r r e d  d i  r e c t i  ons of t a r g e t  s t r u c t u r e  

f r a n  p r e f e r r e d  d i  r e c t  i ons  o f  geo log ica l  no i  se. 

I n  F i g u r e  17 a r e  p l o t t e d  t h e  d i r e c t i o n  a t  which I K  I i s  maximized, 
ZY 

c a l l e d  K,-strike o r  t i p p e r - s t r i k e ,  a long w i t h  t h e  p r i n c i p a l  a x i s  o f  

Z(F) nearest K,-strike, which we c a l l  Z - s t r i k e ,  f o r  a v a r i e t y  o f  

r e c e i v e r s  a t  0.032 Hz. 

coord ina tes  maximizing ( Z  

t h a t  they a lone cannot g i v e  unique s t r i k e  d i r e c t i o n s  (Word e t  a l . ,  

1971). 

N 

P r i n c i p a l  axes of  ? ( P ) ,  which we de f ine  as 

I and l Z  
X Y  Y X  

1 i n d i v i d u a l l y ,  occur every 90' so 

T i  p p e r - s t r i k e  conforms more ' c l o s e l y  t o  t h e  t r u e  l i m i t s ,  b o t h  s ides  

.and ends, o f  t h e  Val l e y  than does Z - s t r i k e  (Jones and Vozo f f ,  1978) , 
though cal cu l  a t i o n s  not presented show each tends i n c r e a s i n g l y  t o  

p a r a l l e l  t h e  boundar ies o f  t h e  model a t  h ighe r  f requencies.  Z - s t r i k e  

a l s o  seems t h e  l e s s  s t a b l e  of  t h e  two es t ima to rs  over t h e  p l a t e ,  where 

impedance an i  so t ropy  i s  re1  a t i v e l y  s l  i g h t .  

The o r i e n t a t i o n s  a t  which l Y z x l  i s  maximized, c a l l e d  Y,-strike, as 

w e l l  as s t r i k e  d i r e c t i o n s  based on maximizing t h e  phase o f  an o f f -  

diagonal element of  ?(F) , 1 abeled @ - s t r i k e ,  have al so been computed 

( F i g u r e  18). For  t h i s  v a l l e y  model, Y, s t r i k e  and $ - s t r i k e  a r e  very  

s i m i l a r  t o  K z - s t r i k e  and Z - s t r i k e  r e s p e c t i v e l y ,  w i t h  $ - s t r i k e  a1 so 

possessing a 90" ambigu i ty  i f  unconstrained. 

Over s i  n g l e  inhomogeneit ies such as t h a t  o f  F igu re  12, we conclude 

t h a t  K z - s t r i k e  and Y z - s t r i k e  a r e  somewhat s u p e r i o r  t o  Z - s t r i k e  and 

@ - s t r i k e  due t o  t h e i r  c l o s e r  con fo rm i t y  t o  t r u e  g e o e l e c t r i c  t rends ,  
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0 2 4 6 8 1 0 k m  - 
S C A L E  

freq. = 0.032 HZ 

F i g u r e  17. 
t h e  upper r i gh t -hand  quadrant o f  t he  bas in  mode7 f o r  a v a r i e t y  of 
r e c e i v e r s  a t  0.032 Hz. 

Plan view o f  MT s t r i k e  es t ima to rs  K - s t r i k e  and Z - s t r i k e  cjver 
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0 2 4 6 8 1 0 k m  
L . . L U  

S C A L E  

freq. = 0.032 H z  

Figure 18. 
t h e  r i g h t - h a n d  q i i ad ran t  o f  t h e  b.-tsi!l model f o r  
0.032 Hz. 

P l a n  view o f  MT s t r i k e  e s t i m a t o r s  Y - s t r i k e  and $ - s t r i k e  o v e r  
84aciety o f  r e c e i v e r s  a t  
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t h e i r  g rea te r  s t a b i l i t y  and t h e i r  l a c k  o f  a 90" ambigui ty  (compare 

Gamble e t  a1 . , 1982). Nevertheless,  a l l  f o u r  est imates show reasonably 

c l o s e  agreement o v e r a l l ,  e s p e c i a l l y  t o  the  s i d e  of t he  v a l l e y ,  and thus  

a r e  considered 1 a rge ly  equ iva len t  f o r  s i n g l e  bodies.  

However, t h e  e a r l i e r  coupled body theory  i n d i c a t e s  t h a t  Y,-strike 

as w e l l  as Z - s t r i k e  may be s i g n i f i c a n t l y  d i s t o r t e d  by cu r ren t -ga the r ing  

i n  near-sur face geo log ica l  noise. Equat ion ( 7 1 ) ,  on the  o the r  hand, 

shows t h a t  t i p p e r - s t r i k e  i s  no t  a f f e c t e d  i n  t h i s  manner. 

t h e  same coupled body a n a l y s i s  can show t h a t  $ - s t r i k e  a l s o  escapes 

ser ious  d i s r u p t i o n  by  geo log ica l  noise.  To demonstrate t h i s ,  we no te  

f i r s t  t h a t  t h e  s i m i l a r i t y  o f  Z - s t r i k e  and $ - s t r i k e  i n  F igu res  17 and 18 

i n d i c a t e s  t h a t  p r i n c i p a l  axes of ?EB(;) i n  ( 6 5 )  correspond c l o s e l y  t o  a -  
s t r i k e .  Second, we assume t h a t  ?&(FA) = ?:B(?) i n  t h e  v i c i n i t y  o f  the 

geo log ica l  noise and t h a t  t h e  o f f -d iagona l  elements of Po (F) a re  smal l  

compared t o  the  diagonal  elements of ?&(F) when t h i s  tenso r  i s  i n  i t s  

p r i n c i p a l  d i r e c t i o n s .  

i n d i v i d u a l  elements Zij, one w i l l  r e a l i z e  t h a t  any r o t a t i o n  o f  

coord i  nate axes away f r u n  the  p r i n c i p a l  d i r e c t i o n s  o f  ? E B ( P )  will  only 

serve t o  de-extremize t h e  phases o f  t he  coupled body impedance 

elements. Remember, though, t h a t  even i f  p r i n c i p a l  axes of t a r g e t  

impedance phase a re  recoverab le  i n  t h e  presence of geo log ica l  no ise,  

va lues  of t he  coupled body impedance phases def ined i n  coord ina te  

d i r e c t i o n s  o ther  than t h e  p r i n c i p a l  axes o f  ;OhB(?) w i l l  depar t  f rom 

values o f  t h e  t a r g e t  impedance phases, as discussed w i t h  equat ion  (65 ) .  

Furthermore, 

hB 

I f  one then expands ?((r) i n  ( 6 5 )  i n t o  i t s  

The upshot of t he  preceding paragraph i s  t h a t  K,-strike and 

@ - s t r i k e  a re  super io r  t o  Y,-strike and Z - s t r i k e  f o r  e s t i m a t i n g  p r e f e r r e d  
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g e o e l e c t r i c  t rends  i n  t h e  face o f  smal l -scale,  geo log i ca l  noise. I n  

p a r t i c u l a r ,  K,-stri ke  and + - s t r i k e  can prov ide  measures o f  t h e  p r i n c i p a l  

axes o f  ?;B(F) i n  equat ions ( 6 5 )  and ( 7 2 )  due t o  a t a r g e t  b u r i e d  beneath 

such noise. 

s t r i k e  es t imators ,  then impedance and v e r t i c a l  admit tance phase 

responses due t o  a t a r g e t  may be recovered t h a t  a re  u n d i s t o r t e d  by 

cu r ren t -ga the r ing  i n  smal l -scale,  shal low inhomogeneit ies. O f  these two 

es t imators ,  we p r e f e r  t i p p e r - s t r i k e  f o r  i t s  l a c k  o f  a 90' ambigu i ty  and 

i t s  g r e a t e r  r e f l e c t i o n  o f  t r u e  r e s i s t i v i t y  t rends. 

Hence, i f  da ta  coord ina tes  a r e  de f ined us ing  these two 

MT Q u a n t i t y  Pseudosections. - D e t a i l e d ,  mu1 t i f r e q u e n c y  s igna tu res  

o f  apparent r e s i  s t  i v i  t y  , impedance phase, ti pper and v e r t i c a l  admi t t a n c e  

ove r  our sedimentary b a s i n  model o f  F igure  12 a r e  discussed i n  t h i s  

f i n a l  subsect ion.  Our comprehension o f  t h e  fundamental c o n t r o l s  on 3-D 

MT anomalies, as w e l l  as the  u t i l i t y  o f  1-D and 2-D modeling a lgo r i t hms  

i n  3-D environments, develops t o  a maximum i n  t h i s  examination, and 

requ i  res  a f u s i o n  of  p r e v i o u s l y  devel oped concepts of c u r r e n t - g a t h e r i  ng, 

e lec t romagnet ic  s c a l i n g  and coupled body responses. 

Ca lcu la t i ons  were performed a long  two t r a v e r s e s  over  t h e  3-D va l l ey  

model and a re  compared t o  c a l c u l a t i o n s  over a 2 4  model o f  i d e n t i c a l  

c ross -sec t i on  ( R i j o ,  1977 ;  Stodt ,  1 9 7 8 ) .  A l l  MT responses appear as 

pseudosections, i n  which l o g  frequency and t h e  y - a x i s  serve as o r d i n a t e  

and abscissa fo ' r  contour p l o t s  o f  amp1 i tude and phase. 

t rave rses  r e s i d e  a long t h e  l i n e  x = 0, over  t h e  p r i s m ' s  center ,  and 

along x = 9 km, half -way t o  the  p r i s m ' s  end. 

q u a n t i t y  coord ina tes  para1 l e 1  p l a t e  symmetry axes. 

The 3-D 

For a l l  r e s u l t s ,  MT 

Pseudosection contours were cons t ruc ted  from computations a t  every 
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l a r g e  body, a1 though t h e  d i s c r e t i z a t i o n  we have chosen i s  

p r a c t i c a l  w i t h  our computer. Since 3-D and 2-D values o f  

f u n c t i o n s  presented converge as f requency r i s e s  t o  10 Hz, 

a t  h ighe r  f requenc ies  were de r i ved  by  e x t r a p o l a t i o n  u s i n g  

h a l f  decade i n  frequency, from 0.001 Hz t o  100 Hz. 

t h e  numerical accuracy o f  t h e  3-0 c a l c u l a t i o n s  above 10 Hz f o r  t h i s  

However, we d i s t r u s t  

as f i n e  as i s  

MT 

contours  

r e s u l t s .  

a.) Apparent Resi s t i v i  t i e s  and Impedance Phases. - 

a1 1 

3-D 

2-D 

n F  gure  19, 

agreement i n  p and @ 

t h e  3-D body i s  c lose  a t  a l l  f requenc ies ,  b u t  a s i g n i f i c a n t  depar tu re  

from t h e  2-D t ransverse  e l e c t r i c  responses occurs below 1. Hz. The 

apparent r e s i s t i v i t y  over  and ad jacent  t o  the  3-0 p l a t e ,  designated 

(3 -D) ,  decreases as f requency f a l l s  r e l a t i v e  t o  t h e  apparent 

between t h e  p r o f i l e s  a t  x = 0 and x = 9 km over 
X Y  X Y  

p X Y  

r e s i s t i v i t y  of t h e  layered hos t  pQ,  which the  3-D response approaches a t  

l a r g e  d is tances  f rom the  v a l l e y .  Correspondingly,  anomalously h i g h  

values of 4 (3-D) appear i n  t h e  v i c i n i t y  o f  t h e  body, a l though the  

discrepancy between t h i s  q u a n t i t y  and t h e  hos t  impedance phase 4 %  i s  

l e s s  t h a n  5' anywhere below 0.003 Hz.  

respect t o  pI1, while bXy(2-D) surpasses (bk, o n l y  above 0.3 Iiz, w i t h  j u s t  

t h e  oppos i te  behav io r  a t  lower  f requencies.  

X Y  

I n  c o n t r a s t ,  p (2 -9)  f a l l s  w i t h  
X Y  

To understand t h i s  3-D anomaly, cons ider  t h e  reg iona l  depression 

o f  i0(7) occur r i ng  over and bes ide  t h e  v a l l e y  when 

( F i g u r e  13). 

(33b), r e s u l t s  overwhelmingly f r a n  boundary charges on t h e  ends o f  t he  

3-D pr ism and reaches a inaximum a t  low f requenc ies .  

ga ther ing  doesn ' t  occur i n  the  2-D body f o r  t h i s  t ransve rse  e l e c t r i c  

mode, so t h a t  t he  wave equat ion  ( 7 )  approaches the  homogeneous Lap lace 's  

i s  x -o r ien ted  
t 

T h i s  depression, a c t i n g  on pxy through equat ions ( 3 1 )  and 

Such c u r r e n t -  
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3 - D  

0 4 8 12 16 20 24 28 
y(km) 

F i g u r e  19. Pseudosections of p 
contours )  over  t h e  3-D b a s i n  mo&!l c m p a f e d  t o  2-D TE pseudosections f o r  corresponding model o f  
i n f i n i t e  s t r i k e  length .  
t h e  y - d i r e c t i o n .  

and @ x  f o r  p r o f i l e s  a t  x = 0 ( s o l i d  contours )  and x = 9 km (dashed 

Pseudosections cmmence a t  y = 0 over t h e  cen te r  o f  t h e  bas in  and extend i n  
Contours of  p x y  and @xy are i n  n-m and degrees. 



equat ion  below 0.3 Hz and t h e r e  i s  a d im in i sh ing  c o n t r i b u t i o n  by the  

secondary E - f i e l d  t o  t h e  anomalous pxy and $xy.  I n  f a c t ,  t h e  2-D TE 

responses a t  these lower  f requenc ies  r e s u l t  predominant ly from a s t rong 

secondary f f - f i e ld ,  which remains impor tan t  as governed by equat ions (20)  

and (31)  u n t i l  f requenc ies  we l l  under 0.001 Hz f o r  t h e  2-D b a s i n  model. 

On t h e  o the r  hand, over t h e  3-D model a t  f requencies l e s s  than 0.3 Hz, 

i!(P) i s  much smal l e r  t han  t h a t  over  t h e  2-D counterpar t .  Th is  i s  

because boundary charges severe ly  depress 3 w i t h i n ,  and thus  Go( r) 
over, t h e  3-D body r e l a t i v e  t o  t h e  2-D s t r u c t u r e .  Hence, pxy and $ 

f o r  the  3-D b a s i n  model a r r i v e  a t  low frequency asymptotes around 0.003 

HZ. 

4 

S h 

XY 

From F igu re  19 we conclude t h a t  2-D t r ansve rse  e l e c t r i c  modeling 

a lgor i thms are  o f  l i t t l e  va lue  f o r  i n t e r p r e t i n g  apparent r e s i s t i v i t i e s  

and impedance phases observed i n  reg ions o f  ex tens ive  l a t e r a l  

inhomogeneity such as t h e  Bas in  and Range prov ince.  

l i m i t e d  conformi ty  o f  2-D TE and corresponding 3-D r e s u l t s  we have shown 

i s  i d e a l i s t i c ,  s ince  a sedimentary bas in  i n  na ture  i s  no t  un i fo rm i n  

c ross-sec t ion  along i t s  s t r i k e  ex ten t .  Furthermore, i t  i s  probable t h a t  

2-0 TE r o u t i n e s  w i l l  be t o t a l l y  i n a p p r o p r i a t e  f o r  i n t e r p r e t i n g  MT 

measurments i f  smal 1-scal e geol ogi cal no ise such as we have simul a ted 

i n F igure  3 i s  widespread. 

Indeed, even the  

I n  t o t a l  c o n t r a s t  t o  the  responses dep ic ted  i n  F igu re  19, anomalies 

i n  pyx and @yx i n  F igure  20 are  e s s e n t i a l l y  i d e n t i c a l  f o r  t h e  two 3-D 

t r ave rses  and the  2-D p r o f i l i n g .  The reasons f o r  t h i s  e x c e l l e n t  

agreement a re  twofo ld .  F i r s t ,  no secondary f i - f i e l d  e x i s t s  f o r  t he  2-D 

TM mode ( S w i f t ,  1967), and the re  i s  on l y  an i n s i g n i f i c a n t  c o n t r i b u t i o n  
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by  i:(P) t o  the  corresponding 3-D response. Second, boundary charges on 

t h e  s ides  of t h e  bas in  a re  inc luded i n  b o t h  2-D TM and 3-D f o rmu la t i ons .  

These boundary charges i n  t u r n  lead t o  cu r ren t -ga the r ing  i n t o  t h e  s ides  

o f  the  2-0 and 3-0 b a s i n  models. As was demonstrated f o r  t he  3-D model 

i n  F igu re  14, such cu r ren t -ga the r ing  i s  man i fes ted  i n  t h e  development of  

a crude ly  d i p o l a r  v a r i a t i o n  i n  the  e l e c t r i c  f i e l d  over  t h e  bas in  toward 

l ower  f requencies.  It i s  t h i s  v a r i a t i o n  i n  t h e  e l e c t r i c  f i e l d  which 

determi nes the  apparent r e s i s t i v i t y  and impedance phase responses o f  

F igu re  20. 

We i n f e r ,  t he re fo re ,  f rom F igu re  20 t h a t  accurate models of e a r t h  

r e s i s t i v i t y  may be i n t e r p r e t e d  f r o m  p r o f i l e s  o f  MT measurements across 

e longate  3-0 bodies using a 2-0 TM a lgor i thm.  I n  f a c t ,  t h e  agreement 

between 2-D TM and corresponding 3-0 responses f o r  our  sedimentary b a s i n  

model remains e x c e l l e n t  even a t  x = 12 km, which i s  q u i t e  c lose  t o  the 

end o f  t he  model. 

t ransverse  magnetic modeling r o u t i n e  i s  not  h i g h l y  s e n s i t i v e  t o  

v a r i a t i o n s  i n  c ross-sec t ion  along t h e  s t r i k e  l e n g t h  o f  t h e  3-0 

inhomogeneity.  I n s t e a d ,  i n t e r p r e t a t i o n  us ing  such an a1 g o r i  thin w i  11 

y i e l d  a model r e s i s t i v i t y  c ross-sec t ion  which r e f l e c t s  rnainly e a r t h  

s t r u c t u r e  t h a t  i s  l o c a l  t o  the  s p e c i f i c  p r o f i l e  be ing analyzed. 

From t h i s  i t  i s  presumed t h a t  t he  v a l i d i t y  o f  a 

For t h i s  2-D t r ansve rse  magnetic approach t o  be successfu l ,  i t  i s  

of g rea t  importance t h a t  t he  coord ina te  axes of  t h e  MT q u a n t i t i e s  be 

p roper l y  def ined.  We f a v o r  ti p p e r - s t r i  ke f o r  s p e c i f y i  ng such 

' coo rd ina tes ,  s ince  i t  i s  a s tab le ,  unambiguous s t r i k e  es t imator  t h a t  

conforms c l o s e l y  t o  t r u e  g e o e l e c t r i c  t rends .  

q u a n t i t y  coord i  nate axes w i l l  r e s u l t  i n pseudosecti ons t h a t  a re  

Use o f  Kz(F) t o  d e f i n e  MT 
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e s s e n t i a l l y  i d e n t i c a l  t o  those i n  F igures  19 and 20, w i t h  the  p o s s i b l e  

except ion  o f  f i e l d  p o i n t s  c lose  t o  the cen te r  o f  t he  model whose axes 

may be cons t ra ined t o  be c o n s i s t e n t  w i t h  the  m a j o r i t y  of t he  s t r i k e  

est imates.  I n  a d d i t i o n ,  our  p rev ious  d iscuss ion  o f  MT s t r i k e  es t ima to rs  

p o i n t s  out t h a t  i f  da ta  coo rd ina te  axes a re  de f ined us ing  t i p p e r - s t r i k e ,  

then impedance phase responses due t o  a t a r g e t  may be recovered t h a t  a r e  

undi s t o r t e d  by cu r ren t -ga the r ing  i n  smal 1-scale,  sha l low geo log ica l  

noise, p rov ided t h a t  t i p p e r - s t r i k e  can be c a l c u l a t e d  a t  f requenc ies  f o r  

which t h e  response i n  cz(r) due t o  the t a r g e t  i s  s t rong  w h i l e  the  

response due t o  t h e  no ise  has at tenuated. 

It should be po in ted  ou t  t h a t  use of a 2-0 t ransve rse  magnetic 

a lgo r i t hm a s  we propose i t  i s  no i n t e r p r e t i v e  panacea. 

cons ider  a b u r i e d  3-0 d i k e - l i k e  inhomogeneity elongated i n  t h e  x- 

d i r e c t i o n .  

For example, 

If the  d i k e  i s  t h i n  compared t o  i t s  depth, whatever resp  e 

i n  pyx and c # I ~ ~  i s  measured, even though i t  can be modeled w i t h  a 2-D M 

a lgo r i t hm,  may be  very  weak. On the  o t h e r  hand, i f  t h e  s t r i k e  e x t e n t  o f  

t he  d i k e  i s  l a r g e  compared t o  i t s  depth, a s t rong  response i n  p and 

@ 

i n c l u d i n g  t h e  e f f e c t s  of cur ren t -ga ther ing .  I n  a d d i t i o n ,  a p a r t  from 

employing t i p p e r - s t r i k e  i n  t ransve rse  magnetic mode i d e n t i f i c a t i o n ,  t h i s  

2-0 TM approach can make no use o f  t he  v e r t i c a l  magnetic f i e l d  

q u a n t i t i e s  zz(;) and vz(F)  . 

XY 

may e x i s t ,  a l though t h i s  response r e q u i r e s  a f u l l  3-D i n t e r p r e t a t i o n  
XY 

As noted i n  t h e  d i scuss ion  o f  reg iona l  cu r ren t -ga the r ing  i n  F igu res  

15 and 16, t h e  e l e c t r i c  f i e l d  anomaly o f  our  sedimentary b a s i n  i n  t h e  

l aye red  hos t  o f  F igu re  12 p e r s i s t s  t o  much g r e a t e r  d is tances  frm the  

body than does t h e  anomaly due t o  an i d e n t i c a l  b a s i n  i n  a un i fo rm h a l f -  
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space. 

c a r r y  over  t o  t he  apparent r e s i s t i v i t y  s ignatures  (Ranganayaki and 

Madden, 1980). I n  F igu re  21, p and p have been p l o t t e d  f o r  a 
XY Y X  

frequency of 0.032 Hz along the  y - a x i s  o f  t h e  3-D b a s i n  model, w i t h  bo th  

ha l f -space and layered hosts  be ing considered. To the  s ide  of  t he  bas in  

Such e f f e c t s  of t h e  layered host  upon e l e c t r i c  f i e l d  anomalies 

w i t h i n  e i t h e r  hos t ,  an apparent r e s i s t i v i t y  an iso t ropy  i n  excess o f  an 

o r d e r  of magnitude i s  observed. 

w i t h  d i s tance  from t h e  body; w i t h  t h e  ha l f -space host ,  n e i t h e r  pxy nor  

Th is  an iso t ropy  of course d imin ishes 

depar t  more than  10% f r a n  t h e  1-D sounding pi beyond d is tances  of  pY X 

about 25 km from t h e  cen te r  of t h e  bas in.  However, t h e  apparent 

r e s i s t i v i t y  anomalies about the  b a s i n  i n  the  layered hos t  e x i s t  t o  

cons iderab ly  g rea te r  d is tances  than t h i s .  M i t h  t h e  layered sequence, 

. pxy and pyx do not  l i e  w i t h i n  10% of  t h e  pR, a t  t h i s  f requency u n t i l  

about 60 km f rom t h e  center  of t he  bas in,  which i s  w e l l  o f f  our 

diagram. We conclude t h a t  i n  the  i n t e r p r e t a t i o n  o f  YT soundings i n  the  

Bas in  and Range prov ince,  no t  only must one be aware of t he  sedimentary 

b a s i n  immediately ad jacent  t o  t h e  soundings, b u t  perhaps a l s o  o f  bas ins 

a t  g rea ter  d i  stances. 

We would l i k e  t o  c lose  t h i s  subsect ion on apparent r e s i s t i v i t i e s  

and impedance phases w i t h  a few words on the  a p p l i c a b i l i t y  o f  one- 

dimensional i n v e r s i o n  i n  3-D areas. As expla ined w i t h  F igu re  4 and as 

can be deduced from F igu re  13, i f  t h e  x coord ina te  axes o f  a l l  r e c e i v e r  

p o s i t i o n s  a re  const ra ined t o  l i e  i n  a un i fo rm d i r e c t i o n  as we have done, 

then pxy throughout a l l  f requenc ies  exper iences a depress ion re1 a t i v e  t o  

the  layered host  apparent r e s i s t i v i t y  pI1 over  and t o  the  s ides of a 

conduct ive 3-D body, b u t  exper iences an a m p l i f i c a t i o n  r e l a t i v e  t o  pI1 

beyond the  ends of such a body. On the  o the r  hand, as examinat ion of 
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axis over the 3-D basin model computed for a frequzncy 0f~6.032 Hz. The 
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Figures 4,  5, 13 and  1 4  w i  1 make apparent, i f  MT s t r ike  estimators l i ke  

those displayed i n  Figures 17 and  18 are  used t o  define the x coordinate 

axes of a l l  magnetotelluric functions, i .e,  a re  used to  define the TE 

mode, t h e n  pxy everywhere over and t o  the exterior of a conductive 3-D 

inhomogeneity will be depressed throughout a l l  frequencies re la t ive t o  

pa (see a1 so T i  ng and Hohmann , 1981). 

Apparent resi stivi ty and impedance phase soundi ngs identified as 

transverse e l ec t r i c  on the b a s i s  of such MT s t r i k e  estimations a re  

general ly employed to  obtain models of earth res i s t iv i ty  structure 

through one-dimensional inversion (Word, e t  a1 . , 1971; Vozoff, 1972; 

Stan1 ey e t  a1 . , 1977; Jiracek e t  a1 . , 1979; Hermance and Pedersen, 1980; 

and many others) , under the assumption t h a t  a l l  near-surface 1 ateral 

,inhomogeneities a re  essentially two-dimensional as explained following 

equation ( 3 2 ) .  

the t rue layered hos t  sounding  pI1 of pxy(3-D) defined by MT s t r ike  

estimators, and given our firm belief t h a t  the world i s  t ru ly  three- 

dimensional , we propose t h a t  a great number of  layered models of 

r e s i s t i v i ty  structure i n  the l i t e r a tu re  are ,  t o  a t  l ea s t  some extent, 

biased t o  give erroneously shallow depths t o  layer interfaces and 

erroneously low values of 1 ayer r e s i s t i v i t i e s  (see a1 so Porath, 1971a) .  

I n  l i g h t  of the widespread depression w i t h  respect t o  

T h i s  phenomenon may he1 p t o  explain the dil emma raised by Shankland 

(1981) and Shankland and Ander (1982) namely, that  deep crust  and upper 

mantle temperatures inferred by relating interpreted earth res i s t iv i ty  

structure t o  laboratory rock conductivity measurements a re  consistently 

higher t h a n  those provided by other methods such as surface heat flow 

observations or  petrological geothemometers, especially i n  active 

extensional regimes (Wannamaker e t  a1 . , 1982). 
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b.) Vertical Magnetic Field Functions. - The strong discrepancy 

typical between 2-D TE and correspondi ng 3-0 responses i s fur ther  

i l lus t ra ted  by t ipper element K z y  i n  Figure 22. 

amplitudes agree only above 3. Hz, w i t h  the 3-D values a t  lower 

The 2-D and 3-D 

frequencies being greatly subdued by canparison. 

the scattered H-field i n  the 3-D case, a s  explained f o r  pxy and $xy 

previously, r e su l t s  fran boundary polarization charges on the ends of 

the  3-D body. 

QY(P) over, the 3-D b a s i n .  

2-D body allows a strong 2-D TE response i n  ( K  

range . 

T h i s  attenuation of 
A 

These charges effect  a reduction of 9, w i t h i n ,  and hence 
N 

However, the lack of charges on the 

I over a broad frequency 
ZY 

Both 2-D and 3-D amplitudes of l K z y l  decay rapidly a t  frequencies 

bel& 0.03 Hz i n  Figure 22. 

layered host decreasing a t  depths beyond 15 km,  so t h a t  IZ,( i n  equation 

(40) attenuates quickly a t  these lower frequencies. Due t o  t h i s  pheno- 

menon, and i n  l i gh t  of the strength of the 2-D response, we conclude 

t h a t  large amplitudes of t ipper will occur over long, h i g h  contrast 

bodies i n  hosts t h a t  have layer r e s i s t i v i t i e s  increasing w i t h  depth. 

This i s  caused by the r e s i s t i v i ty  of the 

The magnitude of K z y  over the 3-D basin model peaks a t  a frequency 

near 1. Hz, whereas over our near-surface geological noise model i n  

Figure 7 t h i s  quantity peaks a t  a frequency i n  excess of 100 Hz. This 

i s  a n  i l  lustration of EM scal i n g  i n  MT responses, although i t  i s  not 

exact since corresponding dimensions and  r e s i s t i v i t i e s  of these two 

models are only approximately similar. 

define the optimum frequencies for calculation of t ipper-strike t o  

estimate TE and TM modes of  the apparent res i s t iv i ty  and impedance phase 

The i l l u s t r a t i o n  does, however, 
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response of our 3-D b a s i n  model i n  the face of small-scale geological 

noise. For the model structures we have studied, t i  pper-stri ke should 

be computed i n  the frequency range 0.1 t o  1. Hz, t o  ensure t h a t  the 

basin response i n  Z Z ( F )  i s  strong while t h a t  of the geological noise i s  

attenuated (a1 so see Wannamaker e t  a l . ,  1980). 

I t  i s  certainly possible t h a t  r e s i s t i v i ty  inhomogeneities of a 

scale significantly greater t h a n  t h a t  o f  typical Basin and Range graben 

sediments, for  instance resulting from regional thermotectoni c 

perturbations common to this  province (Eaton ,  1982), can dominate t ipper 

amplitudes a t  frequencies of 0.01 Hz o r  below (consider P o r a t h ,  

1971b). 

"regional structure" and t h u s  t o  impose a selective weighting w i t h  

respect t o  frequency o f  one's t ipper-strike estimates (c f . ,  Gamble e t  

a l .  , 1982). In 1 i g h t  of the  s t rong  dependence of t ipper responses on 

b o t h  the properties of the body and of the layered hos t ,  use of an 

algorithm l i k e  that  of Wannamaker and Hohmann (1982) provides the most 

T h i s  underscores the need f o r  care i n  d e f i n i n g  the term 

accurate assessment o f  this weighting. 

Agreement between 2-0 and 3-D p h a s e s  of  KZy i n  F i g u r e  22 i s  l imited 

t o  quite h i g h  frequencies, above 10 Hz fo r  th i s  model. 

o f  phase contours away fran the valley above about 1. Hz i s  another view 

The inclination 

of  outwardly travel l i  ng secondary waves, and corresponds to  the rather 

uniform spacing of contours on single frequency plan maps such as Figure 

ZY 
7. 

approach the phase of the layered host 'impedance 

a t  0.003 Hz. 

A t  low frequencies f o r  b o t h  2-D and 3-0 valley models, phases of K 

which i s  near 60" 

Over b o t h  2-D and 3-D b a s i n  models, I Y Z x (  approaches a maximum a t  
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the very lowest frequencies (Figure 23). 

H-field tensor ovo(F) i n  equations (16)  and ( 3 9 )  approaches a non-zero 

low-frequency l i m i t  f o r  both 2-0 and 3-D models; i .e., a 2-D TE anomaly 

i n  Y z ( ? )  does not  decay t o  zero a t  low frequencies a s  d o  TE anomalies i n  

apparent r e s i s t i v i ty ,  impedance phase and tipper. 

t h a t  the amplitude of the anomaly i n  ?,(F) over the 3-D basin model i s  

often greater t h a n  100 S, whereas the amplitude over the small-scale, 

near-surface structure in Figure 7 seldom exceeds 5 S. 

manifestation of EM scaling i n  the MT method, a s  explained w i t h  equation 

(57), whereby the response i n  Yz(P) due t o  a large structure exceeds 

tha t  of a small s t ructure  essentially by the geometrical scale fac tor  

dis t i  ngui shi ng the two structures.  Bear i n mind ,  however t h a t  current- 

This i s  because the scattered 
J 

We a l so  point out 

T h i s  i s  a 

. gathering i n smal l-scal e ,  3-D geol ogi cal noi se can d i  s to r t  the response 

i n  yz(F) of a large s t ructure  such as a sedimentary basin t o  a rb i t r a r i l y  

low frequencies, a s  explained w i t h  equation (72), even t h o u g h  the 

amplitude of the anomaly i n  ? (7 )  due t o  the geological noise alone may 
Z 

be small canpared t o  the ananaly due j u s t  t o  the large structure.  

As was the case fo r  K Z y ,  2-0 and  3-D phases of Y,, i n  Figure 23 

agree closely only fo r  frequencies exceeding 10 Hz, and the phase 

contours a g a i n  appear inclined away from the bas in .  

consistent w i t h  equation ( 4 1 ) ,  phases approach zero over both 2-D and 

A t  low frequencies, 

3-D bodies. 

Given the size of the basin model, the frequencies a t  which 2-D TE 

and corresponding 3-D MT responses agree closely may seem surprisingly 

h i g h .  

3-0 body must have t o  achieve agreement w i t h  2-0 TE components depends 

Wannamaker and Hohmann (1982), ,however, explain t h a t  the length a 
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s t r o n g l y  on the  1-D hos t ,  w i t h  bodies i n  l a y e r s  o v e r l y i n g  r e s i s t i v e  

basements needing t o  be much longer  than bodies o v e r l y i n g  conduct ive 

basements. 

t h e  upper 10 o r  more km (Brace, 1971),  exacerbat ing t h e  d i f f i c u l t i e s  

w i t h  2-D TE i nte rp re ta t i ons .  

Layered hos t  r e s i s t i v i t i e s  i n  na ture  inc rease w i t h  depth  i n  
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CONCLUSIONS 

The electromagnetic f i e lds  scattered by a 3-D inhomogeneity have 

b o t h  volume currents and boundary charges as sources. 

resu l t  i n  current-gathering i n  conductive s t ructures ,  dominate the 

secondary e l ec t r i c  f i e l d  a t  low frequencies. 

E-field magnitudes, remaining distorted even a s  frequency approaches 

zero. 

low frequencies reduce t o  t h a t  of the incident e l ec t r i c  f i e l d  

The l a t t e r ,  which 

Particularly sensit ive are  
.a 

However, phases of the secondary e l ec t r i c  and magnetic f i e l d s  a t  

. 
’ Neither amplitude nor phase of the secondary magnetic f i e l d  contribute 

materially t o  the t o t a l  i - f i e l d  below certain frequencies, b u t  the 

nature of the layered host must be considered t o  understand j u s t  when 

t h i s  occurs. 

Tensor apparent r e s i s t i v i t i e s  and vertical admi ttance element 
A 

magnitudes, si nce they i nvol ve E-f i el d magnitudes, remai n anomalous as 

frequency fa1 1s. 

r e s i s t i v i t i e s  may ex is t ,  i n  particular very small values occur over 

shal low conductors. The dis tor t ion o f  apparent r e s i s t i v i t i e s  documented 

i n  our model studies indicates t h a t  one-dimensional inversion of 

soundings, e i the r  near 3-D geological noise or near large-scale 

Apparent r e s i s t i v i t i e s  outside the range of true earth 

sedimentary basins l i ke  those i n  the Basin and Range, offers estimates 

of host layer r e s i s t i v i t i e s  and interface depths t h a t  are potentially in 

serious error.  

function phases, bel ow cer ta in  frequencies are mi nimal l y  affected by a 

On the other h a n d ,  IK,, I and IKiyl, as well as a l l  MT 

I 
I 
I 
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g iven  inhomogeneity. The t i p p e r  elements, b o t h  ampl i tude and phase, 

e x h i b i t  a s t rong  dependence on t h e  layered hos t  w h i l e  b y  c o n t r a s t  t h e  

v e r t i c a l  admit tance elements a re  f a r  l e s s  s e n s i t i v e  t o  t h e  l aye r ing .  

R e s i s t i v i t y  s t r u c t u r e  i n  na tu re  i s  an ensemble o f  inhomogeneit ies 

o f  d i f f e r e n t  scales, and t h e  smal 1 s t r u c t u r e s  i n  t h i s  co l  l e c t i o n  may 

have MT responses as s t r o n g  as those o f  t h e  l a r g e  ones. 

upon t h e  apparent r e s i s t i v i t i e s  and t h e  magnitudes of v e r t i c a l  

admit tance elements measured over  b u r i e d  3-D t a r g e t s  w i l l  be  t h e  

responses of  any nearby geo log ica l  noise t o  a r b i t r a r i l y  l o w  

frequencies. Fo r tuna te l y ,  t h e  responses o f  t h e  small  and l a r g e  bodies 

have frequency dependencies t h a t  a re  separated as t h e  square of t h e  

geometr ic sca le  f a c t o r  d i s t i n g u i s h i n g  t h e  d i f f e r e n t  s t r u c t u r e s ,  p rov ided 

corresponding r e s i s t i v i t i e s  a re  s i m i l a r .  

t i p p e r  elements a s  w e l l  as t h e  phases o f  a l l  MT f u n c t i o n s  due t o  a 

p a r t i c u l a r  body a re  s i g n i f i c a n t  o n l y  ove r  a f i n i t e  f requency range, 

i.e., they are  band- l im i ted ,  then these q u a n t i t i e s  may a l l o w  one t o  ''see 

th rough"  geo log ica l  no ise  t o  observe the  s igna tu re  o f  a b u r i e d  t a r g e t  if 

t h e  sca les  of t h e  two types o f  s t r u c t u r e  a re  s u f f i c i e n t l y  d i f f e r e n t .  

Such a separa t i on  of responses i n  f requency i s  ev iden t  f o r  t h e  

geo log ica l  no i se  and sedimentary b a s i n  s i m u l a t i o n s  we have performed, 

al though the  p i c t u r e  i s  ccmpl icated a b i t  by d i s s i m i l a r i t i e s  i n  body 

geometry and hos t  1 a y e r i  ng. 

Superimposed 

Since t h e  magnitudes o f  the  

Two-dimensional t ransve rse  e l e c t r i c  model i ng a1 g o r i  thms are o f  

l i m i t e d  va lue  f o r  i n t e r p r e t i n g  3-D measurements. 

i ncludes no boundary charges, and hence no cu r ren t -ga the r i  ng , i n i t s  

f o r m u l a t i o n  so t h a t  t h e  secondary E - f i e l d  i n  t h i s  case c o n t r i b u t e s  

The 2-D TE mode 



n e g l i g i b l y  t o  the  MT response as f requency fa1 1s. 

a 3-D inhomogeneity corresponding t o  t h i s  mode leads  t o  a widespread 

depression of  t h e  t o t a l  e l e c t r i c  f i e l d  t o  the  s i d e  of  t he  3-D body t h a t  

i s i ncreasi  ng l y  pronounced toward 1 ower f requenc ies  . 
cur ren t -ga  t h e r i  ng can enhance the  secondary magnetic f i el  d compared t o  

t h a t  induced over an equ iva len t  3-D body i n  f r e e  space, i t  r e s u l t s  i n  a 

g r e a t l y  subdued secondary % f i e l d  cmpared t o  t h a t  induced by a 2-D 

s t r u c t u r e  o f  i d e n t i c a l  cross-sect ion.  Sedimentary bas ins  c o n s t i t u t e  

very  l a r g e  inhomogeneit ies, y e t  on l y  f o r  f requenc ies  above 1. Hz, and 

sometimes even 10 Hz, do 2-D TE and corresponding 3-D responses f o r  t h e  

model we have chosen c l o s e l y  agree. 

Cur ren t -ga ther ing  i n  

Furthermore, whi l e  

It i s  f o r t u n a t e ,  t h e r e f o r e ,  t h a t  our model s tud ies  have shown t h a t  

p r o f i l e s  o f  apparent r e s i s t i v i t y  p and impedance phase 4 across 

e longate  3-D pr isms can be modeled accu ra te l y  w i t h  a 2-D TM a lgo r i t hm.  

Boundary p o l a r i z a t i o n  charges a r e  i nc luded  i n  both 3-D and 2-D TM 

fo rmu la t i ons ,  a1 low ing  a proper t rea tment  o f  cu r ren t -ga the r ing  e f f e c t s  

on apparent r e s i s t i v i t y  and impedance phase. To d e f i n e  pseudosections 

f o r  t ransve rse  magnetic modeling, we recommend employment of a 

coo rd ina te  system based on t i p p e r - s t r i k e .  Since (F)  i s  band- l im i ted ,  

one may choose an opt imal  f requency f o r  d e f i n i n g  a t i p p e r - s t r i k e  t o  

minimize t h e  c o n t r i b u t i o n s  of  secondary s t r u c t u r e s  much smal l e r  o r ,  f o r  

t h a t  ma t te r ,  much l a r g e r  than one 's  t a r g e t .  

l i m i t a t i o n s  of t h i s  2-D lM ph i losophy bu t ,  u n t i l  a d d i t i o n a l  advances i n  

rnul t i -d imensional  modeling t a k e  place, t h i s  approach prov ides  t h e  on ly  

r i g o r o u s  means of i n t e r p r e t i n g  magneto te l l  u r i c  measurements i n  th ree-  

dimensional environments. 

Y X  Y X  

Z 

We recognize t h e  
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APPENDIX A 

NUMERICAL TEST OF THE COUPLED BODY APPROXIMATION 

Since a great number of conclusions in t h i s  paper are based upon 

our coupled body theory, i t  i s  of great importance t h a t  the accuracy of 

mation be verified.  I n  Figure A - 1 ,  a small plate-like the approx 

co nd uc t or  , 

1 ies  next o a much larger  conductor 1 5  

The in t r in s i c  res i s t iv  

t h a t  of the bigger i s  3 9-m. 

buried 11/2 km. 

Q-m wh il e 

re present 

Ini t 

c om pu t ed 

1800 m by 7 km by 350 m thick with a depth t o  t o p  of 350 m, 

km by 36 km by 11/2 km thick 

ty  of the smaller feature  i s  40 

These small and large plates 

structures A a n d  B of the section on coupled body theory. 

or two PO 

current in ju s t  the 

numerically t o  obta 

a1 ly ,  5, in the smal 1 and big plates coupled together 'was 

arizations of tT a t  0.3 Hz. 

small body, equations (11) and ( 1 2 )  were evaluated 

n the secondary f i e lds  due o n l y  t o  the  small  body. 

These f i e l d s  we refer t o  as the ' 'true" secondary f i e lds  resulting from 

structure A. 

separately, again f o r  two polarizations of E T  a t  0.3 Hz. 

f i e lds  were then calculated over the small body in the absence of the 

bigger, a r e  named the "unperturbed" f i e l d s ,  and correspond 

t o  

a f te r  the total  ?-f ie ld  over the larger body in the absence of the 

smaller was calculated, corresponding t o  EtOB(rA) in  ( 5 9 ) ,  relations 

Using the scattering 

Next, js within the large and small bodies was calculated 
A 

Sec0ndar.y 

fi!A(F) and i;A(F) in equations (57 ) ,  (58) and (65 ) .  Finally, 
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B' I 

B 

surface 
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I I 3 a - m  \40  a-m 

400 a - m  
0 5 k m  u CROSS-SECTION 

F i g u r e  A-1. 
body approximat ion.  The small and l a r g e  bodies represent  s t r u c t u r e s  A 
and B o f  t h e  sec t i on  on coupled body theory .  

M u l t i p l e  inhomogeneity assembly used t o  t e s t  t h e  coupled 
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F i g u r e  A-2. 
secondary e l e c t r i c  f i e l d s  a t  0.3 Hz over t h e  sma l le r  body o f  F igu re  A-1. The p r o f i l e  along which t h e  
f i e l d s  were c a l c u l a t e d  i s  l a b e l e d  i n  t h e  lower  r i gh thand  corner  o f  each graph. The values o f  t h e  r e a l  
and imaginary p a r t s  have each been normal ized b y  t h e  magnitude o f  t h e  i n c i d e n t  e l e c t r i c  f i e l d  a t  t h e  
su r face  Ei. 

P l o t s  o f  t r u e  ( s o l i d  l i n e s ) ,  unperturbed ( d o t t e d  l i n e s )  and est imated (dashed l i n e s )  
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(61), (62,) and ( 6 6 )  y i e l  ded i $ ( F ) ,  G$(F) and ;;A(?) . These a re  

r e f e r r e d  t o  subsequently as "est imated"  secondary f i e l d s .  

P l o t s  of t rue ,  unperturbed and est imated secondary f i e l d s  a t  0.3 

Hz, normal ized by  t h e  i n c i d e n t  f -  and f i - f i e l d s  on t h e  sur face,  f o r  t h e  

p r o f i l e s  A-A '  and 6-6'  o f  F igu re  A-1 appear i n  F igures  A - 2 ,  A-3 and A- 

4. For example, Eo stands f o r  a secondary t - f i e l d  i n  t h e  x - d i r e c t i o n  

due t o  t h e  f i r s t  p o l a r i z a t i o n  of  i n c i d e n t  f i e l d .  

o f  

x s l  
The f i r s t  p o l a r i z a t i o n  

i s  along t h e  x -ax is  w h i l e  t h e  second i s  a long y. 

The agreement between t r u e  and est imated f i e l d s  i s  q u i t e  c lose; 

nowhere i s  i t  worse than  10% and i n  general  i t  i s  much b e t t e r .  

a re  due t o  s l i g h t  asymmetries i n  t h e  t r u e  EysZ, 

asymmetries i n  2, w i t h i n  t h e  small p l a t e ,  which i n  t u r n  i s  due t o  i t s  

p r o x i m i t y  t o  t h e  l a r g e r  inhomogeneity. 

approx imat ion assumes, un i fo rm source f i e l d s  over  the  smal l  body, t h e  

es t imated  f i e l d s  must be symmetric across i t s  axes. 

S l i g h t  

0 0 
" y s l  and H i s 1  

Since t h e  coupled body 

Both t h e  t r u e  and 

t h e  est imated f i e l d s  d isagree subs tan t i a l  l y  w i th  the  unperturbed 

f i e l d s .  Hence, a s imple a d d i t i o n  o f  t h e  unperturbed f i e l d s  over  the  

m a l  1 body a1 one t o  the t o t a l  f i e 1  d s  over  t h e  l a r g e  body a1 one would 

y i e l d  a poor approx imat ion t o  t h e  t r u e  coupled response. 
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