

WBS: 1.2.21.3
QA: QA

**Civilian Radioactive Waste Management System
Management & Operating Contractor**

**Data Qualification Report: Pore Water Data for Use on the
Yucca Mountain Project**

TDR-NBS-GS-000014 REV 00

May 2000

Prepared for:

U.S. Department of Energy
Yucca Mountain Site Characterization Office
P.O. Box 30307
North Las Vegas, Nevada 89036-0307

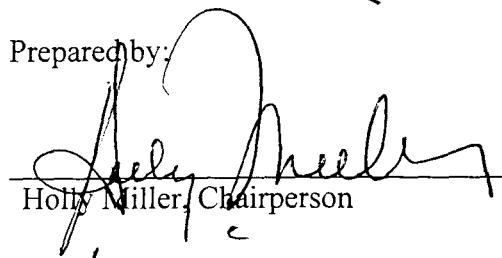
Prepared by:

TRW Environmental Safety Systems Inc.
1211 Town Center Drive
Las Vegas, Nevada 89144

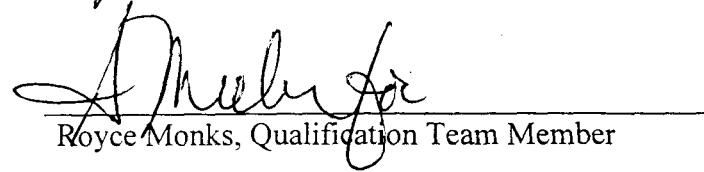
Under Contract Number
DE-AC08-91RW00134

DISCLAIMER

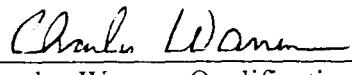
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


**Civilian Radioactive Waste Management System
Management & Operating Contractor**

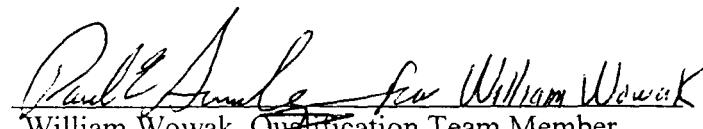
**Data Qualification Report: Pore Water Data for Use on the
Yucca Mountain Project**


TDR-NBS-GS-000014 REV 00

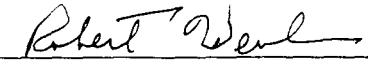
May 2000


Prepared by:

Holly Miller, Chairperson


5-31-00
Date

Royce Monks, Qualification Team Member


5-31-00
Date

Charles Warren, Qualification Team Member

5-31-00
Date

William Wowak, Qualification Team Member

6/5/00
Date

Rob Howard, Responsible Manager
ROBERT NEMHAUER
06/09/00

06/09/00
Date

EXECUTIVE SUMMARY

In accordance with procedure AP-3.15Q Rev. 1, ICN 1, *Managing Technical Product Inputs*, Attachment 6, it has been determined that data referenced by DTN# LL990702804244.100 are used in Analysis and Model Reports that provide a direct calculation of "Principal Factors" for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICN 2, *Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data*, Section 5.3.1.a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence.

A Data Qualification Team comprised of Subject Matter Experts, Quality Assurance Professionals, and a member of the Office of Quality Assurance has reviewed the practices, data, and documentation associated with the analyses of the mineral composition of Yucca Mountain Site pore water samples by Lawrence Livermore National Laboratory's (LLNL) Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). Based on this review it was determined that a subset of the pore water data identified by DTN# LL990702804244.100, i.e., that ASD pore water data that correlates to the three specific samples identified in AMRs currently referencing DTN# LL990702804244.100, is traceable. In addition, the Data Qualification Team has determined that ASD activities associated with these specific samples were conducted in accordance with sound technical and administrative practices. These practices, which specifically involved performance of Ion Chromatography and Inductively Coupled Plasma/Atomic Emission Spectroscopy analyses generating the subset of data referenced by DTN# LL990702804244.100, were demonstrated to meet the applicable requirements of the Office of Civilian Radioactive Waste Management Quality Assurance Requirements and Description and AP-SIII.2Q, Attachment 2 for qualifying data by the Equivalent Quality Assurance Program Method for the purpose of this qualification, this subset of data has been extracted and given a new DTN number: DTN# MO0005PORWATER.000.

Pore water sample data currently identified by AMRs and used as input to models and analyses, is that subset of data for samples ESF-HD-PERM-1, -2, and -3. The data for these three samples comprise the data subset extracted from DTN# LL990702804244.100 and identified by DTN# MO0005PORWATER.000 that the Data Qualification Team recommend to be qualified. The Data Qualification Team determined that DTN# LL990702804244.100 data associated with porewater samples other than the three "PERM" samples were inconsistent with the original ASD documentation of analytical results and concluded that this data could not be recommended for qualification at this time.

Measurement of pore water hydrogen ion concentration (pH) is a parameter also identified by the subject DTN. The pore water extraction from Yucca Mountain Site rock core samples and pH measurement was conducted by UFA Ventures Inc. prior to the shipment and receipt of these samples at LLNL. UFA Ventures Inc. is a company approved for placement on the Qualified Suppliers List as of 1/9/98 to perform analytical testing of pore water in rock samples. The Data Qualification Team did not review the practices and procedures of UFA Ventures Inc, however it was verified that UFA Ventures Inc. conducted the extraction and pH measurement activities between 3/20/98 and 8/11/98.

CONTENTS

	Page
EXECUTIVE SUMMARY	iv
ACRONYMS AND ABBREVIATIONS	vii
1. INTRODUCTION	1
1.1 PURPOSE	1
1.2 SCOPE	1
1.3 DATA QUALIFICATION TEAM	2
1.4 BACKGROUND	3
2. QUALIFICATION METHODS	5
2.1 EVALUATION CRITERIA	5
2.2 RECOMMENDATION CRITERIA	6
3. EVALUATION RESULTS	7
3.1 INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROSCOPY ANALYSIS AND ION CHROMATOGRAPHY ANALYSIS DATA	7
3.2 TRACEABILITY OF ASD DATA TO DATA REPORTED AND REFERENCED IN AMRS BY DTN# LL990702804244.100	11
4. EVALUATION CONCLUSIONS	15
5. RECOMMENDATIONS	16
6. REFERENCES	17
7. APPENDICES	19

TABLES

	Page
1. ICP/AES Analysis Performed by ASD.....	8
2. IC Analysis Performed by ASD.....	9

ACRONYMS AND ABBREVIATIONS

AE	Activity Evaluation
AES	Atomic Emission Spectroscopy
AMOPE	Assistant Manager, Office of Project Execution
AMR(s)	Analysis and Model Report(s)
ASD	Analytical Sciences Division/Analytical and Nuclear Chemistry Division
BS	Bachelor of Science
CAR	Corrective Action Report
CRWMS	Civilian Radioactive Waste Management System
DIRS	Document Input Reference System
DOE	Department of Energy
DST	Drift Scale Test
DTN	Data Tracking Number
EBS	Engineered Barrier System
EPA	U.S. Environmental Protection Agency
IC	Ion Chromatography
ICP	Inductively Coupled Plasma
LLNL	Lawrence Livermore National Laboratory
MS	Master of Science
NCR	Nonconformance Report
NIST	National Institute of Standards and Technology
OCRWM	Office of Civilian Radioactive Waste Management
OQA	Office of Quality Assurance
QA	Quality Assurance
QARD	Quality Assurance Requirements and Description
SN	Scientific Notebook
SRM	Standard Reference Material
Supp.	Supplement

TDMS	Technical Data Management System
THC	thermal-hydrological-chemical
TIPs	Technical Implementation Procedures
UZ	Unsaturated Zone
YMP	Yucca Mountain Project

1. INTRODUCTION

1.1 PURPOSE

Pore water data associated with Data Tracking Number (DTN) #LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, *Managing Technical Product Inputs*, Attachment 6, that the DTN-referenced data are used in AMRs that provide a direct calculation of "Principal Factors" for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICN 2, *Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data*, Section 5.3.1.a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence.

1.2 SCOPE

This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified "pore water data" represented by DTN# LL990702804244.100. This DTN is currently used in the following AMRs: *Drift-Scale Coupled Processes (DST and THC Seepage) Models* (CRWMS M&O 2000a), *Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier* (CRWMS M&O 2000b), and *Engineered Barrier System: Physical and Chemical Environment Model* (CRWMS M&O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD).

The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that data associated with the specific samples: ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF-HD-PERM-3. The data for these samples represents a subset of the data identified as DTN# LL990702804244.100.

The purpose of the *Drift-Scale Coupled Processes (DST and THC Seepage) Models* (CRWMS M&O 2000a, pp. 13, 19–20), is to document the near field environment and unsaturated zone (UZ) and to provide the framework to evaluate THC (thermal-hydrological-chemical) coupled processes at the drift-scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering the emplacement drifts. This AMR provides input for the following: *Performance Assessment* (CRWMS M&O 2000d); *Unsaturated Zone Flow and Transport Process Model Report* (CRWMS M&O 2000e); the *Near-Field Environment Process Model Report* (CRWMS M&O 2000f). The pore water analyses from the Exploratory Studies Facility (ESF) and chemistry of water from Drift Scale Test (DST) hydrology boreholes is used as water and gas chemistry sources of data input to the DST THC Model and THC Seepage Model and contain mineralogical data that are representative of the Topopah Spring Middle Nonlithophysal repository host unit. From these

models thermodynamic data for minerals, aqueous, and gaseous species, and kinetic data for mineral-water reactions were developed.

The *Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier* (CRWMS M&O 2000b, pp. 37) AMR specifies environments on the surfaces of the Drip Shield and Waste Package Outer Barrier relevant to conditions of the potential repository site at Yucca Mountain, Nevada. Aqueous solution compositions are specified for the purposes of corrosion testing of the Engineered Barrier System (EBS) component candidate materials. Pore water analytical data were used to define the composition of pore waters from Topopah Springs welded unit. This AMR provides input to the *Waste Package Degradation Process Model Report* (CRWMS M&O 2000i).

The *Engineered Barrier System: Physical and Chemical Environment Model* AMR (CRWMS M&O 2000c, pp. 15, 38), provides conceptual models intended to estimate the evolution of the physical and chemical conditions within the EBS emplacement drifts. The models' output is data intended for use in modeling the performance of the EBS, the waste package, and the waste form. Pore water analytical data provides the composition (i.e., bicarbonate concentration) of pore water samples used in models to analyze CO₂ transport at Borehole SD-12. This AMR provides input to the *EBS Physical and Chemical Environment Performance Assessment Abstraction Model* (CRWMS M&O 2000g).

The principal focus of this report is qualification of pore water data submitted to the TDMS associated with DTN# LL990702804244.100. Where possible, the data are qualified for general use; however, any limitations imposed by the data qualification team on the appropriate use of the qualified data have been noted in this report. Qualification is extended, where possible, to data that may not have been used in the identified AMRs but is of a similar quality to the data that was used. Any subset of DTN# LL990702804244.100 data identified as a result of this qualification effort as meeting the OCRWM QARD and APSIII.2Q, Attachment 2 requirements for qualifying data by the Equivalent QA Program method, will be assigned a new DTN#. Approval of this report by AMOPE will constitute approval and qualification of this data.

1.3 DATA QUALIFICATION TEAM

The Responsible Manager for this data qualification task is Rob Howard.

The Chairperson and Subject Matter Expert for this data qualification team was Ms. Holly Miller. Ms. Miller has a BS degree in Chemistry and an MS degree in Environmental Management. H. Miller has 24 years of experience at LLNL that includes Environmental Safety and Health management, research and development in nuclear and nonnuclear technologies, and Quality Assurance (QA) management for nuclear facilities and repository research programs. She was QA Manager for the LLNL Nevada Nuclear Waste Site Isolation/Office of Nuclear Waste Isolation research program from 1981 to 1984 and Compliance Officer for the LLNL Plutonium Facility 1989 to 1990 during which time she was certified as a lead nuclear auditor. Ms. Miller supports LLNL's Yucca Mountain Project as a QA Specialist. Ms. Miller had no involvement with the collection or processing of this data.

Qualification team members are:

Royce Monks. Mr. Monks has a BS degree in Chemistry from the University of the Pacific and an MS degree in Public Administration from the University of Southern California. He has over 17 years of experience in Quality Assurance programs for the Department of Energy, Department of Defense, and LLNL. In addition, he has 20 years experience with Systems Development and Testing. Mr. Monks is currently the Engineering Assurances Manager for the LLNL Yucca Mountain Project. He had no involvement with the collection or processing of this data.

Charles Warren. Mr. Warren has 25 years experience in Quality Assurance at licensed nuclear facilities. Mr. Warren has developed and verified implementation of quality programs for an Architect-Engineer, Constructor, and several nuclear generating facilities. Mr. Warren has spent the past 11 years in various management positions with the Office of Quality Assurance on the Yucca Mountain Project and currently serves as its representative at LLNL. Mr. Warren had no involvement with the collection or processing of this data.

William Wowak. Mr. Wowak has an MS degree in Structural Engineering from the University of Illinois. He has over 24 years experience on nuclear waste repository programs including responsibility for managing a variety of site characterization support activities. Mr. Wowak had no involvement with the collection or processing of this data.

1.4 BACKGROUND

The subject pore water data documents the results of Yucca Mountain Site water sample analyses conducted by LLNL ASD. These analyses were performed by ASD when ASD was neither an integral part of the Yucca Mountain Project (i.e., functioning under the Office of Civilian Radioactive Waste Management (OCRWM QA) Program) nor an approved supplier of analytical services to the project. The subject data is part of the data currently identified as nonconforming in Yucca Mountain Site Characterization Project Nonconformance Report (NCR) YMSCO-00-0055. The recommended disposition for the data as identified in the NCR is "Use As Is" contingent upon the qualification of the data per AP-SIII.2Q. This Data Qualification Report addresses a subset of the data addressed by the NCR, specifically only that data referenced by DTN# LL990702804244.100.

The term "pore water data" as used in this report refers to ASD analytical data identifying the chemical constituents/parameters/species and their concentrations in pore water samples provided to LLNL by UFA Ventures Inc. Pore water samples were extracted from rock cores and measurements of pH were taken in the field by UFA Ventures Inc. in accordance with UFA Ventures Inc. applicable procedures. The measurement of pH is included in DTN# LL990702804244.100. UFA Ventures Inc. was approved for placement on the Qualified Supplies List for "analytical testing of pore water in rock samples and testing to determine diffusion coefficients" as of 1/9/98. A Supplier Evaluation Report shown in Appendix K signed by the Director of DOE's Office of Quality Assurance (OQA) provides the record of this approval (MOL.19980406.0179). Pore water samples ESF-HD-PERM-1, -2, and -3 from cores

taken at various depths were requested to be shipped from the Thermal Testing Facility to James Conca, UFA Ventures, Inc. on 3/20/98 (see email from Mark Peters, 3/20/98 shown in Appendix K. UFA Ventures Inc. completed pore water extraction and pH measurements of the PERM samples as of 8/9/98. See letter report (J. Conca, UFA Ventures, Inc. to R. Datta, 8/11/98 provided in Appendix K.

2. QUALIFICATION METHODS

Consistent with AP-SIII.2Q Rev.0, ICN 2, data that were not acquired or developed in accordance with an approved QA program that meets 10CFR60 Subpart G, and do not meet the definition of Accepted Data, must be qualified if it is used for Principal Factors or Potentially Disruptive Processes and Events, as determined using AP-3.15Q, *Managing Technical Product Inputs*. Pore water data included in DTN# LL990702804244.100 were determined to require qualification on this basis in accordance with AP-3.15Q, Attachment 6. The principal qualification method for the subject data will be demonstration of *equivalent QA program*. This method is used to demonstrate that the controls in effect at the time ASD performed the analyses were equivalent to the necessary Quality Assurance Requirements and Description (QARD) controls that would be imposed if the analyses were performed today.

The objectives, scope, and methodology for qualification of the unqualified DTN# LL990702804244.100 documented in this report and the determination of Principal Factor applicability is based on an OCRWM Development Plan (CRWMS M&O 2000h). This DTN is referenced by the three AMRs identified in this report and their associated Document Input Reference System (DIRS) files. However, AMRs in revision at the time of this report may produce changes in their associated DIRS files and later cite or delete the subject DTN. Because this report addresses the data set submitted to the TDMS using DTN# LL990702804244.100, the impact of the recommendations of this report will be the same on any document citing the DTN. The qualification of any additional unqualified DTNs that may be identified in these or other AMRs will be addressed separately.

2.1 EVALUATION CRITERIA

The following criteria are identified as the basis for evaluating DTN# LL990702804244.100 data. The source of this data was identified as LLNL ASD analyses of pore water taken from Yucca Mountain borehole core samples. The criteria were used in demonstrating that activities associated with performing analyses of Yucca Mountain pore water samples generally meet the applicable requirements of the OCRWM QA Program. In addition, the selected criteria incorporate the considerations in procedure AP-SIII.2Q, Attachment 2 and the applicable qualification process attributes listed in procedure AP-SIII.2Q, Attachment 3.

1. Sample identification and traceability is maintained from the time samples were received by LLNL until analysis was performed.
2. LLNL Technical Implementing Procedures (TIPs) for the types of analysis performed on Pore Water Samples were developed, reviewed, approved and issued under the OCRWM QA Program.
3. Instruments used to perform analyses were calibrated prior to use with National Institute of Standards and Technology (NIST)-traceable calibration standards.
4. Procurement of calibration standards was accomplished in accordance with methods that comply with OCRWM QA Program requirements.

5. Practices used in the performance of analysis are those required by current LLNL TIPs that were reviewed, approved and issued under the OCRWM QA Program.
6. Personnel involved in control of samples and performance of analyses were indoctrinated on the OCRWM QA Program and were trained/indoctrinated in practices utilized in performance of activities.
7. Pore water data identified by DTN# LL990702804244.100 cited in AMRs is traceable to and consistent with ASD documentation and the analyses conducted.

2.2 RECOMMENDATION CRITERIA

Recommendation criteria used in determining whether the status of DTN# LL990702804244.100 pore water data should be changed to *qualified* are identified below. However, the final recommendations of the data qualification team subject matter experts will be based on a preponderance of evidence, and not all of the recommendation criteria may be applied.

1. A unique identifier for each pore water sample is documented and is traceable from the point of sample receipt by LLNL/ASD through performance of ASD sample analysis.
2. TIPs describing the methods used in the analysis of pore water samples were developed by the organization personnel performing the analyses and reviewed, approved and issued in accordance with appropriate LLNL procedures which implement applicable requirements of the OCRWM QA Program.
3. Calibration of instruments prior to performance of each analysis is documented and the calibration standards used indicate evidence of NIST traceability.
4. Calibration standards were procured in accordance with the methods described in the current approved Activity Evaluation for procurement and confirmation of chemicals used for calibration standards.
5. Documentation of results of analyses and discussion with personnel performing analysis indicate that practices used were those described in current LLNL TIPs.
6. OCRWM QA Program Indoctrination for personnel involved in the control of pore water samples and the performance of analyses is documented. Evidence of training/indoctrination to the practices used in performance of the analyses is available.
7. Pore water data identified by DTN# LL990702804244.100 in the AMRs was traceable to and consistent with ASD's documentation in scientific notebooks and analysis records.

3. EVALUATION RESULTS

3.1 INDUCTIVELY COUPLED PLASMA/ATOMIC EMISSION SPECTROSCOPY ANALYSIS AND ION CHROMATOGRAPHY ANALYSIS DATA

Two analytical methods were used by ASD in analysis of Yucca Mountain Site pore water samples denoted by DTN# LL990702804244.100: Inductively Coupled Plasma/ Atomic Emission Spectroscopy (ICP/AES) and Ion Chromatography (IC). These analytical methods are currently documented in LLNL TIPs. Sample and experimental data for the samples identified by DTN# LL990702804244.100 were documented in LLNL-YMP Scientific Notebooks (SN) 00342 and 00349 and LLNL-YMP Supplement Binders 342.3 and 349.1 respectively. However, problems exist with traceability of sample data and documentation from receipt to records of analysis for several samples identified by DTN# LL990702804244.100. Traceability was however verified for a specific subset of samples and data identified by DTN# LL990702804244.100. Specifically, these samples are ESF-HD-PERM-1, -2, and -3. It is this specific subset of sample data from DTN# LL990702804244.100 that is actually used and referenced in the AMRs identified in this report.

Unique sample identifiers were documented in LLNL-YMP SN# 00342 and LLNL-YMP SN# 00349 at the time samples were received by LLNL ASD. Sample numbers, location of sample information in scientific notebooks/supplements and pages that document sample receipt are listed in Tables 1 and 2. However this information is not fully traceable to the data in the DTN for all samples identified by the DTN. This information is fully traceable to the DTN data for samples ESF-HD-PERM-1, -2, and -3. Sample identification and the receipt records for these "PERM" samples can be found in SN# 00349, page 30. Performance of each analysis, i.e., the analytical record and data for ICP/AES and IC analyses, is documented and traceable for these "PERM" samples and can be found in Supplement 349.1 to SN 00349. This information is shown in Table 1 for ICP/AES analyses and Table 2 for IC analyses. Sample numbers from SN entries were found to be traceable to and consistent with documentation of performance of each analysis by ASD for all samples shown. However, the analytical data in the DTN is not traceable for all the samples shown. The analytical data in the DTN is traceable for samples ESF-HD-PERM-1, -2, and -3 (identified as PERM-1, PERM-2, and PERM-3 in Table 1 and 2). The analytical data record for ICP/AES analysis of the "PERM" samples is denoted by Case 579; the analytical data record IC analysis of "PERM" samples is denoted by Case 609.

Table 1. ICP /AES Analysis Performed by ASD

Sample Number	Analysis Case #	Analysis Date	SN#, Pages(s) and Supp. #
Perm-1, Perm-2, Perm-3	579	12/8/98	#00349, Page 30 and Supp. 349.1
54-1 1/20/99 filtered, 56-2D 12/8/98 filtered, 59-4: 1/99 filtered, 60-3: 1/99 filtered, 186-3: 1/99 filtered, 54-1 1/20/99 unfiltered, 59-4 1/99 unfiltered, 60-3: 1/99 unfiltered, 186-3 1/99 unfiltered	826	1/22/99	#00342, Pages 105, 106,112 and Supp. 342.3
186-3 1/26, 60-3 1/26/99, 59-4 1/26/99, D56-3 1/22/99, D56-1 1/22/99, D54-3 1/22/99	1034	3/18/99	#00342, Pages 113, 114,118 and Supp. 342.3
DST 60-2, DST 60-3, DST 77-3	422	9/21/98	#00349, Page 30 and Supp. 349.1
59-4 11/98, 60-2 6/98, 60-3 #1, 60-3 #2, 60-3 #3, 60-3 6/98, 60-3 8/98, 60-3 11/98, 60-3 1/26, 77-3 3/99, 186-3 11/98,	1101	4/21/99	#00342, Pages 81, 111,112, 118,125 and Supp. 342.3
D54-1, 60-3 #1, 60-3 #2 0955, 60-3 #310:10 3/31, 77-3 3/99	1102	4/22/99	#00342, Pages 123,125 and Supp. 342.3

Table 2. IC Analysis Performed by ASD

Sample Number	Analysis Case #	Analysis Date	SN#, Page(s) and Supp. #
Perm-1, Perm-2, Perm-3	609	12/7/98	#00349, Page 30 and Supp. 349.1
54-1 filtered, 56-2 filtered, 56-3 filtered, 59-4 filtered, 60-3 filtered, 60-3 unfiltered, 186-3 filtered, 186-3 unfiltered	813	1/25/99	#00342, Pages 105,106, 112 and Supp. 342.3
D54-3 1/22/99, D56-1 1/22/99, D56-3 1/22/99, 59-4 1/26/99, 60-3 1/26/99, 186-3 1/26/99	1020	3/18/99	#00342, Pages 113,114, 118 and Supp. 342.3
60-3F	N/A	8/13/98	#00342, Page 81 and Supp. 342.3
DST 60-2 8/12/98, DST 60-3 8/12/98, DST 77-3 8/12/98	399	10/8/98	#00349, Page 30 and Supp. 349.11
D54-1 3/30, D54-4 3/31/99, 59-4 11/98, 60-3 #1 0950 3/30, 60-3 #2 0955 3/30, 60-3 #3 1010 3/30, D71-3 3/31/99, 77-3 3/99	1029	4/14/99	#00342, Pages 112,123, 124,125 and Supp. 342.3

The following LLNL TIPs currently in effect document methods that were used in the ASD analysis of pore water samples:

- TIP-AC-02, *Solutions Analysis: Cations by Inductively Coupled Plasma Atomic Emission Spectroscopy*.
- TIP-AC-03, *Determination of Inorganic Anions by Ion Chromatography*.

These TIPs were developed by ASD personnel after pore water samples were analyzed. Development was in accordance with LLNL Yucca Mountain Project (YMP) Procedure 033-YMP-QP-5.0, *Technical Implementing Procedures*, and were reviewed, approved and issued in accordance with LLNL YMP Procedure 033-YMP-QP-2.1, *Preparation, Approval and Revision of Procedures and Plans*. LLNL YMP Procedures and TIPs implement the applicable requirements of DOE/RW-0333P, *Quality Assurance Requirements and Description*.

Per discussions with ASD personnel, the TIPs identified above document the standard protocols used when ASD performs IC and ICP/AES analyses. These protocols were derived from equipment Manufacturer's Operating Instructions and/or U.S. Environmental Protection Agency (EPA) Standard Methods and were in use at the time data identified in this report were being generated by ASD. As stated, TIPs reflecting these protocols have since been developed, reviewed, approved and issued in accordance with OCRWM QA Program requirements.

Memorandums issued by the analysts that performed IC and ICPLAES analysis of pore water samples are included in Appendix A. These memorandums document the specific protocols and EPA methods used during performance of analysis.

Documentation in SN Supplements indicate the following evidence of calibration of instruments prior to performance of the IC and ICP/AES analyses identified in Tables 1 and 2:

- For ICP/AES Analysis – Spectrochemical Analysis Reports and attached “run”, i.e., data print-out sheets (analytical records), are included for each ASD analysis Case Number reviewed. Table 1 identifies this for the samples that are included in DTN# LL990702804244.100. These reports indicate that calibration of instruments prior to running ICP/AES analysis was performed. Each test standard used for calibration was prepared from stock standard materials identified and traceable to a “Certificate of Analysis.” This documentation of analysis and the certificates are traceable and are included in SN Supplements. Standards used for a secondary check of instruments prior to performance of ICP/AES analysis were also prepared from materials identified and traceable to its “Certificate of Analysis.”
- For IC Analysis – Calibration Update Reports are included and traceable for each ASD analysis Case Number identified in Table 2. These reports indicate that six calibration standards were used for instrument calibration prior to performance of each IC analysis. Each calibration standard was prepared from an identified IC stock solution standard having a “Certificate of Analysis.” Calibration documentation and the certificates are traceable to analytical Case Numbers and are included in SN Supplements.

The QAP-2-0 Activity Evaluation (AE), *Procurement and Confirmation of Chemicals Used for the Calibration of Standards*, was issued by the Waste Package Operations/Waste Package Materials Department on 12/6/99. The AE states that it is applicable to procurement of chemicals utilized for the calibration of pH, conductivity, and analytical standards whose purity is traceable to NIST. The AE further states that procurements of chemicals are not subject to QARD requirements however, confirmation that chemicals are suitable for their intended use is an activity that is subject to requirements of the QARD. The AE requires that when standards are purchased directly from a commercial supplier, lot number traceability to NIST standards be verified by review of chemical certificates. The AE also requires independent standards be used to verify calibration of equipment for IC and ICP/AES analysis.

It was determined by review of Supplement 349.1 to SN 00349 that the following has been achieved and documented:

- For IC Analysis – Ion chromatography stock solution standards were purchased from a commercial supplier (Alltech) with Certificates of Analysis documenting NIST traceability by Standard Reference Material (SRM) number. Material lot numbers are also documented on the certificates. Documentation indicates that independent standards were used to verify IC calibration prior to performance of each analysis.
- For ICP/AES Analysis – Stock standard materials were purchased from a commercial supplier (Spex CertiPrep) with a Certificate of Analysis documenting NIST traceability by SRM number. Starting material lot numbers are also documented on certificates. Documentation in the SN supplements indicates that two independent standards are used to verify ICP/AES calibration prior to performance of analysis.

All ASD personnel who made entries in LLNL-YMP SN# 00342 and LLNL-YMP SN# 00349 for the purpose of sample control or documenting the results of pore water sample IC and ICP/AES analyses, received the basic indoctrination and training required for LLNL YMP participants implementing the OCRWM QA Program prior to performing the annotated work. Education and training requisites for performing the work were accomplished and verified.

Training matrices were completed for identified ASD personnel. These matrices identify specific LLNL quality procedures governing work they performed. This training was completed and verified prior to doing any quality affecting work. Additionally, documentation shows that those Analysts administratively assigned to ASD completed “on-the-job” instruction and participated in training provided by the vendors for the equipment used.

Appendix A identifies applicable training for ASD personnel who made entries in the SNs or who performed pore water analysis reported in the SNs. The dates shown in the Table in Appendix A represent initial training. This training was maintained current during the time that individuals were assigned to the project performing work.

3.2 TRACEABILITY OF ASD DATA TO DATA REPORTED AND REFERENCED IN AMRS BY DTN# LL990702804244.100

The DIRS files for the *Drift-Scale Coupled Processes (DST and THC Seepage) Models* AMR (CRWMS M&O 2000a) indicate that the subject DTN is used in Tables 2, 3 and 9, and Sec. 6.2.7.3.1 of the AMR. Table 2 is a list of DTN#’s for sources of data input to the DST and THC Seepage Model. The description of the data referenced in Table 2 for DTN# LL990702804244.100 refers to “analyses of pore waters from the ESF (HD-PERM-1 and HD-PERM-2 samples); chemistry of water from DST hydrology boreholes (Nov. ’98 & Jan. ’99).” Table 3 entitled “Initial Water Composition and CO₂ Partial Pressure in Fractures, Matrix, and Recharge Waters” identifies the composition of pore water by parameter/species and corresponding concentration and identifies DTN# LL990702804244.100 as the source of this data. The samples from which these data are derived are identified in the AMR as “ESF-HD-PERM-1 (30.1’ to 30.5’) and ESF-HD-PERM-2 (34.8’ – 35.1’).” IC analyses (Case No. 609) and ICP/AES analyses (Case No. 579) data provided in Tables 1 and 2 of this report, correlate with the data in Table 3 of the AMR, however the data reported in the AMR has mislabeled sample identifiers. Data reported in the AMR at depth 30.1’ – 30.5’ as ESF-HD-PERM-1 correlates to the sample receipt documentation and analysis print-out records in ASD SN00349

and Supplement 349.1 respectively, for ESF-HD-PERM-2 (depth 30.1' to 30.5'). Similarly, the data (in Table 3 of the AMR) identified as ESF-HD-PERM-2 (depth 34.8' – 35.1') correlates to the sample receipt documentation and analysis print-out records in ASD SN00342 and Supplement 349.1 respectively, for sample ESF-HD-PERM-3 (depth 34.8' – 35.1'). Refer to the following Appendices:

- Appendix B shows Table 3 of the AMR, Footnote (1) indicating the depths for ESF-HD-PERM-1 and ESF-HD-PERM-2 samples data in the AMR. Table 9 and a memo from the author of the AMR on the use of the data is also provided.
- Appendix C shows sample traceability/receipt documentation from page 30 of LLNL-YMP SN# 00349 indicating the depths for ESF-HD-PERM-1, -2, and -3 samples.
- Appendix D shows the analytical data for ICP/AES (Case No. 579) analyses of corresponding PERM-1, -2, and -3 samples.
- Appendix E shows the analytical data for IC (Case 609) analyses of corresponding PERM-1, -2, and -3 samples.
- Appendix F shows a table prepared by the Data Qualification Team supporting the determination that the sample labels in the AMR are incorrect.

Note that the data corresponding to the depths identified in the AMR are correct. However, the sample ID labels for the data at that depth are not correct in the AMR, i.e., the data in the AMR identified as ESF-HD-PERM-1 should be labeled ESF-HD-PERM-2 data (depth of 30.1' – 30.5') and data in the AMR identified as ESF-HD-PERM-2 should be labeled ESF-HD-PERM-3 data (depth of 34.8' – 35.1') in order to be fully traceable to the original receipt record and corresponding ASD analytical data.

Checks were performed on all parameters/species to verify this conclusion, except where the concentration value for the ion in the AMR was derived using SOLVEQ 1.0 software (as noted in Footnotes 2-5 of Table 3 of the AMR (Appendix B of this report)). SOLVEQ 1.0 is identified as verified and “approved for use on YMP” in accordance with Corrective Action Report (CAR)-006 re-validation effort approvals documented in Carlisle (1999) shown in Appendix I of this report. The Corrective Action Report accurately identifies the software as SOLVEQ/CHILLER V.1.0. The author of this AMR has agreed to revise this reference to reflect the correct name of the validated software used, i.e., SOLVEQ/CHILLER V.1.0.

Appendix F provides a check of the data by comparing the data shown in Table 3 of the AMR (identified as the “average of Tptpmn porewater analyses ESF-HD-PERM-1 (30.1' – 30.5') and ESF-HD-PERM-2 (34.8' – 35.1')” concentrations) to the calculated average of ASD data (concentrations shown in Appendices D and E) for PERM-1 + PERM-2 and PERM-2 + PERM-3 (multiplied by their respective dilution factors). This check of the data shows that the data for PERM-2 + PERM-3 was used in the AMR's tables.

Table 9 of AMR: *Drift Scale Coupled Processes (DST and THC Seepage) Models*, displays the “Measured Concentrations in TSW Pore Water from Alcove 5 and Chemistry of Water Taken

from Hydrology Boreholes." Although all the data in Table 9 is part of DTN# LL990702804244.100, only that data identified as "pore water" data and associated PERM samples was used as input to the model of this AMR. Water chemistry from boreholes 60-3 and 186-3 were used solely for comparison to modeled results. A communication from the author of the AMR shown in Appendix B testifies to the use of this data.

The only referenced use of DTN# LL990702804244.100 in *Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier* (CRWMS M&O 2000b) is in Table 15, Sec. 4.1.1 of the AMR. Table 15, entitled "Major ion concentrations reported for TS_w pore water at ambient temperature," is presented in Appendix G to this report. Although depths corresponding to the reported data associated with samples ESF-HD-PERM-1 and ESF-HD-PERM-2 are not indicated in the AMR, checks of the data were made to determine the traceability of ASD analytical data to the sample identifier used in the AMR. This evaluation showed that the data in the AMR reported in Table 15 of the AMR (shown in Appendix G of this report) for sample ESF-HD-PERM-1 is actually the data for ESF-HD-PERM-3, i.e., the I.D. label in Table 15 for the data shown as ESF-HD-PERM-1 should be identified as ESF-HD-PERM-3. Data in Table 15 identified for sample I.D. ESF-HD-PERM-2 is labeled correctly, i.e., corresponds to the analytical records for PERM-2 ICP/AES (Case 579) and IC (Case 609) data. Appendices C, D, E, G and H provide the basis for determining and verifying this discrepancy by comparing the ion-concentration values reported in Table 15 of the AMR with ASD analytical data for samples ESF-HD-PERM-1, -2, and -3.

The source of the error is in the table of pore water data submitted to the TDMS as DTN# LL990702804244.100. The DTN is shown as Appendix L of this report. The PERM-sample data identified by the DTN are presented in three columns labeled ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF-HD-PERM-1 (presented in that order). The data presented in the first column of the DTN table identified as ESF-HD-PERM-1 corresponds with ASD data for ESF-HD-PERM-1 ("PERM-1") data, the data presented in the DTN table as ESF-HD-PERM-2 data corresponds with ASD data for ESF-HD-PERM-2 ("PERM-2") data. However, the data in the third column of the DTN table identified also as ESF-HD-PERM-1 is actually ASD ESF-HD-PERM-3 ("PERM-3") data. Thus the data in the AMR reflects the data in the table of the DTN but neither are labeled correctly. The data is traceable to the original ASD sample receipt and analysis data if the label on the third column of the DTN table is corrected to show ESF-HD-PERM-3. Correspondingly, the AMR's reference to ESF-HD-PERM-1 data is traceable to ASD receipt and analysis if the label in the AMR is changed to identify sample ESF-HD-PERM-3.

Reference to the subject DTN in *the Engineered Barrier System Physical and Chemical Environment Model* AMR (CRWMS M&O 2000c) is made only in Sec. 4.1.2.2, "Additional Input Data Used to Analyze CO₂ Transport at Borehole SD-12." No tabular data is presented for this DTN, only the general statement, "...additional input data consist of the following: Composition (i.e., bicarbonate concentration) of pore water samples extracted from samples of SD-12 drill core: DTNs GS970908312271.003, GS961108312271.002, and LL990702804244.100."

In the three AMRs that reference DTN# LL990702804244.100, bicarbonate concentration is not a directly measured component of pore water. Instead, the concentration of total aqueous

bicarbonate (HCO_3^-) is a calculated value based on pH in conjunction with the analytical data defining the concentrations of the other cations and anions present. This is stated in Footnote (4) of Table 3 of the *Drift-Scale Coupled Processes (DST and THC Seepage) Models* AMR (CRWMS M&O 2000a) (Appendix B). This method of deriving the concentration of total aqueous bicarbonate was verified through conversations with ASD personnel. DTN LL990702804244.100 does not include a concentration value for aqueous bicarbonate for the "PERM" samples.

An additional check can be performed that verifies the correlation of ASD analytical data for PERM-1, -2, and -3 samples with the data in the DTN corresponding to ESF-HD-PERM-1, PERM-2, and the third column shown again as ESF-HD-PERM-1. The ASD ion concentrations shown in Appendices D and E can be multiplied by their dilution factors (shown on the Appendix). These numbers are traceable to the data in the DTN.

Sample traceability was based on the following, sample descriptors: sample name-number, depth, and Sample Management Facility (SMF) identification number:

ESF-HD-PERM-1. 23.1'–23.3'; SMF ID 01002488.

ESF-HD-PERM-2. 30.1'–30.5'; SMF ID 01002586.

ESF-HD-PERM-3. 34.8'–35.1'; SMF ID 01002525.

Records shown in Appendices B, C, D, E, F, G, H, J, K, and L provide evidence of traceability and support the conclusions of this report.

4. EVALUATION CONCLUSIONS

Based on the criteria used to evaluate the data represented by DTN# LL990702804244.100, the Data Qualification Team concludes that the subject DTN identifies pore water data for several samples, a subset of which is the ESF-HD-PERM-1, -2, and -3 sample data used by the AMRs identified in this report. Data for these "PERM" samples were fully traceable from the sample name, sample ID, specimen ID, and sample depth to ASD documentation. In addition, the activities associated with the analysis and collection of mineral composition data from that subset of Yucca Mountain site pore water samples, identified as ESF-HD-PERM-1, -2, and -3 samples, were conducted in accordance with sound technical and administrative practices. These practices, which involved performance of IC and ICP/AES analyses, can be demonstrated to meet the applicable requirements of the QARD and AP-SIII.2Q, Attachment 2 for qualifying data by the Equivalent QA Program Method, as they apply to this subset of data. Supporting information including objective evidence of equipment calibrations, personnel indoctrination and training, and practices used in sample handling, performance of analysis and data collection is documented for this subset of data in applicable SNs and supplements.

5. RECOMMENDATIONS

The Data Qualification Team conducted a thorough review of the controls that were in place during the collection and analysis of Yucca Mountain pore water data identified by DTN# LL990702804244.100, including the development of documentation for records, the use of analytical procedures, and practices reviewed and approved by OCRWM, as well as the qualifications and training of personnel conducting analyses for LLNL ASD. Because several samples included in the subject DTN could not be traced to the original sample identification numbers in a manner that allowed correlation between both ASD analytical data and the concentration values in the DTN, the Data Qualification Team recommends that DTN# LL990702804244.100 remain unqualified.

However, the Data Qualification Team recommends that the data corresponding to ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF-HD-PERM-3 samples identified in the subject DTN be separated to form a new DTN as these data can be demonstrated to meet the applicable requirements of the QARD and AP-SIII.2Q, Attachment 2 for qualifying data by the Equivalent QA Program Method.

As a result of this recommendation, personnel supporting the Responsible Manager of the Management and Operating Contractor of CRWMS's Data/Software Qualification Department, Applied Research and Testing Programs of CRWMS has submitted a Technical Data Information Form (TDIF# 310555) and a new DTN# has been assigned to the subset of data recommended by this report to be qualified, i.e., "PERM" sample data. The new DTN# for these data is MO0005PORWATER.000.

6. REFERENCES

Carlisle, G.P. 1999. "Configuration Management Notice, Quarterly Software Configuration Status Accounting Report." Interoffice correspondence from G.P. Carlisle (CRWMS M&O) to Distribution (CRWMS M&O), December 10, 1999, LV.SQA.GPC.12199-1299. ACC: MOL.20000530.0274

CRWMS M&O 2000a. *Drift-Scale Coupled Processes (DST and THC Seepage) Models*. MDL-NBS-HS-000001 REV 00. Las Vegas, Nevada: CRWMS M&O. Submit to RPC, URN-0042.

CRWMS M&O 2000b. *Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier*. ANL-EBS-MD-000001 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000328.0590.

CRWMS M&O 2000c. *Engineered Barrier System: Physical and Chemical Environment Model*. ANL-EBS-MD-000033. Las Vegas, Nevada: CRWMS M&O. Submit to RPC, URN-0279.

CRWMS M&O 2000d. *Total System Performance Assessment (TSPA) Model for Site Recommendation*. Rev 00. MDL-WIS-PA-000002. Las Vegas, Nevada: CRWMS M&O. Submit to RPC, URN-0340.

CRWMS M&O 2000e. *Unsaturated Zone Flow and Transport Model and Abstractions for TSPA-SR Unsaturated Zone Process Model Report (UZ PMR)*. TDR-NBS-HS-000002 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000320.0400.

CRWMS M&O 2000f. *Near Field Environment Process Model Report*. TDR-NBS-MD-000001 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000421.0034.

CRWMS M&O 2000g. *Physical and Chemical Environment Abstraction Model*. ANL-EBS-MD-000046. Las Vegas, Nevada: CRWMS M&O. Submit to RPC, URN-0043.

CRWMS M&O 2000h. *Technical Development Plan, Data Qualification for the Qualification of Pore Water Data (DTN# LL990702804244.100)*. TDP-NBS-GS-000033. Las Vegas, Nevada: CRWMS M&O. ACC: MOL20000424.0692.

CRWMS M&O 2000i. *Waste Package Degradation Process Model Report*. TDR-WIS-MD-000002 Rev 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.

CODES, STANDARDS, REGULATIONS, AND PROCEDURES

10 CFR 60. Energy: Disposal of High-Level Radioactive Wastes in Geologic Repositories, Subpart G, Quality Assurance. Readily available.

AP-3.15Q, Rev. 1, ICN 1. *Managing Technical Product Inputs*. Washington, D.C.: Office of Civilian Radioactive Waste Management. ACC: MOL.20000218.0069.

AP-SIII.2Q, Attachment 2. *Considerations for Determining Qualification Methods*. Washington, D.C.: Office of Civilian Radioactive Waste Management. ACC: MOL.19991214.0625.

AP-SIII.2Q, Rev. 0, ICN 2. *Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data*. Washington, D.C.: Office of Civilian Radioactive Waste Management. ACC: MOL.19991214.0625.

DOE/RW-0333P. 2000. *Quality Assurance Requirements and Description REV. 9*. Washington, D.C.: U.S. Department of Energy. ACC: MOL.19991028.0012.

LLNL-033-YMP-QP-2.1 Rev. 8. *Preparation, Approval, and Revision of Procedures and Plans*. Livermore, California: Lawrence Livermore National Laboratory. ACC: MOL.19991102.0091.

LLNL-033-YMP-QP-5.0 Rev. 4 ICN2. *Technical Implementing Procedures*. Livermore, California: Lawrence Livermore National Laboratory. ACC: MOL.20000208.0276.

LLNL-TIP-AC-02. *Solutions Analysis: Cations by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES) REV. 0*. Livermore, California: Lawrence Livermore National Laboratory. ACC: MOL.20000218.0212.

LLNL-TIP-AC-03. *Determination of Inorganic Anions by Ion Chromatography (EPA Method 300.0) REV. 0*. Livermore, California: Lawrence Livermore National Laboratory. ACC: MOL.20000208.0291.

QAP-2-0. *Activity Evaluation Procurement and Confirmation of Chemicals Used for the Calibration of Standards*. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19991213.0234.

SOURCE DATA

LLNL YMP Scientific Notebook SN00342. Drift Scale Test Activity. pp 1-157. MOL.20000316.0689.

LLNL YMP Scientific Notebook Supplement 342.3 (Supplement 3). Porewater Analytical Data. 399 pages. MOL.20000316.0801.

LLNL YMP Scientific Notebook SN00349. Drift Scale Test Activity. pp. 1-36. MOL.20000316.0690.

LLNL YMP Scientific Notebook Supplement 349.1 (Supplement 1). Porewater Analytical Data. 139 pages. MOL.20000316.0692.

7. APPENDICES

APPENDIX A: Initial Training to LLNL Procedures in effect at time work was performed
(4 pages)

APPENDIX B: Tables 2, 3 and 9 of AMR *Drift-Scale Coupled Processes (DST and THC Seepage) Models*, and memo from AMR author on use of data in AMR
(5 pages)

APPENDIX C: Page 30 of LLNL Scientific Notebook: LLNL-SN00349
(2 pages)

APPENDIX D: Spectrochemical Analysis Report (LLNL/ASD), ICP/AES, Case# 579
(27 pages)

APPENDIX E: Ion Chromatography Report (LLNL/ASD); Case# 609
(32 pages)

APPENDIX F: Correlation of AMR *Drift-Scale Coupled Processes (DST and THC Seepage) Models* Data (Table 3, MDL-NBS-HS-000001, REV00) with ASD Sample Data
(2 pages)

APPENDIX G: Table 15, "Major Ion Concentration Reported for TSw Pore Water at Ambient Temperature," from AMR: *Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier*, ANL-EBS-MD-000001 REV00
(2 pages)

APPENDIX H: Correlation of AMR Data (Table 15, ANL-EBS-MD-000001, REV00) with ASD Sample Data
(2 pages)

APPENDIX I: CAR-006 revalidation effort approvals continued:
(2 pages)

APPENDIX J: Re: Distribution of Pore Water Samples and Results/pH of pore water samples
(3 pages)

APPENDIX K: Recommendation of UFA Ventures, Inc. as a Qualified Supplier and Sample Traceability Documentation

(10 pages)

APPENDIX L: Original Pore Water Data Tables from DTN LL990702804244.100

(5 pages)

APPENDIX M: YMSCO-00-0055 Yucca Mountain Site Characterization Project Nonconformance Report

(12 pages)

APPENDIX N: DTN# MO0005PORWATER.000

(2 pages)

**APPENDIX A: INITIAL TRAINING TO LLNL PROCEDURES IN EFFECT
AT TIME WORK WAS PERFORMED**

NAME	TIPs									Initial Training to LLNL Procedures in effect at time work was performed									
	TIP-AC-01	TIP-AC-02	TIP-AC-03	TIP-AC-04	TIP-AC-05	TIP-AC-06	TIP-AC-07	TIP-AC-08	TIP-AC-09	TIP-YM-03	PVAR TRAINING	EDU VERIFICATION	INDOCTRINATION	QP 3.0	QP 3.4	QP 8.0	QP 12.0	QP 13.0	QP 17.0
Laura DeLoach	8/26/99	8/26/99	8/26/99	8/26/99	8/26/99	8/26/99				12/22/97	7/13/99	1/6/97	8/798	10/31/96	11/4/96	4/4/96	4/4/96		11/4/96
Dave Ruddle										3/15/95	7/13/99	5/28/89	5/7/98	5/6/94	12/20/93	12/13/95	12/22/94	6/8/93	10/20/94
Roger Martinelli												11/24/97	5/7/98	12/8/97	12/8/97	12/8/97	12/8/97		12/8/97
Nora Briant	8/26/99	8/26/99	8/26/99	8/26/99	8/26/99	8/26/99				1/19/00	2/11/98	*2/11/98	2/11/98			3/9/98	3/9/98	2/11/98	3/9/98
Terry Duewer	8/26/99	8/26/99	8/26/99	8/26/99	8/26/99	8/26/99				7/1/91		4/25/91	5/7/98	4/13/94	11/30/93	11/30/93	11/30/93	5/25/93	9/16/94
Marina Chiarappa												11/24/97	5/7/98	12/15/97	12/3/97	12/3/97	12/15/97		12/15/97

* QA Policy Statement Training 033-LLNL-QP-B

TIPs

TIP-AC-01, Gas Chemical Analysis by Mass Spectrometer

TIP-AC-02, Solutions Analysis: Cations by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES)

TIP-AC-03, Determination of Inorganic Anions by Ion Chromatography (EPA Method 300.0)

TIP-AC-04, Determination of Hexavalent Chromium

TIP-AC-05, Phenanthroline Spectrophotometric Method

TIP-AC-06, Total Organic Carbon/Total Inorganic Carbon Analysis

TIP-AC-07, Elemental Analysis by Inductively Coupled Plasma and Mass Spectrometry

TIP-AC-08, pH Buffer Standardization of Fisher Scientific Accumet Model 950 pH Meter

TIP-AC-09, Calibration of Hamilton Microlab Series 500 Autodilutor

TIP-YM-03, Labeling, Tracking and Shipping of Samples

Roger Martinelli - Scientific Notebook Custodian LLL-SCI-349 VI

Laura DeLoach - Scientific Notebook Custodian LLNL-SCI0-341 VI

Author of TIPs

Nora Briant - Analyst

Terry Duewer - Analyst

Dave Ruddal - Made entries in Scientific Notebook LLL-SCI-342 VI

QP's

QP 3.0, Scientific Investigation Control

QP 3.4, Scientific Notebooks

QP 8.0, Identification & Control of Items, Samples & Data

QP 12.0, Control of Measuring & Test Equipment

QP 13.0, Handling, Storage, & Shipping

QP 17.0, Quality Assurance Records

Interdepartmental Letterhead
Mail Station: L-091
Ext: 2-6414

Chemistry & Materials Science Directorate
Analytical & Nuclear Chemistry Division

Date: May 10, 2000

MEMORANDUM

TO: Yucca Mountain Project File
FROM: Nora Briant *NLB*
SUBJECT: Protocol for IC Analysis

Analysts within ASD at Lawrence Livermore National Laboratory (LLNL) currently perform IC analysis for anions utilizing the Technical Implementing Procedure (TIP) AC-03. The same protocols and procedures outlined in the TIP previous to its creation were followed by me for the years 1998 and 1999. The TIP is based on Environmental Protection Agency (EPA) Method 300: Ion Chromatography Analysis. This EPA method is routinely applied throughout the world and is accepted as a standard analytical reference.

Instrument Calibration

EPA Method 300 requires an Initial Calibration Verification, which is "prepared from a standard source different from that of the calibration standard and at concentrations within the linear working range of the instrument". Thus, two independent standards are used, one in calibration of the instrument, and the other in verifying the calibration. This concurrent checking and use of two independent NIST-traceable standards provides reasonable assurance of quality.

To furnish a supporting, corroborative line of evidence for accurate standards, NIST traceability is required. The manufacturer supplies a Certified Value for anion standards comparing them to NIST standards. There may be a deviation between the label concentration and the Certified Value, but only the Certified Value is important; it is only necessary to know what the concentration of the standard is. The purpose of NIST certification is only to provide additional corroborative evidence of the multiple standard comparison described above.

University of California
 Lawrence Livermore
National Laboratory

Interdepartmental Letterhead
Mail Station: L-091
Ext: 3-1897

Chemistry & Materials Science Directorate
Analytical & Nuclear Chemistry Division

Date: May 10, 2000

MEMORANDUM

TO: Yucca Mountain Project File
FROM: Terry Duewer *T. Duewer*
SUBJECT: Protocol for ICP/AES Analysis

Analysts within ASD at Lawrence Livermore National Laboratory (LLNL) currently perform ICP/AES analysis utilizing the Technical Implementing Procedure (TIP) AC-02. The same protocols and procedures outlined in the TIP previous to its creation were followed by me for the years 1998 and 1999. The TIP is based on Environmental Protection Agency (EPA) Method 6010: ICP/AES analysis. This EPA method is routinely applied throughout the world and is accepted as a standard analytical reference.

Analytical Method Accuracy

Typical laboratory accuracy for TIP-AC-02 may be assessed from the EPA Method 6010 description. EPA submitted aqueous samples to seven laboratories for comparison. Accuracies of 95 to 104% with relative standard deviations ranging from 3.1 to 9.1% were determined.

Instrument Calibration

EPA Method 6010 requires an Initial Calibration Verification, which is "prepared from a standard source different from that of the calibration standard and at concentrations within the linear working range of the instrument". Thus, two independent standards are used, one in calibration of the instrument, and the other in verifying the calibration. This concurrent checking and use of two independent NIST-traceable standards provides reasonable assurance of quality.

To furnish a supporting, corroborative line of evidence for accurate standards, NIST traceability is required. The manufacturer supplies a Certified Value for ICP standards comparing them to NIST standards. There may be a deviation between the label concentration and the Certified Value, but only the Certified Value is important; it is only necessary to know what the concentration of the standard is. The purpose of NIST certification is only to provide additional corroborative evidence of the multiple standard comparison described above.

University of California
 Lawrence Livermore
National Laboratory

**APPENDIX B: TABLES 2, 3 AND 9 OF AMR
DRIFT-SCALE COUPLED PROCESSES
(DST AND THC SEEPAGE) MODELS, AND MEMO
FROM AMR AUTHOR ON USE OF DATA IN AMR**

Table 2. Data Tracking Numbers for Sources of Data Input to the DST THC Model and THC Seepage Model

DTNs	Description
Hydrological and Thermal Rock Properties:	
LB990861233129.001	Calibrated property set [†] - Basecase
LB990861233129.002	Calibrated property set [†] - Upper bound
LB990861233129.003	Calibrated property set [†] - Lower bound
LB997141233129.001	Fracture porosity
LB991091233129.001	Infiltration rate - Basecase
LL000114004242,090	Infiltration rates - Average Infiltration Rate (mean, lower bound, and upper bound for present day, monsoon, and glacial transition climates) from the TH drift-scale models.
Mineralogic Data	
LASL031151AC98.001	Mineralogic characterization of the ESF SHT Block
LA9912SLB31151.001	DST and SHT fracture mineralogy data
LA9912SLB31151.002	
LA9900JJC831321.001	Model input and output files for Mineralogic Model "MM3.0" Version 3.0.
Water and Gas Chemistry Data	
LB991215123142.001	CO ₂ gas analyses (1st, 2nd, 3rd and 7th Qtr.)
LB990630123142.003	4th, 5th, and 6th Qtr. DST CO ₂ data
LB000121123142.003	DST CO ₂ data (Aug. '99 - Nov. '99)
LL990702804244.100	Analyses of porowaters from the EBF (HD-PERM-1 and HD-PERM-2 samples) Chemistry of water from DST hydrology boreholes (Nov. '98 & Jan. '99)
Repository Drift Data	
SN9907T0872799.001	Heat load data and repository footprint
SN8908T0872799.004	Hydrologic and thermal properties of drift design elements
SN8907T0872799.002	Effective thermal conductivity
PA-SSR-99218.Ta (Design Criterion)	Drift spacing
THC Seepage Model Grid Data	
LB990501233129.004	Borehole SD-8 geology in UZ model grid UZ99_2_3D.mesh
LB990701233120.002	Top and bottom boundary temperatures, pressure, and boundary elevations

NOTES: Thermodynamic data for minerals, aqueous, and gaseous species are found in Attachment IV.

Kinetic data for mineral-water reactions are found in Table 4.

[†] Data taken from the calibrated property sets include calibrated and uncalibrated hydrological and thermal properties.

4.1.3 Water and Gas Chemistry

The pore water composition chosen for the input to the simulations is summarized in Table 3. These data are the average of two samples obtained from the Topopah Spring Tuff middle nonlithophysal geologic unit (Tptpmn) in Alcove 5 near the DST (Table 3). These are the only relatively complete pore water analyses for samples collected from a potential repository unit near the potential repository footprint. For model simulations, the initial water composition was set to be the same in fractures and matrix, and the same throughout the model domain. This water composition was also used for infiltrating water, as discussed in Section 6.1.2.

The initial CO₂ partial pressure in fractures and matrix (Table 3) was calculated as the partial pressure of CO₂ in chemical equilibrium with the initial water at 25°C, assuming ideal gas behavior (i.e. partial pressure is equal to fugacity). The 25°C temperature is close to the initial temperature at the location of the drift.

Table 3. Initial Water Composition and CO₂ Partial Pressure in Fractures, Matrix, and Recharge Waters.⁽¹⁾

Parameter/Species	Units	Concentration
pH (at 25°C)	pH Units	8.32
Na ⁺	mg/l	61.3
SiO ₂ (aq)	mg/l	70.5
Ca ²⁺	mg/l	101
K ⁺	mg/l	8.0
Mg ²⁺	mg/l	17
Al ³⁺	mg/l	9.92x10 ⁻⁷ (2)
Fe ³⁺	mg/l	6.46x10 ⁻⁸ (3)
HCO ₃ ⁻ (4)	mg/l	200
Cl ⁻	mg/l	117
SO ₄ ²⁻	mg/l	116
F ⁻	mg/l	0.86
CO ₂ (gas) (5)	Pa	85.2

DTN: LB991200DSTTHC.001 (this Table), LL990702804244.100 for water composition (CRWM8 M&O 1999e)

NOTES: (1) Average of Tptpmn Porewater Analyses ESF-HD-PERM-1 (30.1'-30.5') and ESF-HD-PERM-2 (34.8'-35.1').

(2) Calculated by equilibrating with Ca-smectite at 25°C (using SOLVEQ 1.0).

(3) Calculated by equilibrating with hematite at 25°C (using SOLVEQ 1.0).

(4) Total aqueous carbonate as HCO₃⁻, calculated from charge balance computed by speciation at 25°C (using SOLVEQ 1.0).

(5) Calculated at equilibrium with the solution at 25°C (using SOLVEQ 1.0).

pH is for PERM-2
30.1'-30.5'

CDM
5-200

perm 3
depth

Table 9. Measured Concentrations in TSW Pore Water from Alcove 5 and Chemistry of Water Taken from Hydrology Boreholes

Parameter	Units	Pore Water ⁽¹⁾	60-3 ⁽²⁾ (11/12/98)	60-3 ⁽²⁾ (1/26/99)	186-3 ⁽²⁾ (11/12/98)	186-3 ⁽²⁾ (1/26/99)
Temperature	°C	26	26.5-49.6	51.7	34.3-34.8	Unknown
pH		8.32	6.92	7.4	6.83	7.2
Na ⁺	mg/l	61.3	20.3	19.1	17	26.9
SiO ₂ (aq)	mg/l	70.5	115.5	139	68.2	106.6
Ca ²⁺	mg/l	101	13.9	5.9	20.2	2.82
K ⁺	mg/l	8.0	7.8	4.1	3.9	6.9
Mg ²⁺	mg/l	17	3	1.2	6.7	6.3
Al ³⁺	mg/l	9.02x10 ⁻⁷ (3)	n.d. (< 0.06)	n.d. (< 0.06)	n.d. (< 0.06)	n.d. (< 0.06)
HCO ₃ ⁻ (4)	mg/l	200	n.a.	41	n.a.	118
Cl ⁻	mg/l	117	20	10	19	23.3
SO ₄ ²⁻	mg/l	118	30.8	13.5	26.2	21

NOTES: ⁽¹⁾ Average of porewater analyses: ESF-HD-PERM-1 (30.1-30.5) and ESF-HD-PERM-2 (34.8-35.1). DTN: LL990702804244.100.

⁽²⁾ DTN: LL990702804244.100.

⁽³⁾ Calculated by equilibrating with Ca-smectite at 25°C.

⁽⁴⁾ Total aqueous carbonate as HCO₃, calculated from charge balance.

n.a.=not analyzed, n.d.=not detected

6.2.7.3.2 Aqueous Species Simulation Results

The model simulates numerous aqueous species and only a limited discussion will be presented here. Data for all of the species are included in the output files (submitted under DTN: LB991200DSTTHC.002). The modeled variation in pH during the DST is shown in Figure 13 for the Case 2 simplified geochemical system. The most obvious effect on pH is a reduction to values predominantly around 6.5 in the condensate region, corresponding directly to the increases in CO₂ concentrations shown in Figure 6. As for the CO₂ concentrations, the low pH zone increases in size and moves outward with time. Within the dryout zone, the pH of the last residual water is also plotted, which reaches a maximum of nearly 9.5. However, the liquid saturation associated with these values is usually well below the residual liquid saturation. The modeled pH of condensate waters in fractures compares favorably with those collected from the hydrology boreholes (Table 9). As in the measured data collected at two times before the borehole intervals dried out, the model results show the effect of increasing pH with time and with increasing temperature in areas greater than 60°C. Therefore, in a given zone, the pH in the fractures first starts to drop because of steam condensation; then once the temperatures increase, so that the rate of evaporation and mineral-water reactions (and loss of CO₂) are greater than the rate of addition of water (and CO₂) via condensation, then the pH rises.

Eric Sonnenthal <elonnenthal@lbl.gov> on 05/25/2000 02:12:42 PM

Please respond to elonnenthal@lbl.gov

To: Holly Miller/YM/RWDOE

cc:

Subject: memo

Dear Holly,

This letter is in reference to the use of water chemistry from borehole intervals 60-3 and 186-3 listed in Table 9 and also referenced in Table 2 in AMR U0110/N0120. These waters were not used as input to the model. They are waters collected from the Drift Scale Test and were used solely for comparison to model results.

Sincerely,

Eric Sonnenthal

--

Eric Sonnenthal
Earth Sciences Division
Lawrence Berkeley National Lab
ph: (510)486-5866; fax: (510)486-5686
elonnenthal@lbl.gov

**APPENDIX C: PAGE 30 OF LLNL SCIENTIFIC
NOTEBOOK: LLNL-SN00349**

Page 30
LLNL-SN08349 51-00

9/28/98

I RECEIVED 3 WATER SAMPLES FROM
LLNL BOREHOLES AT YUCCA MOUNTAIN (YM).

60-2, ESF-HD-HYD-4, ZONE2, SPC00527915 IN

60-3, ESF-HD-HYD-4, ZONE3, SPC00527916 IN

77-3, ESF-HD-HYD-9, ZONE3, SPC00527917 GLASS

THE SAMPLES WERE SENT TO C4MS

FOR ANION + CATION ANALYSIS. SAMPLES

HAD HEAD SPACE

9/28/98 RM

11/20/98

I RECEIVED 3 WATER SAMPLES FROM

THE SAMPLE MANAGEMENT FACILITY

(SMF) AT YUCCA MOUNTAIN. THEY ARE

FROM ROCK COVER CORES,

ESF-HD-PERM-1 23.1' - 23.3'; SMF ID

01002488

ESF-HD-PERM-2 30.1' - 30.5'; SMF ID

01002586

ESF-HD-PERM-3 34.8' - 35.1'; SMF ID

01002525

THESE WERE 2 TO 2.5 mL SAMPLES

IN GLASS. THEY WERE SENT TO

C4MS FOR ANION + CATION ANALYSIS.

NO HEAD SPACE. 11/20/98 RM

7/16/99 RM

THE USE OF DATA (ANION + CATION) FROM

CHEMISTRY + MATERIAL SCIENCES ISSUES DESCRIBED

IN DR. LLNL-98-D-092 NEED TO BE RESOLVED.

**APPENDIX D: SPECTROCHEMICAL ANALYSIS
REPORT (LLNL/ASD), ICP/AES, CASE# 579**

11/10/00

11/98 SAMPLES

I HAVE REVIEWED
AN ACCEPT THIS
DATA. *Roger M. Martinelli*

SPECTROCHEMICAL ANALYSIS REPORT

Lawrence Livermore National Laboratory

Analytical Chemistry Section

Inductively-Coupled Plasma Atomic Emission Spectrometer

Ext. 3-1827

Sample Description: YMP
pH<2 0.45 μ filtered
Pore water from Rocks
Case 579

Received:	Dec. 4, 1998	Reported:	Dec. 9, 1998
Requester:	R. Martinelli	Analyst:	T. Duewer
Signature:		Instrument:	ARL
Unit:	microgram/ml	Account:	8781-80

Note: The elements reported below were the only ones sought. For elements "not detected", the number cited is the concentration required to confirm the true value.

ANALYSIS

Your Sample I.D.	Al	B	Ca	Fe	K
Perm-blank	n.d.<0.06	n.d.<0.01	0.33	n.d.<0.02	n.d.<0.5
Perm-1	n.d.<0.06	0.61	19.7	n.d.<0.02	1.2
Perm-2	n.d.<0.06	0.55	21.3	n.d.<0.02	1.4
Perm-3	n.d.<0.06	0.55	19.4	n.d.<0.02	1.8
	Li	Mg	Na	S	Si
Perm-blank	n.d.<0.01	n.d.<0.001	n.d.<0.1	n.d.<0.2	n.d.<0.06
Perm-1	0.02	5.13	12.1	8.45	7.4
Perm-2	0.09	3.31	12.2	7.72	6.2
Perm-3	0.01	3.47	12.3	7.73	7.0

PERMS 1 - 3
WERE 1:5
DILUTIONS
12/10/98 RM.

Page 1

Sr

Perm-blank	n.d.<0.01
Perm-1	0.28
Perm-2	0.20
Perm-3	0.21

F. Queen
Jan. 13. 02

Page 2

CERTIFICATE OF ANALYSIS

SPEX
CertiPrep

Catalog Number: QC-7

Description: Quality Control Standard 7

Lot Number: 13-83AS

ICP CHECK:

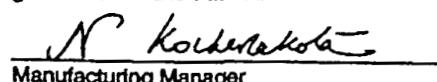
Element	Labeled[ug/ml]	Measured[ug/ml]	Element	Labeled[ug/ml]	Measured[ug/ml]
---------	----------------	-----------------	---------	----------------	-----------------

K	1,000	1,003.26
Ag	100	100.49
Al	100	100.79
B	100	100.13
Ba	100	100.37
Na	100	99.62
Si	50	50.17

12/08/98

I have reviewed +
+ accept the certificate
of Analysis
T. Cee

Instrumental Analysis by Inductively Coupled Plasma Spectroscopy:


The following SRM's were used in establishing the above results:

K : NIST 3141a, Ag : NIST 3151, Al : NIST 3101a, B: NIST 3107,
Ba: NIST 3104a, Na: NIST 3152a, Si : NIST 3150.

Spex Reference Multi: 2-265BDREF, 2-170BDREF, 11-36AS

Balances are calibrated regularly with weight sets traceable to NIST.

SPEX CertiPrep reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of certified concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

Manufacturing Manager

DEC '98
Date

SPEX CertiPrep

ISO 9001
CERTIFIED

SPEX CERTIPREP, INC. 203 NORCROSS AVENUE METUCHEN, NJ 08840 908-549-7144 1-800-LAB-SPEX FAX: 908-603-9647

CERTIFICATE OF ANALYSIS

SPEX
CertiPrep

Catalog Number: QC-21

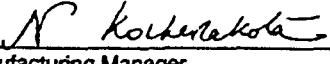
Description: Quality Control Standard 21

Lot Number: 12-126AS

ICP CHECK:

Element	Labeled[ug/ml]	Measured[ug/ml]	Element	Labeled[ug/ml]	Measured[ug/ml]
As	100	100.33	Mo	100	100.02
Be	100	99.90	Ni	100	100.30
Ca	100	99.52	Pb	100	99.90
Cd	100	99.53	Sb	100	100.05
Co	100	100.23	Se	100	100.11
Cr	100	100.65	Sr	100	100.20
Cu	100	100.54	Ti	100	99.80
Fe	100	99.80	Tl	100	99.62
Li	100	99.98	V	100	100.08
Mg	100	99.39	Zn	100	99.68
Mn	100	99.53			

Instrumental Analysis by Inductively Coupled Plasma Spectroscopy:


The following SRM's were used in establishing the above results:

As: NIST 3103a, Be: NIST 3105a, Ca: NIST 31-9a, Cd: NIST 3108, Co: NIST 3113, Cr: NIST 3112a, Cu: NIST 3114, Fe: NIST 3126a, Li: NIST 3129a, Mg: NIST 3131a, Mn: NIST 3132, Mo: NIST 3134, Ni: NIST 3136, Pb: NIST 3128, Sb: NIST 3102a, Se: NIST 3149, Sr: NIST 3153a, Ti: NIST 3162a, Tl: NIST 3158, V: NIST 3165, Zn: NIST 3168a.

Spex Reference Multi: Lot #2-89BDREF, 11-63AS, 9-138AS, 1-70CR

Balances are calibrated regularly with weight sets traceable to NIST.

SPEX CertiPrep reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of certified concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

Manufacturing Manager

IC '96
Date

SPEX CertiPrep

ISO 9001
CERTIFIED

SPEX CERTIPREP, INC. 203 NORCROSS AVENUE METUCHEN, NJ 08840 732-549-7144 1-800-LAB-SPEX FAX: 732-603-8847

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material 3150

Silicon

Received
opened
Jan. 8, 98
T.O.

This Standard Reference Material (SRM) is intended for use in atomic absorption spectrometry, optical emission (plasma) spectrometry, spectrophotometry, or any other analytical technique that requires aqueous standard solutions for calibrating instruments. SRM 3150 is a single element solution prepared gravimetrically to contain 10.00 mg/mL of silicon in water. The certified value is based on a gravimetric procedure, i.e., weight per volume composition of the high-purity salt dissolved in NIST high-purity reagents.

Metal	Concentration (mg/mL)	Source Acid Purity, %	Conc. (V/V) Approximate
Si	10.00 ± 0.03	Na ₂ SiO ₃ • 9H ₂ O (99.99)*	Water

*This high-purity material was analyzed by optical emission spectrometry and atomic absorption spectrometry and found to contain less than 50 µg/g total impurities.

Procedures and Storage for Use

Stability

This certificate is valid for one year from the shipping date provided the SRM solution is kept tightly capped and stored under normal laboratory conditions. NIST will monitor the stability representative solutions from the SRM lot and if any changes occur that invalidate this certification, NIST will notify purchasers.

Preparation of Working Standard Solutions:

The SRM solution should be brought to 22 ± 1 °C before use. All glass or plastic surfaces coming into contact with the SRM must have been previously cleaned. A working standard solution can be prepared from the SRM solution by serial dilution. Dilutions should be made with certified volumetric class A flasks and 5 or 10 mL class A pipets. All volumetric transfers of solutions should be performed using a proven analytical technique. Each dilution should be acidified with an appropriate high-purity acid and diluted to calibrated volume using high-purity water. The stability of the working standard solution will depend on the final acid concentration; therefore, care should be exercised to insure that the final acid concentration of the dilution closely approximates that of the SRM. To achieve the highest accuracy, the analyst should prepare daily working solutions from 100 µg/mL dilutions of the original SRM solution.

Notice to Users:

The same acid mixture as listed on this SRM certificate should be used in making appropriate dilutions and working standards. For some instrumental techniques, small differences in acid type and concentration of the SRM and sample may lead to erroneous results.

Gaithersburg, MD 20899
August 11, 1989
(Revision of certificate dated 12-22-86)

Stanley D. Rasberry, Chief
Office of Standard Reference Materials

(over)

ASSURANCE™

CERTIFICATE OF ANALYSIS

Catalog Number: PLSC2-2Y Lot No. 5-123SC
 Element and Matrix: Sc in HNO₃

Starting Material: Scandium Oxide Sc₂O₃
 Starting Material Lot No.: 079411

Density: 1.0122 at 23.2°C

Trace Metallic Impurities in the Actual Solution via ICP Analysis:

Element	PPM	Element	PPM	Element	PPM
Ca	0.02	Lu	0.001	Tb	<0.001
Ce	<0.001	Mn	<0.001	Th	0.02
Dy	0.005	Mo	<0.001	Ti	<0.001
Er	0.003	Na	0.009	Tl	<0.001
Eu	<0.001	Nd	<0.001	Tm	<0.001
Fe	0.02	Ni	<0.001	V	<0.005
Gd	0.003	Pr	<0.001	W	<0.001
Hf	<0.001	Si	<0.02	Y	0.02
Ho	0.001	Sm	0.001	Yb	0.005
La	<0.001	Ta	<0.001	Zr	<0.001

I have verified
 and accept the contents
 of this analysis
 T. D. *[Signature]*
 12/18/98

Classical "Wet" Assay: 1,001 ppm.

Titrimetry: EDTA titration using Xylenol Orange as indicator. EDTA is standardized against Pb(NO₃)₂ NIST SRM 928.

Instrumentation Analysis By Inductively Coupled Plasma [ICP] Spectrometer: 1,000 ppm via NIST SRM 3148a.

Balances are calibrated with NIST weight sets NJ #92589 and #92550, according to NIST circular 547 3.4.3.

ASSURANCE reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of certified concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

N. Kachurakota
 Manufacturing Manager

JAN S. S.
 Date

SPEX CertiPrep
 SPEX CERTIPREP, INC. 203 NORCROSS AVENUE METUCHEN, NJ 08840 908-549-7144 1-800-LAB-SPEX FAX: 908-603-9647

ASSURANCE™

CERTIFICATE OF ANALYSIS

Catalog Number: PLS9-2X/2Y Lot No. 5-161S
 Element and Matrix: S in H₂O

Starting Material: Ammonium Sulfate (NH₄)₂SO₄
 Starting Material Lot No.: 05891M

Density: 0.9985 at 22.6°C

Trace Metallic Impurities in the Actual Solution via ICP-MS Analysis:

Element	PPM	Element	PPM	Element	PPM	1/18/98
Ag	0.001	Cu	<0.001	Sb	<0.001	
Al	<0.001	Fe	0.01	Si	<0.02	
As	<0.001	K	<0.05	Sn	<0.001	
B	<0.001	Li	<0.001	Sr	<0.001	
Ba	<0.001	Mg	0.01	Ti	<0.002	
Be	<0.001	Mn	<0.001	Tl	<0.001	
Bi	<0.001	Mo	<0.001	V	<0.001	
Ca	0.007	Na	0.03	Zn	0.003	
Cd	<0.001	Ni	<0.001	Zr	<0.001	
Co	<0.001	P	<0.05			
Cr	<0.001	Pb	<0.001			

Classical "Wet" Assay: 1,004 ppm.

Gravimetry: Precipitation using BaCl₂, filter, ignite and weigh as BaSO₄.

Instrumentation Analysis By Inductively Coupled Plasma Spectrometer[ICP]: 1,001 ppm
 via NIST SRM 3154.

Balances are calibrated regularly with weight sets traceable to NIST.

ASSURANCE reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of certified concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

N. Kaderakota
 Manufacturing Manager

JAN 98
 Date

SPEX CERTIPREP 203 NORCROSS AVENUE METUCHEN, NJ 08840 908-549-7144 1-800-LAB-SPEX FAX: 908-603-8647

ASSURANCE

CERTIFICATE OF ANALYSIS

Catalog Number: PLSR2-2X/2Y Lot No. 6-67SR
 Element and Matrix: Sr in HNO₃

Starting Material: Strontium Carbonate SrCO₃
 Starting Material Lot No.: 05941D

Density: 1.0099 at 23.8°C

Trace Metallic Impurities in the Actual Solution via ICP Analysis:

Element	PPM	Element	PPM	Element	PPM
Ag	<0.001	Cr	<0.01	P	<1.0
Al	0.01	Cu	<0.001	Pb	<0.001
As	<0.001	Fe	<0.01	Sb	<0.001
B	<0.002	K	<0.05	Si	0.04
Ba	0.006	Li	1.0	Sn	<0.001
Be	<0.001	Mg	<0.005	Ti	<0.001
Bi	<0.001	Mn	0.003	Tl	<0.001
Ca	0.009	Mo	<0.001	V	<0.001
Cd	<0.001	Na	0.017	Zn	<0.003
Co	<0.001	Ni	0.001	Zr	<0.001

Classical "Wet" Assay: 1,001 ppm.

Titrimetry: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against NIST Pb(NO₃)₂ SRM 928.

Instrumentation Analysis By Inductively Coupled Plasma [ICP] Spectrometer: 1,000 ppm via NIST SRM 3153a.

Balances are calibrated regularly with weight sets traceable to NIST.

ASSURANCE reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of certified concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

N. Kucherlakota
 Manufacturing Manager

JAN 98
 Date

SPEX CERTIPREP, INC. 203 NORCROSS AVENUE METUCHEN, NJ 08840 732-549-7144 1-800-LAB-SPEX FAX: 732-603-8647

SPEX CertiPrep

ASSURANCE™

CERTIFICATE OF ANALYSIS

Catalog Number: PLLI2-2Y Lot #: 4-260LI
Element and Matrix: Lithium / 1,000 / HNO₃
Starting Material: Lithium Carbonate Li₂CO₃
Starting Material Lot #: 12931C
Density: 1.0120 @ 22.22 C

I have reviewed
and accept the
certificate
of Analysis

Trace Metallic Impurities in the Actual Solution via ICP Analysis:

Element	PPM	Element	PPM	Element	PPM	PPM	PPM
Ag	<0.001	Cr	<0.001	Pb	<0.001	12/08/98	✓
Al	<0.010	Cu	<0.001	Sb	<0.001		
As	<0.001	Fe	<0.001	Si	0.400		
B	<0.001	K	0.005	Sn	<0.001		
Ba	0.001	Mg	0.002	Sr	<0.001		
Be	<0.001	Mn	<0.001	Ti	0.007		
Bi	<0.001	Mo	<0.001	Tl	<0.001		
Ca	0.019	Na	0.014	V	<0.001		
Cd	<0.001	Ni	<0.001	Zn	0.003		
Co	<0.001	P	<0.500	Zr	<0.001		

Traceability Documentation for Solution Standard:

Classical Wet Assay: 1,001 ug/mL

Gravimetry: Evaporate to dryness, fume with Sulfuric Acid, Ignite and weigh as Li₂SO₄

Instrumentation Analysis By Inductively Coupled Plasma [ICP] Spectrometer: 995 ug/mL
via NIST SRM 3129a

Balances are calibrated with NIST weight sets NJ #92589 and #92550, according to NIST circular 547 3.4.3

ASSURANCE reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of labeled concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

N. Kocherlekota
Chemical Production Manager

JAN 96
Date

SPEX Chemical

SPEX CHEMICAL 203 NORCROSS AVENUE METUCHEN, NJ 08840 908-549-7144 1-800-LAB-SPEX FAX: 908-603-9547

ASSURANCE™

CERTIFICATE OF ANALYSIS

Catalog Number:
Element and Matrix:

PLB9-2Y
B in H₂O

Lot No. 6-27B

Starting Material: Ammonium Tetraborate (NH₄)₂B₄O₇·4H₂O
Starting Material Lot No.: M0797B

Density: 1.0000 at 22.7°C

*I have reviewed
and accept the
certificate of
analysis.*

Trace Metallic Impurities in the Actual Solution via ICP Analysis:

Element	PPM	Element	PPM	Element	PPM	Signature
Ag	<0.001	Cu	0.003	Pb	0.002	12/08/98
Al	0.1	Fe	0.03	Sb	<0.001	
As	<0.001	K	<0.1	Si	<0.01	
Ba	<0.001	Li	0.002	Sn	<0.001	
Be	<0.001	Mg	0.008	Sr	<0.001	
Bi	<0.001	Mn	<0.001	Ti	<0.001	
Ca	0.004	Mo	<0.001	Ti	<0.001	
Cd	<0.001	Na	0.005	W	<0.001	
Co	<0.001	Ni	<0.001	Zn	<0.02	
Cr	<0.001	P	<0.1	Zr	<0.001	

Classical "Wet" Assay: 1,002 ppm.

Titrimetry: Titration with Sodium Hydroxide using Phenolphthalein as indicator.

Instrumentation Analysis By Inductively Coupled Plasma [ICP] Spectrometer: 1,003 ppm
via NIST SRM 3107.

Balances are calibrated regularly with weight sets traceable to NIST.

ASSURANCE reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of certified concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

N. Kucherakota
Manufacturing Manager

Date *JAN 22*

SPEX CertiPrep

ISO 9001
CERTIFIED

SPEX CERTIPREP, INC. 203 NORCROSS AVENUE METUCHEN, NJ 08840 908-549-7144 1-800-LAB-SPEX FAX: 908-603-9647

Catalog Number: CLAL2-2Y
 Description: 1,000 ug/mL in 2% HNO3
 Starting Material: Aluminum Nitrate Al(NO3)3
 Lot Number: CL1-90AL
 Density: 1.017 @ 23.7 °C

Classical Wet Assay: 1,001 ug/mL

Gravimetry: Precipitation using 8Hydroxy Quinaline, filter, dry and weigh as Al(C9H6NO)3

Instrument Analysis by ICP Spectrometer: 998 ug/mL

NIST SRM 3101a

I have received
 + accept the
 certificate of analysis

T. Dunn

12/08/98

Trace Metallic Impurities in the Actual Solution, in PPB, via ICP-MS Analysis:

Ag	0.04	Ho	<0.01	Sb	10.00
As	<0.08	In	<0.01	Sc	<1.00
Au	<0.01	Ir	<0.01	Se	<0.80
B	<5.00	K	<30.00	Si	10.00
Ba	0.60	La	0.09	Sm	<0.01
Be	<0.08	Li	0.10	Sn	0.04
Bi	0.02	Lu	<0.01	Sr	0.05
Ca	15.00	Mg	2.00	Ta	<0.01
Cd	<0.02	Mn	<0.05	Tb	0.03
Ce	0.20	Mo	0.30	Te	<0.10
Co	0.20	Na	100.00	Th	<0.01
Cr	5.00	Nb	<0.01	Ti	8.00
Cs	<0.01	Nd	<0.02	Tl	0.03
Cu	1.00	Ni	<0.40	Tm	<0.01
Dy	<0.01	P	<100.00	U	<0.01
Er	<0.01	Pb	0.30	V	0.20
Eu	<0.01	Pd	<0.01	W	<0.50
Fe	30.00	Pr	<0.02	Y	0.07
Ga	30.00	Pt	<0.04	Yb	0.03
Gd	<0.02	Rb	0.05	Zn	<3.00
Ge	<0.20	Re	<0.01	Zr	1.00
Hf	0.02	Rh	<0.02		
Hg	<0.10	Ru	<0.01		

Balances are calibrated regularly with weight sets traceable to NIST.

CLÄRITAS PPT reference standards are guaranteed stable and accurate to $\pm 0.5\%$, averaged certified analyte concentrations, for a period of one year from date of shipment. For these solutions we use the highest purity acids applicable, 18 megohm double-deionized water and acid-leached, triple-rinsed bottles. All glassware used is Class A.

N. Kucherakota
 Manufacturing Manager

DEC '98
 Date

SPEX CertiPrep

203 NORCROSS AVENUE
 METUCHEN, NJ 08840

908-549-7144
 1-800-LAB-SPEX
 FAX: 908-603-9847
 E-mail: CRMSales@spexcsp.com

CLÄRITAS**PPT**TM**CERTIFICATE OF ANALYSIS**

Catalog Number: CLCA2-2Y
Description: 1,000 ug/mL Calcium in 2% HNO₃
Starting Material: Calcium Nitrate Ca(NO₃)₂ · 4H₂O
Lot Number: CL1-71CA
Density: 1.019 @ 22.8 C

Classical Wet Assay: 1,001 ug/mL

Titrimetry: EDTA titration using Hydroxy Naphthol Blue as indicator. EDTA standardized against Pb(NO₃)₂ NIST SRM 920

Instrument Analysis by ICP Spectrometer: 1,004 ug/mL
NIST SRM 3109a

Trace Metallic Impurities in the Actual Solution, in PPB, via ICP-MS Analysis:

Ag	0.04	Ho	<0.01	Sb	<0.01
Al	15.00	In	<0.01	Sc	6.00
As	<0.20	Ir	<0.01	Se	<2.00
Au	<0.01	K	90.00	Si	<20.00
B	60.00	La	0.04	Sm	<0.01
Ba	0.20	Li	<0.03	Sn	0.30
Be	<0.05	Lu	<0.01	Sr	30.00
Bi	<0.01	Mg	40.00	Ta	<0.01
Cd	0.50	Mn	<1.00	Tb	<0.01
Ce	0.10	Mo	<0.01	Te	<0.20
Ca	<3.00	Na	20.00	Th	<0.01
Cr	<4.00	Nb	<0.01	Tl	7.00
Cs	<0.01	Nd	0.01	Tl	0.02
Cu	0.80	Ni	2.00	Tm	0.01
Dy	<0.01	P	<100.00	U	0.01
Er	<0.01	Pb	0.10	V	1.00
Eu	<0.01	Pd	0.02	W	0.06
Fe	5.00	Pr	<0.01	Y	0.01
Ga	<0.01	Pl	<0.03	Yb	<0.01
Gd	<0.01	Rb	<0.01	Zn	4.00
Ge	<0.10	Re	<0.01	Zr	0.06
Hf	<0.01	Rh	<0.05		
Hg	0.15	Ru	<0.01		

Balances are calibrated regularly with weight sets traceable to NIST.

CLARITAS PPT reference standards are guaranteed stable and accurate to $\pm 0.5\%$, averaged certified analyte concentrations, for a period of one year from date of shipment. For these solutions we use the highest purity acids applicable, 18 megohm double-ionized water and acid-leached, triple-rinsed bottles. All glassware used is Class A.

N. Kocherlekota JL '98
Manufacturing Manager Date

SPEX CertiPrep 203 NORCROSS AVENUE
METUCHEN, NJ 08840908-549-7144
1-800-LAB-SPEX
FAX: 908-603-9647
E-mail: CRMSales@spexcsp.com**ISO 9001**
CERTIFIED

CLÄRITAS**PPT**™**C E R T I F I C A T E O F A N A L Y S I S**ISO
1006

Catalog Number: CLK2-2Y
Description: 1,000 ug/mL Potassium in 2% HNO3
Starting Material: Potassium Nitrate KNO3
Lot Number: CL1-47K
Density: 1.0098 @ 22.3 C

Classical Wet Assay: 1,005 ug/mL

Gravimetry: Evaporate to dryness, fume with Sulfuric Acid, Ignite and weigh as K2SO4

Instrument Analysis by ICP Spectrometer: 998 ug/mL

NIST SRM 3141a

Trace Metallic Impurities in the Actual Solution, in PPB, via ICP-MS Analysis:

Ag	0.01	Hg	<0.30	Sb	0.10
Al	6.00	Ho	0.01	Sc	3.00
As	<0.30	In	0.20	Se	1.00
Au	<0.01	Ir	0.02	Si	<10.00
B	<5.00	La	0.03	Sm	<0.02
Ba	2.00	Li	0.50	Sn	<0.20
Be	<0.20	Lu	<0.01	Sr	3.00
Bi	1.00	Mg	<2.00	Ta	<0.01
Ca	1.50	Mn	1.00	Tb	<0.01
Cd	0.20	Mo	<0.05	Te	<0.10
Ce	0.07	Na	40.00	Th	<0.01
Co	<0.04	Nb	0.05	Ti	1.00
Cr	<0.30	Nd	0.05	Tl	0.04
Cs	0.02	Ni	<0.80	Tm	<0.01
Cu	3.00	P	300.00	U	0.04
Dy	<0.01	Pb	4.00	V	2.00
Er	<0.01	Pd	<0.01	W	0.02
Eu	<0.01	Pr	<0.01	Y	0.06
Fe	<5.00	Pt	0.06	Yb	0.02
Ga	0.20	Rb	20.00	Zn	2.00
Gd	1.00	Re	<0.01	Zr	0.10
Ge	1.00	Rh	0.02		
Hf	<0.01	Ru	<0.01		

I have received
and accepted
T. Queen
Jan. 13, 2000

CLARITAS Batch numbers 3141a NIST traceable lot #92569 and #92560, according to NIST circular 547-4.3. These solutions are guaranteed stable and accurate to $\pm 0.5\%$, averaged labeled analyte concentrations, for a period of one year from date of shipment. For these solutions we use the highest purity acids applicable, 18 megohm double-distilled water and acid-leached, triple-rinsed bottles. All glassware used is Class A.

N. Kocherakota
Manufacturing Manager

JAN 98

Date

SPEX CertiPrep203 NORCROSS AVENUE
METUCHEN, NJ 08840908-549-7144
1-800-LAB-SPEX
FAX: 908-603-9647
E-mail: CRMSales@spexcsp.com

Printed on Recycled Paper

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material 3152a

Spectrometric Standard Solution

Sodium

Batch Code 391412

This Standard Reference Material (SRM) is intended for use in atomic absorption spectrometry, optical emission (plasma) spectrometry, spectrophotometry, or any other analytical technique that requires aqueous standard solutions for calibrating instruments. SRM 3152a is a single element solution prepared gravimetrically to contain 10 mg/mL a nominal of sodium with a nitric acid concentration (V/V) of 1 percent. The certified values are based on gravimetric procedures, i.e., weight per volume composition of the high-purity salt dissolved in NIST high-purity reagents. The uncertainty listed is based on gravimetric and volumetric uncertainties of the preparation and the effect of solvent transpiration through the container walls for one year. The density of the solution at 22 °C is 1.024 g/mL.

Metal	Concentration (mg/mL)	Source Purity, %	Acid Conc. (V/V) Approximate
Na	10.00 ± 0.03	SRM 2201 (99.9)	HNO ₃ , 1%

Procedures for Use

Stability: This certification is valid for one year from the shipping date, provided the solution is kept tightly capped and stored under normal laboratory conditions. NIST will monitor the stability of representative solutions from the SRM lot; and if any changes occur that invalidate this certification, NIST will notify purchasers.

Preparation of Working Standard Solutions: All solutions should be brought to 22 ± 1 °C before use and all glass or plastic surfaces coming into contact with the standard must have been previously cleaned. A working standard solution can be prepared from the SRM solution by serial dilution. Dilutions should be made with certified volumetric class A flasks and 5 or 10 mL class A pipets. All volumetric transfers of solutions should be performed using a proven analytical technique. Each dilution should be acidified with an appropriate high-purity acid and diluted to calibrated volume using high-purity water. The stability of the working standard solution will depend on the final acid concentration; therefore, care should be exercised to ensure that the final acid concentration of the dilution closely approximates that of the SRM. To achieve the highest accuracy, the analyst should prepare daily working solutions from 100 µg/mL dilutions of the original SRM solution.

SRM 3152a was prepared, and atomic absorption and emission spectrometric analyses were made by, T.A. Butler of the NIST Inorganic Analytical Research Division.

The technical and support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the Standard Reference Materials Program by J.S. Kane.

Gaithersburg, MD 20899
January 5, 1994

Thomas E. Gills, Acting Chief
Standard Reference Materials Program

Jan. 13, 1994

I have accepted
and forwarded
J. S. Kane

C E R T I F I C A T E O F A N A L Y S I S

Catalog Number: CLMG2-2Y
Description: 1,000 ug/mL Mg in 2% HNO₃
Starting Material: Magnesium Nitrate Mg(NO₃)₂ · 6H₂O
Lot Number: CL1-39MG
Density: 1.0128 @ 23.8 C

Classical Wet Assay: 1,001 ug/mL

Titrimetry: EDTA titration using Eriochrome Black T as indicator. EDTA standardized against Pb(NO₃)₂ NIST SRM 928

Instrument Analysis by ICP Spectrometer: 996 ug/mL
SRM 3131a

Trace Metallic Impurities in the Actual Solution, in PPB, via ICP-MS Analysis:

Ag	0.01	Hg	<0.50	Sb	0.50
Al	<5.00	Ho	<0.01	Sc	<0.50
As	<0.20	In	<0.01	Se	<5.00
Au	<0.01	Ir	<0.01	Si	<5.00
B	<2.00	K	<30.00	Sm	<0.01
Ba	0.10	La	0.25	Sn	0.20
Be	<0.10	Li	0.10	Sr	5.00
Bi	<0.05	Lu	<0.01	Ta	<0.01
Ca	37.00	Mn	10.00	Tb	<0.01
Cd	<0.10	Mo	<0.05	Te	<0.50
Ce	0.70	Na	11.00	Th	0.70
Co	<0.10	Nb	<0.01	Tl	<0.50
Cr	0.60	Nd	<1.00	Tl	<0.10
Cs	<0.01	Ni	0.80	Tm	<0.01
Cu	3.00	P	<100.00	U	<0.01
Dy	<0.10	Pb	3.00	V	<0.10
Er	<0.01	Pd	<0.05	W	<0.10
Eu	<0.01	Pr	0.11	Y	<0.10
Fe	<5.00	Pt	<0.01	Yb	<0.01
Ga	0.10	Rb	<0.01	Zn	25.00
Gd	<0.50	Re	<0.01	Zr	<0.10
Ge	<0.50	Rh	<0.01		
Hf	<0.01	Ru	<0.01		

I have reviewed
+ accepted
T. Quev
P. Jan. 13. 00

Balances are calibrated with NIST weight sets NJ #92589 and #92550, according to NIST circular 547 3.4.3
CLARITAS PPT reference standards are guaranteed stable and accurate to $\pm 0.5\%$, averaged certified analyte concentrations, for a period of one year from date of shipment. For these solutions we use the highest purity acids applicable, 18 megohm double-deionized water and acid-leached, triple-rinsed bottles. All glassware used is Class A.

N. Kollerakota
Manufacturing Manager

JAN 98
Date

SPEX CertiPrep
203 NORCROSS AVENUE
METUCHEN, NJ 08840
908-549-7144
1-800-LAB-SPEX
FAX: 908-603-9647
E-mail: CRMSales@spexcsp.com

Catalog Number: CLFE2-2Y
 Description: 1,000 ug/mL Iron in 2% HNO3
 Starting Material: Feric Nitrate Fe(NO3)3 · 9H2O
 Lot Number: CL1-52FE
 Density: 1.0117 @ 23.5°C

Classical Wet Assay: 996 ug/mL

Gravimetry: Precipitation using Ammonium Hydroxide, filter, Ignite and weigh as Fe2O3

Instrument Analysis by ICP Spectrometer: 998 ug/mL
 NIST SRM 3126a

Trace Metallic Impurities in the Actual Solution, In PPB, via ICP-MS Analysis:

Ag	<0.02	Ho	<0.01	Sb	0.10
Al	2.00	In	<0.01	Sc	<5.00
As	0.50	Ir	<0.01	Se	<2.00
Au	0.07	K	<30.00	Si	<10.00
B	<4.00	La	0.09	Sm	<0.01
Ba	<0.01	Li	1.00	Sn	0.20
Be	<0.10	Lu	<0.01	Sr	0.09
Bi	<0.01	Mg	3.00	Ta	<0.01
Ca	34.00	Mn	2.00	Tb	<0.01
Cd	0.04	Mo	0.07	Te	0.05
Ce	0.02	Na	5.00	Th	<0.01
Co	2.00	Nb	0.02	Tl	<0.50
Cr	4.00	Nd	0.03	Tl	<0.01
Cs	<0.01	Ni	1.00	Tm	<0.01
Cu	0.50	P	<100.00	U	<0.01
Dy	<0.01	Pb	0.20	V	<0.50
Er	<0.01	Pd	0.01	W	0.05
Eu	<0.01	Pr	<0.01	Y	0.03
Ga	0.20	Pt	<0.01	Yb	<0.01
Gd	<0.01	Rb	<0.01	Zn	1.00
Ge	<50.00	Re	<0.01	Zr	0.07
Hf	<0.01	Rh	<0.40		
Hg	<0.05	Ru	<0.01		

Balances are calibrated with NIST weight sets NJ #92589 and #92550, according to NIST circular 547 3.4.3
 CLARITAS PPT reference standards are guaranteed stable and accurate to $\pm 0.5\%$, averaged labeled analyte concentrations, for a period of one year from date of shipment. For these solutions we use the highest purity acids applicable, 18 megohm double-distilled water and acid-leached, triple-rinsed bottles. All glassware used is Class A.

N. Kollersekola
 Manufacturing Manager

JAN 98
 Date

SPEX CertiPrep

203 NORCROSS AVENUE
 METUCHEN, NJ 08840

908-549-7144
 1-800-LAB-SPEX
 FAX: 908-603-9847
 E-mail: CRMSales@spexcsp.com

Printed on Recycled Paper

I have reviewed
 and accepted the
 certificate of
 analysis.
 T. Duvel
 Jan. 13, 2000

I have reviewed
 and accepted the
 certificate of
 analysis.
 T. Duvel
 Jan. 13, 2000

Calculation

Calculation

S	SI	SI	SI	Sr	SR
				0.090	0.31166943
5.104	15.3182255	0.218	0.6542659		
4.266	13.0915166	0.216	0.6628616		
4.302	12.6554663	0.026	0.07648565		
4.873	0	0.005	0		
0.146	0				
0					
0					
0					
0					
0					

Method : ROGER

Standardzn Report

02/11/00 10:39:37

page 1

El Name	Slope	Y-int	Correlation	Date Stdized
A13082	0.0406	0.0034	0.9966617	09/28/99 11:11:30

Standard Name	Concentration Stated	Concentration Found	Difference Conc	Difference %	Signal
a0000	0	0.0010023	0	0	(S) IR
b0002	0.199	0.12242	-0.0766	-38.5	0.0083895
b0004	0.396	0.33459	-0.0614	-15.5	0.017002
b0020	1.999	2.0053	0.00625	0.313	0.084815
b0040	3.977	4.1087	0.132	3.31	0.1702

A1 308.215 {109}

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
A13092	0.0655	0.0128	0.9997604	09/28/99 11:11:30

Standard Name	Concentration Stated	Concentration Found	Difference Conc	Difference %	Signal
a0000	0	-0.000263550	0	0	(S) IR
b0002	0.199	0.21916	0.0202	10.1	0.027129
b0004	0.396	0.41379	0.0178	4.49	0.03987
b0020	1.999	1.9818	-0.0172	-0.861	0.14252
b0040	3.977	3.9562	-0.0208	-0.522	0.27177

A1 309.271 {109}

(S) IR 0

10

Concentration

A1 309.271

El Name	Slope	Y-int	Correlation	Date Stdized
A1 3961	0.1911	-0.0011	0.9999265	09/28/99 11:11:30

Standard Name	Concentration Stated	Concentration Found	Difference Conc	Difference %	Signal
a0000	0	-0.000143090	0	0	(S) IR
b0002	0.199	0.21177	0.0128	6.42	0.039375
b0004	0.396	0.40093	0.00493	1.25	0.075528
b0020	1.999	1.9979	-0.00112	-0.056	0.38074
b0040	3.977	3.9604	-0.0166	-0.417	0.75583

A1 396.152 {85}

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
B_2089	0.6005	0.0030	0.9999474	09/28/99 11:11:44

Standard Name	Concentration Stated	Concentration Found	Difference Conc	Difference %	Signal
a0000	0	4.331e-05	0	0	(S) IR
a0002	0.2	0.1969	-0.0031	-1.55	0.12123
a0004	0.4	0.39472	-0.00528	-1.32	0.24002
a0008	0.798	0.80239	0.00439	0.55	0.48483
a0010	1	1.0067	0.00667	0.667	0.60749
a0001	0.0999	0.09722	-0.00268	-2.68	0.061367

B 208.959 {161}

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
B_2496	1.8305	0.0125	0.9999850	09/28/99 11:11:44

Standard Name ~~Am~~ Concentration Difference Signal

	Stated	Found	Conc	%	(S) IR
a0000	0	1.9116e-050	0	0	0.012565
a0002	0.2	0.19735	-0.00265	-1.32	0.37378
a0004	0.4	0.39769	-0.00231	-0.577	0.74051
a0008	0.798	0.79903	0.00103	0.129	1.4752
a0010	1	1.0045	0.00452	0.452	1.8513
a0001	0.0999	0.099308	-0.000592	-0.593	0.19431

B ~~Am~~ 249.678 (135)

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
B_2497	3.8151	-0.0027	0.9999737	09/28/99 11:11:44

Standard Name Concentration Difference Signal

	Stated	Found	Conc	%	(S) IR
a0000	0	2.6302e-050	0	0	-0.0026139
a0002	0.2	0.19739	-0.00261	-1.31	0.75034
a0004	0.4	0.39653	-0.00347	-0.867	1.5101
a0008	0.798	0.79812	0.000121	0.0152	3.0422
a0010	1	1.0071	0.00715	0.715	3.8396
a0001	0.0999	0.098711	-0.00119	-1.19	0.37387

B ~~Am~~ 249.773 (135)

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Ba4554	11.0534	0.0062	0.9999833	09/28/99 11:11:44

Standard Name Concentration Difference Signal

	Stated	Found	Conc	%	(S) IR
a0000	0	-9.9738e-060	0	0	0.0061162
a0002	0.201	0.20043	-0.000569	-0.283	2.2217
a0004	0.403	0.40734	0.00434	1.08	4.5087
a0008	0.804	0.79917	-0.00483	-0.6	8.8398
a0010	1.007	1.0073	0.000283	0.0281	11.14
a0001	0.1006	0.10137	0.000775	0.77	1.1268

Ba 455.403 (74)

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Ba4934	9.1168	0.1883	0.9999514	09/28/99 11:11:44

Standard Name Concentration Difference Signal

	Stated	Found	Conc	%	(S) IR
a0000	0	-3.5542e-050	0	0	0.18796
a0002	0.201	0.20426	0.00326	1.62	2.0505
a0004	0.403	0.40832	0.00532	1.32	3.9109
a0008	0.804	0.79609	-0.00791	-0.984	7.4461
a0010	1.007	1.0045	-0.00251	-0.249	9.346
a0001	0.1006	0.10243	0.00183	1.82	1.1222

Ba 493.409 (68)

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Ca3179	0.3023	-0.0010	0.9996279	09/28/99 11:11:44

Standard Name	Concentration	Difference	Signal	
Name	Stated	Found	Conc %	(S)IR
a0000	0	-0.00124870	0	-0.0014106
a0002	1.996	2.0193	0.0233	1.17 0.60936
a0004	4.011	4.0741	0.0631	1.57 1.2305
a0008	7.996	7.8973	-0.0987	-1.23 2.3861
a0010	9.983	9.8747	-0.108	-1.09 2.9839
a0001	0.997	1.1177	0.121	12.1 0.33681
Ca	317.933	(106)		

(S)IR 0
20

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Ca3968	18.8173	0.0646	0.9992657	09/28/99 11:11:44

Standard Name	Concentration	Difference	Signal	
Name	Stated	Found	Conc %	(S)IR
a0000	0	-0.00181390	0	0.030445
a0002	1.996	2.0759	0.0799	4.01 39.128
a0004	4.011	4.1265	0.115	2.88 77.714
a0008	7.996	7.8641	-0.132	-1.65 148.05
a0010	9.983	9.7689	-0.214	-2.14 183.89
a0001	0.997	1.1476	0.151	15.1 21.659

Ca 396.847 {85}

(S)IR 0
20

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Fe2382	1.9893	0.0055	0.9999418	09/28/99 11:11:30

Standard Name	Concentration	Difference	Signal	
Name	Stated	Found	Conc %	(S)IR
a0000	0	8.1493e-050	0	0.0056867
b0002	0.199	0.19507	-0.00393	-1.98 0.39357
b0004	0.394	0.38677	-0.00723	-1.83 0.77494
b0020	1.992	1.9694	-0.0226	-1.14 3.9233
b0040	3.963	3.9968	0.0338	0.853 7.9565

Fe 238.204 {142}

(S)IR 0
10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Fe2395	2.2664	0.0037	0.9999684	09/28/99 11:11:30

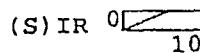
Standard Name	Concentration	Difference	Signal	
Name	Stated	Found	Conc %	(S)IR
a0000	0	6.0408e-050	0	0.0038798
b0002	0.199	0.19571	-0.00329	-1.65 0.4473
b0004	0.394	0.38944	-0.00456	-1.16 0.88636
b0020	1.992	1.9749	-0.0171	-0.857 4.4797
b0040	3.963	3.9879	0.0249	0.628 9.0418

Fe 239.562 {141}

(S)IR 0
10

Concentration

Method : ROGER


Standardzn Report

02/11/00 10:39:38

page 4

El Name	Slope	Y-int	Correlation	Date Stdized
Fe2599	4.8898	0.0065	0.9999862	09/28/99 11:11:30

Standard ^{AM}
 Name 676.00 Concentration Difference Signal
 Stated Found Conc % (S)IR
 a0000 0 6.147e-05 0 0 0.0067959
 a0002 0.199 0.19534 -0.00366 -1.84 0.96169
 a0004 0.394 0.38798 -0.00602 -1.53 1.9037
 a0020 1.992 1.9933 0.00128 0.0643 9.7533
 a0040 3.963 3.9714 0.00839 0.212 19.426
 Fe ^{AM 5.25-00} 259.940 (130)

(S) IR 0


10

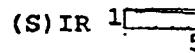
Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
K_7664	0.1134	0.0349	0.9998304	09/28/99 11:11:44

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 -0.000792540 0 0.034819
 a0002 1.99 2.0315 0.0415 2.09 0.26522
 a0004 3.999 4.0864 0.0874 2.19 0.49819
 a0008 7.971 7.8609 -0.11 -1.38 0.9261
 a0010 9.953 9.876 -0.077 -0.774 1.1545
 a0001 0.994 1.0522 0.0582 5.86 0.1542

K 766.490 (44)

(S) IR 0


20

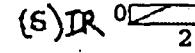
Concentration

AM 5.25-00
 El Name Slope Y-int Correlation Date Stdized
 Li6103 -0.0849 3.6790 -0.9999822 09/28/99 11:13:01

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 1.1234e-050 0 3.679
 a0008 1.017 1.0224 0.00536 0.527 3.5922
 a0010 0.811 0.80564 -0.00536 -0.661 3.6106

Li 610.362 (55)

(S) IR 1


5

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Mg2795	10.0837	0.0134	0.9995473	09/28/99 11:11:44

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 -0.00120860 0 0.0011791
 a0002 1.995 2.0986 0.104 5.19 21.175
 a0004 4.009 4.1672 0.158 3.95 42.034
 a0008 7.992 7.8928 -0.0992 -1.24 79.602
 a0010 9.979 9.7516 -0.227 -2.28 98.346
 a0001 0.9966 1.0615 0.0649 6.51 10.717

Mg 279.553 (120)

(S) IR 0

20

Concentration

AM
 5.25-00

El Name Slope Y-int Correlation Date Stdized
 Mg2802 5.5706 0.0020 0.9998183 09/28/99 11:11:44

Standard ~~full~~ Concentration Difference Signal
 Name ~~5-25-00~~ Stated Found Conc % (S)IR
 a0000 0 -0.000709390 0 -0.0019498
 a0002 1.995 2.0489 0.0539 2.7 11.416
 a0004 4.009 4.1273 0.118 2.95 22.993
 a0008 7.992 7.9261 -0.0659 -0.824 44.155
 a0010 9.979 9.8355 -0.143 -1.44 54.791
 a0001 0.9966 1.0337 0.0371 3.73 5.7605

Mg ~~full~~ ^{Am 5-25-00} 280.270 (120)

(S)IR 0

20

Concentration

El Name Slope Y-int Correlation Date Stdized
 Mg2852 0.5888 -0.0013 0.9999785 09/28/99 11:11:44

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 0.000138790 0 -0.0012565
 a0002 1.995 1.9896 -0.00535 -0.268 1.1702
 a0004 4.009 3.9534 -0.0556 -1.39 2.3265
 a0008 7.992 8.0272 0.0352 0.441 4.7252
 a0010 9.979 10.01 0.0306 0.306 5.8925
 a0001 0.9966 0.99177 -0.00483 -0.484 0.58263

Mg ~~full~~ ^{Am 5-25-00} 285.213 (118)

(S)IR 0

20

Concentration

El Name Slope Y-int Correlation Date Stdized
 Mn2576 26.0467 -0.0011 0.9999862 09/28/99 11:11:44

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 1.8859e-050 0 -0.00063882
 a0002 0.203 0.19968 -0.00332 -1.64 5.1998
 a0004 0.405 0.40552 0.000524 0.129 10.561
 a0008 0.808 0.81011 0.00211 0.262 21.1
 a0010 1.013 1.0145 0.00146 0.144 26.422
 a0001 0.1012 0.10043 -0.00077 -0.761 2.6147

Mn ~~full~~ ^{Am 5-25-00} 257.610 (131)

(S)IR 0

10

Concentration

El Name Slope Y-int Correlation Date Stdized
 Mn2605 7.1394 0.0041 0.9999714 09/28/99 11:11:44

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 7.8057e-060 0 0.0041492
 a0002 0.203 0.20201 -0.000988 -0.487 1.4463
 a0004 0.405 0.40127 -0.00373 -0.921 2.8689
 a0008 0.808 0.80352 -0.00448 -0.554 5.7407
 a0010 1.013 1.0219 0.00888 0.877 7.2997
 a0001 0.1012 0.10152 0.000318 0.315 0.72887

Mn ~~full~~ ^{Am 5-25-00} 260.569 (130)

(S)IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Mn2933	0.1067	0.0010	0.9998805	09/28/99 11:11:44

Standard Aml

Name	Concentration	Difference	Signal		
Stated	Found	Conc	(S)IR		
a0000	0	-5.2648e-050	0	0.00099993	
a0002	0.203	0.19971	-0.00329	-1.62	0.022319
a0004	0.405	0.40768	0.00268	0.663	0.044515
a0008	0.808	0.80247	-0.00553	-0.685	0.086648
a0010	1.013	1.0121	-0.000876	-0.0865	0.10902
a0001	0.1012	0.10822	0.00702	6.93	0.012555

Mn 293.306 (115)

(S)IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Na5889	0.7552	-0.4908	0.9999757	09/28/99 11:11:44

Standard

Name	Concentration	Difference	Signal		
Stated	Found	Conc	(S)IR		
a0000	0	-0.000112040	0	-0.49089	
a0002	3.275	3.3185	0.0435	1.33	2.0153
a0004	6.582	6.6499	0.0679	1.03	4.5311
a0008	13.121	13.037	-0.0837	-0.638	9.3547
a0010	16.383	16.371	-0.0119	-0.0727	11.872
a0001	1.636	1.6202	-0.0158	-0.964	0.73276

Na 588.995 (57)

(S)IR 0

20

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Na5895	0.4016	-0.0347	0.9999658	09/28/99 11:11:44

Standard

Name	Concentration	Difference	Signal		
Stated	Found	Conc	(S)IR		
a0000	0	-0.00036470	0	-0.03488	
a0002	3.275	3.3008	0.0258	0.788	1.2907
a0004	6.582	6.682	0.1	1.52	2.6485
a0008	13.121	13.017	-0.104	-0.789	5.1926
a0010	16.383	16.345	-0.0376	-0.23	6.5289
a0001	1.636	1.6514	0.0154	0.942	0.62841

Na 589.592 (57)

(S)IR 0

20

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
S_1807	0.0416	0.0014	0.9998304	09/28/99 11:11:30

Standard

Name	Concentration	Difference	Signal		
Stated	Found	Conc	(S)IR		
a0000	0	0.000924450	0	0.0014469	
b0002	1.995	1.9068	-0.0882	-4.42	0.08081
b0004	3.964	3.8736	-0.0904	-2.28	0.16271
b0020	7.963	8.0731	0.11	1.38	0.33759
b0040	9.975	10.044	0.0685	0.687	0.41964

S 180.731 (186)

(S)IR 0

20

Concentration

Method : ROGER

Standardzn Report

02/11/00 10:39:39

page 7

El Name	Slope	Y-int	Correlation	Date Stdized
S_1820	0.0130	0.0008	0.9996870	09/28/99 11:11:30

Standard ~~AM~~ Concentration Difference Signal
 Name ~~6-15-00~~ Stated Found Conc % (S)IR
 a0000 0 0.0012923 0 0 0.0007984
 b0002 1.995 1.8757 -0.119 -5.98 0.025233
 b0004 3.964 3.8363 -0.128 -3.22 0.050793
 b0020 7.963 8.0616 0.0986 1.24 0.10588
 b0040 9.975 10.123 0.148 1.49 0.13275

182.034 (185)

(S)IR 0
20

Concentration

~~AM 5-15-00~~

El Name	Slope	Y-int	Correlation	Date Stdized
S_1826	0.0150	-0.0010	0.9998521	09/28/99 11:11:30

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 0.000822310 0 -0.001015
 b0002 1.995 1.9298 -0.0652 -3.27 0.027879
 b0004 3.964 3.8537 -0.11 -2.78 0.056697
 b0020 7.963 8.0302 0.0672 0.843 0.11926
 b0040 9.975 10.083 0.108 1.09 0.15001

S ~~AM 5-15-00~~ 182.624 (184)(S)IR 0
20

Concentration

~~AM 5-15-00~~

El Name	Slope	Y-int	Correlation	Date Stdized
S_2124	0.1291	0.0196	0.9999949	09/28/99 11:11:44

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 0.000135940 0 0.01964
 a0002 2.001 1.9891 -0.0119 -0.594 0.27645
 a0004 4.02 4.0081 -0.0119 -0.295 0.53714
 a0008 8.015 8.0037 -0.0113 -0.141 1.053
 a0010 ~~AM 5-15-00~~ 10.008 10.043 0.035 0.35 1.3163

S ~~AM 5-15-00~~ 212.412 (159)(S)IR 0
20

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
S12516	1.2276	0.1855	0.9999245	09/28/99 11:11:44

Standard Concentration Difference Signal
 Name Stated Found Conc % (S)IR
 a0000 0 0.000586360 0 0.1862
 a0002 2.001 1.9548 -0.0462 -2.31 2.5853
 a0004 4.02 3.9408 -0.0792 -1.97 5.0233
 a0008 8.015 8.0533 0.0383 0.478 10.072
 a0010 10.008 10.095 0.0871 0.87 12.579

S 251.612 (134)

(S)IR 0
20

Concentration

~~AM 5-15-00~~

Method : ROGER

Standardzn Report

02/11/00 10:39:39

page 8

El Name	Slope	Y-int	Correlation	Date Stdized
Si2881	0.0338	0.0051	0.9999926	09/28/99 11:11:44

Standard	Concentration	Difference	Signal	
Name	Stated	Found	Conc %	(S)IR
a0000	0	0.000129520	0	0.0051245
a0002	2.001	1.9864	-0.0146 -0.731	0.072221
a0004	4.02	4.0201	7.05e-05 0.00175	0.14092
a0008	8.015	7.9895	-0.0255 -0.318	0.27501
a0010	10.008	10.048	0.0401 0.4	0.34455

Si 288.158 (117)

(S) IR 0

20

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Sr3464	0.3084	-0.0049	0.9999970	09/28/99 11:11:30

Standard	Concentration	Difference	Signal	
Name	Stated	Found	Conc %	(S)IR
a0000	0	1.885e-05	0 0	-0.0049204
b0002	0.198	0.19681	-0.00119 -0.6	0.055766
b0004	0.394	0.39168	-0.00232 -0.588	0.11586
b0020	1.991	1.9969	0.00589 0.296	0.61086
b0040	3.961	3.9586	-0.00239 -0.0603	1.2158

Sr 346.446 (97)

(S) IR 0

10

Concentration

El Name	Slope	Y-int	Correlation	Date Stdized
Sr4215	12.5839	-0.5264	0.9999845	09/28/99 11:11:30

Standard	Concentration	Difference	Signal	
Name	Stated	Found	Conc %	(S)IR
a0000	0	4.5888e-050	0	-0.52582
b0002	0.198	0.19468	-0.00332 -1.68	1.9234
b0004	0.394	0.38941	-0.00459 -1.16	4.3739
b0020	1.991	2.004	0.013 0.654	24.692
b0040	3.961	3.9559	-0.00511 -0.129	49.254

Sr 421.552 (80)

(S) IR 0

10

Concentration

**APPENDIX E: ION CHROMATOGRAPHY
REPORT (LLNL/ASD); CASE# 609**

ION CHROMATOGRAPHY

Lawrence Livermore National Laboratory
Analytical Sciences Division

To: Roger Martinelli Account #: 8781-80
From: Nora Butler-Briant Case#: 609
Analysis Date: 12/7/98
Report Date: 12/8/98

JC #	Requester	Fluoride		Chloride		Nitrite		Bromide		Nitrate		Phosphate		Sulfate	
		ID		Avg.	Std. Dev.	Avg.	Std. Dev.	Avg.	Std. Dev.	Avg.	Std. Dev.	Avg.	Std. Dev.	Avg.	Std. Dev.
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
980589	PERM BLANK	<0.007	0.00	0.07	0.00	<0.04	0.00	<0.03	0.00	0.0	0.00	<0.07	0.00	0.22	0.02
980590	PERM 1	0.08	0.03	30.70	0.03	<0.04	0.00	0.15	0.01	5.43	0.04	<0.07	0.00	31.10	0.01
980591	PERM 2	0.24	0.01	27.80	0.37	<0.04	0.00	0.19	0.02	0.63	0.01	<0.07	0.00	27.90	0.04
980592	PERM 3	0.19	0.01	30.8	0.76	<0.04	0.00	0.30	0.05	2.6	0.11	<0.07	0.00	30	0.01

1/10/00 I HAVE REVIEWED
AND ACCEPT THIS DATA
Roger C. Marshall

Note: All anions were analyzed by ion chromatography using an AS4A column with an AG4A guard. The eluant was 1.7 mM NaHCO₃/1.8 mM Na₂CO₃ at a flow rate of 0.5 mL/min.

PERMS 1-3 WERE
1:4 DILUTIONS
12/10/98 LM

Nora Butcher-Briant
Analyst

12-8-98 Date

Alltech Associates, Inc.
2051 Waukegan Road • Deerfield, IL 60015-1899
Phone: 847-948-8600 • Fax: 847-948-1078

EXPIRES
09 01 99

CERTIFICATE OF ANALYSIS

I-CAL ION CHROMATOGRAPHY SOLUTION 1000 $\mu\text{g/mL}$ Bromide in H_2O
Catalog No: 37005

Starting Material: Potassium Bromide
Starting Material Lot No: 09014BY

TRACEABILITY DOCUMENTATION FOR SOLUTION STANDARD - Lot No. M-BR01026

Certified Value: 1003 $\mu\text{g/mL}$

The certified value is the average of the classical wet assay and instrument analysis unless otherwise specified. All Standards are accurate to within $\pm 1.0\%$ relative unless otherwise specified.

Method 1:

Actual Value: 998 $\mu\text{g/mL}$

Method: Ion Chromatography vs NIST SRM 3184

Method 2:

Actual Value: 1007 $\mu\text{g/mL}$

Method: Volhard Titration vs NIST SRM 999

We use purified acids, where required, 18 meg-ohm double deionized water, calibrated Class A glassware & meticulously cleaned bottles in the manufacturing of I-Cal standards. Balances are calibrated with registered NJ Weight Sets #NJ89074, NJ89034, NJ90292 and NJ91091. These weights are registered with the NJ Office of Weights and Measures and are traceable through the standards of the State of NJ to NIST (formerly NBS).

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 0.998 g/mL

Signature:

Date: 12-04-97

Reviewed and accepted by
Nance L. Briant
10-2-98

for Calibration

CERTIFICATE OF ANALYSIS

Catalog Number: ICMIX2-100

Description: IC Instrument Check Standard 2

Lot Number: 14-120AS

IC CHECK:

Component	Labeled[ug/ml]	Measured[ug/ml]
HPO_4^{-2}	600	616
Br^-	400	415
NO_3^-	400	390
SO_4^{-2}	400	398
Cl^-	200	200
F^-	100	98

Instrumental Analysis Conducted by Ion Chromatography:

The following SRM's were used in establishing the above results:

HPO_4^{-2} : NIST 3186
 SO_4^{-2} : NIST 3181

Br^- : NIST 3184
 Cl^- : NIST 3182

NO_3^- : NIST 3185
 F^- : NIST 3183

Spex Reference Multi: Lot #4-6VY

Reviewed and accepted by

Nora L. Briant

Date 11-11-98

Balances are calibrated regularly with weight sets traceable to NIST.

SPEX CertiPrep reference standards are guaranteed stable and accurate to $\pm 0.5\%$ of certified concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double deionized water and triple rinsed bottles. All glassware used is class A.

N. Kocherakota
Manufacturing Manager

SP '98
Date

SPEX CertiPrep **ISO 9001**

CERTIFIED

SPEX CERTIPREP, INC. 203 NORCROSS AVENUE METUCHEN, NJ 08840 732-549-7144 1-800-LAB-SPEX FAX: 732-603-9847

Alltech Associates, Inc.
2051 Waukegan Road • Deerfield, IL 60015-1899
Phone: 847-948-8600 • Fax: 847-948-1078

EXPIRES
06-01-99

Check Std

CERTIFICATE OF ANALYSIS

I-CAL Custom Multi-Anion Solution Mixture A (Catalog No: 269102001) containing:

30 $\mu\text{g/mL}$ ea: PO_4^{3-} , SO_4^{2-}
20 $\mu\text{g/mL}$ ea: Br^- , Cl^- , NO_3^- , NO_2^- ,
10 $\mu\text{g/mL}$ F

Matrix: ASTM Type I water filtered thru 0.2 micron filter
Lot No: N-ION04113

<u>Certified Value:</u>		<u>Method and NIST Traceability:</u>
F:	$9.86 \pm 0.17 \mu\text{g/mL}$	Ion Chromatography vs NIST SRM 3183
Cl ⁻ :	$20.00 \pm 0.12 \mu\text{g/mL}$	Ion Chromatography vs NIST SRM 3182
NO ₃ ⁻ :	$20.26 \pm 0.13 \mu\text{g/mL}$	Ion Chromatography Checked vs Independent Standard
Br ⁻ :	$20.05 \pm 0.12 \mu\text{g/mL}$	Ion Chromatography vs NIST SRM 3184
NO ₂ ⁻ :	$19.95 \pm 0.16 \mu\text{g/mL}$	Ion Chromatography vs NIST SRM 3185
PO ₄ ³⁻ :	$30.08 \pm 0.89 \mu\text{g/mL}$	Ion Chromatography vs NIST SRM 3186
SO ₄ ²⁻ :	$30.05 \pm 0.42 \mu\text{g/mL}$	Ion Chromatography vs NIST SRM 3181

This certifies all the above concentrations to be accurate to an uncertainty expressed at the 95% confidence interval.

Concentrates for all the above elements were analyzed by IC against the following NIST SRM's:
Elemental Symbol (NIST SRM No.)
 SO_4^{2-} (3181); Cl^- (3182); F(3183); Br^- (3184); NO_3^- (3185); PO_4^{3-} (3186); NO_2^- (N/A)

Concentrates for all the above anions were checked by one of the following classical wet chemical methods and are traceable as listed:

<u>Concentrate</u>	<u>Method:</u>	<u>Checked Against:</u>
Br ⁻	Volhard Titration	NIST SRM 999
Cl ⁻	Volhard Titration	NIST SRM 999
F	Ion Selective Electrode	NIST SRM 3183
NO ₃ ⁻	Acidimetric Titration	NIST KHP 84j
PO ₄ ³⁻	Acidimetric Titration	NIST KHP 84j
SO ₄ ²⁻	Acidimetric Titration	NIST KHP 84j
NO ₂ ⁻	Redox Titration	NIST SRM 40h

Signature:

Paul Gaudet

Date: 03-11-98

*Received and
accepted by
Nora L. Briant
11-11-98*

EXPIRES
09 01 99

Alltech Associates, Inc.
2051 Waukegan Road • Deerfield, IL 60015-1899
Phone: 847-948-8600 • Fax: 847-948-1078

Calibration

CERTIFICATE OF ANALYSIS

I-CAL ION CHROMATOGRAPHY SOLUTION 1000 $\mu\text{g}/\text{mL}$ Nitrite in H_2O
Catalog No: 37021

Starting Material: Sodium Nitrite
Starting Material Lot No: 02018PY

TRACEABILITY DOCUMENTATION FOR SOLUTION STANDARD - Lot No. N-NOX01086

Certified Value: 1002 $\mu\text{g}/\text{mL}$

The certified value is the average of the classical wet assay and instrument analysis unless otherwise specified. All Standards are accurate to within $\pm 1.0\%$ relative unless otherwise specified.

Method 1:

Actual Value: 1001 $\mu\text{g}/\text{mL}$

Method: Calculated, based on starting material

Method 2:

Actual Value: 1003 $\mu\text{g}/\text{mL}$

Method: Ion Chromatography vs in-house standard

We use purified acids, where required, 18 meg-ohm double deionized water, calibrated Class A glassware & meticulously cleaned bottles in the manufacturing of I-Cal standards. Balances are calibrated with registered NJ Weight Sets #NJ89074, NJ89034, NJ90292 and NJ91091. These weights are registered with the NJ Office of Weights and Measures and are traceable through the standards of the State of NJ to NIST (formerly NBS).

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 0.999 g/mL

Signature: *Paula Landes*

Date: 01-26-98

*reviewed and accepted
by Nora d. Briant
10-2-98*

Alltech Associates, Inc.
2051 Waukegan Road • Deerfield, IL 60015-1899
Phone: 847-948-8600 • Fax: 847-948-1078

EXPIRES
09 01 99

CERTIFICATE OF ANALYSIS

I-CAL ION CHROMATOGRAPHY SOLUTION 1000 $\mu\text{g}/\text{mL}$ Chloride in H_2O
Catalog No: 37009

Starting Material: Potassium Chloride
Starting Material Lot No: 05606PW

TRACEABILITY DOCUMENTATION FOR SOLUTION STANDARD - Lot No. M-CLO1040

Certified Value: 999 $\mu\text{g}/\text{mL}$

The certified value is the average of the classical wet assay and instrument analysis unless otherwise specified. All Standards are accurate to within $\pm 1.0\%$ relative unless otherwise specified.

Method 1:

Actual Value: 1000 $\mu\text{g}/\text{mL}$

Method: Ion Chromatography vs NIST SRM 3182

Method 2:

Actual Value: 994 $\mu\text{g}/\text{mL}$

Method: Volhard Titration vs NIST SRM 999 Potassium Chloride

We use purified acids, where required, 18 meg-ohm double deionized water, calibrated Class A glassware & meticulously cleaned bottles in the manufacturing of I-Cal standards. Balances are calibrated with registered NJ Weight Sets #NJ89074, NJ89034, NJ90292 and NJ91091. These weights are registered with the NJ Office of Weights and Measures and are traceable through the standards of the State of NJ to NIST (formerly NBS).

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 0.998 g/mL

Signature:

Date: 11-10-97

Received and Accepted
by *Nora L. Bryant*
10-2-98

Alltech Associates, Inc.
2051 Waukegan Road • Deerfield, IL 60015-1899
Phone: 847-948-8600 • Fax: 847-948-1078

EXPIRES
09 01 99

CERTIFICATE OF ANALYSIS

I-CAL ION CHROMATOGRAPHY SOLUTION 1000 $\mu\text{g}/\text{mL}$ Fluoride in H_2O
Catalog No: 37011

Starting Material: Sodium Fluoride
Starting Material Lot No: 04408EZ

TRACEABILITY DOCUMENTATION FOR SOLUTION STANDARD - Lot No. N-F01028

Certified Value: 999 $\mu\text{g}/\text{mL}$

The certified value is the average of the classical wet assay and instrument analysis unless otherwise specified. All Standards are accurate to within $\pm 1.0\%$ relative unless otherwise specified.

Method 1:

Actual Value: 998 $\mu\text{g}/\text{mL}$

Method: Ion Chromatography vs NIST SRM 3183

Method 2:

Actual Value: 999 $\mu\text{g}/\text{mL}$

Method: Calculated, based on starting material

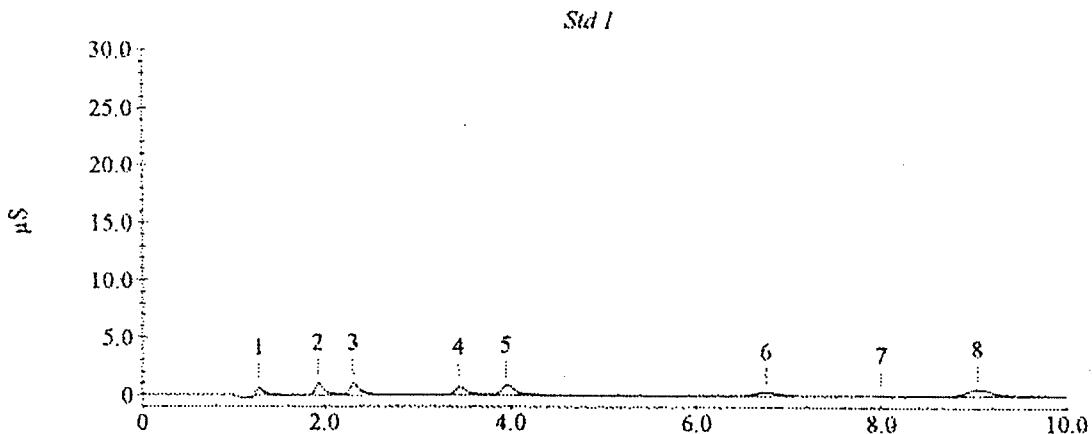
We use purified acids, where required, 18 meg-ohm double deionized water, calibrated Class A glassware & meticulously cleaned bottles in the manufacturing of I-Cal standards. Balances are calibrated with registered NJ Weight Sets #NJ89074, NJ89034, NJ90292 and NJ91091. These weights are registered with the NJ Office of Weights and Measures and are traceable through the standards of the State of NJ to NIST (formerly NBS).

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 0.999 g/mL

Signature: Madeline Mozzo

Date: 06-24-98

Reviewed and Accepted
by Flora L. Bresal
10-2-98


Calibration Update Report

Sample Name : Std 1
Data File Name : C:\PEAKNET\DATA\rmarb_001.DXD

Method File Name : c:\peaknet\method\anions.met
Schedule File Name : c:\peaknet\schedule\rmarb.as3
Date Time Collected : 12/7/98 11:15:06 AM
Calibration Date : 12/7/98 11:26:14 AM
System Operator : NL Briant

Peak Information : All Components

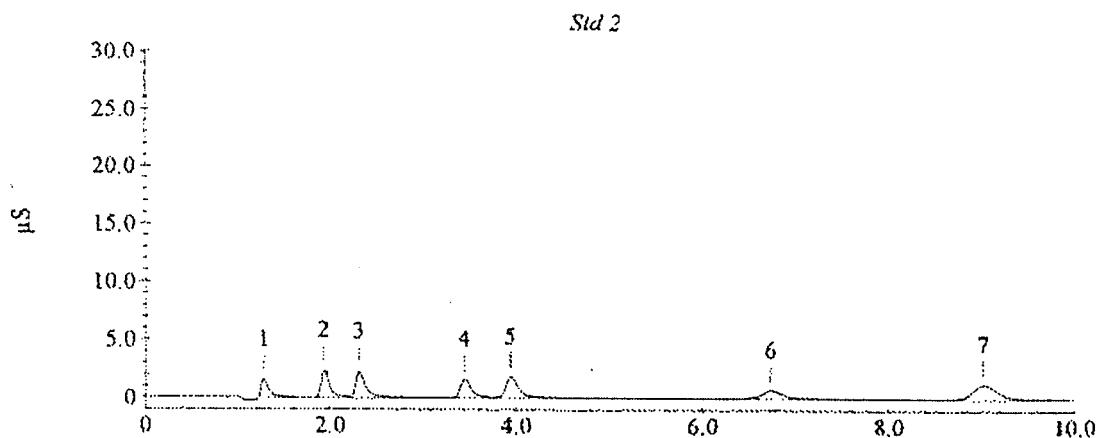
Peak #	Component Name	Retention Time	Cal Response (Previous)	Cal Response (Measured)	Cal Response (New)	Component Amount (mg/L)
1	F	1.28	41680	45452	45452	0.5000
2	Cl	1.93	75554	73204	73204	1.0000
3	NO2	2.32	104993	83644	83644	2.0000
4	Br	3.45	68945	58614	58614	2.0000
5	NO3	3.95	99448	77597	77597	2.0000
6	HPO4	6.75	52172	48010	48010	3.0000
8	SO4	9.03	115409	110873	110873	2.0000

PeakNet 5.1

Page 1 of 1

Current Date: 12/7/98
Current Time: 11:26:15

Calibration Update Report


Sample Name : Std 2

Data File Name : C:\PEAKNET\DATA\rmarb_002.DXD

Method File Name : c:\peaknet\method\anions.mct
Schedule File Name : c:\peaknet\schedule\rmarb.as3
Date Time Collected : 12/7/98 11:27:24 AM
Calibration Date : 12/7/98 11:38:34 AM
System Operator : NL Briant

Peak Information : All Components

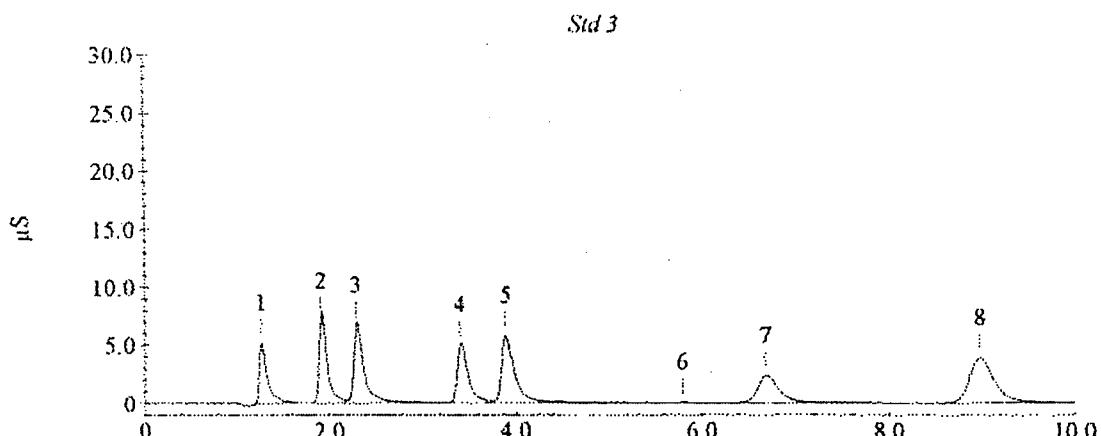
Peak #	Component Name	Retention Time	Cal Response (Previous)	Cal Response (Measured)	Cal Response (New)	Component Amount (mg/L)
1	F	1.28	88269	100244	100244	1.0000
2	Cl	1.93	144741	154989	154989	2.0000
3	NO2	2.32	186821	196574	196574	4.0000
4	Br	3.45	132298	141480	141480	4.0000
5	NO3	3.93	194899	191433	191433	4.0000
6	HPO4	6.73	113816	123181	123181	6.0000
7	SO4	9.02	228095	235835	235835	4.0000

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 11:38:35

Calibration Update Report


Sample Name : Std 3

Data File Name : C:\PEAKNET\DATA\rmarb_003.DXD

Method File Name : c:\peaknet\method\anions.met
Schedule File Name : c:\peaknet\schedule\smar.as3
Date Time Collected : 12/7/98 11:39:46 AM
Calibration Date : 12/7/98 11:50:57 AM
System Operator : NL Brian

Peak Information : All Components

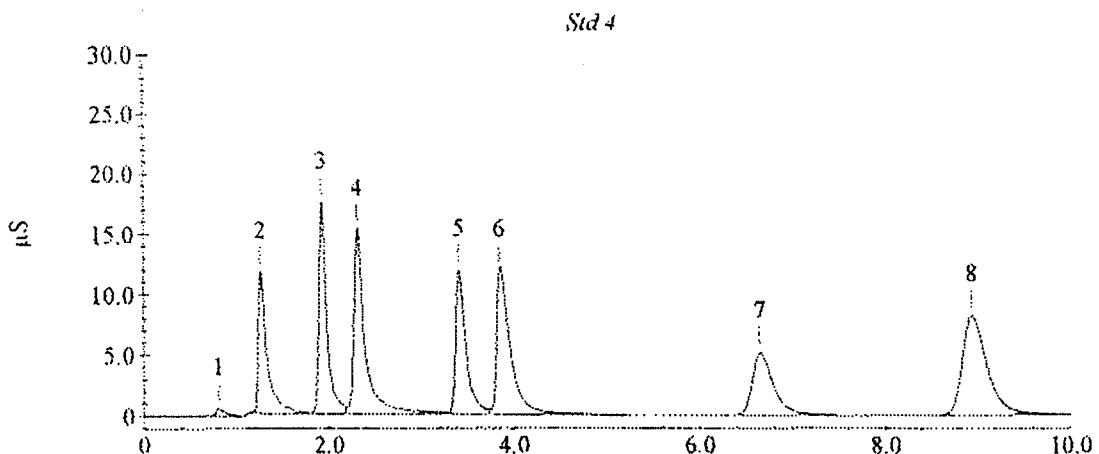
Peak #	Component Name	Retention Time	Cal Response (Previous)	Cal Response (Measured)	Cal Response (New)	Component Amount (mg/L)
1	F	1.27	298421	318389	318389	3.0000
2	Cl	1.92	440519	463872	463872	6.0000
3	NO2	2.30	536374	546524	546524	12.0000
4	Br	3.42	393825	414164	414164	12.0000
5	NO3	3.90	565490	568432	568432	12.0000
7	HPO4	6.68	351539	371066	371066	18.0000
8	SO4	8.98	688271	716295	716295	12.0000

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 11:50:57

Calibration Update Report


Sample Name : Std 4

Data File Name : C:\PEAKNET\DATA\rmarb_004.DXD

Method File Name : c:\peaknet\method\anions.mct
Schedule File Name : c:\peaknet\schedule\rmarb.as3
Date Time Collected : 12/7/98 11:52:06 AM
Calibration Date : 12/7/98 12:03:15 PM
System Operator : NL Briant

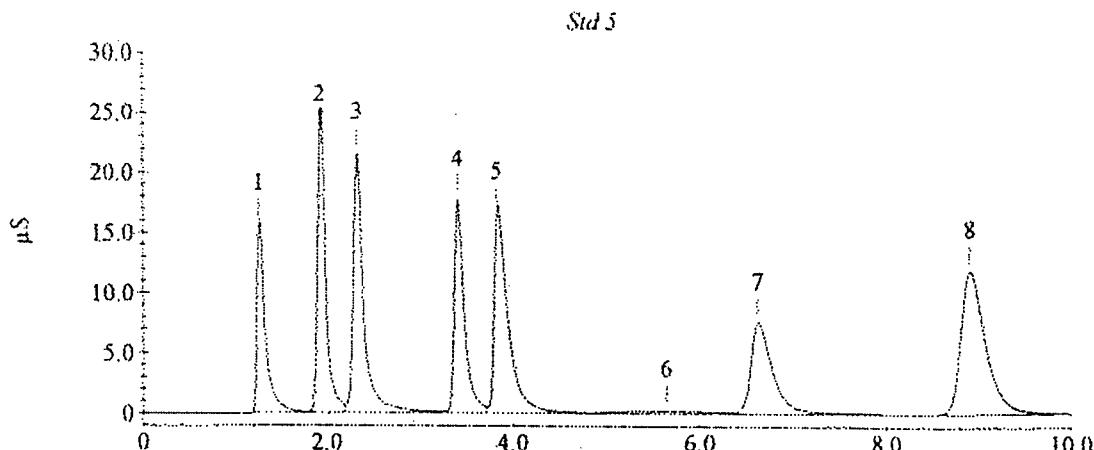
Peak Information : All Components

Peak #	Component Name	Retention Time	Cal Response (Previous)	Cal Response (Measured)	Cal Response (New)	Component Amount (mg/L)
2	F	1.27	646113	773834	773834	6.0000
3	Cl	1.93	967897	1026248	1026248	12.0000
4	NO2	2.32	1114368	1244942	1244942	24.0000
5	Br	3.42	848544	908761	908761	24.0000
6	NO3	3.85	1196663	1227725	1227725	24.0000
7	HPO4	6.65	788507	807088	807088	36.0000
8	SO4	8.93	1455015	1496551	1496551	24.0000

PeakNet 5.1

Page 1 of 1

Current Date: 12/7/98
Current Time: 12:03:16


Calibration Update Report

Sample Name : Std 5
Data File Name : C:\PEAKNET\DATA\rmarb_005.DXD

Method File Name : c:\peaknet\method\anions.met
Schedule File Name : c:\peaknet\schedule\rmarb.as3
Date Time Collected : 12/7/98 12:04:26 PM
Calibration Date : 12/7/98 12:15:36 PM
System Operator : NL Briant

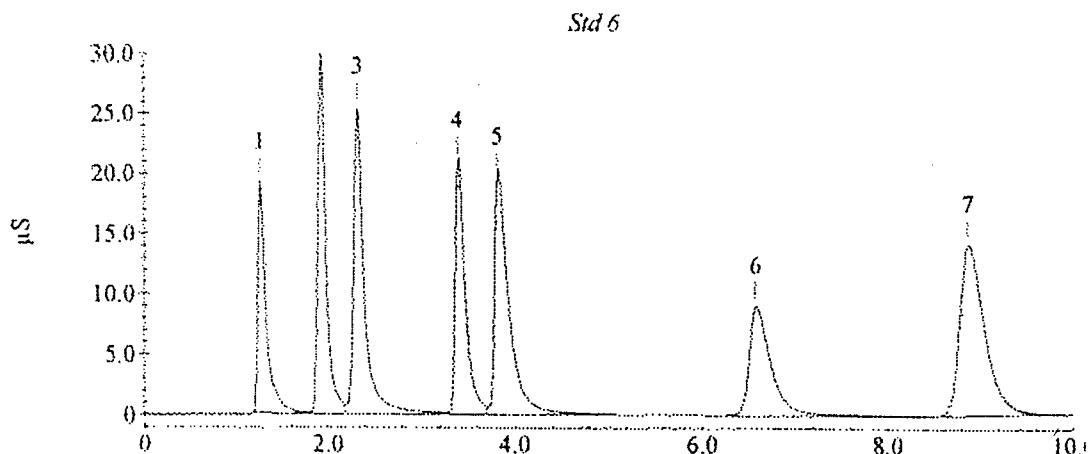
Peak Information : All Components

Peak #	Component Name	Retention Time	Cal Response (Previous)	Cal Response (Measured)	Cal Response (New)	Component Amount (mg/L)
1	F	1.27	950405	1010366	1010366	8.0000
2	Cl	1.93	1421413	1504999	1504999	16.0000
3	NO2	2.33	1621127	1651345	1651345	32.0000
4	Br	3.42	1240702	1306209	1306209	32.0000
5	NO3	3.83	1754549	1764731	1764731	32.0000
7	HPO4	6.62	1153583	1240180	1240180	48.0000
8	SO4	8.92	2096245	2178756	2178756	32.0000

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 12:15:37


Calibration Update Report

Sample Name : Std 6
Data File Name : C:\PEAKNET\DATA\rmarb_006.DXD

Method File Name : c:\peaknet\method\anions.met
Schedule File Name : c:\peaknet\schedule\rmarb.as3
Date Time Collected : 12/7/98 12:16:47 PM
Calibration Date : 12/7/98 12:27:57 PM
System Operator : NL Briant

Peak Information : All Components

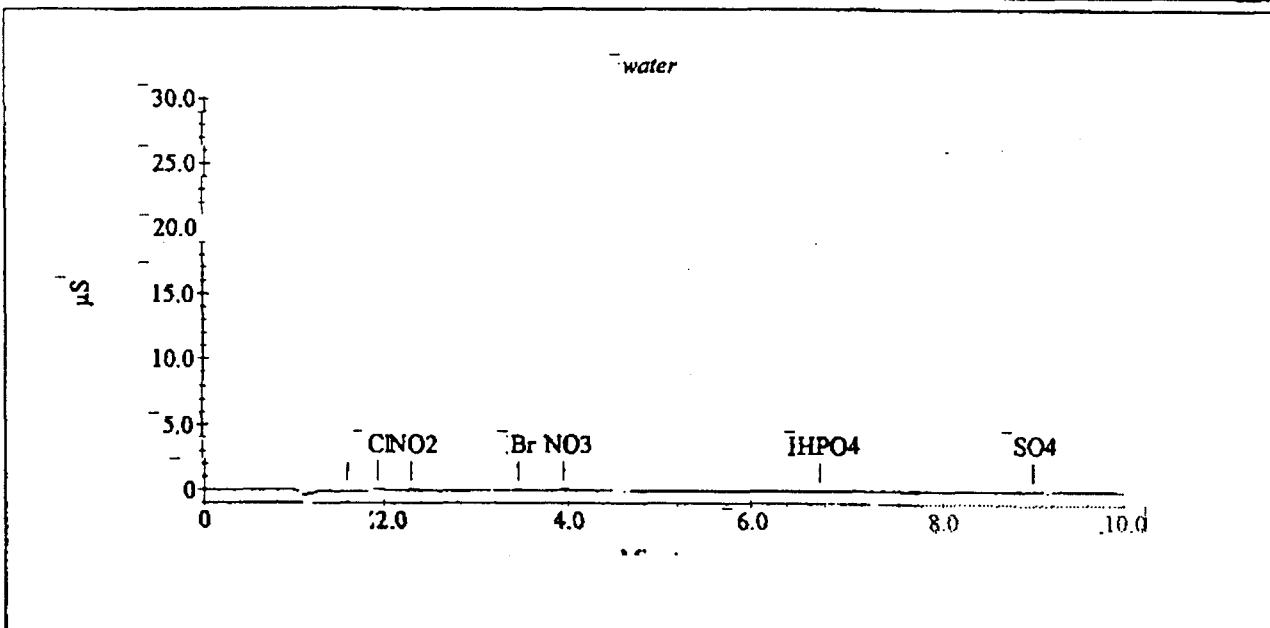
Peak #	Component Name	Retention Time	Cal Response (Previous)	Cal Response (Measured)	Cal Response (New)	Component Amount (mg/L)
1	F	1.27	1113093	1225143	1225143	10.0000
2	Cl	1.93	1699857	1817552	1817552	20.0000
3	NO2	2.33	1906046	2001404	2001404	40.0000
4	Br	3.40	1484700	1585309	1585309	40.0000
5	NO3	3.82	2077117	2163096	2163096	40.0000
6	HPO4	6.58	1387747	1456615	1456615	60.0000
7	SO4	8.87	2512832	2588481	2588481	40.0000

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 12:27:57

Sample Analysis Report


Sample Name : water

Data File Name : C:\PEAKNET\DATA\rmarb_007.DXD

Date Time Collected : 12/7/98 12:29:07 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421,AS4A 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

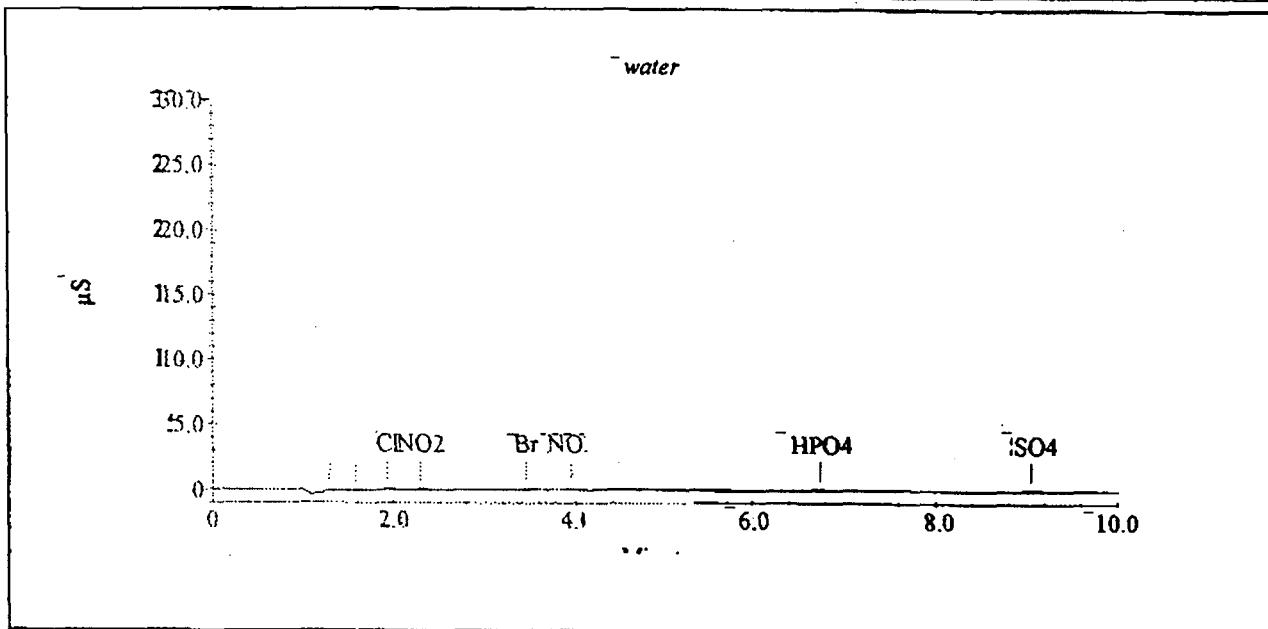
Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1		1.60	129.3400	1293	177
2	Cl	1.93	0.1636	12936	1387
3	NO ₂	2.30	0.2481	12414	1112
4	Br	3.45	0.2043	7222	847
5	NO ₃	3.95	0.2131	10174	977
6	HPO ₄	6.75	0.2239	4633	294
7	SO ₄	9.07	0.3236	19465	1069

PeakNet 5.1

Page 1 of 1

Current Date: 12/7/98
Current Time: 12:40:18

Sample Analysis Report


Sample Name : water

Data File Name : C:\PEAKNET\DATA\rmarb_008.DXD

Date Time Collected : 12/7/98 12:41:28 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

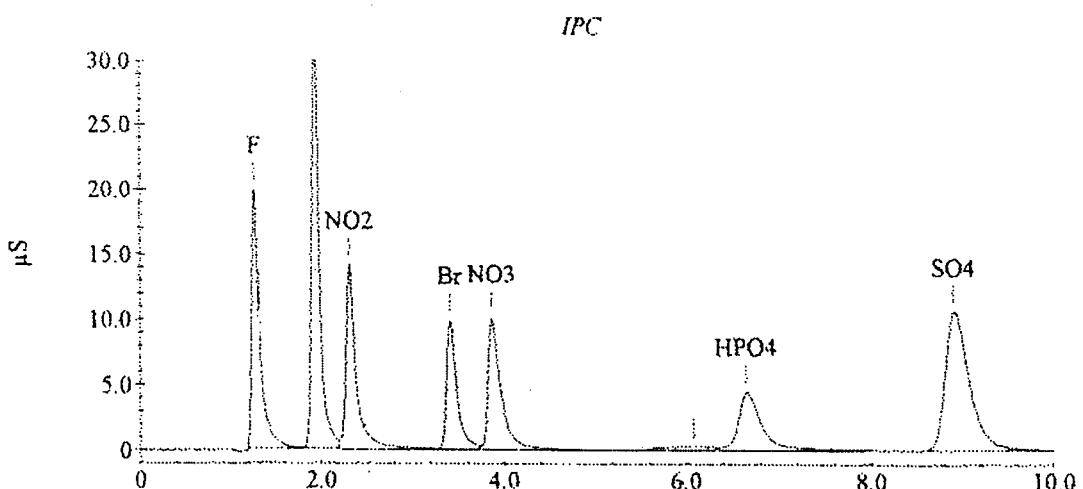
Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1		1.28	0.0000	417	143
3	Cl	1.93	0.1675	13245	1387
4	NO2	2.30	0.2244	11227	1118
5	Br	3.45	0.2479	8766	871
6	NO3	3.95	0.1868	8917	945
7	HPO4	6.75	0.1777	3677	235
8	SO4	9.05	0.3675	22114	1070

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 12:52:36


Sample Analysis Report

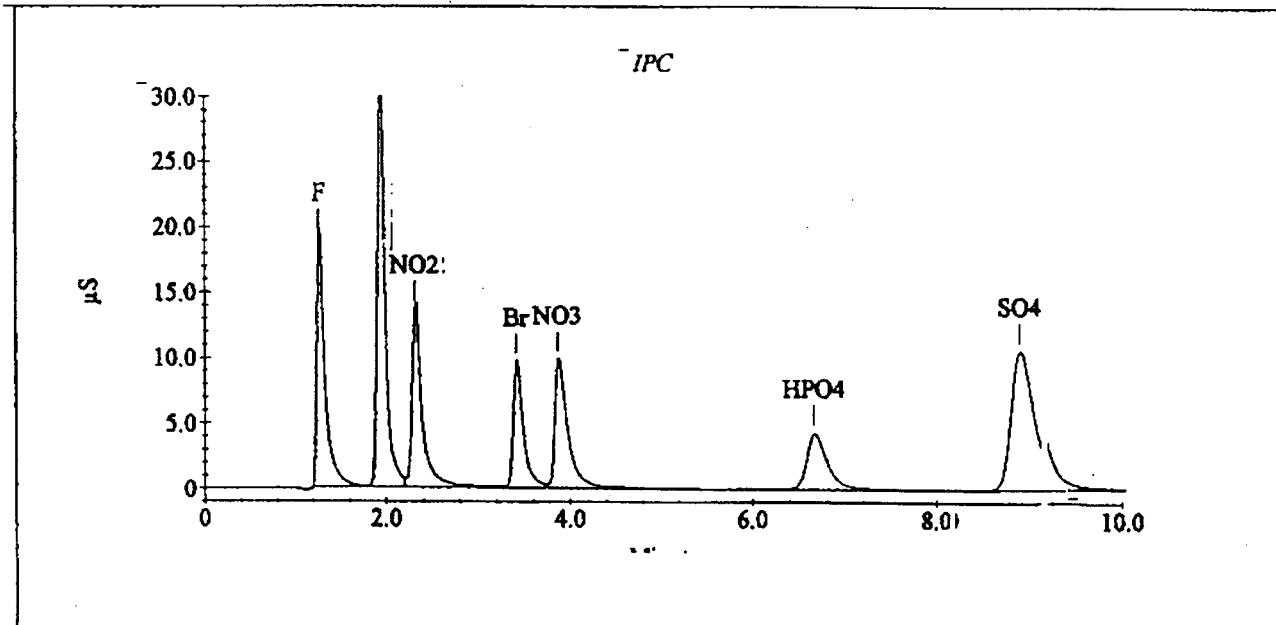
Sample Name : IPC
Data File Name : C:\PEAKNET\DATA\l\marb_009.DXD

Date Time Collected : 12/7/98 12:53:42 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.27	9.9249	1240086	197752
2	Cl	1.93	20.3583	1906534	306794
3	NO2	2.32	21.5566	1087121	140310
4	Br	3.42	20.0432	752638	98092
5	NO3	3.87	19.6645	998541	99672
7	HPO4	6.65	35.3561	810075	44498
8	SO4	8.90	30.2658	1953882	105433

Sample Analysis Report


Sample Name : IPC

Data File Name : C:\PEAKNET\DATA\marb_010.DXD

Date Time Collected : 12/7/98 1:06:00 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

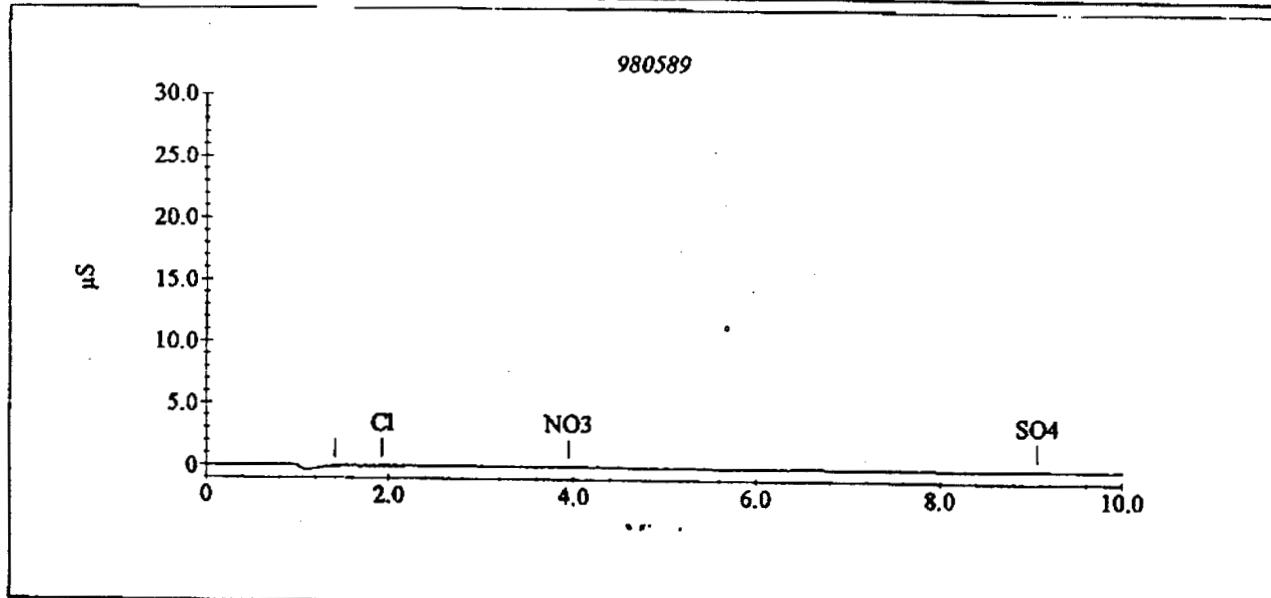
Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.27	9.8355	1228435	190057
2	Cl	1.95	20.2909	1898787	329680
3	NO2	2.32	21.5245	1085492	135512
4	Br	3.42	20.0000	750909	95787
5	NO3	3.87	19.7756	1004574	97456
6	HPO4	6.67	30.5612	689105	42624
7	SO4	8.92	30.2534	1953020	105474

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 13:17:10

Sample Analysis Report


Sample Name : 980589

Data File Name : C:\PEAKNET\DATA\rmarb_011.DXD

Date Time Collected : 12/7/98 1:18:19 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

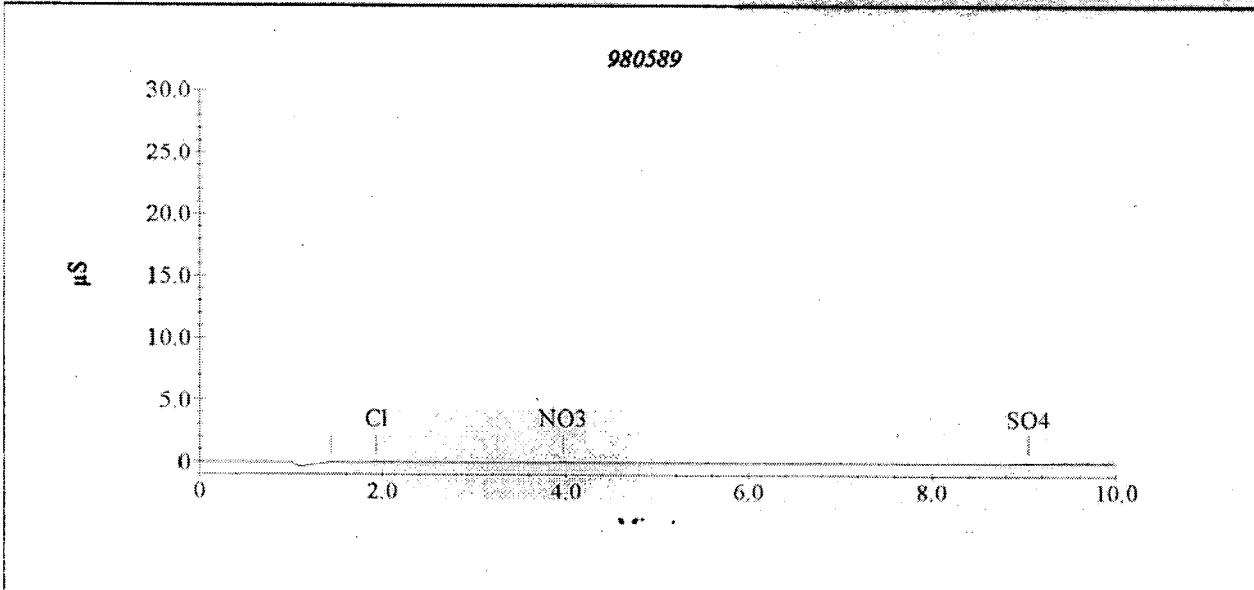
Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1		1.42	335.3700	3354	384
2	Cl	1.93	0.0702	5546	549
	NO2				
	Br				
3	NO3	3.95	0.0259	1235	147
	HPO4				
4	SO4	9.07	0.2286	13751	703

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 13:29:29

Sample Analysis Report


Sample Name : 980589

Data File Name : C:\PEAKNET\DATA\rmarb_012.DXD

Date Time Collected : 12/7/98 1:30:36 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

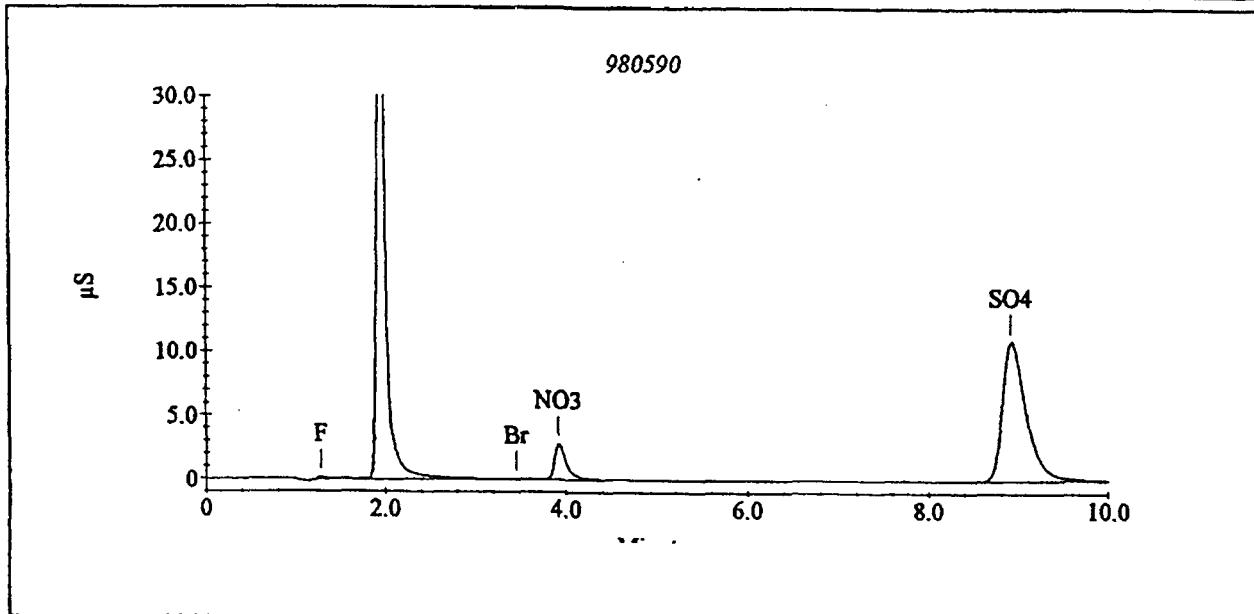
Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1		1.43	307.2800	3073	363
2	Cl	1.93	0.0670	5296	578
	NO2				
	Br				
3	NO3	3.97	0.0269	1283	156
	HPO4				
4	SO4	9.05	0.1968	11837	635

: PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 13:41:45


Sample Analysis Report

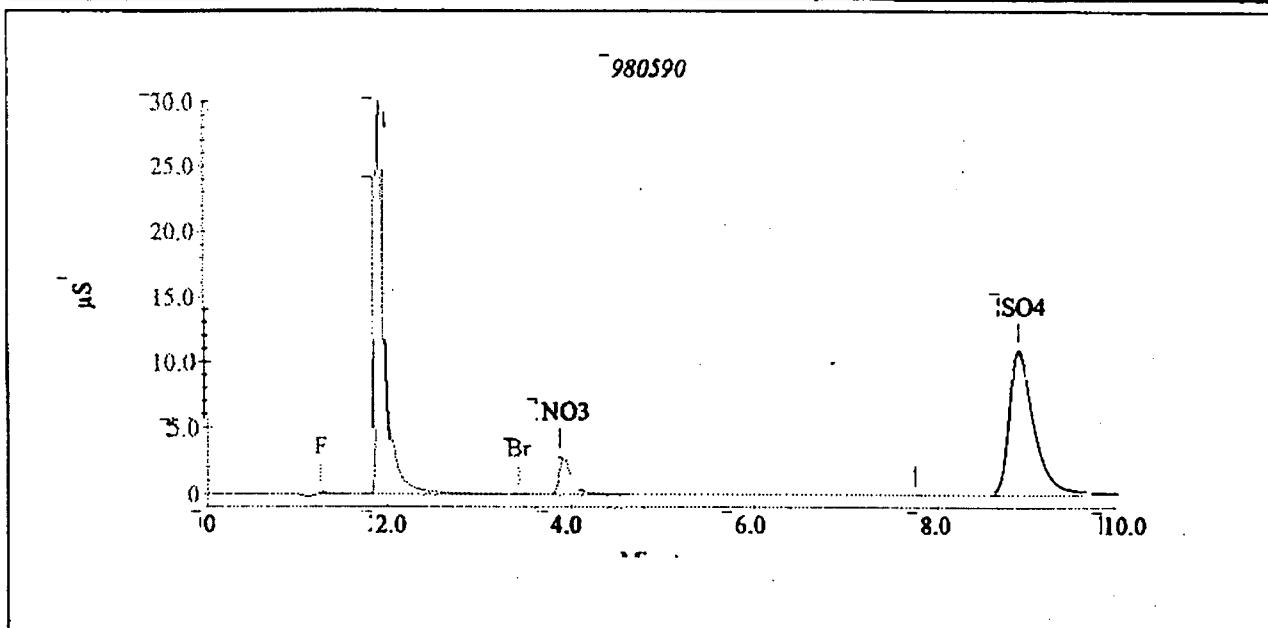
Sample Name : 980590
Data File Name : C:\PEAKNET\DATA\rmarb_013.DXD

Date Time Collected : 12/7/98 1:42:55 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.0683	8196	1527
2	Cl	1.97	29.2443	3098484	522594
	NO ₂				
3	Br	3.45	0.1634	5775	482
4	NO ₃	3.92	5.3971	261639	27711
	HPO ₄				
5	SO ₄	8.92	31.1114	2012968	108808

Sample Analysis Report


Sample Name : 980590

Data File Name : C:\PEAKNET\DATA\rmarb_014.DXD

Date Time Collected : 12/7/98 1:55:14 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.27	0.1066	12793	1557
2	Cl	1.97	29.2516	3099662	523166
	NO2				
3	Br	3.43	0.1420	5020	438
4	NO3	3.92	5.4457	264031	27696
	HPO4				
6	SO4	8.92	31.1032	2012395	108832

PeakNet 5.1

Page 1 of 1

Current Date: 12/7/98
Current Time: 14:06:24

Sample Analysis Report

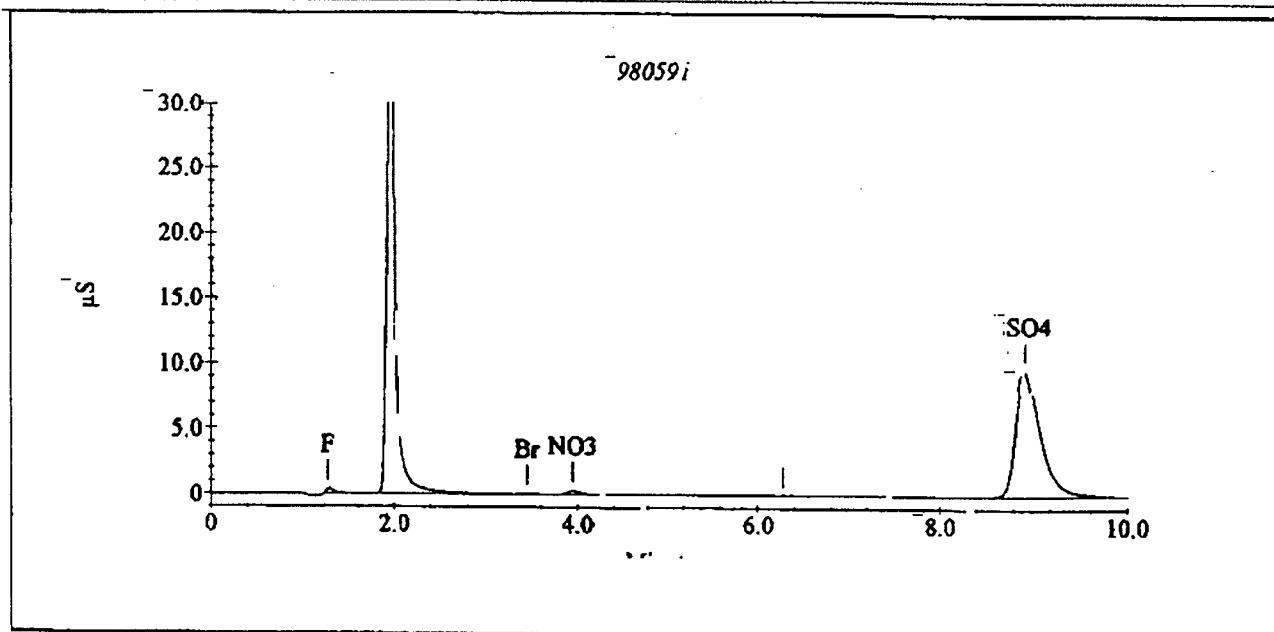
Sample Name : 980591
Data File Name : C:\PEAKNET\DATA\rmarb_015.DXD

Date Time Collected : 12/7/98 2:07:34 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.27	0.2266	27213	3790
2	Cl	1.95	26.2098	2644704	426570
	NO ₂				
3	Br	3.45	0.1651	5834	534
4	NO ₃	3.95	0.6443	30795	3055
	HPO ₄				
5	SO ₄	8.93	27.9161	1791177	96628

Sample Analysis Report


Sample Name : 980591

Data File Name : C:\PEAKNET\DATA\rmarb_016.DXD

Date Time Collected : 12/7/98 2:19:49 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

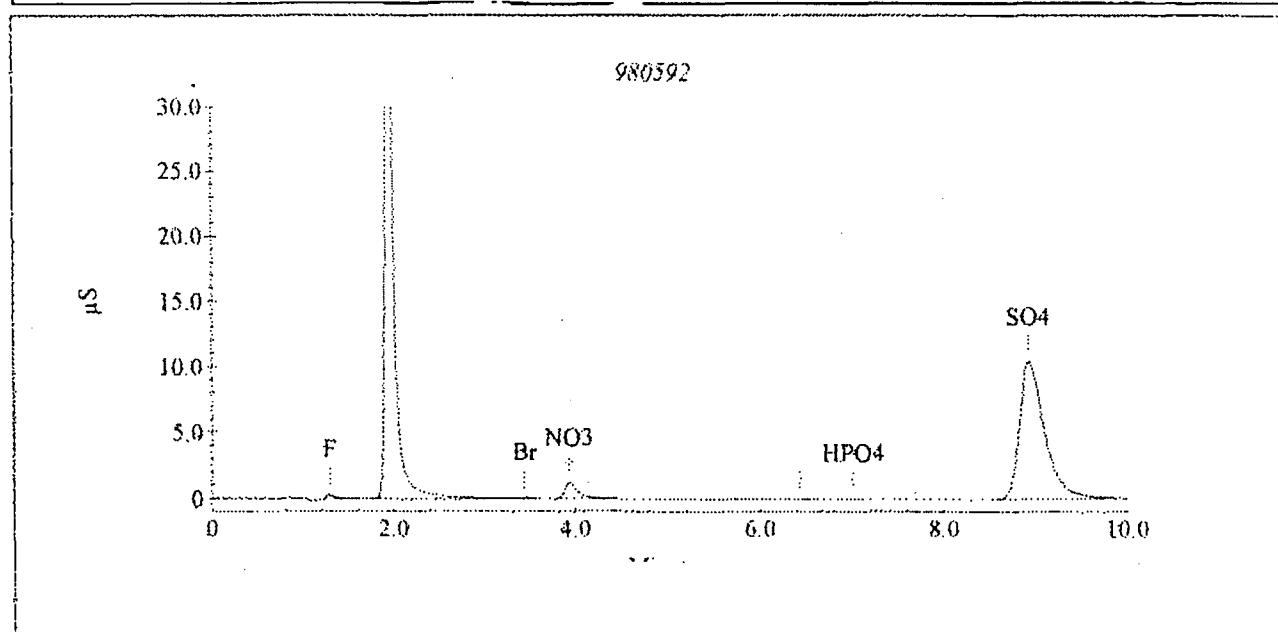
Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.27	0.2407	28911	3718
2	Cl	1.97	26.2330	2647942	454883
	NO ₂				
3	Br	3.45	0.2042	7220	596
4	NO ₃	3.95	0.6157	29425	2958
	HPO ₄				
6	SO ₄	8.93	27.8644	1787626	96447

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 14:30:57

Sample Analysis Report


Sample Name : 980592

Data File Name : C:\PEAKNET\DATA\rmarb_017.DXD

Date Time Collected : 12/7/98 2:32:14 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

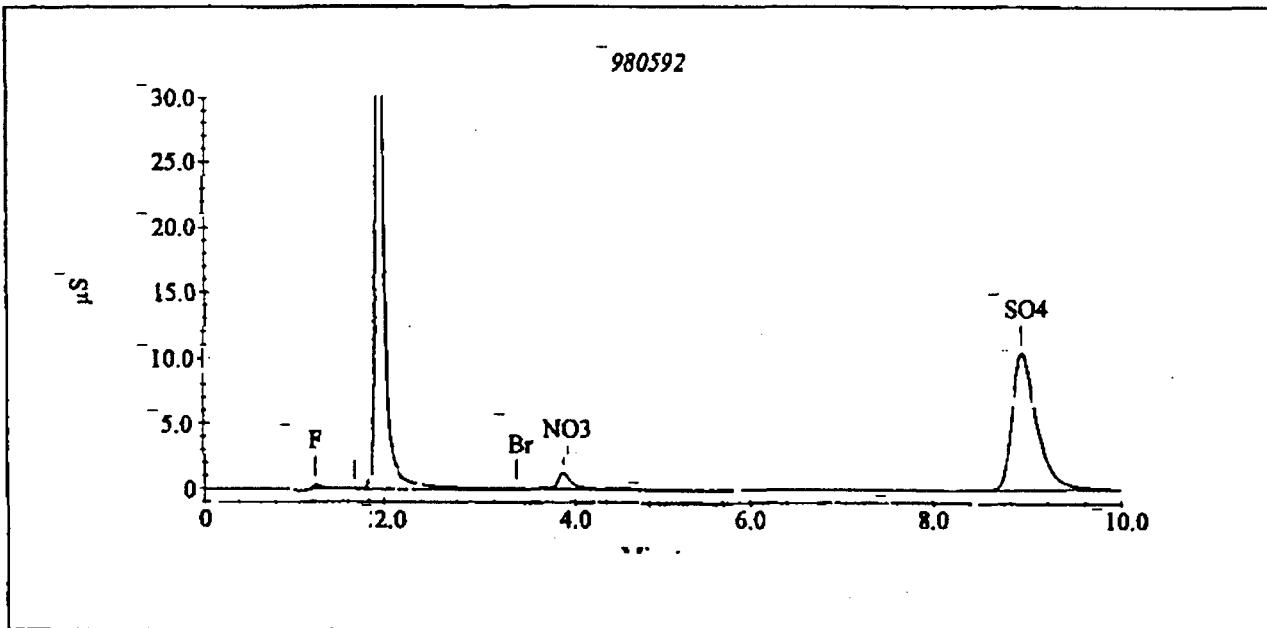
Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.1808	21710	2892
2	Cl	1.97	28.9346	3049072	510126
	NO2				
3	Br	3.45	0.2586	9144	728
4	NO3	3.93	2.4759	118981	11857
5	HPO4	7.02	0.0527	1090	85
7	SO4	8.93	29.9166	1929563	104034

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 14:43:25

Sample Analysis Report


Sample Name : 980592

Data File Name : C:\PEAKNET\DATA\rmarb_018.DXD

Date Time Collected : 12/7/98 2:44:34 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2mm
System Operator : NL Briant
Dilution Factor : 1.00

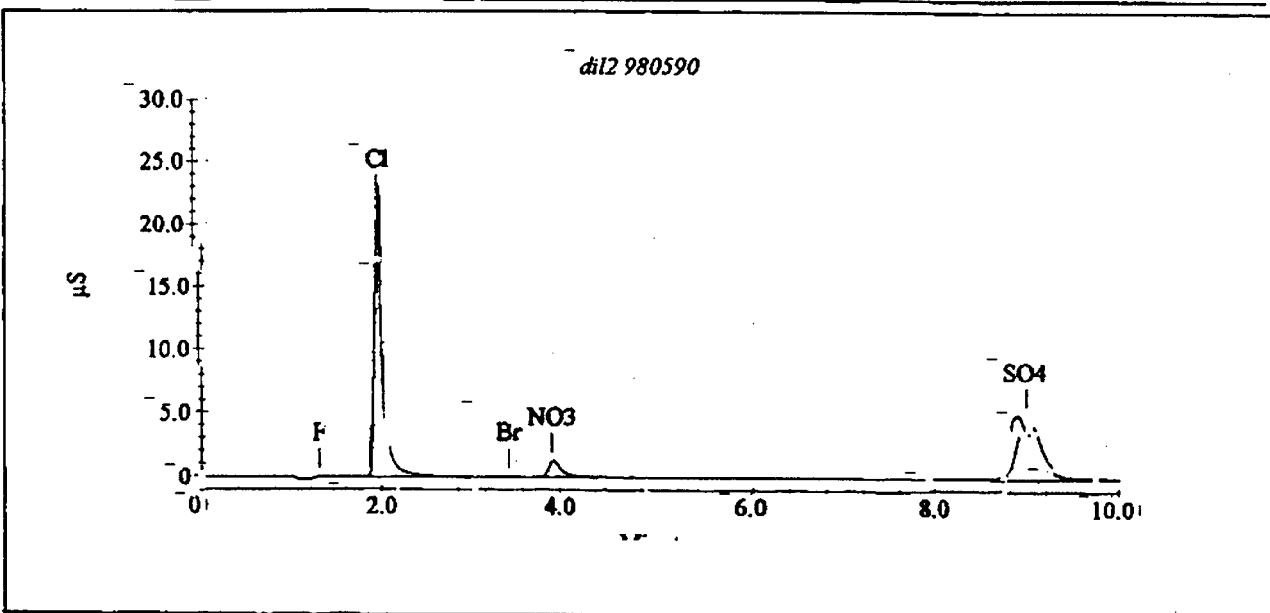
Peak Information : All Components

Peak #	Component Name	Retention Time:	Amount (mg/L)	Peak Area	Peak Height
1	F	1.27'	0.1909	22918	2713
3	Cl	1.97'	28.9815	3056498	512646
	NO2				
4	Br	3.43	0.3265	11545	839
5	NO3	3.93	2.6387	126864	12116
	HPO4				
6	SO4	8.92	29.9073	1928922	103656

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 14:55:41


Sample Analysis Report

Sample Name : dil2 980590
Data File Name : C:\PEAKNET\DATA\rmarb_019.DXD

Date Time Collected : 12/7/98 2:56:52 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

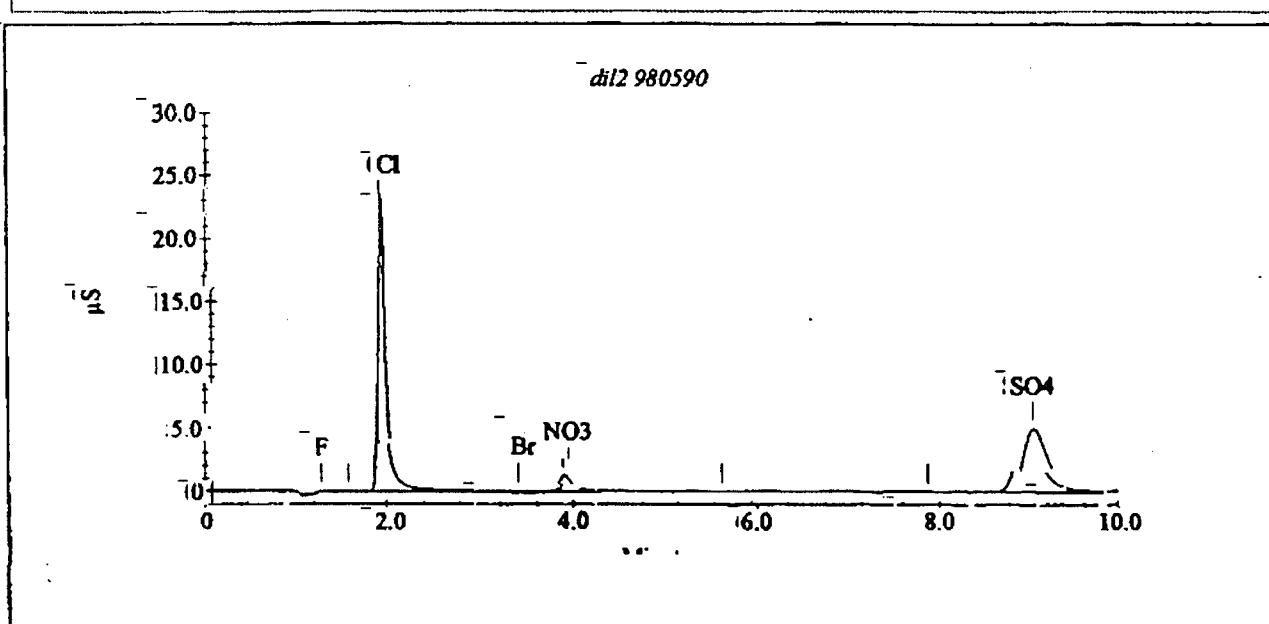
Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.0101	1212	350
2	Cl	1.93	15.3332	1363829	217538
	NO2				
3	Br	3.45	0.1631	5764	454
4	NO3	3.92	2.7643	132953	12286
	HPO4				
5	SO4	8.98	14.9949	932044	49631

PeakNet 5.

Page 1 of 1

Current Date : 12/7/98
Current Time : 15:08:00


Sample Analysis Report

Sample Name : dil2 980590
Data File Name : C:\PEAKNET\DATA\rmarb_020.DXD

Date Time Collected : 12/7/98 3:09:09 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

Peak Information : All Components

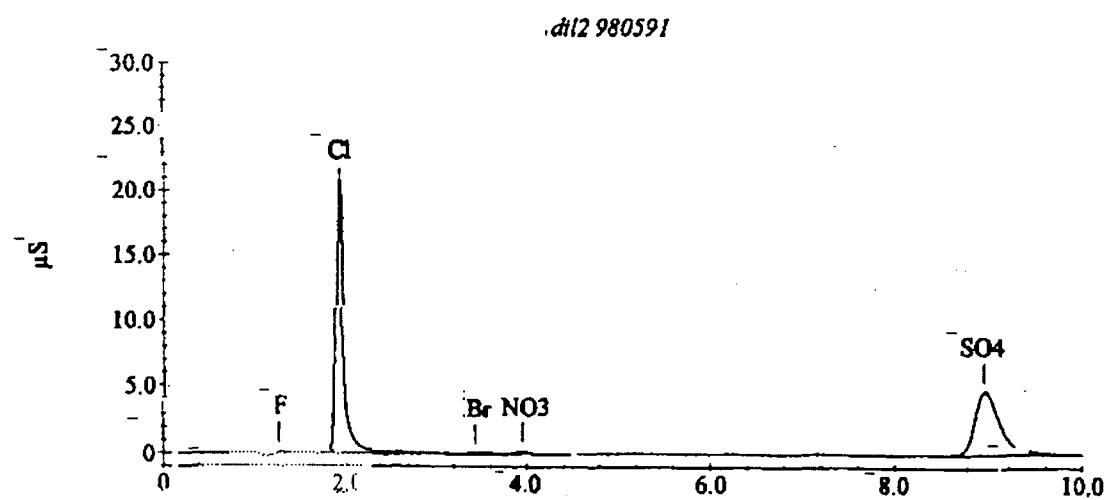
Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.0095	1137	304
3	Cl	1.93	15.3560	1366154	223424
	NO2				
4	Br	3.43	0.1979	6997	421
5	NO3	3.92	2.7697	133215	12362
	HPO4				
8	SO4	8.98	15.0265	934079	49401

PeakNet 5.1

Page 1 of

Current Date : 12/7/98
Current Time : 15:20:17

Sample Analysis Report


Sample Name : dil2 980591

Data File Name : C:\PEAKNET\DATA\marb_021.DXD

Date Time Collected : 12/7/98 3:21:27 PM
Method File Name : c:\peaknet\method\anions.met
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

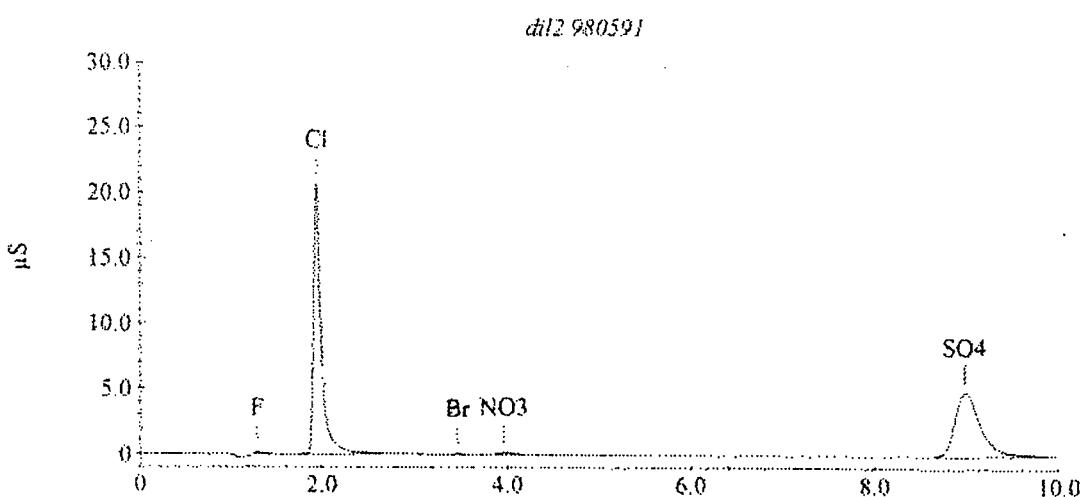
Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.0572	6868	1384
2	Cl	1.93	13.8917	1219306	196841
	NO ₂				
3	Br	3.43	0.1481	5234	345
4	NO ₃	3.95	0.4015	19179	1874
	HPO ₄				
5	SO ₄	8.98	14.8444	922366	48508

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 15:32:39


Sample Analysis Report

Sample Name : dil2 980591
Data File Name : C:\PEAKNET\DATA\rmarb_022.DXD

Date Time Collected : 12/7/98 3:33:45 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

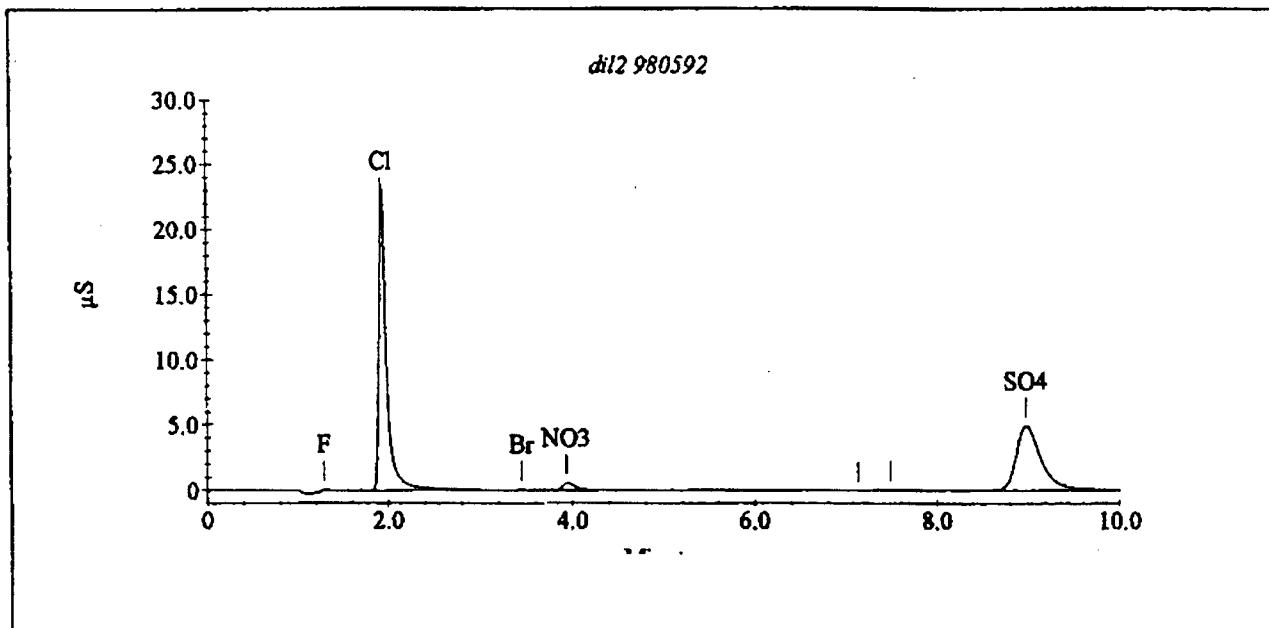
Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.0850	10202	1364
2	Cl	1.95	13.6251	1193048	205731
	NO ₂				
3	Br	3.47	0.0620	2190	231
4	NO ₃	3.97	0.3596	17175	1848
	HPO ₄				
5	SO ₄	8.98	14.7906	918908	48602

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 15:44:56


Sample Analysis Report

Sample Name : dil2 980592
Data File Name : C:\PEAKNET\DATA\rmarb_023.DXD

Date Time Collected : 12/7/98 3:46:06 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421,AS4A 2018 2mm
System Operator : NL Briant
Dilution Factor : 1.00

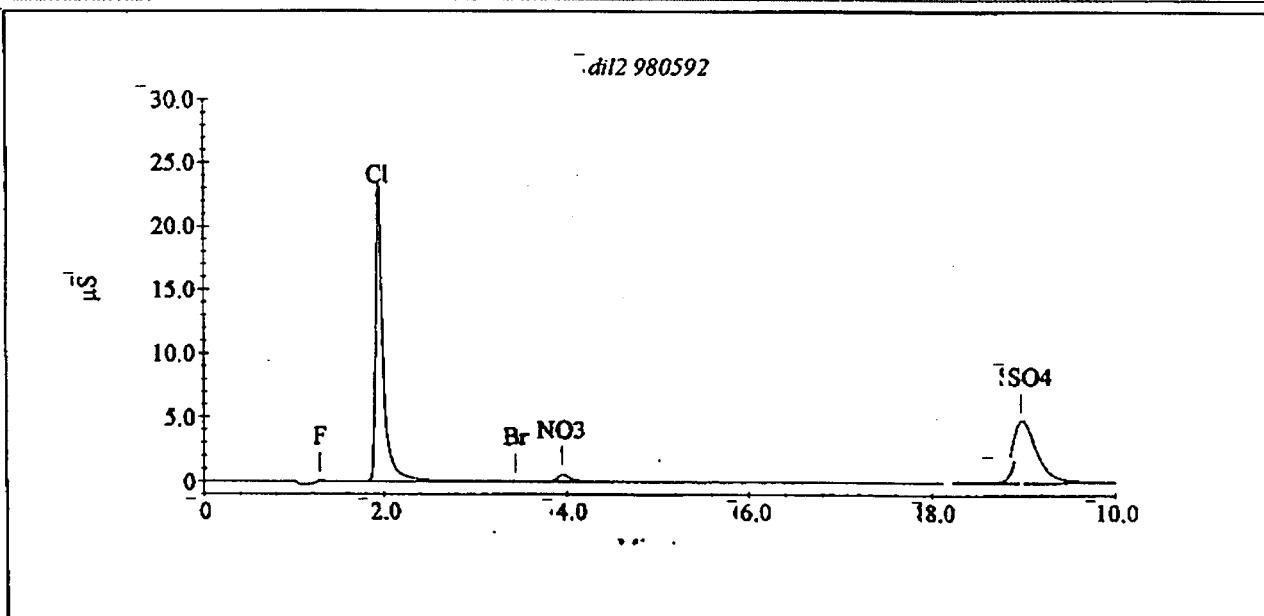
Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.0267	3199	731
2	Cl	1.93	15.1118	1341351	218005
	NO ₂				
3	Br	3.45	0.0736	2600	300
4	NO ₃	3.93	1.2171	158275	5356
	HPO ₄				
7	SO ₄	8.98	14.8369	921881	48869

PeakNet 5.1

Page 1 of 1

Current Date: 12/7/98
Current Time: 15:57:15


Sample Analysis Report

Sample Name : dil2 980592
Data File Name : C:\PEAKNET\DATA\rmarb_024.DXD

Date Time Collected : 12/7/98 3:58:24 PM
Method File Name : c:\peaknet\method\anions.mct
Column ID : AG4A #2421.AS4A 2mm
System Operator : NL.Briant
Dilution Factor : 1.00

Peak Information : All Components

Peak #	Component Name	Retention Time	Amount (mg/L)	Peak Area	Peak Height
1	F	1.28	0.0341	4092	838
2	Cl	1.93	15.6453	1395712	206159
	NO ₂				
3	Br	3.45	0.2261	7994	484
4	NO ₃	3.95	1.3621	65241	5712
	HPO ₄				
5	SO ₄	8.98	14.8259	921176	48592

PeakNet 5.1

Page 1 of 1

Current Date : 12/7/98
Current Time : 16:09:32

**APPENDIX F: CORRELATION OF AMR *DRIFT-SCALE*
COUPLED PROCESSES (DST AND THC SEEPAGE)
MODELS DATA (TABLE 3, MDL-NBS-HS-000001, REV00)
WITH ASD SAMPLE DATA**

Correlation of AMR Data (Table 3, MDL-NBS-HS-000001, Rev 00) with ASD Sample Data

Parameter/ Species	Concentration: Table 3/AMR (mg/l)	ASD Analytical Data ^{1,2,3}		Case No. ^{4,5}
		PERM-2 + PERM-3	PERM-1 + PERM-2	
F ⁻	0.86	0.86	0.66	609
Cl ⁻	117	116.6	116.4	609
SO ₄ ²⁻	116	115.6	117.2	609
K ⁺	8.0	8.0	6.5	579
Mg ²⁺	17	17.0	21.2	579
Ca ²⁺	101	101.8	102.5	579
SiO ₂ (aq) ^b	70.5	70.8	72.9	579
Na ⁺	61.3	61.3	60.8	579

1. ASD Analytical Data PERM-2 + PERM-3 is the average of the concentration values reported by ASD for PERM-2 + PERM-3 samples multiplied by the dilution factor.

2. ASD Analytical Data PERM-1 + PERM-2 is the average of the concentration values reported by ASD for PERM-1 + PERM-2 samples multiplied by dilution factor.

3. Dilution factor for IC data is 4; dilution factor for ICP/AES is 5.

4. Case 579 is ICP/AES data.

5. Case 609 is IC data.

6. SiO₂(mg/l) = Si(mg/l) × 2.145.

**APPENDIX G: TABLE 15, "MAJOR ION CONCENTRATION
REPORTED FOR TSW PORE WATER AT AMBIENT
TEMPERATURE," FROM AMR: *ENVIRONMENT ON THE
SURFACES OF THE DRIP SHIELD AND WASTE PACKAGE
OUTER BARRIER*," ANL-EBS-MD-000001 REV00**

Table 15. Major ion concentrations reported for TSW pore water at ambient temperature.

Ion	ESF-HD PERM-2	ESF-HD PERM-1
	Concentration (mg/L)	Concentration (mg/L)
Na ⁺	81	82
K ⁺	7	9
Mg ⁺⁺	16.8	17.4
Ca ⁺⁺	106	97
SiO ₂ (aq)	66	75
HCO ₃ ⁻		
SO ₄ ²⁻	111	120
Cl ⁻	110	123
NO ₃ ⁻	3	10
pH	8.32	8.31

DTN: LL99070204244.100

4.1.17 Henry's Law Constants for the Solubility of Oxygen in Several Aqueous Solutions

Table 16 lists parameters for calculating the Henry's Law Constant for oxygen solubility in pure water and three aqueous NaCl solutions. The Henry's Law constant, k , in MPa, was determined experimentally, and the variation with temperature fit to the following equation:

$$\ln k = a_0 + a_1/T + a_2/T^2 + a_3/T^3 + a_4/T^4 \quad (\text{Eq. 6})$$

where a_0 , a_1 , a_3 , and a_4 are experimentally determined constants, and T is temperature in Kelvin.

Also included in Table 16 are the characteristics of the fluids for which the k values were determined.

Table 16. Coefficients for Henry's Law Constants for the Oxygen Solubility in the NaCl Solutions and Demineralized Water (Cramer 1980, Tables I & V)

Solution	Molarity (moles/ 1,000 g)	Molarity (moles/ L)	Coefficients					Std dev (%)
			a_0	$a_1(10^3)$	$a_2(10^6)$	$a_3(10^9)$	$a_4(10^{12})$	
Demineralized water	0	0	-35.4408	5.58870	-2.67211	5.80947	-4.91667	5.6
NaCl-1	0.87	0.86	-23.8312	4.06434	-1.89188	4.02544	-3.35511	4.6
NaCl-2	2.87	2.78	-14.7705	2.96906	-1.38197	2.97589	-2.61863	5.3
NaCl-3	5.69	5.09	15.7694	-2.02638	1.38823	-3.76034	3.62602	4.9

DTN: LL000202705024.115

**APPENDIX H: CORRELATION OF AMR DATA (TABLE 15,
ANL-EBS-MD-000001, REV00) WITH ASD SAMPLE DATA**

Correlation of AMR Data (Table 15, ANL-EBS-MD-000001, Rev 00) with ASD Sample Data

Parameter/ Species	Case No. ^{2,3}	Reported Conc. (mg/l)	Reported Conc. (mg/l)	ASD Analytical Data ^{1,4}		
		Table 15 of AMR ESF-HD-PERM-2	Table 15 of AMR ESF-HD-PERM-1	ESF-HD- PERM-1	ESF-HD- PERM-2	ESF-HD- PERM-3
NO ₃ ⁻	609	3.0	10	21.0	3.0	10.0
Cl ⁻	609	110	123	122.8	110.0	123.0
SO ₄ ²⁻	609	111	120	124.4	111.6	120.0
K ⁺	579	7	9	6.0	7.0	9.0
Mg ²⁺	579	16.6	17.4	25.7	16.6	17.4
Ca ²⁺	579	106	97	98.5	106.5	97.0
SiO ₂ (aq) ⁵	579	66	75	79.2	66.3	74.9
Na ⁺	579	61	62	60.5	61.0	61.5

¹. Values shown are the ASD Analytical values from ICP/AES and IC Analyses multiplied by the dilution factor.

². Case 579 is ICP/AES Data.

³. Case 609 is IC Data.

⁴. Dilution factor for IC data is 4; dilution factor for ICP/AES data is 5.

⁵. SiO₂(mg/l) = Si(mg/l) × 2.145.

**APPENDIX I: CAR-006 REVALIDATION
EFFORT APPROVALS CONTINUED**

December 10, 1999
 LV.SQA.GPC.12/99-129
 Page 6

CAR-006 re-validation effort approvals continued:

Nomeclature	CSCI / STN Number	Responsible Organization	Responsible Manager
SOLVEQ/CHILLER V1.0	10057-1.0-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
SUPCRT92 V1.0	10058-1.0-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
T2R3D V1.4	10006-1.4-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
THEMM V1.0	10049-1.0-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
TOUGH2 V1.11MEOS1.2.3.4.5	10059-1.11MEOS1.2.3.4.5-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
TOUGH2 V1.11MEOS7RV0.3R	10064-1.11MEOS7RV0.3R-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
TOUGH2 V1.11MEOS7V0.12	10063-1.11MEOS7V0.12-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
TOUGH2 V1.3	10061-1.3-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo), C. Ho (Cliff)
TOUGH2 V1.3MEOS4V1.0	10062-1.3MEOS4V1.0-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
TOUGH2 V3.1.1	10149-3.1.1-00	Sandia National Laboratories	C. Ho (Cliff)
TOUGH2 V3.1.2	10151-3.1.2-00	Sandia National Laboratories	C. Ho (Cliff)
TOUGH2 V3.3	10152-3.3-00	Sandia National Laboratories	C. Ho (Cliff)
TOUGH2 V3.4.1	10147-3.4.1-00	Sandia National Laboratories	C. Ho (Cliff)
TOUGH2 V3.4.2	10146-3.4.2-00	Sandia National Laboratories	C. Ho (Cliff)
TOUGHREACT V1.0	10067-1.0-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
TOUGHREACT V2.1	10042-2.1-00	Lawrence Berkeley National Laboratories, Earth Sciences Division, Nuclear Waste	G. Bodvarsson (Bo)
TRACRN V1.0	10106-1.0-00	Los Alamos National Laboratories, CST	B. Travis (Bryan)

**APPENDIX J: RE: DISTRIBUTION OF PORE WATER
SAMPLES AND RESULTS/PH OF PORE WATER SAMPLES**

X-Sender: e212074@popgun.llnl.gov
X-Mailer: QUALCOMM Windows Eudora Pro Version 3.0.5 (32)
Date: Mon, 01 May 2000 10:48:51 -0700
To: "Holly H. Miller" <miller23@llnl.gov>
From: Laura Deloach <deloach2@llnl.gov>
Subject: Re: Distribution of Pore Water Samples

>X-Sender: ufa_james@ufaventures.com
>Date: Thu, 1 Oct 1998 15:14:25 -0700
>To: deloach2@llnl.gov
>From: "James L. Conca" <james@ufaventures.com>
>Subject: Re: Distribution of Pore Water Samples

>Hi Laura

>The cores are on their way.
>
>Here's what we did.
>
>Porewater was extracted from Yucca Mountain rock cores using a whole body
>acceleration as it should not alter the porewater chemistry during
>extraction. Handling of the core, loading into the UFA sample holders and
>buckets, and handling of the porewater were done in a glove box under an
>argon atmosphere in the absence of oxygen and air. The pH of the extracted
>porewater was measured immediately upon extraction in the glove box using a
>needle pH electrode with a battery-operated Beckman pH meter. The
>porewater was then sealed in vials under the argon atmosphere, and the
>vials were then vacuum-sealed in plastic to be sent to the appropriate
>analytical laboratory selected by TRW for further chemical analysis. Vials
>were kept under refrigeration until shipping. The rock cores will be
>returned to TRW after the project is completed.

>
>Jim
>

>*****
>UFA Ventures/NESTT <http://www.ufaventures.com>

> Come to us with all your
> fluid flow questions.
> We have the answers.
> Email: james@ufaventures.com
> (509) 375-3268 phone
>*****

	A	B	C	D	E	F	G
1	Core Sample	BH ID	Depth"(ft)	Vol. Water" (ml)	PH	Ini. Water Content"(Wt %)	
2	1002581	ESF-HD-PERM-2	22.7-23	0.09	7.77	2.72	
3	1002595	ESF-HD-PERM-2	41.5-41.8	0.11	7.96	3.4	
4	1002486	ESF-HD-PERM-1	19.9-20.1	0.22	8.32	3.09	
5	1002522	ESF-HD-PERM-3	30.7-31	0.25	7.98	3.82	
6	1002585	ESF-HD-PERM-2	26.2-26.4	0.3	7.89	2.94	
7	1002584	ESF-HD-PERM-2	25.9-26.2	0.32	8.13	3.24	
8	1002489	ESF-HD-PERM-1	25.9-26.1	0.41	7.76	2.88	
9	1002598	ESF-HD-PERM-2	46.5-46.8	0.41	7.8	3.69	
10	1002587	ESF-HD-PERM-2	30.5-30.9	0.5	7.51	2.88	
11	1002599	ESF-HD-PERM-2	46.8-47.1	0.6	7.7	3.59	
12	1002594	ESF-HD-PERM-2	41.1-41.5	0.6	7.7	3.26	
13	1002590	ESF-HD-PERM-1	26.1-26.4	0.61	8.02	2.92	
14	1002539	ESF-HD-PERM-3	56.3-56.7	0.66	7.6	3.02	
15	1002537	ESF-HD-PERM-3	52.7-53	0.68	7.6	2.93	
16	1002519	ESF-HD-PERM-3	26.1-26.4	0.86	7.99	4.14	
17	1002582	ESF-HD-PERM-2	23-23.3	0.9	8.39	3.59	
18	1002521	ESF-HD-PERM-3	30.3-30.7	1.85	8.23	4.1	
19	1002509	ESF-HD-PERM-1	56.6-57	2.04	8.21	5.25	
20	1002488	ESF-HD-PERM-1	23.1-23.3	2.49	7.79	2.51	
21	1002586	ESF-HD-PERM-2	30.1-30.5	2.84	8.32	6.25	
22	1002508	ESF-HD-PERM-1	54.4-54.8	0.01	NR	2.8	
23	1002510	ESF-HD-PERM-1	57-57.5	0.05	NR	3.4	
24	1002597	ESF-HD-PERM-2	44.3-44.6	0	NR	1.9	
25	1002534	ESF-HD-PERM-3	46.4-46.6	0	NR	2.24	
26	1002531	ESF-HD-PERM-3	44.3-44.6	0.05	NR	1.55	
27	1002533	ESF-HD-PERM-3	46.1-46.4	0	NR	2.85	
28							
29	Core Sample	BH ID	Depth"(ft)	Vol. Water" (ml)	PH	Ini. Water Content"(Wt %)	
30	1002581	ESF-HD-PERM-2	22.7-23	0.09	7.77	2.72	
31	1002595	ESF-HD-PERM-2	41.5-41.8	0.11	7.96	3.4	
32	1002486	ESF-HD-PERM-1	19.9-20.1	0.22	8.32	3.09	
33	1002522	ESF-HD-PERM-3	30.7-31	0.25	7.98	3.82	
34	1002585	ESF-HD-PERM-2	26.2-26.4	0.3	7.89	2.94	
35	1002584	ESF-HD-PERM-2	25.9-26.2	0.32	8.13	3.24	
36	1002489	ESF-HD-PERM-1	25.9-26.1	0.41	7.76	2.88	
37	1002598	ESF-HD-PERM-2	46.5-46.8	0.41	7.8	3.69	
38	1002587	ESF-HD-PERM-2	30.5-30.9	0.5	7.51	2.88	
39	1002599	ESF-HD-PERM-2	46.8-47.1	0.6	7.7	3.59	
40	1002594	ESF-HD-PERM-2	41.1-41.5	0.6	7.7	3.26	
41	1002590	ESF-HD-PERM-1	26.1-26.4	0.61	8.02	2.92	
42	1002539	ESF-HD-PERM-3	56.3-56.7	0.66	7.6	3.02	
43	1002537	ESF-HD-PERM-3	52.7-53	0.68	7.6	2.93	
44	1002519	ESF-HD-PERM-3	26.1-26.4	0.86	7.99	4.14	
45	1002582	ESF-HD-PERM-2	23-23.3	0.9	8.39	3.59	
46	1002521	ESF-HD-PERM-3	30.3-30.7	1.85	8.23	4.1	
47	1002509	ESF-HD-PERM-1	56.6-57	2.04	8.21	5.25	
48	1002488	ESF-HD-PERM-1	23.1-23.3	2.49	7.79	2.51	
49	1002586	ESF-HD-PERM-2	30.1-30.5	2.84	8.32	6.25	
50	1002508	ESF-HD-PERM-1	54.4-54.8	0.01	NR	2.8	
51	1002510	ESF-HD-PERM-1	57-57.5	0.05	NR	3.4	
52	1002597	ESF-HD-PERM-2	44.3-44.6	0	NR	1.9	
53	1002534	ESF-HD-PERM-3	46.4-46.6	0	NR	2.24	
54	1002531	ESF-HD-PERM-3	44.3-44.6	0.05	NR	1.55	
55	1002533	ESF-HD-PERM-3	46.1-46.4	0	NR	2.85	

**APPENDIX K: RECOMMENDATION OF UFA
VENTURES, INC. AS A QUALIFIED SUPPLIER
AND SAMPLE TRACEABILITY DOCUMENTATION**

ID:

MAY 10 '00 8:31 No.002 P.05

OFFICE OF LILIAN RADIOACTIVE WASTE MANAGEMENT SUPPLIER EVALUATION REPORT				
QA : 6 Page 1 of 2				
1 PURPOSE: <input type="checkbox"/> INITIAL EVALUATION <input type="checkbox"/> TRIENNIAL AUDIT <input type="checkbox"/> REMOVE SUPPLIER <input checked="" type="checkbox"/> INITIAL AUDIT <input type="checkbox"/> SCOPE CHANGE <input type="checkbox"/> ANNUAL EVALUATION <input type="checkbox"/> PROGRAM CHANGE				
SUPPLIER INFORMATION	SUPPLIER NAME/ADDRESS UFA Ventures, Inc. 2000 Logston Blvd. Richland, WA 99352		CONTACT NAME/TITLE Dr. James Conca, President	
			TELEPHONE 509 - 375 - 3268	
	ITEM(S) N/A		SERVICE(S) Analytical testing of Rock Samples	
	PROCUREMENT DOCUMENT NUMBER(S) N/A		QA MANUAL QA Manual	REVISION LEVEL OR DATE rev. 2 dated 12/18/97
			CODES/STD COMMITTED TO IN QA MANUAL	
			<input type="checkbox"/> 10 CFR 50B <input type="checkbox"/> ISO 9000 <input type="checkbox"/> ANSI N 45.2 <input checked="" type="checkbox"/> DARD <input type="checkbox"/> NQA-1 <input type="checkbox"/>	
3 TYPE	<input checked="" type="checkbox"/> QUALITY RECORDS REVIEW <input type="checkbox"/> SURVEY <input type="checkbox"/> SUPPLIER HISTORY <input checked="" type="checkbox"/> AUDIT			
4 RESTRICTIONS & COMMITMENTS	NONE			
Continued <input type="checkbox"/>				
5 REMARKS	SER issued to document results of OQA Supplier Audit OQA-SA-97-028 and to document evaluation of Revision 2 of UFA's QA manual.			
Continued <input type="checkbox"/>				
6 APPROVAL	REEVALUATION DUE DATE 7/11/98	AUDIT DUE DATE 7/11/2000		
DIRECTOR, OQA: <u>C. Hansen</u> Signature <u>1/9/98</u> Date				
<input checked="" type="checkbox"/> QUALIFIED <input type="checkbox"/> QUALIFIED WITH RESTRICTION(S) <input type="checkbox"/> NOT QUALIFIED REQUESTOR: <u>Robert W. Craig</u> Signature <u>3/27/98</u> Date				
7 VERIFICATION	VERIFIED CORRECT INPUT OF DATA TO OSL VERIFIER: <u>S. J. Hanus</u> Signature <u>4/11/98</u> Date Document released 4/11/98			

Exhibit QAP-7.2.10401

Rev. 06/02/97
ENCLOSURE

**OFFICE OF LILIAN RADIOACTIVE WASTE MANAGEMENT
SUPPLIER EVALUATION REPORT**

Page 2 of 2

1 PURPOSE:		<input checked="" type="checkbox"/> AUDIT	<input checked="" type="checkbox"/> QUALITY RECORDS EVALUATION		
		<input type="checkbox"/> SURVEY			
2 SUPPLIER NAME: UPA Ventures, Inc.					
RECORDS / AUDIT / SURVEY	3	QA PROGRAM ELEMENT	SAT	UNSAT	N/A
	1	ORGANIZATION	✓		
	2	QUALITY ASSURANCE PROGRAM	✓		
	3	DESIGN CONTROL			✓
	4	PROCUREMENT DOCUMENT CONTROL	✓		
	5	IMPLEMENTING DOCUMENTS	✓		
	6	DOCUMENT CONTROL	✓		
	7	CONTROL OF PURCHASED ITEMS AND SERVICES	✓		
	8	IDENTIFICATION AND CONTROL OF ITEMS			✓
	9	CONTROL OF SPECIAL PROCESSES			✓
	10	INSPECTION			✓
	11	TEST CONTROL			✓
	12	CONTROL OF MEASURING AND TEST EQUIPMENT	✓		
	13	HANDLING, STORAGE AND SHIPPING			✓
	14	INSPECTION, TEST AND OPERATING STATUS			✓
	15	NONCONFORMANCES			✓
	16	CORRECTIVE ACTION	✓		
	17	QUALITY ASSURANCE RECORDS	✓		
	18	AUDITS	✓		
	SUPPLEMENT I: SOFTWARE				
SUPPLEMENT II: SAMPLE CONTROL					
SUPPLEMENT III: SCIENTIFIC INVESTIGATION					
SUPPLEMENT IV: FIELD SURVEYING					
SUPPLEMENT V: CONTROL OF THE ELECTRONIC MANAGEMENT OF DATA					
DESCRIPTION OF QUALITY ASSURANCE PROGRAM PROCEDURES OR OTHER SIMILAR DOCUMENT(S) REVIEWED/EVALUATED					
TITLE/REVISION: UPA's Manual 001, Revision 2 was used during the supplier audit. After the audit, UPA revised their manual completely and issued a new Quality Assurance Manual at Revision 1 dated 7/21/97. On 12/18/97, UPA issued Revision 2 of their QA Manual and the OQA QA records evaluation was performed on this revision of the manual.					
Continued <input type="checkbox"/>					
4 AUDIT/SURVEY: <u>OQA-SA-97-028</u> DATE: <u>07/11/97</u> PERFORMED BY: <u>Hesson/Maudlin</u>					
EVALUATION RESULTS	The QA records evaluation review of the UPA QA Manual, Revision 2, was found to comply with the QA requirements for Suppliers of Analytical Services (Rev. 0). The results of the supplier audit OQA-SA-97-028 indicated effective implementation of the UPA QA program. Deficiency Report (DR) YM-97-D-070 was issued to document specific conditions that did not result in unsatisfactory implementation of the QA program elements. Corrective Actions of the Deficiency Report (DR) YM-97-D-070 have been completed and a recommendation for closure was submitted on 12/19/97.				
	Continued <input type="checkbox"/>				
IF RESTRICTIONS OR DOCUMENTED COMMITMENTS ARE APPLICABLE, IDENTIFY ON SUPPLIER EVALUATION SHEET, PAGE 1.					
EVALUATOR: <u>RD Habbe</u> Robert D. Habbe	SIGNATURE	01/06/98 DATE			

Exhibit QAP-7.2.1

Rev. 08/02/97

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT SUPPLIER EVALUATION REPORT				
Page 1 of 2				
1 PURPOSE: <input type="checkbox"/> INITIAL EVALUATION <input type="checkbox"/> TRIENNIAL AUDIT <input type="checkbox"/> REMOVE SUPPLIER <input checked="" type="checkbox"/> INITIAL AUDIT <input type="checkbox"/> SCOPE CHANGE <input type="checkbox"/> ANNUAL EVALUATION <input checked="" type="checkbox"/> PROGRAM CHANGE				
SUPPLIER INFORMATION	2 SUPPLIER NAME/ADDRESS UFA Ventures, Inc. _____ 2000 Logistion Blvd. _____ Richland, WA 99352 _____		CONTACT NAME/TITLE Dr. James Conca, President _____	
			TELEPHONE 509 - 375 - 3268	
	ITEM(S) N/A		SERVICE(S) Analytical testing of Rock Samples	
	PROCUREMENT DOCUMENT NUMBER(S) N/A		QA MANUAL QA Manual	REVISION LEVEL OR DATE rev. 2 dated 12/18/97
			CODES/STD COMMITTED TO IN QA MANUAL	
			<input type="checkbox"/> 10 CFR 50B	<input type="checkbox"/> ISO 9000
			<input type="checkbox"/> ANSI N 45.2	<input checked="" type="checkbox"/> OARD
			<input type="checkbox"/> NQA-1	<input type="checkbox"/>
3 TYPE	<input checked="" type="checkbox"/> QUALITY RECORDS REVIEW <input type="checkbox"/> SURVEY <input type="checkbox"/> SUPPLIER HISTORY <input checked="" type="checkbox"/> AUDIT			
4 RESTRICTIONS & COMMITMENTS	NONE _____ _____ _____			
	Continued <input type="checkbox"/>			
5 REMARKS	SER issued to document results of OQA Supplier Audit QQA-SA-97-028 and to document evaluation of Revision 2 of _____ UFA's QA manual. _____ _____ _____			
	Continued <input type="checkbox"/>			
6 APPROVAL	REEVALUATION DUE DATE <u>7/11/98</u> AUDIT DUE DATE <u>7/11/2000</u> DIRECTOR, OQA: <u>B. H. Conca</u> <u>1/9/98</u> Signature _____ Date _____ <input checked="" type="checkbox"/> QUALIFIED <input type="checkbox"/> QUALIFIED WITH RESTRICTION(S) <input type="checkbox"/> NOT QUALIFIED REQUESTOR: _____ Signature _____ Date _____			
7 VERIFICATION	VERIFIED CORRECT INPUT OF DATA TO QSL VERIFIER: _____ Signature _____ Date _____			

Exhibit QAP-7.2.1A-4

Rev. 06/02/97
ENCLOSURE

**OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT
SUPPLIER EVALUATION REPORT**

Page 2 of 2

1 PURPOSE:		<input checked="" type="checkbox"/> AUDIT	<input checked="" type="checkbox"/> QUALITY RECORDS EVALUATION			
		<input type="checkbox"/> SURVEY				
2 SUPPLIER NAME: UFA Ventures, Inc.						
RECORDS / AUDIT / SURVEY	3 QA PROGRAM ELEMENT		SAT	UNSAT	N/A	
	1 ORGANIZATION		✓			
	2 QUALITY ASSURANCE PROGRAM		✓			
	3 DESIGN CONTROL				✓	
	4 PROCUREMENT DOCUMENT CONTROL		✓			
	5 IMPLEMENTING DOCUMENTS		✓			
	6 DOCUMENT CONTROL		✓			
	7 CONTROL OF PURCHASED ITEMS AND SERVICES		✓			
	8 IDENTIFICATION AND CONTROL OF ITEMS				✓	
	9 CONTROL OF SPECIAL PROCESSES				✓	
	10 INSPECTION				✓	
	11 TEST CONTROL				✓	
	12 CONTROL OF MEASURING AND TEST EQUIPMENT		✓			
	13 HANDLING, STORAGE AND SHIPPING				✓	
	14 INSPECTION, TEST AND OPERATING STATUS				✓	
	15 NONCONFORMANCES				✓	
	16 CORRECTIVE ACTION		✓			
	17 QUALITY ASSURANCE RECORDS		✓			
	18 AUDITS		✓			
	SUPPLEMENT I	SOFTWARE	✓			
SUPPLEMENT II	SAMPLE CONTROL	✓				
SUPPLEMENT III	SCIENTIFIC INVESTIGATION		✓			
SUPPLEMENT IV	FIELD SURVEYING				✓	
SUPPLEMENT V	CONTROL OF THE ELECTRONIC MANAGEMENT OF DATA				✓	
DESCRIPTION OF QUALITY ASSURANCE PROGRAM PROCEDURES OR OTHER SIMILAR DOCUMENT(S) REVIEWED/EVALUATED						
TITLE/REVISION: <u>UFA's Manual 001, Revision 2 was used during the supplier audit. After the audit, UFA revised their manual completely and issued a new Quality Assurance Manual as Revision 1 dated 7/21/97. On 12/18/97, UFA issued Revision 2 of their QA Manual and the QQA QA records evaluation was performed on this revision of the manual.</u>						
Continued <input type="checkbox"/>						
EVALUATION RESULTS	4 AUDIT/SURVEY: <u>QA-SA-97-028</u>		DATE: <u>07/11/97</u>	PERFORMED BY: <u>Hasson/Maudlin</u>		
	<p>The QA records evaluation review of the UFA QA Manual, Revision 2, was found to comply with the QA requirements for Suppliers of Analytical Services (Rev.0). The results of the supplier audit QQA-SA-97-028 indicated effective implementation of the UFA QA program. Deficiency Report (DR) YM-97-D-070 was issued to document specific conditions that did not result in unsatisfactory implementation of the QA program elements. Corrective Actions of the Deficiency Report (DR) YM-97-D-070 have been completed and a recommendation for closure was submitted on 12/19/97.</p>					Continued <input type="checkbox"/>
IF RESTRICTIONS OR DOCUMENTED COMMITMENTS ARE APPLICABLE, IDENTIFY ON SUPPLIER EVALUATION SHEET, PAGE 1.						
EVALUATOR <u>RD Habbe</u>	Robert D. Habbe	SIGNATURE	01/06/98	DATE		

Exhibit QAP-7.2.1

Rev. 06/02/97

>Date: 23 Mar 1998 10:17:52 -0800
>From: "Wunan Lin" <lin1@llnl.gov>
>Subject: FWD>Alcove 5 samples to USGS
>To: "I deloach" <deloach2@llnl.gov>, "Nina D. Rosenberg"
<rosenberg4@llnl.gov>,
> "Steve Blair" <Steve.Blair@quickmail.llnl.gov>,
> "Tom Buscheck" <Tom.Buscheck@quickmail.llnl.gov>,
> "Greg Gdowski" <Greg.Gdowski@quickmail.llnl.gov>,
> "Bill Glassley" <Bill.Glassley@quickmail.llnl.gov>,
> "Kenrick 'Ken' Lee" <Kenrick.Ken.Lee@quickmail.llnl.gov>,
> "Annmarie Meike" <Annmarie.Meike@quickmail.llnl.gov>,
> "Abe Ramirez" <Abe.Ramirez@quickmail.llnl.gov>,
> "Jeff Roberts" <Jeff.Roberts@quickmail.llnl.gov>
>Cc: "Joseph C. Farmer" <farmer4@llnl.gov>,
> "mike fernandez" <fernandez4@llnl.gov>,
> "ernie hardin" <ernest_hardin@notes.ymp.gov>,
> "Cynthia E. Palmer" <palmer2@llnl.gov>,
> "dale wilder" <wilder1@llnl.gov>,
> "Jim Blink" <Jim.Blink@quickmail.llnl.gov>
>X-Mailer: Mail*Link SMTP-QM 4.1.0
>
>Mail*Link. SMTP FWD>Alcove 5 samples to USGS
>
>For your information.
>
>WL
>
>-----
>Date: 3/20/98 3:53 PM
>From: Mark_Peters@notes.ymp.gov
>
>Chris,
>
>Please ship the following samples from the Thermal Testing Facility to Jim
>Conca at the following address:
>
>James Conca
>UFA Ventures, Inc.
>2000 Logston Blvd.
>Richland, WA 99352
>
>The samples are as follows:
>
>ESF-HD-PERM-1 - Sample ID 1001122 - Specimen ID 1002485
>ESF-HD-PERM-1 - Sample ID 1001123 - Specimen ID 1002486
>ESF-HD-PERM-1 - Sample ID 1001126 - Specimen ID 1002488
>ESF-HD-PERM-1 - Sample ID 1001129 - Specimen ID 1002489
>ESF-HD-PERM-1 - Sample ID 1001130 - Specimen ID 1002490
>ESF-HD-PERM-1 - Sample ID 1001176 - Specimen ID 1002508
>ESF-HD-PERM-1 - Sample ID 1001181 - Specimen ID 1002509
>ESF-HD-PERM-1 - Sample ID 1001182 - Specimen ID 1002510
>ESF-HD-PERM-2 - Sample ID 1001434 - Specimen ID 1002581
>ESF-HD-PERM-2 - Sample ID 1001435 - Specimen ID 1002582
>ESF-HD-PERM-2 - Sample ID 1001441 - Specimen ID 1002584
>ESF-HD-PERM-2 - Sample ID 1001442 - Specimen ID 1002585
>ESF-HD-PERM-2 - Sample ID 1001448 - Specimen ID 1002586
>ESF-HD-PERM-2 - Sample ID 1001449 - Specimen ID 1002587

>ESF-HD-PERM-2 - Sample ID 1001466 - Specimen ID 1002594
>ESF-HD-PERM-2 - Sample ID 1001467 - Specimen ID 1002595
>ESF-HD-PERM-2 - Sample ID 1001473 - Specimen ID 1002596
>ESF-HD-PERM-2 - Sample ID 1001474 - Specimen ID 1002597
>ESF-HD-PERM-2 - Sample ID 1001480 - Specimen ID 1002598
>ESF-HD-PERM-2 - Sample ID 1001481 - Specimen ID 1002599
>ESF-HD-PERM-3 - Sample ID 1001235 - Specimen ID 1002519
>ESF-HD-PERM-3 - Sample ID 1001236 - Specimen ID 1002520
>ESF-HD-PERM-3 - Sample ID 1001240 - Specimen ID 1002521
>ESF-HD-PERM-3 - Sample ID 1001241 - Specimen ID 1002522
>ESF-HD-PERM-3 - Sample ID 1001249 - Specimen ID 1002525
>ESF-HD-PERM-3 - Sample ID 1001255 - Specimen ID 1002527
>ESF-HD-PERM-3 - Sample ID 1001270 - Specimen ID 1002531
>ESF-HD-PERM-3 - Sample ID 1001271 - Specimen ID 1002532
>ESF-HD-PERM-3 - Sample ID 1001275 - Specimen ID 1002533
>ESF-HD-PERM-3 - Sample ID 1001276 - Specimen ID 1002534
>ESF-HD-PERM-3 - Sample ID 1001284 - Specimen ID 1002537
>ESF-HD-PERM-3 - Sample ID 1001290 - Specimen ID 1002539
>
>Please expedite this shipment by utilizing overnight shipping. Please also
>ship these sample under controlled conditions (i.e. blue ice and
>temperature probe). Thanks.
>
>Mark Peters
>
>
>----- RFC822 Header Follows -----
>Received: by quickmail.llnl.gov with ADMIN;20 Mar 1998 15:52:35 -0800
>Received: from ymps5 by pierce.llnl.gov (8.8.5/LLNL-1.18/llnl.gov-04.01)
> id PAA12499; Fri, 20 Mar 1998 15:52:34 -0800 (PST)
>From: Mark_Peters@notes.ypm.gov
>Received: from ymln11.ypm.gov by ymps5.ypm.gov (PMDF V5.1-7 #23027)
> with SMTP id <0EQ5685BQ004H5@ymps5.ypm.gov> for lin1@llnl.gov; Fri,
> 20 Mar 1998 15:50:29 -0800 (PST)
>Received: by ymln11.ypm.gov(Lotus SMTP MTA v1.1 (385.6 5-6-1997))
> id 882565CD.00831FC0 ; Fri, 20 Mar 1998 15:52:13 -0800
>Date: Fri, 20 Mar 1998 15:47:35 -0800
>Subject: Alcove 5 samples to USGS
>To: Chris_Lewis@notes.ypm.gov
>Cc: Robin_Datta@notes.ypm.gov, Douglas_Weaver@notes.ypm.gov,
> Alan_Mitchell@notes.ypm.gov, lin1@llnl.gov,
>Yvonne_Tsang@notes.ypm.gov,
> Michael_Riggins@notes.ypm.gov, Ardyth_Simmons@notes.ypm.gov,
> sslevy@lanl.gov, Cynthia_Palmer@notes.ypm.gov,
> Zell_Peterman@notes.ypm.gov, Thomas_Reynolds@notes.ypm.gov
>Message-id: <882565CD.00809F0C.00@ymln11.ypm.gov>
>MIME-version: 1.0
>Content-type: text/plain; charset=US-ASCII
>X-Lotus-FromDomain: CRWMS
>
>
>
>

UFA Ventures, Inc.

2000 Logston Boulevard
Richland, Washington 99352
james@ufaventures.com

(509) 375-3268
FAX 375-7451
<http://www.ufaventures.com>

August 11, 1998

Dr. Robin Datta
1180 Town Center Drive
Mail Stop 423
Las Vegas, Nevada 89134 FAX (702) 295-3554
Re: UFA Ventures Letter Report Subcontract/PO No. DE-AC01-91RW000134

Dear Dr. Datta:

All of the samples sent to us have been completed. The vials containing the extracted water under argon gas are vacuumed sealed and ready to be sent to whomever you wish. The rock cores are also crated and ready to be shipped to whomever you wish.

Just looking at the data, the 6 samples that yielded more than 1 ml of water had a pH of 8.14 ± 0.21 , while the 17 samples with less than 1 ml had a pH of 7.88 ± 0.25 . This may be coincidental, but I feel better with the measurements on 1 ml or greater. I did a quick volume calibration today to see the deviation in our microelectrode with volume size changes from 10 ml to 0.06 ml.

Sample Volume Calibration on Microelectrode Using Buffer Solution at pH 7

<u>Sample Volume</u>	<u>pH</u>
10.0 ml	6.98
5.0 ml	7.07
2.0 ml	6.97
1.5 ml	7.03
1.0 ml	7.02
0.8 ml	7.04
0.5 ml	7.04
0.2 ml	7.07
0.1 ml	7.08
0.06 ml	7.08

These were done in air, not under argon, which a worst case because drift is more problematic in contact with any CO₂ in the gas phase. There appears to be no significant error with volume changes down to 0.06 ml, so I would say the pH results for the pore water extractions are good to at least ± 0.1 pH units.

Let me know what you think.

Jim Conca

Core Sample Specimen ID#	pH	Volume (ml) Extracted	Initial Water Content (W%)
01002486 ESF-HD-PERM-1 19.9'-20.1'	8.32	0.22	3.31
01002488 ESF-HD-PERM-1 23.1'-23.3'	7.79	2.49	5.00
01002489 ESF-HD-PERM-1 25.9'-26.1'	7.76	0.41	2.88
01002590 ESF-HD-PERM-1 26.1'-26.4'	8.02	0.61	2.92
01002598 ESF-HD-PERM-1 34.4'-34.8'	NR	0.01	2.80
01002599 ESF-HD-PERM-1 36.6' - 57'	8.21	2.04	5.23
01002510 ESF-HD-PERM-1 57'-57.5'	NR	0.05	3.40
01002581 ESF-HD-PERM-2 22.7'-23.0'	7.77	0.09	2.72
01002582 ESF-HD-PERM-2 23.0'-23.3'	8.39	0.90	3.59
01002584 ESF-HD-PERM-2 25.9'-26.2'	8.13	0.32	3.24
01002585 ESF-HD-PERM-2 26.2'-26.4'	7.89	0.30	2.94
01002586 ESF-HD-PERM-2 30.1'-30.5'	8.32	2.84	6.25
01002587 ESF-HD-PERM-2 30.5'-30.9'	7.51	0.50	2.88
01002594 ESF-HD-PERM-2 41.1' 41.5'	7.70	0.60	3.26
01002595 ESF-HD-PERM-2 41.5'-41.8'	7.96	0.11	3.40
01002597 ESF-HD-PERM-2 44.3'-44.6'	NR	0	1.90
01002598 ESF-HD-PERM-2 46.5'-46.8'	7.80	0.41	3.69
01002599 ESF-HD-PERM-2 46.8'-47.1'	7.70	0.60	3.59
01002519 ESF-HD-PERM-3 26.1'-26.4'	7.99	0.86	4.14
01002520 ESF-HD-PERM-3 26.4'-26.7'	8.00	1.46	5.14
01002521 ESF-HD-PERM-3 30.3'-30.7'	8.23	1.85	4.10
01002522 ESF-HD-PERM-3 30.7'-31.0'	7.98	0.25	3.82
01002525 ESF-HD-PERM-3 34.8'-35.1'	8.31	2.69	6.62
01002527 ESF-HD-PERM-3 37.7'-38.0'	NR	0	2.98
01002531 ESF-HD-PERM-3 44.3'-44.6'	7.77	0.13	3.18
01002532 ESF-HD-PERM-3 44.6'-44.9'	NR	0.05	1.55
01002533 ESF-HD-PERM-3 46.1'-46.4'	NR	0	2.85
01002534 ESF-HD-PERM-3 46.4'-46.5'	NR	0	2.24
01002537 ESF-HD-PERM-3 52.7'-53.0'	7.60	0.68	2.93
01002539 ESF-HD-PERM-3 56.3'-56.7'	7.60	0.66	3.02

NR means not enough sample to analyze.

UFA Ventures, Inc.
 *USGS
 2000 Logston Blvd, #133
 LVMO
 Richland, WA 99352 USA
 REVIEW
 509-375-3268

QA MANUAL, REVISION 4 1-2 4-7, 12 16-18 AUDIT
 DATED OCTOBER 1999 SUPP I II & III QUALITY
 RECORDS

NEXT EVALUATION DATE 08/18/00
 LAST AUDIT SA -99-022 DATE: 08/18/99
 NEXT TRIENNIAL AUDIT DATE 08/19/00
 SCOPE OF WORK : ANALYTICAL TESTING OF PORE WATER IN ROCK SAMPLES AND TESTING TO DETERMINE DIFFUSION
 COEFFICIENTS FOR INVERT MATERIALS
 RESTRICTION None

ULTRA Scientific, Inc.
 *LVMO
 250 Smith Street
 REVIEW
 North Kingstown, RI 02852
 401-294-9400

ULTRA SCIENTIFIC, INC. 1,2,4-8,10-13,14-18 QUALITY
 QUAILITY ASSURANCE RECORDS
 MANUAL, REVISION 5.4
 DATED 10/99 SURVEY

NEXT EVALUATION DATE : 12/17/99
 LAST AUDIT : SFE-00-002 DATE: 12/17/99
 NEXT TRIENNIAL AUDIT DATE: 08/01/00
 SCOPE OF WORK : ORGANIC AND INORGANIC CHEMICAL STANDARDS EXAMPLES - POTASSIUM, MOLYBDENUM, COPPER, NICKEL,
 BORAN,
 RESTRICTION SODIUM, BENZINE, PCB'S, EPA METHODS STANDARDS)
 work. All recommendations from survey to be resolved and verified prior to doing quality affecting

**APPENDIX L: ORIGINAL PORE WATER DATA
TABLES FROM DTN LL990702804244.100**

LLYMP0002068 (C)

QA: QA

Title: Pore Water Data
Tables from DTN LL990702804244.100

Record Date: 02/18/00

Author: DeLoach, L.D.

Organization: LLNL

DTN: LL990702804244.100

TDIF 308632

Record Information System

Accession #: MOL.20000316.0688 *AM 5-25-00*
Title: PORE WATER DATA TABLES FROM DTN LL990702804244.10, TDIF 308632 (C)
Date: 20000218
Author(s): DELOACH LD - LLNL
Trace #: LL990702804244.100
Package(s): LLYMP0002068C *PKG # (LLNL '9)* MOY-000316-02-01 *LV PKG NO.* *AM 5-25-00*
Related Record(s): MOL.20000316.0693 (ATT-TO)
Type: DATA

rev. 02/15/00	Thermal testing program waters					as received	LLNL filtered
sample	BH 60-2	BH 60-3	BH 60-2	BH 60-3	BH 60-3	BH 63-4*	BH 63-4 (a)*
Identification	HYD	HYD	HYD	HYD	HYD	HYD	HYD
SMF number	SPC00527969	SPC00527977	SPC00527916	SPC00527916	SPC00527917	SPC00541803	SPC00541803
collection date	6/4/98	6/4/98	6/12/98	6/12/98	6/12/98	11/12/98	11/12/98
field pH	7.5	7.7	6.9	6.8	5.5	6.83	6.53
field Br (ppm)*	0.75	0.98	0.385	0.345			
Na (mg/L)	20.0	24.0	20.4	17	2.4	22.6	135
Si (mg/L)	56	41	62	44	1.43	34	44
Ca (mg/L)	20	25	19.9	19	2.09	478	450
K (mg/L)	6.0	4.5	5.4	4.5	1.4	29.5	37.8
Mg (mg/L)	2.9	6.7	1.21	4.0	0.21	64.1	83.8
Al (mg/L)	0.12, 0.071	0.017	n.d. < 0.06	0.003	n.d. < 0.06	0.01	n.d. < 0.06
B (mg/L)	1.2	0.92	1.84	1.1	0.13	4.47	4.13
S (mg/L)	5.5	9.2	4.5	5.2	1.4	50.7	64.8
Fe (mg/L)	0.04	n.d. < 0.02	0.02	0.12	n.d. < 0.02	n.d. < 0.02	n.d. < 0.02
Li (mg/L)	0.07	0.07	0.03	0.04	n.d. < 0.01	0.21	0.20
Sr (mg/L)	0.18	0.34	0.11	2.2	0.05	4.02	3.71
HCO ₃							
F (mg/L)	1.00	0.82	0.71	0.43	0.41	0.79	4.34
Cl (mg/L)	10	16	6.14	6.62	2.15	1.130	1.250
Br (mg/L)	0.84	0.73	0.05	0.21	0.03	1.13	n.d. < 0.07
SO ₄ (mg/L)	17	30	4.88	8.81	1.86	226	213
PO ₄ (mg/L)	n.d. < 0.07	n.d. < 0.07	0.25	0.16	1.06	n.d. < 6	n.d. < 0.2
NO ₂ (mg/L)	n.d. < 0.01	n.d. < 0.01	n.d. < 0.04	n.d. < 0.04	n.d. < 0.04	n.d. < 3	n.d. < 10
NO ₃ (mg/L)	3.00	3.6	0.46	0.6	0.22	3.12	7.81

Water collection from borehole 77-3 appears to be consistent with moisture condensing from hot gases in the pump tubing.

rev. 02/15/00	as received		LLNL filtered	as received		LLNL filtered	as received	
sample	BH 60-3	BH 60-3 (a)	BH 186-3	BH 186-3 (a)	BH 60-3	BH 60-3	BH 63-4	BH 186-3
Identification	HYD	HYD	HYD	HYD	HYD	HYD	HYD	HYD
SMF number	SPC00541804	SPC00541804	SPC00541805	SPC00541805	SPC00504396	SPC00504396	SPC00527961	SPC00527961
collection date	11/12/98	11/12/98	11/12/98	11/12/98	1/26/99	1/26/99	1/26/99	1/26/99
field pH	6.92	6.92	6.83	6.83	7.4			
field EC (µS)								
Na (mg/L)	10.1	20.3	105	17	19.1	219	25.9	
Si (mg/L)	60	64	16	27.2	65	12	49.3	
Ca (mg/L)	15.3	13.9	11.5	20.2	5.9	429	2.92	
K (mg/L)	8.7	7.8	3.5	3.9	4.1	29.7	5.9	
Mg (mg/L)	3.4	3.0	5.1	5.7	1.2	164.0	6.3	
Al (mg/L)	0.033	0.033	n.d. < 0.003	n.d. < 0.003	n.d. < 0.06	0.086	n.d. < 0.06	
B (mg/L)	1.58	1.41	0.51	0.58	1.76	6.68	0.84	
S (mg/L)	11.8	10.5	8.47	8.42	6.4	109	7.9	
Fe (mg/L)	0.02	n.d. < 0.02	0.02	0.02	n.d. < 0.02	n.d. < 0.02	0.09	
Li (mg/L)	0.04	0.04	0.05	0.05	0.02	0.33	0.05	
Sr (mg/L)	0.22	0.20	0.30	0.34	0.09	5.84	0.37	
HCO ₃								
F (mg/L)	0.49	0.5	0.56	0.62	41		116	
Cl (mg/L)	20	20	19	19	1.27	0.51	1.2	
Br (mg/L)	0.60	0.51	0.67	0.6	10	1,160	23.30	
SO ₄ (mg/L)	30.6	30.8	28.3	26.2	0.15	1.51	0.32	
PO ₄ (mg/L)	n.d. < 0.2	n.d. < 0.2	n.d. < 0.2	n.d. < 0.2	n.d. < 0.05	240	21	
NO ₂ (mg/L)	n.d. < .10	n.d. < .10	n.d. < .10	n.d. < .10	n.d. < .03	n.d. < .3	n.d. < 0.05	
NO ₃ (mg/L)	3.38	3.17	7.47	7.27	2.56	11.6	6.73	

rev. 02/15/00	BH 60-3	BH 60-3	BH 60-3	BH 60-3
sample	HYD	HYD	HYD	HYD
Identification	SPC00529637	SPC00529637	SPC00529637	SPC00529634
SMF number				
collection date	3/30/99 9:50	3/30/99 9:55	3/30/99 10:10	3/30/99
field pH	8.0			4.8
field EC (μ S)				
Na (mg/L)	11.2	11.0	2.2	n.d. < 0.2
Si (mg/L)	62.8	59.8	12.1	1.03
Ca (mg/L)	2.06	2.27	1.22	0.41
K (mg/L)	2.4	2.4	0.5	n.d. < 0.5
Mg (mg/L)	0.27	0.26	0.01	0.02
Al (mg/L)	0.27, 0.36	0.27, 0.36	0.07, 0.08	0.006
B (mg/L)	2.1	2.11	1.23	0.09
S (mg/L)	1.83	1.82	0.42	n.d. < 0.02
Fe (mg/L)	n.d. < 0.02	n.d. < 0.02	n.d. < 0.02	0.05
Li (mg/L)	0.02	n.d. < 0.01	n.d. < 0.01	n.d. < 0.01
Sr (mg/L)	0.02	0.02	n.d. < 0.01	n.d. < 0.01
HCO ₃ (mg/L)	25.0			1.3
F (mg/L)	1.02	0.97	0.11	
Cl (mg/L)	4.15	3.92	0.72	
Br (mg/L)	n.d. < 0.04	n.d. < 0.04	n.d. < 0.04	
SO ₄ (mg/L)	3.83	3.75	0.79	
PO ₄ (mg/L)	n.d. < 0.05	n.d. < 0.05	n.d. < 0.05	
NO ₂ (mg/L)	n.d. < 0.03	n.d. < 0.03	n.d. < 0.03	
NO ₃ (mg/L)	0.92	0.84	0.17	

rev. 02/15/00	ESF Pore waters	Pore water	Pore water
sample	Pore water	Pore water	Pore water
Identification	ESF-HD-PERM-1 23.1'-23.3'	ESF-HD-PERM-2 30.1'-30.5'	ESF-HD-PERM-1 34.8'-35.1'
collection date			
field pH	7.79	8.32	8.31
Na (mg/L)	61	61	62
SiO ₂ (mg/L)*	79	66	75
Ca (mg/L)	98	106	97
K (mg/L)	6	7	9
Mg (mg/L)	25.7	16.6	17.4
Al (mg/L)	n.d. < 0.06	n.d. < 0.06	n.d. < 0.06
B (mg/L)	3.05	2.76	2.76
S (mg/L)	42.3	38.6	38.7
Fe (mg/L)	n.d. < 0.02	n.d. < 0.02	n.d. < 0.02
Li (mg/L)	0.1	0.45	0.05
Sr (mg/L)	1.4	1.0	1.1
HCO ₃			
F (mg/L)	0.36	0.96	0.76
Cl (mg/L)	123	110	123
Br (mg/L)	0.60	0.76	1.20
SO ₄ (mg/L)	124	111	120
PO ₄ (mg/L)	n.d. < 0.07	n.d. < 0.07	n.d. < 0.07
NO ₂ (mg/L)	n.d. < 0.04	n.d. < 0.04	n.d. < 0.04
NO ₃ (mg/L)	22	3	10

* SiO₂(mg/L) = Si (mg/L)*2.145

**APPENDIX M: YMSCO-00-0055 YUCCA MOUNTAIN SITE
CHARACTERIZATION PROJECT NONCONFORMANCE REPORT**

YMP-006-R6

06/02/97

CR No. YMP-00-0055

YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT
NONCONFORMANCE REPORT

ORIGINAL

red page 1 of 11

1. Initiator Name: George Hampton Organization: LLNL Date: 2/16/00

2. Description of Non-Conformance:

Analysis of samples in scientific notebooks #00342 was performed by LLNL Chemistry and Material Science Department analytical laboratories (Analytical and Nuclear Chemistry Division). The analytical laboratories were not qualified under the YMP QA program. Field Work Package

Job Package/

 Hold Tag Applied No. of Hold Tags Applied: N/ATest Planning Package No.: Y/143. OQA: Validation Invalidation Q Non-QName: C.C. LehmanDate: 02-16-00

4. Disposition Evaluation

 Rework Repair Use-As-Is Conditional Release Reject/Strap Limited Use Discard Potentially Reportable Yes No

Justification/Comments:

See attached justification

5. Recommended Disposition by:

Name:

Organization: LLNLDate: 2/22/00Recommended Disposition Wuhan Lin

Name:

Organization: LLNLDate: 2/23/00

Approval of Disposition

6. OQA Concurrence with Disposition:

Corrective Action: No Yes

No. _____

Name: C.C. Lehman (SEE NOTE ON PAGE 2)Date: 3-2-00LLNL-QA-D-092

7. Completion of Disposition:

 Hold Tag Removed N/A No. of Hold Tags Removed N/A

Name: _____

Organization: _____

Date: _____

OQA Concurrence:

Name: _____

Date: _____

8. OQA Final Review:

Name: _____

Date: _____

Exhibit YAP-15.1Q.1

Disposition Evaluation

Justification:

Nonconformance issues for LLNL Chemistry and Material Science Department - Analytical Laboratories Division (ASD) were: (1) lack of YMP approved analytical procedures, and (2) the use of non-Q certified chemical standard suppliers. The actions taken in response to these concerns are listed below.

(1) The absence of YMP analytical procedures was corrected with the issuance of the following Technical Implementing Procedures (TIPs) approved by a Technical Area Leader and the OCRWM Office of Quality Assurance Representative.

1. TIP-AC-02: Solutions Analysis - Cations by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES)
2. TIP-AC-03: Determination of Inorganic Anions by Ion Chromatography (IC)
3. TIP-AC-06: Total Organic / Total Inorganic Carbon Analysis (TOC/TIC)
4. TIP-AC-07: Elemental Analysis by Inductively Coupled Plasma and Mass Spectrometry (ICP/MS)

(2) As of December 6, 1999, a QAP-2-0 Activity Evaluation (attached) approved by the OCRWMS Waste Package Department Manager (Hugh Benton) authorizes the procurement and use of chemical standards for Q work as long as NIST-traceability is documented.

For years ASD has employed techniques listed in the above TIPs and has used chemical standards traceable to NIST reference materials for measuring analyte concentrations with ICP/AES, IC, TOC/TIC, and ICP/MS analytical instruments. ASD practiced these same protocols for the samples listed in the three tables that follow. In addition, the scientific notebooks and their supplements cited in the tables contain chemical calibration standard documentation as well as instrument printouts that validate analytical results and adherence to TIP methods. Therefore, the analyses performed on these samples meet Q criteria and should be dispositioned "Use-As-Is".

3-2-00

NOTE! Completion of this disposition "use-as-is" will be dependent on the DOE OFFICE of Project Execution performing qualification of data addressed in this NCR using the Equivalent QA Program Method of AP-5III.2Q. If qualification of data cannot be performed using this method, this NCR will be revised to change the disposition.

L.C. Warren 3-2-00
OQA On-Site.

Table 1
ICP/AES Analysis Performed by ASD

Sample Number	Analysis: Case #	Analysis Date	SNB #, Page(s) & Supp. #
Perm-1, Perm-2, Perm-3	579	12/8/98	#00349, Page 30 & Supp. 1
54-1 1/20/99 filtered, 56-2D 12/8/98 filtered, 59-4: 1/99 filtered, 60-3: 1/99 filtered, 186-3: 1/99 filtered, 54-1 1/20/99 unfiltered, 59-4 1/99 unfiltered, 60-3: 1/99 unfiltered, 186-3 1/99 unfiltered	826	1/22/99	#00342, Pages 105, 106,112 & Supp. 3
186-3 1/26, 60-3 1/26/99, 59-4 1/26/99, D56-3 1/22/99, D56-1 1/22/99, D54-3 1/22/99	1034	3/18/99	#00342, Pages 113, 114,118 & 126 Supp. 3
DST 60-2, DST 60-3, DST 77-3	422	9/21/98	#00349, Page 30 & Supp. 1
59-4 11/98, 60-2 6/98, 60-3 #1, 60-3 #2, 60-3 #3, 60-3 6/98, 60-3 8/98, 60-3 11/98, 60-3 1/26, 77-3 3/99, 186-3 11/98	1101	4/21/99	#00342, Pages 81, 111,112, 118,125 & Supp. 3
D54-1, 60-3 #1, 60-3 #2 0955, 60-3 #3 10:10 3/31, 77-3 3/99	1102	4/22/99	#00342, Pages 123,125 & Supp. 3

Table 2
IC Analysis Performed by ASD

Sample Number	Analysis Case #	Analysis Date	SNB #, Page(s) & Supp. #
Perm-1, Perm-2, Perm-3	609	12/7/98	#00349, Page 30 & Supp. 1
S4-1 filtered, 56-2 filtered, 56-3 filtered, 59-4 filtered, 60-3 filtered, 60-3 unfiltered, 186-3 filtered, 186-3 unfiltered	813	1/25/99	#00342, Pages 105,106, 112 & Supp. 3
DS4-3 1/22/99, D56-1 1/22/99, D56-3 1/22/99, 59- 4 1/26/99, 60-3 1/26/99, 186-3 1/26/99	1020	3/18/99	#00342, Pages 113,114, 118 & Supp. 3
60-3F	N/A	8/13/98	#00342, Page 81 & Supp. 3
DST 60-2 8/12/98, DST 60-3 8/12/98, DST 77-3 8/12/98	399	10/8/98	#00349, Page 30 & Supp. 1
D54-1 3/30, D54-4 3/31/99, 59-4 11/98, 60-3 #1 0950 3/30, 60-3 #2 0955 3/30, 60-3 #3 1010 3/30, D71-3 3/31/99, 77-3 3/99	1029	4/14/99	#00342, Pages 112,123, 124,125 & Supp. 3

Table 3
TIC Analysis Performed by ASD

Sample Number	Analysis Case #	Analysis Date	SNB #, Page(s) & Supp. #
54-1 filtered 1/19/99, 54-1 unfiltered 1/19/99, 54-1 filtered 1/20/99, 54-3 filtered, 56-2 filtered, 56-3 filtered, 56-3 unfiltered	8141	1/26/99	#00342, Pages 105,106 & Supp. 3
60-3 10:10 3/30	1029	4/15/99	#00342, Page 125 & Supp. 3

CRWMS/M&O

Activity Evaluation

NCR YMS00-00-0055 PAGE 6 of 11

QA:

Page: 1 of 2

This form is provided for use by managers to assist with meeting the requirements of QAP-2-0 in determining whether their workscope is subject to QARD requirements.

I. Description of Activity

Activity Title

Procurement and Confirmation of Chemicals Used for the Calibration of Standards

Originating Organization WPO/Waste Package Materials Department	Responsible Manager (Print name) David Stahl
Approval (by next level manager or higher. Print name) Hugh A. Benton	Approval Signature Neal A. Benton
Date 12/6/99	

Brief Description (including relationship to licensing or site characterization):

This activity covers the procurement of chemicals utilized for the calibration of pH, conductivity and analytical standards whose purity is traceable to the NIST. The procurement itself is not subject to the QARD. However, the confirmation that the chemicals are suitable for their intended use is an activity subject to the requirements of the QARD. Solutions generated from these chemicals will be utilized to calibrate the standards using approved LLNL Technical Implementing Procedures (TIPs). Solution chemistry will be verified using an analytical laboratory on the QSL when the standards are synthesized at LLNL. When standards are purchased directly from a commercial supplier, i.e., the solutions are not synthesized, lot number traceability to NIST standards will be verified by a review of the chemical certificates and documented in the scientific notebook or other record. (See Attachment 1.)

List tasks individually, if necessary:

N/A (check if individual task descriptions are not necessary)

II. Evaluation of Activity (The following questions are used to determine the applicability of the QARD to a given activity.)

1. Is the activity subject to QARD requirements because it affects an item on the WAST/MGDS Q-List; or because it affects an item that is assumed to be subject to QARD requirements because that item has not yet been QA-classified? (For example, does the activity consist of design, procurement, construction, fabrication, production, handling, packaging, shipping, storing, cleaning, assembly, inspection, testing, operation, maintenance, repair, modification, or decontamination of a Q-Listed item?)

Yes No

Rationale (justify all responses; justify by task, if necessary):

These activities do not affect items on the WAST-MGR Q-List.

2. Is the activity subject to QARD requirements because it is related to site characterization sample collection or collection and analysis of data used to support performance confirmation or performance assessments?

Yes No

Rationale (justify all responses; justify by task if necessary):

The confirmation activity is subject to QARD requirements because the calibration of the equipment supports a QA activity. However, the procurement can be made non-Q because the Principal Investigator or designate will confirm the chemicals prior to use.

Activity Title

procurement and Confirmation of Chemicals Used for the Calibration of Standards

Evaluation of Activity (continued)

3. Is the activity subject to QARD requirements because it is intended to provide data used to assess the potential dispersion of radioactive materials from a licensed facility?

Yes No

Rationale (justify all responses, justify by task if necessary)

These activities do not provide data used to assess the dispersion of radioactive materials from a licensed facility

4. Is the activity subject to QARD requirements because it is related to high-level waste form development through qualification, production, and acceptance?

Yes No

Rationale (justify all responses, justify by task if necessary)

These activities are not related to high-level waste form development.

5. Is the activity subject to QARD requirements because it is associated with characterization of, and conditioning through acceptance of, DOE spent nuclear fuel?

Yes No

Rationale (justify all responses, justify by task if necessary)

These activities are not related to characterization or conditioning of DOE spent nuclear fuel.

6. Is the activity subject to QARD requirements because it is a site-disturbing activity that can adversely impact the waste isolation function of the natural or engineered barriers or impact site characterization results (for MGDS only)?

Yes No

Rationale (justify all responses, justify by task if necessary):

These activities are not associated with a site disturbing activity.

7. Is the activity subject to QARD requirements because it involves tasks which are QARD-required support of other activities subject to QARD requirements? (For example, does the activity include the performance of training, development of procedures, document control, preparation or processing of records, QA functions, etc.?)

Yes No

Rationale (justify all responses, justify by task if necessary)

The confirmation of the critical characteristics of the chemicals supports activities that are subject to QARD requirements. However, the procurement can be made non-Q because the Principal Investigator or designee will confirm the chemicals prior to use.

If the answer to any of the questions in Section II is "yes," the activity is subject to QARD requirements. Use appropriate procedures for the conduct of those activities in accordance with QAP-2-0. If existing procedures are not adequate to control the activity, then revise or develop new procedures in accordance with QAP-5-1 or other appropriate procedures.

New or Revised procedures required?

Yes No

Technical Justification for the Procurement of LLNL Chemicals Supporting Studies for the Yucca Mountain Project

I. Introduction

Four types of chemical standards are discussed in this document. For the Yucca Mountain Project, these types of chemical standards will be used by Lawrence Livermore National Laboratory (LLNL) to calibrate laboratory equipment for measuring the concentration of chemicals in various matrices to support several on-going investigative studies.

These chemical standards are commercially available and are commonly used to calibrate measuring and test equipment for such purposes as the rigorous analyses required under the Environmental Protection Agency's Superfund Act. All the chemicals discussed below have a purity of composition adequately characterized for the sensitivity of their intended usage on the Yucca Mountain Project.

Based on the data presented below, reasonable assurance of quality will be maintained employing the standards described. Chemical standard usage is governed by the relevant LLNL Technical Implementing Procedure (TIP). The TIPs are based on EPA and Standard Methods routinely applied throughout the world to measure concentrations of chemicals of interest. These methods are EPA Method 6010B: Inductively Coupled Plasma – Atomic Emission Spectrometry, EPA Method 6020B: Inductively Coupled Plasma – Mass Spectrometry, EPA Method 300: Determination of Inorganic Anions by Ion Chromatography, EPA Method 9040: pH Determination, and Standard Methods 4110: Electrical Conductivity. The usage of each type of chemical is addressed separately in the following descriptions.

II. Descriptions of Chemical Usage

pH Buffers

The composition and behavior of these buffers are well understood as demonstrated by references in the CRC Handbook for Chemistry and Physics (Lide, 71st ed., 1990, pp. 8-26 to 8-32) and Standard Methods (Standard Methods for the examination of Water and Wastewater, 18th ed., 1992, pp.4-65 to 4-69). The off-the-shelf buffers are accurate to 0.01 pH units, which is better than the accuracy needed for Yucca Mountain studies.

Electrical Conductivity Standards

Preparation of electrical conductivity solutions is referenced in CRC Handbook for Chemistry and Physics (Lide, 71st ed., 1990, p5-94) and Standard Methods (Standard Methods for the Examination of Water and Wastewater, 18th ed., 1992 pp. 4-65 to 4-69). Standard Methods (p1-25) further constrains the chemicals used in the preparation to "ACS grade" or "analytical reagent grade". Standards are reagent grade solutions calibrated against NIST-traceable standards. The standards selected are sufficient and adequate for making conductivity measurements.

Ion Chromatography (IC) Standards

For determination of anions by ion chromatography (EPA Method 300), standards are obtained that are used industry wide for the analyses required by EPA, and thus have a substantial track record for quality.

Inductively Coupled Plasma (ICP) Standards

EPA Methods 6010B and 6020B state that "stock solutions may be purchased or prepared from ultra-high purity grade chemicals or metals (99.99%+ pure)". The standards selected are "prepared from starting materials having a purity of 99.999% (where possible), high purity acids, and ASTM Type I water (18 megohm). All standards are traceable to NIST standard reference materials (SRM) whenever possible".

III. Analytical Method Accuracy

EPA Methods 6010B and 6020B – Typical laboratory accuracy for the TIP protocols may be assessed from the EPA Method descriptions. EPA submitted aqueous samples to 7 (Method 6010) and 10 (Method 6020) laboratories for comparison. For Method 6010, accuracies of 95 to 104% with relative standard deviations ranging from 3.1 to 9.1% were determined for the listed elements; for Method 6020, accuracies ranging from 85 to 142% with relative standard deviations ranging from 4.3 to 150% were determined. The starting material is known to five significant figures, and the stated Certified Value contains four significant figures. The concentration of the requested standard is known to a much greater precision than the accuracy of the analysis method.

NCR Ymra-00-0055
PAGE 10 of 11
Attachment I

Page 3 of 4

EPA Method 300 - Samples containing various anions were submitted by EPA to 19 laboratories for analysis. The results indicated that the accuracy of certified standards ($\pm 0.2\%$) is better than the precision of the method.

IV. Methods of PI Chemical Qualification

Chemical Standard Handling

All chemical standards defined in this justification shall be handled and used in accordance with governing YMP QA standard laboratory procedures. All special handling and storage needs recommended by the manufacturer will be adhered to.

Independent Standard - ICP Analyses

EPA Methods 6010 and 6020 require an Initial Calibration Verification, which is "prepared from a standard source different from that of the calibration standard and at concentrations within the linear working range of the instrument". Thus, two independent standards will be used, one in calibration of the instrument, and the other in verifying the calibration. This concurrent checking and use of two independent NIST-traceable standards provide reasonable assurance of quality.

Independent Standard - IC Analyses

Independent standards will be used to verify the calibration of the IC equipment. These standards will be prepared from a standard source different from that of the calibration standard and at concentrations within the linear working range of the instrument. This concurrent checking and use of two independent NIST-traceable standards provide reasonable assurance of quality.

NIST-Traceability

To provide another supporting, corroborative line of evidence for the standards, NIST traceability is requested. Certificates of Analysis for buffers are obtained from the vendors. Certificates state that buffer lots are tested against a primary standard from NIST.

The manufacturer supplies a Certified Value for anion and ICP standards comparing them to NIST standards. There may be a deviation between the label concentration and the Certified Value, but only the Certified Value is important; it is only necessary to know what the concentration of the standard is. The purpose of NIST certification is only to provide additional corroborative evidence of the multiple standard comparison described above.

NCR-Yucca-00-0055
Page 11 of 11
Attachment I

Page 4 of 4

V. Conclusion

The standards described above are sufficient and accurate for LLNL analyses of Yucca Mountain samples. These standards are readily and rapidly available, and widely used in many commercial laboratories with stringent quality assurance requirements. The behavior of pH buffers and conductivity standards are well understood. ICP and IC standards will be verified by a second standard. The accuracy of the standards greatly exceeds the measurement accuracy. Additionally, these standards are all NIST-traceable providing an additional high level of confidence in their quality, and documentation is available from the vendors to that end. One can comfortably rely on these standards for the analytical chemistry needs of this project when their use is governed by the Technical Implementing Procedures, and more stringent specifications for chemical standards would not result in higher confidence in the analytical results obtained.

APPENDIX N: DTN# MO0005PORWATER.000

Rev. 05/02/00	ESF Pore waters		
sample	Pore water	Pore water	Pore water
identification	ESF-HD-PERM-1 23.1'-23.3'	ESF-HD-PERM-2 30.1'-30.5'	ESF-HD-PERM-3 34.8'-35.1'
collection date			
field pH	7.79	8.32	8.31
Na (mg/L)	61	61	62
SiO ₂ (mg/L)*	79	66	75
Ca (mg/L)	98	106	97
K (mg/L)	6	7	9
Mg (mg/L)	25.7	16.6	17.4
Al (mg/L)	n.d. < 0.06	n.d. < 0.06	n.d. < 0.06
B (mg/L)	3.05	2.75	2.75
S (mg/L)	42.3	38.6	38.7
Fe (mg/L)	n.d. < 0.02	n.d. < 0.02	n.d. < 0.02
Li (mg/L)	0.1	0.45	0.05
Sr (mg/L)	1.4	1.0	1.1
HCO ₃			
F (mg/L)	0.36	0.96	0.76
Cl (mg/L)	123	110	123
Br (mg/L)	0.60	0.76	1.20
SO ₄ (mg/L)	124	111	120
PO ₄ (mg/L)	n.d. < 0.07	n.d. < 0.07	n.d. < 0.07
NO ₂ (mg/L)	n.d. < 0.04	n.d. < 0.04	n.d. < 0.04
NO ₃ (mg/L)	22	3	10

* SiO₂(mg/L) = Si (mg/L)*2.145