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CHAPTER 1. Overview and introduction

We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems
using a quantum Monte Carlo {(QMC) method. We have used some of these systems as mod-
cls to describe recently synthesized magnetic molecules, and—upon comparing the results of
these calculations with experimental data—have obtained accurate estimates for the basic pa-
rameters of these models. We have also performed calculations for other systems that are of
more general interest, being relevant both for existing experimental data and for future exper-
iments. Utilizing the concept of importance sampling, these calculations can be carried out in
an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would
introduce systematic errors. The only errors are statistical in nature, and as such, their mag-
nitudes are accurately estimated during the course of a simulation.! Frustrated spin systems
present a major challenge to the QMC method, nevertheless, in many instances progress can

be made.

1.1 Thesis organization

In this chapter, the field of magnetic molecules is introduced, paying particular attention
to the characteristics that distinguish magnetic molecules from other systems fnhat are studied
in condensed matter physics. We briefly outline the typical path by which we learn about
magnetic molecules, which requires a close relationship between experiments and theoretical
calculations. The typical experiments are introduced here, while the theoretical methods are

discussed in the next chapter. Each of these theoretical methods has a considerable limita-

!Although these statistical errors have been estimated for all of our calculations, the errors associated with
the QMC data that are presented in this thesis are so small that error bars would not be visible on the plots,
and have thus not been included.
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tion, also described in Chapter 2, which together serve to motivate the present work. As is
shown throughout the later chapters, the present QMC method is often able to provide useful
information where other methods fail.

In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building
up the fundamental ideas that are necessary in order to understand the method that has
been used in this work. With these ideas in hand, we then provide a detailed explanation of
the current QMC method in Chépter 4. The remainder of the thesis is devoted to presenting
specific results: Chapters 5 and 6 contain articles in which this method has been used to answer
general questions that are relevant to broad classes of systems. Then, in Chapter 7, we provide
an analysis of four different species of magnetic molecules that have recently been synthesized
and studied. In all cases, comparisons between QMC calculations and experimental data allow
us to distinguish a viable microscopic model and make predictions for future experiments. In
Chapter 8, the infamous “negative sign problem” is described in detail, and we clearly indicate
the limitations on QMC that are imposed by this obstacle. Finally, Chapter 9 contains a

summary of the present work and the expected directions for fitture research.

1.2 Introduction to magnetic molecules

The field of magnetic molecules exploded in the early 1990s,{1-4] and has continued to grow
rapidly in the years since then.[5-7] As will be described in this chapter, magnetic molecules are
experimental realizations of zero-dimensional, nanoscale systems of interacting' quantum spins.
As such, they produce a number of interesting quantum mechanical effects, including quantum
entanglement[8] and, in the presence of an external magnetic field, level crossings.?2 Since
these systems exhibit magnetism that is of molecular origin, they are also (not surprisingly)
of interest for quantum computing.[10] Magnetic molecules have received recent attention for
other applications as well, including refrigeration[11] and use in the biomedical industry as
MRI agents.[12] The focus of the present work is, however, not on applications. Instead, we

seek to develop, employ, and assess a new theoretical tool that has not been previously used

Level-crossings are described in detail in Chapter 5. For experimental results, see, for example, Refs. 2]
and [9)].



to study magnetic molecule systems.

The theory of magnetic molecules is typically quite complex. To appreciate this complexity,
we must first have some understanding of the physical systems to which the term “magnetic
molecules” refers. Magnetic molecules are synthesized by chemists in the form of macro-
scopic (~ 100 milligram) crystalline or powder samples. Each sample contains a huge number
(~ 10%) of identical molecular units which, in turn, are each composed of ~ 100 atoms. Most
of these atoms are non-magnetic, leaving a smaller number N (typically ranging from 2 to
30) of magnetic ions in the core of each magnetic molecule. The non—magnetic ions contribute
directly to the magnetism only in the form of weak diamagnetism, but they nonetheless play
two very important roles: They (i) mediate strong superexchange interactions® between neigh-
boring magnetic fons; and (ii) serve to magnetically isolate the molecules from one another by
increasing the separation between their magnetic cores.

Since the molecules arc well isolated, the interactions between molecules are orders of mag-
nitude weaker than the intramolecular interactions, and are thus negligible.? This leads to a
very imiportant consequence: Experimental data measure the superposition of ~ 1020 i&enticai,
independent molecules. The sample, when held at a fixed temperature, can hence be regarded
as a canonical ensemble of such systems, and theoretical calculations are thus concerned with
calculating the thermodynamic properties of a single magnetic molecule. The problem, how-
ever, is that first-principles calculations are still formidable, involving the consideration of
hundreds of interacting electrons, requiring considerable approximations.® Instead, we choose
to approach magnetic molecules in terms of a simplified (but often very accurate) model for
which we obtain numerically exact results by using a QMC method.

Throughout this work, we use the isotropic Heisenberg model, [15] which has long been used

to model these types of interactions. This model relies on two central assumptions: First, each

¥When two magnetic ions are separated by a non—magnetic ligand (atom or atoms), electrons from both
magnetic ions can, by interacting with the nearby ligand electrons, have an effect on one another, resulting in
a so-called “superexchange” interaction.

The typical energy scales of intramolecular interactions are on the order of tens of degrees Kelvin, while
the intermolecular interactions are on the order of milli-Kelvin. These weak intermolecular interactions can,
however, be relevant for certain types of systems that are not considered here.[13)

For a review of first-principles calculations for magnetic molecules, see [14] and the references therein.



magnetic ion possesses a well defined magnetic moment or “spin”. These spins result from the
strong coupling of valence electrons within a given ion, and hence their values s depend upon
the element and ionization in question. For example, the ions studied in Chapter 7 include Cu2*
and V** with s = 1/2, Ni** with s = 1, and Cr®" with s = 3/2; and Chapter 5 includes an
analysis of the magnetic molecule {Fes}, which is composed of Fe®* ions with s = 5/2. (Note
that all of these ions belong to the Fe group, having partially filled 3d orbitals.) The second
assumption is that the spins of neighboring magnetic ions within the same magnetic molecule
interact isotropically (i.e., without a preferred direction based upon the local environment of
the ion) with an interaction that depends on the dot-product betweeﬁ any pair of interacting
spin vectors. This is believed to be a good approximation for these ions, while for other ions,
e.g. Mn** and Mn3*, additional anisotropic terms are known to be of importance.[16]

The problem thus reduces to that of calculating the properties of a relatively small number®
N of interacting spins. However, even with these assumptions, the calculations are still very
complex, as we describe in the next chapter. This final complexity arises from the fact that
the number of ways in which the spins can be coupled together grows exponentially with N,
forbidding the application of theoretical methods that require such enumeration. Instead,
we use QMO for the task of calculating thermodynamic properties; the calculation of other
properties, such as the non-equilibrium behavior of molecules, necessitates the use of totally
different methods and is thercfore the focus of other work.[18] In the following section, the
typical experiments are introduced which motivate the development of these various theoretical

methods.

1.3 Roles of experiment and theory

The study of magnetic molecules begins with the chemical synthesis of a particular sample.
Then, with the sample in hand, one must next perform a series of experiments to determine the
microscopic nature of the sample, both in terms of the structure and the physical interactions.

Farly on in this process, the geometric (crystal) structure is probed by x-ray diffraction,|[19]

5The “standard” size of magnetic molecules is 2 < NV < 30, but G. Christou’s group has also synthesized a
{Mnsgs} cluster{17] which is much larger than other existing magnetic molecules.
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whereby the details of the observed diffraction patterns provide information regarding the
various bonds, including the types of ligands, interatomic distances, and bond angles. Based
on this information, and previous experience with similar structures, rough predictions can
then be made for the types of magnetic interactions that are likely to be present within the
molecules.

As the term “magnetic molecules” suggests, we are centrally interested in magnetic prop-
erties. There are a variety of experiments which can be used to probe these properties, but the
first to be carried out is generally the measurement of the weak-field magnetic susceptibility
Xo as a function of temperature. This is because xg is readily accessible experimentally, and
there are usually a few pieces of information that are easily extracted from the data. These
experiments are conducted using a SQUID magnetometer,[20} within which the magnetization
of the sample is measured in a weak (~ 0.1 Tesla) magnetic field as the temperature is slowly
lowered from room temperature (300 K} down to 2 K. The theory of this and other properties
will be described in greater detail in the following chapter.

For reasons that are described in the next chapter, the computation and analysis of xo
data is often very challenging, but it can also.offer a great deal of information. {As we describe
in Chapter 7, we have successfully performed such analyses using QMC.) To analyze these
data, we begin with the simplest model that is consistent with the rough predictions offered
by the x-ray diffraction data. From such a model, theoretical values of yq are calculated and
compared with the data. Then, the parameteré that describe the interactions in the Heisenberg
model are adjusted, seeking to answer two questions: Is there a set of microscopic parameters
that will adequately reproduce the experimental data? If so, is this result unique, or will a
different set, of parameters provide essentially the same result? If there is indeed a unique set of
acceptable parameters, we are then prepared to make predictions for additional experiments.
If not, the theoretical model is apparently too simple and must be further developed.”

Based on the model that emerges, we can then make detailed numerical predictions for other

experiments. One such experiment is the measurement of low-temperature (presently down to

"For example, one could consider the inclusion of additional bonds, anisotropies, or more complicated inter-
actions such as those described in Ref. [21] and the references therein.



as low as 20 mK) magnetization. This can be carried out either in static or pulsed fields, and
both methods have several advantages and disadvantages. The maximum magnitudes of the
static fields are currently » 30 T, while the pulsed fields can somewhat exceed 50 T. Hence, if
we were to predict a so-called “level-crossing field” (which are associated with the intersection
of discrete energy levels, and are described in detail in Chapter 5) to occur at 40 T, a pulsed
field measurement would be necessary in order to test this prediction. However, during the
course of a measurement, the pulsed fields increase and decrease at rates of several Teslas per
milli-second. Clearly then, if the equilibriation of the magnetic molecules were to take place
on a time scale of ms, the experiment would not provide the equilibrium magnetization.? The
static measurements do provide equilibrium data, but as a result they will not allow one to
study dynamical behavior including hysieresis effects.

Inelastic neutron scattering (INS) is another technique that allows one to study similar
features to those probed with low-temperature magnetization, but in a totally different way.[23]
A neutron has a magnetic moment, which facilitates interactions between an incident beam
of neutrons and the magnetic molecules contained within a target sample, thereby causing
neutrons to scatter. A great deal of this scattering is elastic, i.e., without energy transfer, but
the inelastic contribution is also readily measurable. At low temperatures, this occurs when
the neutron transfers energy to a molecule, leaving the molecule in an excited state, while the
neutron is detected with measurably lower energy than it initially had. This loss of neutron
energy hence provides information regarding the energy gaps between the ground state and
certain excited states within the magnetic molecules.® At higher temperatures, energy can also
be transferred from the molecules to the neutrons, and as a result both energy gain and loss
are observed.

Resonance experiments are also important, and these include nuclear magnetic resonance
(NMR.), and electron spin resonance (ESR). In NMR experiments, the nuclei within the mole-

cules are used to probe the spins of the nearby ions. By exposing a sample to an alternating

8A description of the equilibriation process in magnetic molecules and the implications for pulsed field
measurements can be found in Ref. [22].

?The energy spectra of magnetic molecules and the effect of temperature are discussed in greater detail in
Chapters 2 and 5.



magnetic field and measuring the time that it takes these spins to respond to the changing
fields, time-dependent correlations are obtained;[24] and by subjecting magnetic molecules to
a large external magnetic field, one can study how level-crossings affect this behavior.[25) The
spins can also be studied directly using ESR,[26] whereby one looks for transitions between spin
states, which are shown as peaks in the spectrum of radiation that is absorbed (or emitted)
by the magnetic molecules. These data are particularly useful for determining the g-value a
given magnetic ion, including anisotropies that might be present.!® Given this great variety of
experimental tools, magnetic molecules can be thoroughly studied and understood, provided
that one is able to construct a microscopic model that is able to link these various experiments,
7 hence producing a more complete picture.
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CHAPTER 2. Thermodynamic theory of finite quantum spin systems

-In this chapter we review the theory of quantum statistical mechanics, specifically as it
pertains to quantum spin systems and the present QMC method. Thermodynamic properties
are initially introduced in the context of classical statistical mechanics, but are readily gen-
eralized to quantum systems. The quantum Heisenberg model is also introduced, as well as
the challenges that one confronts when attempting to calculate thermodynamic properties for
the Heisenberg Hamiltonian. These challenges serve to motivate the use of the present QMC
method (described in Chapter 4) for systems of magnetic molecules. For additional background

regarding the material that is contained in this chapter, see for example Refs. [1], [2], and [3].

2.1 Thermodynamic properties

There are four (equilibrium) thermodynamic properties that are simultaneously calculated
during the course of every QMC simulation that we have performed: The internal energy U,
the specific heat C, the magnetization M, and the differential susceptibility y. The internal
energy is not directly accessible in experiments, and is therefore not of primary interest for
this work. Furthermore, the specific heat, though measurable, is experimentally inconvenient
for most magnetic molecules. This is because the non-magnetic portion of a sample (which
comprises the majority of the mass} provides a large contribution to the specific heat which
is difficult to separate from the magnetic contribution.[4] The remaining properties, M and
X, are the primary focus of this work; however, as we describe in Chapters 3 and 4, U and C
always “come along for the ride” during the course of a Monte Carlo calculation. Therefore,

all four properties are introduced in this chapter.
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The theory of these properties begins with Boltzmann’s idea! that, in equilibrium, a micro-
scopic system will occupy a state (which we will denote with an index i) with a probability that
depends on the energy E; of the state and the temperature T. More specifically, that probabil-
ity P; is proportional to exp(—F;/kgT), where kg is Boltzmann’s constant. The probability
must be normalized such that the total probability of occupying any state is unity, thus

o—Ei/kpT

Pi= ———, (2.1)

where the normalization factor Z is called the “partition function” and is given by?
Z =Y e FalksT (2.2)
i

with the summation extending over all states, . The thermodynamic properties listed above
are then weighted (thermodynamic) averages and the derivatives thereof, with the weights
given by the probabilities P;. Very generally, this means that the thermodynamic average

(henceforth denoted {:--)r) of a quantity Q is given by

(@ = ZQi'Pi (2.3a)
iQi _E,;/kBT
_ ZZ—;EHW (2.3b)

and it depends only on T, the energy spectrum {E;}, and the value of @; that is associated
with each state 7.

Using this basic theory, let us now explicitly write down the formulas for U, M, C, and x in
terms of T and {E;}. The internal energy U is the thermodynamic average of the {microscopic)

energy, and Is thus given by

U = (E)T (2'43)
= Y EP; (2.4b)

Ei Eie*—Ei/kBT

——H—Zi BT (2.4c)

'For a review of Boltzmann’s work in statistical mechanics, see e.g. Ref. [5].
2For classical systems that involve continuous degrees of [reedom, this sum is replaced by an integral over
all phase-space; for the purposes of the present work, the summation is much more relevant.
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Similarly, the magnetization M is the thermodynamic average of the individual (microscopic)
magnetic moments M;, so it is given by®
M = > MP (2.5a)
i

S, Mye~ Ei/ksT
T
3., e EilksT

(2.5b)

Inspecting Eq. (2.4¢), U can alternatively be written in terms of a derivative of Z. At this

point it is convenient to define the inverse temperature 8 = 1/kpT in order to compactly write

1987

Since, in a magnetic field® H, the energy spectrum is shifted (E; — E; — HM; for all i), the

magnetization from Eq. (2.5b) can also be written as a derivative of Z,

1 02

(2.7)

Egs. (2.6) and (2.7) turn out to be useful representations for QMC, as we show in Chapter 4.
The specific heat and magnetic susceptibility are defined as derivatives of U/ and M, re-

spectively. Differentiating Eq. (2.4¢), C can be written

ou

ou
= —kpfP=— .8b
B 7 (2.8b)
= kg’ ({(E)r — (E)}), (2.8¢)
while the differentiation of Eq. (2.5b) gives a similar relation for x,
oM

= = 2.
S (2.9a}
= B({(MH)r —(M)F). (2.9b)

It is important to note that all four of these quantities (U, C, M, and x) can be written

directly in terms of thermodynamic averages, without the need for further differentiation. In

®More precisely, M is the component of the magnetization vector M along a particular axis, and M; is the
component of an individual magnetic moment vector M along the same axis. However, since we deal exclusively
with isotropic interactions, it is sufficient to note that this must be the same axis as that of an external magnetic
field ff, and disregard the vanishing transverse components.
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particular, the zero-field susceptibility, xo = limgy_ (x), is given by the fluctuations of the
magnetic moments in Eq. (2.9b), and it can thus be calculated in the absence of a feld.
Experimentally, this quantity is obtained by measuring M and dividing by H, and as long as
H is sufficiently weak (~ 0.1 T), M/H is essentially identical to xg.

In order to perform calculations for a sample of magnetic molecules, the preceding formulas
are immediately applicable, and (using the methods that are described in detail in Chapters
3 and 4) they are employed extensively throughout the later chapters. To do this, instead of
thinking in terms of a probability P; for a single molecule, one can instead recognize that the
number N of individual magnetic molecules is so large (> 10%°) that the number of magnetic
molecules in state ¢ will be accurately given by PN and the magnetization that is measured
for such a sample is then given by the product N M. Similarly, the purpose of the Monte Carlo
calculations is to generate a large ensemble of simulated (individual)} magnetic molecules, where
each member of the ensemble is chosen so as to correctly reproduce the partition function. The
one remaining issue to be addressed is the precise definition of the words “states” and “energies”

with regard to quantum spin systems. This is clarified in the following section.

2.2 Representing quantum spin systems

For classical systems, the calculation of F; for any given state i is typically simple. The
challenge of calculating Z (and hence the thermodynamic properties) instead lies in properly
accounting for the contribution that each state makes to Z, i.e., performing the necessary
sums or integrals.* For quantum systems this is not the case. In addition to being faced with
unwieldy sums, the calculation of any given E; can be an insurmountable task in and of itself,
This difference arises because a classical “state” is easily constructed by simply specifying all
of the degrees of freedom. In contrast, an energy E; is only defined for a quantum state |¢;) if

it satisfies the time-independent Schrédinger equation,[6, 7]

Hlp:) = Eilgi), (2.10)

“In the next chapter the application of the Monte Carlo method to this challenge is described in detail.
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where  is the Hamiltonian operator® which defines the model system and its interactions.
The task of evaluating the energy spectrum hence amounts to solving this eigenvalue equation
[Eq. (2.10)] for the eigenvalues E; and eigenstates |¢;}. As we discuss below, this is straight-
forward for small spin systems, but becomes very complex with increasing system size.
Throughout this work calculations are performed only for the Heisenberg model, described

by the Hamiltonian

H=1 Jiudi & +ousl Y 3, (2.12)
(d.k} J=1

where the summation {j, k) is over all distinct pairs of interacting spins, the spin operators §;
are given in units of /i, g is the spectroscopic splitting factor,® and up is the Bohr magneton. 6]
The quantity J; is often called the “exchange constant”;[8] its magnitude determines the
strength of the interaction between spins j and k&, and its sign determines whether the inter-
action is antiferromagetic (AFM) or ferromagnetic (FM). For J; . > 0, the interaction is AFM
and (roughly speaking) this tends to align spins j and % anti-parallel to one another, while
Jjx < 0 describes a FM interaction, causing the spins to tend to point in the same direction.

For this particular Hamiltonian, the square of the total spin operator Sz and the z-
component of the total spin operator S% both commute with 7. This implies that—in the
basis that consists of |¢;), which are the eigenstates of H—the eigenvalues that are associated
with Sg and 9 are good quantum numbers. They are given by the solutions of the eigenvalue

equations,

oy
e
Il

S(S + 1)]és), (2.122)

S*|ds) = Ms|ei), (2.12D)

where § is referred to as the total spin of the state |¢;), and Mg, the z-component of the

total spin, takes on values ranging in integer steps from —8 to S. Specifying § and Mg does

®Note that the tilde beneath the character H is meant to distinguish the character as representing a quantum
operator. This notation is used throughoui this work.

®Note that Eq. (2.11) assumes g to be a scalar (i.e., fully isotropic) quantity. Although it is usually small,
some amount of anisotropy is expected for any physical system. Unfortunately though, realistic anisotropic
interactions are outside the scope of this thesis, as we describe in Sec. 9.1. Additionally, for certain magnetic
molecules more than one species of magnetic ions is present, so g varies from site to site. This is described in
Chapter 7.



not, however, uniquely specify the state |¢;). For example, there are typically very many
eigenstates with the quantum numbers S = 0, Mg = 0. Also, it is usually’ not obvious how
one can evaluate H|¢;) without first beginning with a different basis, and then constructing |¢;)
as a linear combination of those basis states. These two issues are both avoided by choosing
the basis described below.

For the sake of convenience®

we choose to represent the spin state (upon which H acts} in
terms of the basis states for which the z-component of each spin is a good quantum number.
These states will be represented [¢,), where the index « denotes a particular N-tuple of

quantum numbers, and each of these N quantum numbers will be denoted by m; (1 < j < N).

This choice can be stated very compactly with the eigenvalue equation,
gla) = mylha),  (—s5 Smy < sy), (2.13)

where the operator 7 is the z-component of §;, and m; is the corresponding eigenvalue that
is associated with |¢). (These basis states |thy) are henceforth referred to simply as the

“z-states” for brevity.) In this basis, Mg is still a good quantum number, given by

N
Mg =Y my, (2.14)
7j=1

but § is not a good quantum number. For a simple example of z-states, consider a system
composed of N = 2 spins, each having s = 1. There would be 9 z-states, and they can be
written in terms of the quantum numbers m; and ms using the notation |19,) = |m1,me). In

this notation they are:

|—1,-1) (Ms= -2);

| —1,0),10,-1) (Ms = ~1);
| —1,1),10,0},]1,-1) (Ms = 0);
0,1}, 1,0 (Mg = 1);
I1,1) (Mg= 2).

“In Sec. 6.2.3 we describe a few special cases where this is not the case.
8This choice is important for the QMC method as we describe in Chapter 4.
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Since thereAare 25+1 possible quantum numbers for each of the NV spins, the number of z-states
is always® equal to (2s + 1}, so they quickly become tedious to write out. Very importantly
though, the z-states are generally not the same as |¢;) which are the eigenstates of . Instead,
each |¢;) is a linear combination of the z-states, and can be written

(2s+1)N

|¢i>= Z Ci,al'ﬂbG:)- (2.15)

a=1
Each |¢;) can therefore be defined by a (2s + 1)"V-component vector, (€1, €2, - - ), SO We say
that the system has a Hilbert space of dimension D = (2s + 1)V,

When adopting this basis, it is essential to know what happens when the Hamiltonian
[Eq. (2.11)] acts on the z-states. Recalling Eq. (2.13), the Zeeman term,[6] gugH - > 8, can
be trivially replaced with its eigenvalue gupH Mg, provided that we choose H to be directed
along the z-axis. The dot products, §j - 5k, do not simply provide eigenvalues, but can be
written[9]

& 5 =sisi+ 5 (sar +5557) (2.16)

where the operators st-when acting on a spin that is initially in a state with quantum

numbers $; and m; (represented |s;, my))}—alter the state such that[7]

8 1sj,my) = \/Sj(é?j +1) —mj(m; £ 1)|sj,m; £1). (2.17)

This means that the quantity (s|Hw,) is non-zero for many combinations of ¢ s ~, which
has important consequences for the calculation of thermodynamic properties. This is discussed

in the next section.

2.3 Quantum statistical mechanics

Assuming for a moment that one had already determined the energy eigenvalues E;, the
formulas from Sec. 2.1 could be immediately applied to the {quantum) Heisenberg Hamiltonian
to calculate U, C', M, and x. To do this, one would simply insert these energies (for each £j)

and replace the classical magnetic moments with the appropriate quantum numbers, M; —

9For a system composed of spins with different values of s, the number of basis states is more generally
]:[;-V=1(2Sj + 1. Such cases are considered in Chapter 7.
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gupMs; the partition function from Eq. (2.2) would then still apply. There is, however, no way
to know these eigenvalues from the start, and their calculation is often difficult or impossible.
Instead, we now review how the equations from Sec. 2.1 can be generalized to an arbitrary
basis.

To accomplish this generalization, consider the matrix-representation[3] of . In the basis
that is composed of the |¢;) states, this matrix is diagonal, i.e., the matrix elements (¢;]H|¢;)
are zero for off-diagonal terms (i # 7), while the diagonal terms (i = j) give (¢|[H|¢:) =
E;. The “density matrix”, which is the matrix representation of the operator exp(—fH), is
therefore also diagonal in this basis, since {¢;] exp(—FH)|¢;) is equal to exp(—pE;) for i = j,
and is zero for ¢ # j. Clearly then, the partition function, as it is written in Eq. (2.2), is a sum

over all of the diagonal elements of the density matrix; or in the language of linear algebra,[10]
Z =Ty (e‘ﬁl‘) . (2.18)

Finally, recall that the trace of an operator is independent of the basis, so Eq. {2.18) can be
applied for any choice of basis, and in particular the z-basis. This is a very important point
which will be exploited, as we describe in Chapter 4, to calculate the thermodynamic properties
without calculating the energy eigenvalues E;, but by instead numerically evaluating traces in

terms of the z-states.

2.4 DMotivation for using quantum Monte Carlo

Using the formulas that have been reviewed in the prévious sections, the calculation of
thermodynamic properties for the Heisenberg Hamiltonian is (in principle) a straightforward
task: One first calculates the matrix elements of H in some basis. Choosing the z-states for
example, these matrix elements, {¥a|H|t), can be calculated using Egs. (2.16) and (2.17);
Using methods that are well-known from linear algebra,[10] the Hamiltonian matrix would
then be diagonalized to obtain E; and |¢s) as linear combinations of (34|H|w,) and (i),
respectively.

Although straightforward, this calculation would however be extremely impractical for

large systems. The diagonalization of a matrix (which in this case has D x D total elements)
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has a computational complexity that grows as the cube of the number of matrix elements.
Consequently, even when taking full advantage of symmetries,{12] and only diagonalizing the
necessary sub-spaces of }, matrix diagonalization methods are still currently limited to D <
108 or 107, For example, the {Nija} cluster (N = 12 spins, each with s = 1) that is studied in
Sec. 7.3 has D = 5.31 x 10°, so matrix diagonalization is feasible, but it requires much more
computation time than our QMC calculations.!? On the other hand, some of the molecules
described in Chapter 7 have D > 10%, so matrix diagonalization is not even an option. For
the study of sufficiently small spin systems (e.g., the study of a {Crs} molecule with D =
65,536 is described in Ref. [11}}, computer codes are currently available which can carry out
these matrix calculations. In particular, we have used the MAGPACK (Magnetic Properties
Analysis Package for Spin Clusters) package, described in Refs. [12] and [13], to rigorously
test our QMC calculations on small systems before approaching the large systems that are
described in Chapters 5-8.

Other methods, such as the Lanczos[14, 15] and Davidson[16] methods, are able to handle
larger D by only attempting to calculate a smaller number v of low-encrgy states, where
v < D. These methods begin with states that are linear combinations of all of the D basis
states, but then project them onto a smaller subspace (composed of only v states) within
which v x v matrices are diagonalized. The obvious advantage of such an approach is that one
does not need to diagonalize huge matrices. However, it is still necessary to record the linear
combinations of the D basis states, so practical limitations are still imposed by the value of
D. Specifically, these calculations are currently restricted to D < 10%. Furthermore, since only
low-energy states are considered, Eq. (2.1) implies that these methods will only provide valid
results for thermodynamic properties at low temperatures.

We would like to finally mention one other theoretical method that has been commonly
used when applying the Heisenberg Hamiltonian to the study of magnetic molecules: The

classical spin model. This approximation is described in detail in Sec. 6.2.1, but the general

YEor this particular molecule, we were able to consider roughly a thousand different sets of exchange parame-
ters over the course of a weekend, allowing a thorough search of the complex parameter space, while the exact
diagonalization required several hours for each set of exchange parameters. See Sec. 7.3 for more detail.
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idea is to replace the quantum spin operators in Eq. (2.11) by classical unit vectors, 8 — €5,
and use classical Monte Carlo methods to sample the resulting partition function. Since this is
a classical approach, it is not limited by D, but it suffers from a different limitation. Namely,
below a certain temperature the results of a classical spin model will differ substantially from
those of the quantum spins that it is attempting to represent. An accurate estimate of when
(i.e., at what temperature for a given value of s) this difference occurs was not previously
known, so in Chapter 6 we systematically compare the results of the quantum and classical
Heisenberg models for many systems in order to establish clear guidelines. These results are
provided in Sec. 6.3.

1o summarize, every method that exists for calculating the thermodynamic properties
of spin systems has a crucial limitation, shown schematically in Fig. 2.1. Exact analytical
results are often not possible, so we instead resort to numerical methods. Exact (numerical)
diagonalization can provide results for arbitrary geometries and interactions, but is currently
limited to systems with D < 10° Lanczos and Davidson methods allow one to study a
restricted subset of eigenvalues for larger systems, but are still limited to D < 10°. One could
instead use a classical model, and this will provide accurate results, unhampered by D, as long
as s and T are sufficiently large,!! but at lower temperatures the results are not reliable.

The combination of these limitations result in the large “hole” that appears in Fig. 2.1,
suggesting that an additional tool (or tools) is needed in order to successfully study the full
variety of magnetic molecules; this provided the motivation for the present work. The QMC
method described in Chapter 4 is immune to the size of D (unlike the diagonalization methods),
and does not involve systematic approximations (unlike the classical approximation). As a
result, we are indeed able to fill in much of the hole, and provide results for syétems that were
previously untouchable.

Despite this success however, the QMC method has a different set of limitations. Recall
that the advantage of the QMC approach is that we do not calculate energy eigenvalues and

eigenstates. We instead use Monte Carlo methods (described in the next chapter) to sample

See Chapter 6 for further details.
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Figure 2.1 Schematic diagram which includes the theoretical methods that
have typically been used to obtain the thermodynamic proper-
ties of magnetic molecules, and shows the regimes for which
each of the methods can {(and cannot) be applied.

the partition function, avoiding the obstacle imposed by large values of D. The cost of this is
that our QMC results do not provide information about matrix elements, and hence cannot be
used to calculate time-dependent phenomena. Furthermore, the QMC method suffers from the
well-known “negative sign problem” which, for frustrated systems, restricts our calculations to
high temperatures. This is a serious limitation, which is discussed in detail in Chapter 8.
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CHAPTER 3. The Monte Carlo method in classical statistical physics

The term “Monte Carlo” (MC) refers to any method that relies on random numbers to
perform a calculation. This is an extremely broad definition, which includes calculations in all
areas of science and engineering, and even economics. In statistical mechanics alone, the use of
MC methods is extremely varied, including the determination of ground states with simulated
annealing[1] and the study of dynamics with kinetic Monte Carlo.[2] A broad review of the
uses of MC methods in statistical physics can be found in Refs. [3] and [4]. In this chapter, we
instead restrict our discussion to the issues that are directly relevant to the calculations that
are described in the later chapters.

As we described in the previous chapter, the evaluation of thermodynamic properties
amounts to the computation of averages, weighted by the terms that comprise the partition
function. For classical models, these terms are written exp(—3E;), yielding averages that take
the form of Eq. (2.3) for a general quantity . More specifically, for the calculation of U, C,
M, and x, one simply replaces @; in Eq. (2.3b) with E;, EZ, M;, and Mf, as we have shown in
Egs. (2.4)(2.9). Each of these quantities are trivial to calculate for any single term, but the
summation over all of the states is often impossible. However, one can avoid this obstacle by
instead using the MC strategy that is reviewed in this chapter.! As we describe below, these
thermodynamic averages can thereby be obtained to arbitrary accuracy, where higher accu-
racy simply requires more computation time. Furthermore, the statistical errors are reliably

estimated during the course of a MC simulation, as we describe in Sec. 3.5.

"This approach also applies to systems with continuous degrees of freedom in exactly the same way. For
these cases however, it is the evaluation of complicated multi-dimensional integrals, Z = [ dQexp(~BE), that
one wishes to avoid.
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3.1 Monte Carlo steps based on detailed balance

In order to use a MC method to calculate thermodynamic properties, one need only recall
the principle of “detailed balance”, which relates the probability of occupying a microscopic
state {given by Eq. (2.1)] to the probability of making a transition between states. Specifically,
if these transition probabilities satisfy the detailed balance condition, then the distribution
of states thus obtained will correspond to the equilibrium distribution. The detailed balance
condition to be satisfied is extremely simple to write down, and is given by

Pii _ P

(3.1)

where P; and P; represent the probabilities (in equilibrium at a temperature T) of occupying
state ¢ and state j, respectively [see Eq. (2.1)]; and Pj_; and P;_,; represent the probabilities
of making a transition from state j to state ¢, and from state i to state j, respectively. A
Monte Carlo calculation then proceeds by making transitions in such a way that Eq. (3.1) is
satisfied.

To see that the detailed balance condition truly will produce the desired equilibrium dis-
tribution, consider first a system having only two states, ¢ and j, with p = P;/P; > 0. As
transitions are made back and forth between the two states, the transitions from § to ¢ will
occur p times as often as those from ¢ to j. As a result, the system will spend p times as
.much time in state i, so the correct distribution is indeed produced. Now consider a third
state, &, with a probability P, that satisfies ¢ = P;/P; > 0. We already showed that states
¢ and j are occupied according to the correct distribution; similarly, the system will spend ¢
times as much time in state j as it does in state k. Therefore, the equilibrium distribution is
again obtained. In fact, by continuing this argnment, Eq. {(3.1) will always produce the correct
equilibrium distribution, as long as it is possible to get from any state to any other state in a
finite number of transitions—a condition known as “ergodicity”.

To show how the detailed balance condition can be used, let us now consider a concrete
example. Suppose that our system consists of one person, who we will name Carl, and the

state of that person is specified solely by the city in which he lives. He can live in any one of
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N cities, represented i = 1, 2, 3, ..., N, with populations Py, Pa, Ps, ..., Pn,, respectively.

One could then perform a Monte Carlo simulation in the following manner:
(1) Begin with Carl living in one of the N, cities, chosen at random.
(2) Propose that Carl move from his current city to a neighboring city.

(3} Choose to accept or reject this proposed move based on a probability that is consistent

with Eq. (3.1).

(4) Repeat steps 2 and 3 many times. (The details of steps 2 and 3 will be made more

explicit in the following section.)

After many proposed moves (each of which is referred to as a “Monte Carlo step”, or
“MCS"), the number of times that Carl has chosen to live in city i will be approximately
proportional to P;. Of course, for any finite number of MCS, represented Njs¢, this propor-
tionality is not exact, but the exact distfibution is approached in the limit Np;c — oo. Suppose
now that there is some quantity —e.g., Carl’s salary—which is determined entirely by the
city in which he lives. Furthermore, assume that there are many such people who are identical
to one another and do not influence one another.? The average salary that these people earn

is then easily calculated by recording the value of @Q; at each MCS and averaging, i.e.,

5 1 Ny | -
(@~ 55— ; Qi | (32)

For any finite number of MCS, Eq. (3.2) is also only approximate, with the exact equality being
approached in the limit Ny;c — oo. This is perfectly analogous to the rolling of a 6-sided die.
A small number of rolls will not provide accurate information about the die, but after many
rolls, each number (1-6) would be encountered 1/6 of the time, so the average value rolled
would be 21/6 = 3.5. Of course if the die were “weighted”, then we would not have P; = 1/6

for all i, and a different distribution would be obtained.

2Kconomically, this assumption would of course be ridiculous, but it can be valid {or physical systems. For a
very relevant example, there are many identical, non-interacting magnetic molecules in a macroscopic sample.
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3.2 From detailed balance to importance sampling

The simple four-step algorithm (and the subsequent averaging) that was described in the
previous section very accurately describes the “big picture” of a Monte Carlo calculation.
However, there are many additional—often subtle—details that must be elucidated. First, the
discussion of the previous section involved making transitions with probabilities that depended
on P;. This would appear to be problematic, since P;, which is defined in Eq. (2.1), depends
on Z. In fact, the whole motivation for using MC is that one typically cannot calculate Z.
Therefore we cannot have a useful algorithm that requires a knowledge of Z. However, if one

proceeds to insert P; and P; into Eq. (3.1), the resulting form of the detailed balance equation,

5-:_,1- _ exp(—BE;)/Z
P exp(—8E;)/Z
= exp(—B(Ei - Ey)), (3.3b)

(3.3a)

is independent of Z. In fact, it depends on only two energies—those of the current state and
the proposed state—and it is hence easily evaluated.

Secondly, note that the total number of {microscopic) states is often incomprehensibly large.
Perhaps the simplest such example is that of classical Ising spins, i.e., spins that can point
only “up” or “down”.[5-7] A small 3-dimensional lattice of Ising spins, having only 10 spins
along each edge (for a total of 10 x 10 x 10 spins), would give 21090 ~ 10301 different possible
states! Obviously one could never hope to separately count the contribution that each state
makes to the partition function. We can, however, still perform MC calculations, and actually
obtain useful results, by applying a very important principle: The vast majority of these states
can often be ignored, because the contribution that they make to the partition function is
utterly negligible. Furthermore, the relatively small subset of remaining, “important” states
can be “sampled”, just as voters are sampled in a political poll. As is the case in polls, a
relatively small sample will yield accurate results, provided that important demographics are
not excluded. (In the language of Monte Carlo simulations, this condition of non-exclusion is

enforced by ergodicity: It must be possible to access all of the important regions of phase-space
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in fewer than Ny;c Monte Carlo steps.)

The application of this principle is generally known as “importance sampling”.® It was
first used in 1953 by Metropolis, et al. in Ref. 8], and has since been applied to numerous
systems, some of which are discussed in Ref. [3]. Their method, now known as the “Metropolis
algorithm”, consisted of simply taking the principle of detailed balance; writing it as it appears
in Eq. (3.3b); and choosing to always accept a transition from a higher energy state to a lower
energy state. For any given transition, if one defines state ¢ to be the state with higher energy
(i.e., E; > Ej), then this choice is equivalent to setting the denominator of Eq. (3.3b) equal to
one. Therefore, in the Metropolis algorithm, the probability of accepting a proposed transition
is given by

exp(—B(E; — Ej)) i B; > Ej,

Pii= (3.4)
1 if F; < Ej.

3.3 Proposing and accepting transitions

We can now begin to clarify steps (2) and (3) of the 4-step algorithm that was presented in
the previous section. First, recall that P;_,; is the probability of making a particular transition
from the current state j to a different state i, while step (2} involves proposing a transition, and
step (3) involves accepting the transition. For lack of a better symbol, we will represent the
probability of proposing this transition by R;_;, and the probability of accepting the proposed
transition will be represented A;_.;. In order to make a transition, it must first be proposed in
step (2)}, and then be accepted [in step (3)], giving 2 total probability of Pii=Ri ;A .

Often R;; can be trivially set equal to R;_,; (as explained below), in which case both
Rj-,; and R;_.; can be eliminated from the detailed balance equations, leaving only A;.,; and
Aj..j. Clearly, in this situation, Egs. (3.3) and (3.4) would describe the probability of accepting
a proposed transition, so Eq. (3.4) could be used in step (3). For example, again consider a
system of Ising spins. Given a current state—specified by which spins point up, and which

point down-—the next state can be proposed by simply flipping random spins. Since each spin

*The alternative to importance sampling is called “simple sampling”. It is described in Ref, [3] and the
references therein.
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Figure 3.1 Diagram illustrating the probabilities of proposing transitions
(Rj—i, etc.) for the example of a person moving from city to
city along a peninsula.

has only two possible states, up or down, R;_,; is then automatically independent of i, and
can hence be ignored.?

Actually, it turns out that R;.; and R;_,; can .alwa,ys be set equal to one another and
eliminated from the detailed balance equations. Therefore Eq. (3.4) can always be used to
determine A;_,; in step (3). Sometimes, however, how to accomplish this [in step (2)] requires
careful thought. For instance, recall the example of Carl moving from city to city from the
previous section. Suppose three cities—i, j, and k—are all on a peninsula, with & at the tip.
This situation is illustrated in Fig. 3.1. If Carl currently lives in 7, then he can move to either i
or k; and in step (2) of the algorithm, we can set Rj_; = Rj_ = 1/2. This means that a move
will definitely be proposed. If, however, Carl currently lives in k, then the only city to which
a mové can be proposed is j. Since we already set R;_x = 1/2, we must also set Ry _.;=1/2
in order for Eq. (3.4) to describe the acceptance probability. This means that there is a 50%
chance that a move will not even be proposed.

This issue of dealing with R;_.; can often be ignored (as it is with the Ising model),
so frequently Eq. (3.4) is introduced as the acceptance probability without mentioning the

corresponding subtleties of step (2). The treatment of R;_,; is, however, very relevant to the

4Specifically, with 1000 Ising spins, one could propese a new state by flipping 1 spin. There would be
1000 different spins from which to choose; so by choosing the spin at random, we would have R;—; = 1/1000,
independent of i.
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QMC method that we have employed. In that context, each MCS involves spin raising and
lowering operators acting on quantum z-states. For s = 1/2, the spins are simply “fipped”
(much like Ising spins); but for s > 1/2, when m; = s; the spin state can be lowered, but
cannot be raised (much like the city at the end of the peninsula). This is described in greater

detail in Chapter 4.

3.4 Using random numbers to attain probabilities

Finally, we are ready to precisely state steps (2) and (3) of the 4-step algorithm that was
presented in the previous section. In step (2), a transition from the current state j to a different
state ¢ s proposed with a probability R;_.;, the details of which depend on the the specific
problem under consideration. For some problems (e.g., the Ising model) a transition is always
proposed, while for other problems (e.g., Carl moving between cities) it is sometimes necessary
to not propose a transition. The decision of which transition to propose (or not propose) can
be made in the following way: First, select an interval between 0 and 1 of size R;_;. Next,
generate a random number 7, uniformly distributed befween 0 and 1. The transition from j
to i is then proposed if and only if r falls in the selected interval.®

In step (3), the proposed transition is accepted (or rejected) with a probability given by
Eq. (3.4). If the proposed state has a lower energy than the current state, the proposed
transition is accepted. If not, we can make the necessary decision by generating another
random number 7, again uniformly distributed between 0 and 1. If 7 is less than Pj_;, then
the proposed transition is accepted. If > Pj_;, the transition is rejected.

One can equivalently view this decision in terms of the curves that appear in Fig. 3.2.
These curves represent Eq. (3.4), plotted as a function of the energy difference, E; — E; >0,
for multiple fixed temperatures. If the energy of the proposed state FE; is greater than the
energy of the current state E;, then one generates the random number r. Whether or not to
accept the proposed transition depends on three values: the temperature, the energy difference,

and r. The temperature defines a single curve which is relevant for all Nyse of the MC steps.

®Note that in Fig. 3.1 the two transitions from j (Rj—.; = Rj_ = 0.5) will together span the entire interval
from 0 to 1, while Ry ; leaves half of the interval unoccupied.



29

1.00
2]
=~ 0754
2 ]
%
el |
E 0.50-_
c -
hel SEees
B ] ek T=10 (insameunits as £ and £) ]
c
© 0B/l N, e kT=1.0 (in same unils as E ard Ej) -
= ] —o—kT=0.1 (insameunisasE,and£) |
—— &,7'=0.01 {in same units as £, and EJ)
0.00 e e e e aa o a
0.00 0.25 0.50 ' 0.75 1.00

E - E {in same units as k.T)

Figure 3.2 The probability of accepting a proposed transition (from state
7 to state i) is shown as a function of the energy difference,
E; — E; > 0, for four different temperatures. Transitions from
higher energies to lower energies (E; < Ej) are accepted auto-
matically.

(Four examples of such curves have been included in Fig. 3.2.} Along this curve, there is
furthermore only a single point that is relevant for making the decision [in step (3)] for any
particular MC step; it is given by the intersection of the relevant curve with a vertical line,
drawn at the current value of E;— E;. The random number, 0 < r < 1, can then be pictured as
a point lying somewhere along this line. If r lies below the point of intersection, the transition
is accepted. If r lies above the curve, the transition is rejected.

Fig. 3.2 also provides important additional insight into the physics that is involved, and
in particular, how it is that many of the states come to be ignored. Clearly, the higher the
energy of the proposed state, the less likely it is that the transition will be accepted; and as
a result, fewer Monte Carlo steps will end up at the high energy states. As the temperature
is lowered, it becomes even less likely to accept transitions to high energy states. In fact, at
low temperatures, transitions to the high energy states will never be accepted. Suppose, for
example, that we have chosen to use a million MC steps (Npc = 10%). If the proposed state
(i) were to have an energy that gives E; — E; = 23 x kgT, then the corresponding acceptance

probability would be Pj; &~ 10710, and it would be extremely improbable for such a transition
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to be accepted in the 10° MCS. States such as these are therefore ignored, and it is the proposed
states for which P;_; is close to unity (and P; is large) that detailed importance sampling takes

place.

3.5 Emnsemble averaging and error-bars

From the discussion of the previous sections, it should be clear how—based on the principle
of detailed balance—one can perform a Monte Carlo calculation by making transitions back and
forth among the important states. During each MCS of this process, one can record information
about the current state, and use this information to calculate averages using Eq. (3.2). There
are, however, important issues that deal with the statistical analysis of these data that have

not yet been addressed. This is the purpose of the present section.

3.5.1 Reaching equilibrium

First, note that step (1) of the 4-step algorithm begins with a random initial state. It is
likely that this state (7) will have a very small value of P;, in which case it should not be
counted among the “important” states. The second state (j) will be more likely to be an
important state, since such transitions (with P; > P;) are accepted preferentially. It might,
however, require several MCS before the important region of the phase space (which should
actually be sampled) is reached. This is a noteworthy problem, but has a very easy solution:
simply choose not to count a certain number Neq of the initial MCS, since the states being
encountered are probably not yet representative of the equilibrium distribution.

The value of Ngq that should be used depends on the specific model being studied, but its
exact value is fairly arbitrary. It can be chosen by starting a simulation and observing how the
quantities of interest (e.g., F; and M;)} evolve. For the QMC calculations that are described in
Chapters 5-8, we have always disregarded the first Neg = 50,000 MCS. For these simulations,
equilibrium was always reached within about 10,000 MCS, so it was important to choose Neg >
10,000. Since 50,000 MCS required a relatively small amount of additional computation time,

this number was chosen to be somewhat larger than necessary.
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After this initial equilibriation is complete, the subsequent Nj;o states that are encoun-
tered, and in particular the frequency with which they are sampled, will indeed accurately
reflect the equilibrium distribution. As a result, Eq. (3.2) can be used to estimate the nec-
essary thermodynamic averages, and the value thus obtained will approach the exact value
in the limit Ny — oco. Naturally, however, we want to get results using a finite number
of MCS, and a correspondingly finite amount of computation time. To know whether or not
these results (with a finite sample size) are “good enough”, we need to know the size of the

corresponding statistical errors.

3.5.2 Accounting for correlations

Recall from statistics[9] that for a finite number Ny; of statistically independent observa-
tions of a quantity @, the statistical error in the resulting estimate of @ is given by

(@) - (@

00 =
Q Nsi

(3.5)

The quantities (Q?) and (Q)? can each be estimated using Eq. (3.2); and their difference gives
the “width” of the distribution being sampled, which is a well-defined, finite number.® Since
the numerator is finite, we have the very important result: 6Q o< 1/v/Ng;, decreasing toward
zero with increasing Ng;. The errors in the averages that we calculate can therefore be made
arbitrarily small by choosing Ng; to be large,” and the calculations are subsequently referred
to as “numerically exact”.

There is however a remaining complication. The values of Q; that we obtain will not
be independent from one another. This is because, as we described in the previous section,
each new state is proposed by making some change to the current state.® In fact, in order to
stay in the important region of phase space—and hence have a high acceptance probability—

it is actually advantageous to propose relatively small changes to the current state, which

®From Egs. (2.8¢) and (2.9b), the numerator of Eq. (3.5) is actually proportional to VCor /X if @ represents
the energy or magnetic moment, respectively.

“When the negative sign problem is present, the amount of useful statistics that are accumulated decrease
exponeniially with decreasing temperature, dominating the 1/+/N,; advantage that is provided by increased
comput,atmn time, and restricting us to relatively high temperatures. See Chapter 8 for details.

8 A process such as this (where each new state is selected based on the current state) is called “Markovian”,
and the series of states thus obtained is called a “Markov chain”.
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would cause successive states to be strongly dependent on one another. (Methods that avoid
this apparent “Catch-22" are mentioned in the following section.) As it stands, Eq. (3.5) is
therefore insufficient.

Fortunately, it is relatively easy to account for this complication as well. During the course

of a simulation, we can estimate the “auto-correlation function” of each quantity Q, given by

_ AQiQiye) — (Q)?
Y0 =" —p

which is a measure of how strongly correlated the sampled values are when they are separated

(3.6)

by t MC steps. To calculate the quantity (Q;Qs4¢), we simply multiply Q; (from the ith MCS)

by Qi+¢ [from the (i 4 t)th MCS], and average over all Np;¢ — ¢ of these products; i.e.,

Nyo—t
(QiQite) E'N—M"'i'-_—“i > QiQise (3.7)
j=1

If the values were perfectly correlated (i.e., @; = Q44 for all i), then clearly one would find
{(QiQi+e) = {Q?), such that ¢() = 1. In the other limit, if the steps were totally uncorrelated,
we would have (Q;Qit:) = (Qi)(Qirs) = (@)% such that ¢(t) = 0. By definition then,
$(0) = 1, and as the states become less correlated, ¢(¢) will decrease to zero with increasing .
To determine when the states are no longer correlated, we use the “integrated auto-correlation
time”,

)

TAC = ) (), ' (3.8)

t=1
which will have a value of 1 if there are no correlations; otherwise, 74¢ represents the approx-
imate number of MCS that are necessary in order for correlations to vanish. [Note that the
summation in Eq. (3.8) can be safely truncated at any ¢ > Ta¢, since these values of o(t) are
small, random fluctuations that do not significantly affect the value of Tac-)

The simplest solution to the problem of correlations in Eq. (3.5)—and the solution that
we have implemented in our QMC calculations—is to group the data into a large number Ng;
of “bins” that have negligible correlations with one another. To ensure negligible inter-bin
correlations, we simply choose the number of MCS per bin Ny to be much larger than 74c.
(For our QMC calculations, we typically find 7a¢ < 10, and in all cases, T4¢c < 100; so, we

safely used Npsc > 1,000 for the calculations that are described in Chapters 5-8.) The data
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within each bin are used to caleulate Ng; different estimates of the thermodynamic properties
(U, C, M, and x) using Eq. (3.2). It is then these N,; estimates that are used to calculate the
error-bars for each of the thermodynamic properties using Eq. (3.5).

The main idea is that even though the individual MCS are correlated, each of these N
estimates truly are statistically independent, as long as we have chosen Ny > T4c. Note
also that this approach in no way affects the averages that are obtained, but does affect the
estimates of the statistical errors. By choosing Nysc 3 Tac we are slightly overestimating our
statistical errors, while choosing Nj;c < Tac (or totally ignoring correlations} would results in
considerable underestimation of the statistical errors. Finally, noteltha.t the statistical errors,
when estimated in this manner, still decrease inversely proportional to the square-root of the
total number of MCS: Clearly from Eq. (3.5) we still have §Q « 1/+/Ng;. In addition, as Nay¢

increases, the distribution of the (individual bin) estimates becomes narrower, with a width

proportional to 1/v/Np¢, such that 6Q o« 1/v/NpcNy;.

3.6 Summary

In addition to the Metropolis algorithm, there are many other ways in which the principle
of detailed balance can be used to perform importance sampling which rely on many (if not
all) of the principles that have been expressed in this chapter. Firstly, the choice to set
the denominator equal to unity in Eq. (3.3b) is not unique. One could instead choose the
probabilities to be symmetric (i.e., Pi—; + Pj_; = 1),[10] or could choose the probabilities
in some other, more general, way.[11] More substantial modifications involve choosing the
proposed transitions in such a way that they are always accepted.[12, 13] Versions of these
so-called “cluster methods” have also been implemented in QMC algorithms,[14, 15] and are
predecessors of the “directed-loop” [16] method which we use, and have described in the next
chapter. Recently, there has also been considerable interest in developing MC methods that
do not simulate a canonical (fixed temperature) ensemble, but instead consider multiple types
of ensembles simultaneously.[17, 18] One such method can be used to estimate the density of

states directly,[19] and a version of this method has recently been applied to QMC calculations



34

as well.[20]

To conclude, we would like to now preéent an algorithm which uses all of the ideas from
this chapter, but is sufficiently general to be immediately applied in the following chapter. In
particular, we will now use the term “configuration” instead of “state” to refer to a term of
the partition function that is encountered in a MCS. This is to avoid confusion with gquanium
states in the next chapter. Also, each MCS will involve multiple proposed changes. This is

reflected in step (2) of the following algorithm.

(1) Begin with a randomly chosen configuration.
(2) Change configurations by taking a Monte Carlo step. (See Secs. 3.2-34.)

(2a) Propose changes to the configuration, each with some probability R.

(2b) Choose whether or not to accept each of the proposed changes with some probability

A, such that each of the total probabilities P = RA satisfy detailed balance.
(3) Repeat step (2) N, times. (See Sec. 3.5.1.)
(4) Collect data for a bin. (See Sec. 3.5.2.)

(4a) Take a Monte Carlo step [described in step (2)].

(4b) Record the quantities of interest. (See Sec. 2.1.)

(4c) Repeat (4a) and (4b) Njpsc times.

(4d) For each property, average the Npsc values using Eq. (3.2).

(5) Repeat step (4) Ny times.

(6) For each of the thermodynamic properties, average the N values to obtain a final

estimate.

(7) Estimate the uncertainty in each of the estimates from step (6) using Eq. (3.5). (See

Sec. 3.5.2.)
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CHAPTER 4. Description of the quantum Monte Carlo method

In this chapter we provide a detailed description of the quantum Monte Carlo (QMC)
method that we have implemented, relying heavily upon the ideas that have been reviewed in
Chapters 2 and 3. This particular QMC method—which we have used to produce the results
that are presented in Chapters 5-8—was introduced in Ref. [1], and is known as the “Stochastic
Series Expansion method with directed-loops”. Note that, although highly effective, this is by
no means the only QMC method that could have been used to carry out these calculations.
In fact, earlier versions of this method exist that are based on many of the same ideas,[2~
4} and alternative methods exist as well. For instance, one could use the Trotter-Suzuki
method[6, 7] which is briefly described in Sec. 4.2.1. However, this has the disadvantage tha.t.
one must either extrapolate approximate results,[6] or deal more extensively with floating point
(decimal) numbers rather than integers.[7] One could also choose to use the stochastic series
expansion (SSE) method without directed loops,[3] but this has disadvantages as well, which are
mentioned at the beginning of Sec. 4.6.2. For a recent review of the chronological development

of the various QMC methods, as well as their relative advantages and disadvantages, see

Ref. [5].

4.1 Introduction

The key premise of our calculations is that we wish to utilize the principles of detailed
balance and importance sampling, as they have been described in the previous chapter, to
calculate thermodynamic properties for quantum spins systems. In order to proceed, we must
first recall the central requirement that (if satisfied) allows the strategies of Chapter 3 to be

useful: Each individual term of the partition function must be easy to evaluate. As long as this
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condition is satisfied—i.e., as long as we can write

Z=> W, (4.1)

and easily evaluate each term W;—the principle of detailed balance can be written

Py Wy

(4.2)

without any reference to the partition function. This is important because (as was the case in
'Chapter 3) when the partition function is not needed, calculations can be performed reqardless
of the complexity of the sum that appears in Eq. (4.1).

For classical systems, this requirement is trivially satisfied. Each term is given by exp(—BE;),
so Eq. (4.2} reduces to Eq. (3.3b), and each transition probability depends on only two energies
and the temperature. For quantum systems on the other hand, recall from Sec. 2.3 that the
partition function is given by

Z=Tr (e—f”ﬂ) , (4.3)

which is a sum over all of the diagonal elements of the density operator. As we described
in Sec. 2.4, these matrix elements are often extremely difficult (and sometimes impossible)
to evaluate. Therefore, the first step in developing a QMC method is to recast the partition
function, Eq. (4.3), in the form of Eq. (4.1) in such a way that each term W; is easily evaluated.
The details of this chapter become rather involved, so the following two paragraphs provide a
brief “road map” to the material that is covered.

The following section (and in particular Sec. 4.2.2) includes a description of exactly how
Eq. (4.3} can be written in the form of Eq. (4.1). This leads (after some algebra) to Eq. (4.15)
which—for the sake of QMC updating and sampling—turns out to be problematic for two
reasons: (1) As we show in Sec. 4.5, when antiferromagnetic interactions are present, Eq. (4.15)
always produces some terms W; that have negative values, regardless of the geometry. This
would be problematic for sampling, but is easily rectified by adjusting Eq. (4.9a) to instead
take the form of Eq. (4.23). (2} The sizes of the (d+1)-dimensional configurations (described in

Sec. 4.4) vary among the terms in Eq. (4.15), and would therefore be inconvenient to represent



39

and update in computer memory. For this reason, Eq. (4.15) is finally rewritten in the more
useful form of Eq. {4.21) in Sec. 4.4.

In Sec. 4.3, the explicit form of the thermodynamic averages are derived, which [recalling
Egs. (2.3) and (3.2)] can be used to sample the partition function, as it is written in Eq. (4.21).
This sampling is carried out using Monte Carlo updates that are described in detail in Sec. 4.6.
Each update consists of two stages, the first of which is performed with probabilities that are
given by Eq. (4.29), which follow directly from the detailed balance condition {Eq. (4.2)]. The
second stage of the update is considerably more involved. The detailed balance condition for
this stage is (eventually) given by Eq. (4.37}, where the specific probabilities that we have
employed are provided in Eqgs. {4.45), (4.46), (4.48), and (4.49). Finally, in Sec. 4.7 we address

a number of specific details of our implementation.

4.2 Representing the partition function

4.2.1 Trotter-Suzuki method

There are two main avenues by which people proceed in recasting the partition function.
One method (which we have not implemented, so will describe only very briefly) is to use

the Trotter-Suzuki decomposition.[6] This method begins by introducing an integer m, and

Z="Tr ([exp (—%7;{)] ) . {(4.4)
Recalling that the Hamiltonian depends on pairs of interacting spins, the partition function
Z = Tr ( -exp (E iﬂb)] m) (4.5a)
=
- N 3 m
~ Tr ( Hexp (r_r;?ib)] ) , (4.5b}

where the approximate equality is very poor for small mn, but becomes exact in the limit m —

trivially writing

can be written?

cc. (This is because the commutators, [Hy, , Hy,] o< §%/m?, vanish for large m.) Rewriting

! Additional details regarding the “bond operators” H; are provided in the following subsection.
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the partition function in this way is useful because Eq. (4.5b) is a product of 2-spin operators,
whose matrix elements are easily evaluated. This approach has been used both by choosing
many finite m and extrapolating to the m — oo limit, and by starting with m = oo and writing

Eq. (4.5b) as a path-integral.[7]

4.2.2 Handscomb’s method

The method that we have implemented begins in a totally different manner from the
Trotter-Suzuki method, but ends up with a very similar result.[8] Specifically, the desired
result is to write the partition function in terms of 2-spin operators, in such a way that their
matrix elements are easily evaluated. This can be accomplished by first writing the series

expansion of the density operator,

Z = 3 (e y) (4.62)
¥

= 2> %{wt (=H)" 1), (4.6b)

P n=0

where the trace has been written explicitly as a summation over all of the basis states

)

which we choose to be the z-states. (See Secs. 2.2 and 2.3.)

Next, the Hamiltonian is expressed as a summation over bond operators,?

Ny
—H=) H (47)
b=1

where N, represents the total number of distinct bonds in the system, and the index b is used
to distinguish between these bonds. With the Hamiltonian expressed in this way, inspection

of Eqgs. (2.11) and (2.16) reveals that each bond operator is given by

. Jb Siwy . )
—Ho = Jp {815 + 55 1Sz + 51 +gupH +—1, 4.8
b ( 1(6) 2(b)) ( 21(0)y52(0) E1m)& 2(b)) gy ( G | Eam) (4.8)
where, since each bond connects two spins, the subscripts 1(b) and 2(b) refer to the two spins
that are connected by bond b. Also, note that in Eq. (2.11) the field-dependent (Zeeman)

portion of the Hamiltonian involves a sum over all spins, while in Eq. (4.7) the Hamiltonian

*The operators Hp are defined so as to give a negative sign which conveniently disappears when they are
substituted into Eq. (4.6b).
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(&) 2{p)

Figure 4.1 Diagram showing a system of N = 5 spins, connected by N, = 4
bonds. Bond b connects the central spin [which has Sip) = 4
neighbors| and the right-most spin [which has &by = 1 neigh-
bor].

is written as a sum over all bonds. In order to not over-count these terms, we must therefore
divide the Zeeman terms by the number of bonds, ;) and &a(p)> that connect to spins 1(b)
and 2(b}, respectively. To illustrate this point, consider the example system shown in Fig. 4.1.
Four bonds connect to the central spin, so the corresponding Zeeman term would be counted
&1(p) = 4 times in Eq. (4.7), while only £ap) = 1 bond connects to the right-most spin. In
Eq. (4.8), one therefore divides these two terms by 4 and 1, respectively.

For the purpose of the QMC algorithm, it will also be important to differentiate between
diagonal and off-diagonal operators. This can be done by writing Hy = Hp1 + Hy2, where
Hp1 and Hp,2 represent the diagonal and off-diagonal portions of Hj, respectively.? They can
be read directly from Eq. (4.8), giving

57 s
. Sw | e
Hep = —Jy (ﬁf{b) +§,2(b)) —gupH (m + *é;(;) (4.9a)

_ e - - o+
Hee = ) (:‘.3.1([,):?,2(1,) +§»1{b}§2(b)> . (4.9b)

3The terms “diagonal” and “off-diagonal” are referring to the matrix elements of 7, when specifically
represented using the z-states (introduced in Sec. 2.2) as the basis.
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The next (crucial) step is to recognize that the partition function,

n Ny, 2 n
Z= ZZ’B (| (ZZ’MO) ), (4.10)

¥ n=0 b=1 o=1

which involves summations to the nth power (i.e. products of sums), can instead be written in
terms of sums of products, where each product consists of a sequence of n operators. To make
this clearer, consider the simplest possible example: one bond connecting two spins. For this

example, the sums of products for the four lowest orders of the series expansion are

(

1 forn =0,
n Hig+Hie forn =1,
(Z Z Ry 0) =14 Wi, +Hl,+Hi1Hi2+ Hi2Hi forn=2 (411}
e 7:(?,1 + Hi{l:h,g + K11 H12H1,1 + Hii M,
U+ W Ha + e Mg + HipH3,  forn=3.

“

For a given n, each sequence of n operators, Hp, 0, Hop00 * - - Ho,.0,, Will be represented Sy,

such that

Ny 2 n
(sz%)=2mmmm~ﬂwW (4.12)

b=1 0=1 Sn
Substituting Eq. (4.12) into Eq. (4.10), one arrives at
2= 3 Y Uty Mo+ ) (013)
P n=0 &, !

Eq. (4.13) is now just one step away from achieving the goal of writing Z in terms of 2-spin
matrix elements. This final step is to insert an identity operator 1, written as a summation
over all z-states, in between each of the operators that appear in Eq. (4.13). For example, this

insertion between the second and third operator in the sequence gives

HozonHosos = Mipi001lHbs,00 (4.14a)
= Z Ebz,ogl'l/)ZS)("/JSlﬂba,oa- (414b)
1

Repeating this for every operator in the sequence, Eq. (4.13) becomes

‘Z=ZZZZ Z—Mmew%mw (0| Hon 0041} (4.152)

n=0 8, ¥ o Pn

= > W, (4.15b)
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where the original trace is now written as the sum over ¢ in Eq. (4.15a), and Eq. (4.15b)
stresses how this process has finally led to a partition function that has the form of Eq. (4.1).

The partition function—as it appears in Eq. (4.15)—is now ideally suited for using the
Monte Carlo method to perform importance sampling in the following two senses:? (1) Each
individual term W; is easy to evaluate, involving only products of two spin matrix elements.5
Recall from Sec. 4.1 that this is precisely that requirement that—if satisfied—allows us to
use Eq. (4.2) to calculate thermodynamic properties without calculating the (often unwieldy)
partition function. (2) The summation in Eq. (4.15) is eztremely complex. There are n sums
(%1, ¥, ..., 1) which each extend over all (2s + DY of the z-states, so it is clear that
importance sampling will be necessary. This approach was first used by R. Handscomb in
1964 to perform calculations for the s = 1/2 Heisenberg ferromagnet.[4] However, an efficient,
general method of performing Monte Carlo updates was lacking for decades to follow. This
was remedied with the introduction of the stochastic series expansion (SSE) method[3]—and,
more recently, directed loops[1]—as we describe in Sec. 4.6. First though, we address the issue
of extracting thermodynamic properties from Eq. (4.15) in Sec. 4.3, and in Secs. 4.4 and 4.5

we discuss how to interpret the terms W; that appear in Eq. (4.15).

4.3 Thermodynamic properties revisited

Recalling the material that was discussed in Chapter 2—in particular Secs. 2.1 and 2.2
Eqg. (4.15) can be straightforwardly used to calculate thermodynamic properties of a form
similar to that of Eq. (2.3b). The only difference is that the exponential terms, exp(—BE;),
must be replaced in Eq. (2.3b) with the more complex terms W; from Eq. (4.15) [which will be
modified slightly to give Eq. (4.21) in the next section]. To determine the quantities (J; that
must be sampled in order to calculate U, C, M, and x, we now recall the derivatives of the
partition function, Egs. (2.6), (2.7), (2.8), and (2.9), and apply them to the quantum partition

function.

*In a different sense, Eq. (4.15) is actually not quite ideal, and the terms W; are therefore rewritten in the
more useful form of Eq. (4.21) in Sec. 4.4.
These 2-spin matrix elements are evaluated using Egs. (2.13) and (2.17).
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To calculate the magnetization, one can differentiate Eq. (4.3) using Eq. (2.7). This pro-
duces a factor of gup Z;V: 18 from the Heisenberg Hamiltonian® [Eq. (2.11)], which, from
Egs. (2.13) and (2.14), commutes with the Hamiltonian. (Note, any single operator 5 does
not commute with H, but since ]Vll's is a good quantum number, the sum does commute.) By
representing the quantum number Mg that corresponds to the term W; with an additional

index, Mg;, the magnetization can be written

> Ms Wi
M = sl 4.16a
guB Zi W, ( )
= gup{Ms), (4.16b)
‘where—in analogy to Eq. (2.3b)—we now define
(Q) = Zi QiWi (4-17)

2 Wi

for a general quantity Q. Recalling Chapter 3, M can then be calculated by sampling (i.e.,
recording and later averaging) the quantum number Mg ; for each term W that is encountered
during a MC simulation.” As we show below, x, U, and C can straightforwardly be written in
terms similar averages.

From Eq. (2.9), the magnetic susceptibility can be obtained by differentiating the partition

function a second time. This yields

 MZ W, M Wi\
X = Bgud (Zzzz.;z )_(ng-;mw)} (4.18a)
= Bg’up [(ME) — (Ms)?], (4-18D)

which depends on the averages of both Mg and M’g. The internal energy is obtained by
differentiating the partition function with respect to 3 as was shown in Eq. (2.6). Note however

that the only temperature dependence in Eq. (4.15) is the factor of " that appears in each

$This assumes that all spins share a common value of g. This is often not the case for magnetic molecules, so
we have derived more general forms of the magnetization and magnetic susceptibility, which are also applicable
to systems with different values of g. This derivation has been included in Appendix A.

"This assumes {of course) that one has some strategy for taking a Monte Carlo step. This is described in
great detail in Sec, 4.8.



term W;. Clearly then Wy — nB~1W;, so

1 dﬁ
> ;Wi
U = —kgT = — 4.19a
BESw (4192)
= —kgT(n), (4.19b)

where the subscript ¢ on n; stresses that this value corresponds to the term W;. Differentiating

agaln, one obtains the specific heat from Eq. (2.8),

= &y [(n%) — () = (m)]. (4:200)

o

From these equations, the calculation of the four thermodynamic quantities requires one
to record two (and only two) quantities for each Monte Carlo step: Mg; and n;. Then, from
these numbers, we are able to calculate estimates of M, x, U, and C in the manner discussed
in Sec. 3.5. Furthermore, by recording these data in separate “bins”, we are able to properly
account for correlations in the data, and hence obtain accurate estimates for the uncertainties.
"This has also been explained in Sec. 3.5, and the process of dealing with this data is summarized

in Sec. 3.6.

4.4 Understanding the terms in the partition function

Before proceeding to describe how the terms that comprise the partition function are sam-
pled in a QMC simulation, it is necessary to make a slight additional adjustment to Eq. {4.15),
and to further clarify the meaning of the individual terms W;. Following the factor of 8" /nl,
each term in Eq. (4.15) begins with a state, ¢, which is followed by an operator, Hoyop- I
that operator is diagonal (i.e., if 0y = 1), then the state v is identical to %;. If, on the other
hand, the operator is off-diagonal (0; = 2), then 1/, is different than ;. Specifically, spins
b1(1) and by (2} will have different 7n; quantum numbers in the state ¢ than they do in state
3. This is due to the action of the raising and lowering operators in Eq. (4.9b), as described

in Sec. 4.2.2.8 After the second state, 19, the second operator, Hys 00, leads to the third state,

SNote that, given a particular state 21, there are potentially two states 1y that will yield non-zero matrix
elements, (¢1|Hs, 0, [#2), corresponding to the two terms in Eq. (4.9b). Each of these states 12 belong to different
terms W;; so, in a sense, the operator Hy, 0, is determined by the states, ¥, and 12, and not vice-versa.
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%3, which again is either identical to w2 (if 03 = 1) or differs from 45 in two quantum numbers
(if 03 = 2). This process continues for all n operators, and eventually leads back to the state
1.

The number of bond operators n and the number of states n clearly vary from term to
term. This turns out to be inconvenient, both in terms of storing these terms in computer
memory, and for taking Monte Carlo steps. This is avoided in the SSE method by considering
a fized number of operators in the sequence, and a correspondingly fized number of states, 1.
Fixing this number to be L, the series will then be truncated at n = L, which will have no
effect on the results that are obtained, provided that L is chosen to be large enough that no
important terms are neglected. (This is discussed in greater detail in Sec. 4.7.1.)

The process by which one converts Eq. (4.15) into an equation with a fixed number of
. operators proceeds as follows: First, a sufficiently large value of L is chosen, such that L > n
for every importa,nt. term. (See Sec. 4.7.1.) Then, L — n identity operators, 1, are “filled in”,
such that there are L total operators, even though there are only n bond operators. Consider,
for example, a term that éonsists of three bond operators, Hy, o, Hig 0. Hos0s- If We were to
truncate the series at L = 4 total operators,” there would be four choices for where to insert the
additional (identity) operator: Before Hy, o,, before Hp, o,, before Hp, o, or after Huz,05- (One
such choice—before Hp; o,~is shown diagrammatically in Fig. 4.2.) There are then four terms,
each with the same value of W, instead of the original one term from Eq. (4.15). To account
for this, each of the terms must be divided by four in order to not change the value of the
partition function Z. If the example had instead consisted of n = 2 bond operators and L = 4
total operators, there would have been six choices for where to insert the I — n = 2 identity
operators. In general, when L — n identity operators are inserted, there will be nr(TLln')T terms
spawned from the initial term that had only n operators. Therefore, the partition function is

preserved by dividing each term of Eq. (4.15) by n—,(—f—ln—),, giving

BML — n)!
L!
9This example has been specifically chosen for its simplicity. Truncating a series at L = 4 could only be

possible at wery high temperatures. In fact, we always choose L > 10, and often L > 1,000 operators are
necessary.

Wi = <¢1”:_.£b1,0] |11b2) (w2|7ﬂibz,02|¢3) e <¢Lz?jbb,ol, WJI), (421)
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Figure 4.2 Diagram representing one (simple) term of the partition func-
tion for a chain of N = 3 spins, connected by iV, = 2 bonds. The
three intrinsic spins s; are arbitrary, but have been assumed to
be integers for this example, such that each m; quantum num-
ber is also an integer. This term has m» = 3 bond operators
and one identity operator, 1, for a total of L = 4 operators
and L = 4 states (11, 12, %3, ¥4). The quantum numbers m;
(7 =1, 2, 3) that correspond to each of these states are shown
inside of the circles, where each circle appears below the corre-
sponding value of 7, and to the left of the corresponding state
|#9t). The off-diagonal bond operators are represented with di-
agonal shading, the diagonal bond operator is represented with
cross-hatched shading, and no shading is shown for the identity
operator.
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where the value of n varies from term to term, but the value of L is fixed.1®

The diagram shown in Fig. 4.2 corresponds the particularly simple example of N = 3
spins, connected by N = 2 bonds, with n = 3 and L = 4. However, despite its simplicity, it
ilustrates a means of visualizing these terms which can always be used, even for much larger,
more complex systems. Specifically, for a d-dimensional quantum system, each term W; c-an
always be represented in (d+1)-dimensional space, just as this one-dimensional system has
been represented in two-dimensional space. The “extra” dimension (proceeding from the top
to the bottom of Fig. 4.2) extends through the L operators and L states, always arriving back
at the state 1. The process of taking a Monte Carlo step then consists of nothing more than
changing some or all of the L operators Hy, o, , and the L states 1, in a diagram such as the
one shown in Fig. 4.2. This process is described in detail in Se(:.. 4.6, continuing to make use

of (and build upon) this same example that has been shown in Fig. 4.2.

4.5 Attempting to ensure that terms are positive

Before describing the details of how a Monte Carlo step is taken, there is one remaining
issue that must be addressed. We wish to sample all of the important terms W;, as they are
written in Eq. (4.21), using the methods described in Chapter 3. In particular, we wish to use
Eq. (4.2) to determine the probabilities with which transitions should occur, which depend on

the values of W;. By definition, a probability must be non-negative (0 < P;_; £ 1), which

was obviously the case for classical systems, since exp(—S8E;) > 0 for all E;. However, for the
terms W; that are given by Eq. (4.21), it is not immediately obvious whether these terms will
be positive or negative; and in fact, terms sometimes are negative! The purpose of the present
section is to address this issue.

Each term W; from Eq. {4.21) involves a factor of ﬁ”ﬁin}] {which is clearly positive)
multiplied by a product of L matrix elements. However, L. — n of these matrix elements

correspond to identity operators, and are therefore equal to unity. The question is then whether

the product of the remaining » matrix elements is positive or negative. To answer this question,

10Note that we henceforth adopt the notation used in Eq. (4.21). Namely, each of the L operators Hby oy In
the sequence has a distinet index, 1 < k < L, including the identity operators.
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recall the definitions of the bond operators, given in Eq. (4.9).

The diagonal bond operators, defined in Eq. (4.9a}, depend on the operators gf(b) and 83(5)"
Recalling Eq. (2.13), these operators yield the quantum numbers my(p) and gy, corresponding
to spins 1(b) and 2(b), respectively. These quantum numbers can be either positive or negative,
so the resulting matrix elements—as they appear in Eq. (4.9a)—can also be either positive
or negative. However, since these are diagonal operators, one can very easily adjust their
definition to ensure that the matrix elements are positive. This is accomplished by simply

adding a constant,
Ny :
c= Z Ch, (4.22)
b=1
to the Hamiltonian, such that Eq. (4.9a) becomes
z z
Hyp=a—Jy (ﬁf(b) —E—,.gg(b)) —gupH ('2—((2 + F—Z—%) . (4.23)
Changing the Hamiltonian in this way will have no effect on the resulting magnetization,
magnetic susceptibility, or specific heat, but it will change the internal energy. Specifically,
the resulting internal energy will be larger than that of the original Hamiltonian by an amount
¢, which can be trivially subtracted at the end of a calculation.

It is perhaps worthwhile to clarify the meaning of the word “constant” when it is used in
the context of Eq. (4.22), referring to values of ¢ and ¢. Every value of ¢, must be held fixed
throughout a simulation, while the thermodynamic quantities are calculated for a particular
set of parameters. (In other words, the Hamiltonian cannot be altered during the course of a
calculation.) However, when repeating a calculation with different parameters, different values
of ¢, might be necessary. For example, as an external field H becomes large, large values of ¢
become necessary. This is due to the Zeeman term in Eq. (4.9a), which decreases proportional
to H for positive values of myp) and Mo,

For the calculations that we have performed, each value of ¢, is chose_n at the beginning

“of a calculation, so that the smallest matrix element for each bond b has some small, positive
value (e.g., 0.01). Calculations can then be performed for many different temperatures without

changing the values of ¢, since the Hamiltonian—and in particular Eq. {4.9a)—does not depend



on T'. This is what happens when we calculate x(T'}. For calculating M (H), different values of
¢y must be determined for each H. Naturally though, this is not done by hand, yet a negligible
amount of computation time is spent in determining valid values of c; the corresponding
diagonal operators, Eq. (4.23); and the resulting matrix elements.

As we have described above, any diagonal operator Hi,1 can be defined such that the cor-
responding matrix elements are positive. The only remaining factors to be considered are
the off-diagonal matrix elements that appear in Eq. (4.21), whose operators are defined in
Eq. (4.9b). The matrix elements for the raising and lowering operators are calculated using
Eq. (2.17), and are always positive. Therefore, the sign of an off-diagonal matrix element
is determined entirely by the sign of the exchange constant J,. If a bond describes a ferro-
magnetic (FM) interaction (i.e., J < 0), then the corresponding off-diagonal matrix elements
are positive; while antiferromagnetic (AFM) interactions (J, > 0) produce negative matrix
elements.

This issue of dealing with the “sign” of matrix elements can now be summarized very
concisely: (1) Diagonal matrix elements can easily be made positive by shifting the Hamil-
tonian [and the constituent bond operators in Eq. (4.9a)] by an appropriate constant, yielding
Eq. (4.23). (2) FM bonds have J, < 0, so the corresponding matrix elements, calculated from
Egs. (4.9b) and (2.17), are positive. (3) AFM bonds have J, > 0, so the resulting matrix
elements [from Eqs. (4.9b) and (2.17)] are negative. These three results give two very simple

rules regarding the signs of the terms W;:

(1) Ifall of the bonds are FM (i.e., if J, < 0 for all b), then all of the terms W; from Eq. (4.21)

are positive.

(2) If AFM bonds are present, then a term W; from Eq. (4.21) is negative (and hence
problematic) if and only if in contains an odd number of off-diagonal matrix elements

that correspond to AFM bonds.

It turns out that, for many geometries, all terms W; are positive, even for AFM interactions.
‘This is because, for these geometries, it is impossible to begin with a state 1;, and return to the

same state 1 via the operation of an odd number of off-diagonal operators. These geometrical



issues are closely related to both classical frustration, and the “negative sign problem”. This

is discussed in detail in Chapter &, and in particular Sec. 8.2.

4.6 Monte Carlo updating

We are now finally prepared to describe how Monte Carlo updating proceeds for the QMC
algorithm that has been implemented. Again, the goal is to sample the terms W; that comprise
the partition function, as they have been written in Eq. (4.21), using the principles of detailed
balance [Eq. (4.2)] and importance sampling. As we described in Sec. 4.4, this task is equivalent
to altering diagrams, such as the one that was shown in Fig. 4.2, in such a way that all of
the important configurations are reached. There is, however, an important challenge that
exists in executing such a QMC update; and this chalienge is not present in classical Monte
Carlo simulations. Namely, most changes—if proposed in an arbitrary manner—would lead
to configurations for which W; is identically zero, and should therefore not be sampled. For
example, choose one of the 12 distinct m; quantum numbers shown in Fig. 4.2, and try raising
or lowering its value by one unit. The resulting term would automatically have W; = 0. This
is because the total angular momentum would no longer be conserved from one of the z-states
to the next, and all bond operators H, o, conserve M.

Instead of proposing arbitrary changes to individual quantum numbers, the method that
has been implemented proceeds by making global changes to many quantum numbers, or equiv-
alently, many states 1. This update occurs in two separate stages. The first stage, called the
“diagonal update” involves changing the order of the series expansion by replacing identity
operators with diagonal bond operators, and vice-versa. This is described in the following sub-
section. The second stage of the update is considerably more involved. It involves constructing
“directed-loops” through the (d+1)-dimensional space (such as that shown in Fig. 4.2) and al-
tering the rn; quantum numbers of all spin states along the loop. In addition to altering spin
states, this process also has the effect of changing diagonal operators to off-diagonal operators,
and vice-versa, such that all operators eventually become amenable to the diagonal update.

These directed-loop updates are described in detail in Secs. 4.6.2 and 4.6.3, and the specific
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probabilities that we have used in our implementation are presented in Sec. 4.7.3.

4.6.1 BStochastic series expansion—diagonal update

There are a few key features of the stochastic series expansion (SSE) method, most of which
have already been described. First, one expands the density operator, just as Handscomb did
in 1964,[4] to obtain Eq. (4.15). Next, additional identity operators are added, and the series is
truncated at L total operators,[3] yielding Eq. (4.21). By doing this, one gains the advantage
that the size of the (d+1)-dimensional space (such as that shown in Fig. 4.2) does not change
from term to term. Finally, by adding a constant to the Hamiltonian, one can often ensure
that the terms W; are positive, as described in Sec. 4.5. With these adjustments in place, it is
now relatively straightforward to perform the diagonal update of the SSE method.

This update proceeds by separately adding and removing diagonal operators Ho1 (1 <
k < L) with probabilities P, and P,, respectively. Recalling the discussion of Chapter 3, the
new configurations that result from these changes will be encountered with frequencies that are
proportional to the values of the terms [from Eq. (4.21)] that they represent-—and can hence
be used for importance sampling—provided that detailed balance is satisfied. In this context,
the detailed balance condition can be restated,

Fo W,
a _ 24
P =W (4.24)

where W, and W, are the values of terms [from Eq. (4.21)] that differ only by the addition
or removal of a single matrix element, so P, and P, are ezactly analogous to P;_; and Py,
from Eq. (4.2). Specifically, W, represents the value of a term that is lacking a bond operator
Hs, 1 (and the corresponding matrix element wi = (i|Ho,.11%%+1)) relative to the term whose
value is W,. By representing the entire product of n matrix elements!! in the term W, mare

compactly as 7y, these terms can be written—from Eq. (4.21)—as

W, = @n‘l_’ﬁ”—)!wﬂ (4.25a)
n4-1 _
We = i L'(n-;- 1)}!7anka (4.25b)

" There are actually L matrix elements, but L — n of them are identically equal to unity, so can be omitted
from the product.
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where n is the number of bond operators in the term W;, and n+ 1 is the number of bond op-
erators in the term W,. Substituting Eq. (4.25) into Eq. (4.24), the detailed balance condition

becomes
P _ By,

P, L—wn

(4.26)

which depends on only the single matrix element w;, whose addition or removal is being con-
sidered.

In order to now understand how the probabilities in Eq. (4.26) can actually be used, recall
again Fig. 4.2 from Sec. 4.4. This diagram represents a term that has four operators. Two of
them (Hy, 0, and Hy, 0,) are off-diagonal; one (Hp,.0,) is a diagonal bond operator; and one
(Hps,05) is an identity operator. Given this initial configuration, the diagonal update would
proceed by proposing to remove!? the bond operator Hbo,0, With a probability P, that depends
on the value of ws. We would also propose to add a bond operator Hps 05 (replacing the
identity operator) with a probability P, that depends on the value of the proposed matrix
element w3. The two off-diagonal operators are left unchanged in this stage of the update,
because removing either of them (and replacing it with an identity operator) would produce a
term that is identically zero.

More generally, for any given configuration we simply step through all of the operators
Hoy,or (1 £k < L), changing the diagonal bond operators into identity operators with proba-
bilities Fr.; changing the identity operators into diagonal bond operators with probabilities F;
and leaving the off-diagonal operators unchanged. The only remaining task for this subsection
is then to extract individual probabilities from the ratio that was given in Eq. (4.26). To do so,
we must be careful to follow the rules that were discussed in Sec. 3.3 regarding proposing and
accepting changes. Specifically, recall that making a change involves first proposing a change,

and then accepting a change. Using the notation of Sec. 3.3, we have

P = R4 (4.272)

P, = Ry, (4.27b)

?Note that when we say to “remove” this operator, what is actually meant is to “replace the bond operator
Hbs.0, = Ha,1 with an identity operator, such that He, 0, = 17.
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"The simplest way to propose the removal of an operator is to always let R, = 1, meaning that
we definitely propose the removal of any diagonal bond operator. However, when proposing
the addition of a diagonal bond operator, there are N, different bonds from which to choose.
Therefore, if we definitely propose the addition of an operator Hy, o, , with a randomly chosen
bond by, (1 < by < Np), this gives R, = 1/N,. Inserting R, and R, into Egs. (4.27a) and (4.27b),

respectively; and further substituting these into Eq. (4.26) yields

A, _ P,
A_?, = Nb P,r (4.28&)
NPy

Choosing to use Metropolis-like acceptance rates (which maximize A, and A;), one arrives at

the final acceptance probabilities,

L.—n i _L—n
if 22 <1 .
Ay o= { NoPon Nofuy, = =2 (4.29a)
1 if jom > 1,
Ny Bwy, if Ny By, <1
Ag=4{ L™ bem- (4.29b)

¢ NpBwy,
(Note again that the value of n used here does not include the operator that is being potentially
added or removed.} By generating random numbers (as we have described in Sec. 3.4), it is

these probabilities [Eqs. (4.29a) and (4.29b)] that are used to determine whether or not to

accept a proposed removal or addition of a bond operator.

4.6.2 Constructing loops

The diagonal updates that were described in the previous subsection allow one to sample
various terms of the partition function by adding and removing diagonal bond operators, and
hence varying the 61'der n of the expansion. However, thaﬁ update alone is clearly not sufficient
to access all of the possible terms W; that appear in Eq. (4.21)—and all of the corresponding
configurations that could occur in a diagram such the one shown in Fig. 4.2—and must therefore
be supplemented with a separate update. In particular, it is necessary to change the quantum

numbers m;, and equivalently, to change between diagonal and off-diagonal bond operators. In



[ ]
(s3]

the original formulation of the SSE method,[3] this was accomplished through a series of local
updates, each of which changed a small number of m; quantum numbers. This updating was
later replaced by the “operator-loop” update,[2] which produces large changes in the (d+1)-
dimensional configuration with a single “loop”. This approach has two main advantages over
the initial SSE method. (1) The resulting integrated auto-correlation times!® are much smaller,
especially at low temperatures, and (2) the algorithm is less complicated to implement. These
_Operator—loops were initially introduced in the context of s = 1/2 models, where spin states
are changed by simply “fipping” individual spins (from “up” to “down”, or vice-versa), but
were later generalized to larger values of s, with the introduction of the so-called “directed loop
equations”.[1] The purpose of the present subsection is to describe the process of constructing
such a loop in a manner that is consistent with detailed balance. This process leads naturally
to the directed loop equations which are described in detail in the following subsection, and in
Sec. 4.7.3 we presént the precise probabilities that we have used in our implementation.

The general idea of this update is that a loop is constructed through the (d+1)-dimensional
configuration, and all of the quantum numbers along this loop are changed by one unit. This
idea is very simple, but in order to describe the details of how it is accomplished—and in
particular, how detailed balance is fulfilled——it will be necessary to introduce some additional
notation and terminology. First, the initial configuration, such as the one shown in Fig. 4.2,
will be denoted C;, and the corresponding term that it represents from Eq. (4.21) is represented
W;; while the final configuration, that is reached by constructing a loop, will be denoted C 15

and its term [from Eq. (4.21)] is W;. The detailed balance condition it then given by

by _ Wy
— = i 4.30
where ;. and Ps_,; are the probability of changing from configuration C; to C 5 and from Cy
to C;, respectively.

The challenge in fulfilling Eq. (4.30) is that there are typically many choices that must

be made in order to change C; — Cy, where each choice must be made with an appropriate

B3ee Sec. 3.5.2 for a description of correlations between successive Monte Carlo steps.
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probability, such that the total probabilities satisfy Eq. (4.30). Specifically, the construction

of a single loop proceeds according to the following algorithm:!4
(1) Choose where and how the loop will begin.
(2) Choose where the loop goes next.
(3) Repeat step (2) until the loop returns back to where it began in step (1).

An example of one particular path that a loop could follow is shown in Fig. 4.3(a) by a thick
line, where the initial configuration C; was shown in Fig. 4.2, and the resulting (post-loop)
conﬁguratioﬂ C; is shown in Fig. 4.3(b). With the aid of this example, we are now prepared
to introduce some additional terminology that will be useful in clarifying the details of the
3-step algorithm that is given above, in particular, how—for each step—the probabilities can
be chosen in such a way that Eq. (4.30) is satisfied.

First, note that the path shown in Fig. 4.3(a) could be describing any one of several loops.
This is because we have not distinguished where the loop began on the diagram, or the direction
in which it was constructed (clockwise or counterclockwise). We stress this point because, for
any change C; — Cy, there are multiple loops that would each (separately) accomplish the same
change. If we distinguish each of these loops with an index I, and represent the probability of
constructing loop { by Fj, then the total probability of making this change (C; — Cy) is given
by

Piy=Y_P, (4.31)
{
where the summation extends over all loops [ that accomplish the given change.

A natural question that one might ask is, “How many loops are there that could accomplish
this change?” There are 6 quantum numbers that lie along this path (and are therefore changed
by the loop), and each loop could be constructed either clockwise or counterclockwise. A
reasonable answer might therefore seem to be that there are 12 such loops. However, some of
these quantum numbers must be the same as that of the next or previous spin state, because

there is no bond operator in between the states. For example, in Fig. 4.2, consider the three

4 The details of this algorithm are described below in greater detail.



[ XXX

ST
ey
ledatatateteTeteds)
4
q

T R ISR
LRSI IAH AR,

Figure 4.3 Diagrams representing (a) the path of a loop (thick line), which
has been constructed in the initial configuration C; that was
represented in Fig. 4.2, and (b) the final configuration Cy that
results. As was the case in Fig. 4.2, off-diagonal bond opera-
tors are represented with diagonal shading, and diagonal bond
operators are represented with cross-hatched shading. Again,
the system represented here involves N = 3 spins, or arbitrary
(integer) spins s;.

quantum numbers that have m; = 0 in the 7 = 1 (left-most) column. There are no bond
operators between these three states (1, 93, and 44) that affect the 7 = 1 spin. Furthermore,
no bond operators are added or removed during the loop update. Therefore we have the
constraint that these three quantum numbers must be identical to one another; i.e., if one of
them is changed, all three must be changed. There is a similar constraint (affecting 2 spins)
in the lower right corner of the path, so there are actually 6 loops that could accomplish the
change shown in Fig. 4.3.

In order to take such constraints into account—and not preferentially propose certain loops
more often than other loops—these loops are generally described in terms of “legs”.[1, 9] Each

leg represents a possible location (and direction) for a loop to begin, so there are 6 legs along
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Figure 4.4 Diagram showing the 12 “legs” for the configuration shown in
Fig. 4.2. Any quantum numbers that are not adjacent to an
operator are irrelevant to the construction of a loop, and have
thus been omitted from this representation.

the path that was shown in Fig. 4.3. In the entire diagram, there are a total of 12 legs for
this example configuration, which are shown in Fig. 4.4, numbered 1-12. There are two other
features of these legs which should also be noted. First, every bond operator is attached to 4
legs, so the total number of legs is always 4n. (For our example n = 3, s0 4n = 12.) Secondly,
every leg is connected (via a dashed line in Fig. 4.4) to exactly one other leg. In other words,
the legs come in pairs that must share the same quantum numbers. For our example, the
pairs are: (1,11), (2,12), (3,9), (4,5), (6,8), and (7,10). Finally, note that three of these leg
pairs “wind around” the top/bottom of the configuration. In fact, it is always the case that

N pairs of legs wind around in this way, because v, appears both at the top and bottom of a
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configuration.

Having carefully introduced the meaning of “loops” and “legs”, we are now finally in a
position to more precisely state the three step algorithm that was given above. In step (1),
one of the legs is chosen at random, and is proposed as the first leg of the loop. The number
of legs remains fixed throughout the loop update, so the probability of choosing any leg is
R = ﬁ. Next, we must choose whether to raise or lower the m; quantum number of the leg
that has been proposed. If this first quantum number has a value that is initially m; # |s;],
then it could be either raised or lowered. In this situation, the proposed leg is accepted with
probability 1, and a loop begins by either raising or lowering the value, each with an equal
probability 7, = % If, on the other hand, m; = s;, then the value could only be lowered; and
if m; = —s;, the value could only be raised. We again set P, = —%, so there is a 50% chance
that the proposed leg will not be accepted. (Recalling Sec. 3.3, this is perfectly analogous to
the situation of Carl moving along a peninsula.) After changing the quantum number of the
first leg, step (1) is complete, and we proceed to step (2).

For the sake of concreteness, consider one particular loop which could have been responsible
for the update (C; — Cj) that took place in Fig. 4.3: Suppose the loop began'® at leg 3 (as
labeled in Fig. 4.4) by raising the quantum number. Next, in step (2), we chose to proceed
to leg 4 {and lower its quantum number) with some probability’® p;. We then automatically
followed the dashed line to leg 5 whose quantum number was also changed. (It is in fact the
sgme quantum number as the one that was changed at leg 4.) Step (2) was then repeated,
and leg 7 was chosen (and its quantum number lowered) with a probability'® ps. Leg 7 led
to leg 10 (lowering both quantum numbers), and we returned to step {2). Finally, leg 9 was
chosen with a probability!® p3, which connects back to leg 3. We raised the necessary quantum
numbers between legs 9 and 3, and—since we returned to the initial leg-——the loop closed.

The construction of the above loop involved 5 individual choices, which (chronologically)

had probabilities R; = ﬁ, Py = %, P1, p2, and p3. The total probability of constructing the

5Note that choosing to begin at either leg 3 or leg 9 would involve changing the same quantum numbers
along the dashed line that connects this pair of legs. The difference is that choosing to begin at leg 3 results in
a. clockwise loop around the path, while choosing to begin at leg 9 would have given a counterclockwise loop.
" 1®How these probabilities are chosen is the subject of the next subsection.
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loop is therefore equal the the product of these five factors, Ry P, p1p2ps. For a general loop I, if
we define V; to be the number of times step 2 is executed, then the probability of constructing

any loop is
1
Pr=— . .
= 1l 452)

Substituting this product into Eq. (4.31), we have

Py = Ly H Pys (4.33)

o=l
and if we represent the loops that “undo” these changes (i.e., that change C; — C;) with an

index ¢, then one also has
Ny

Pri= o S I] 4, (434)

I v=1

Substituting Eqgs. {4.33) and (4.34) into Eq. (4.30), the detailed balance condition becomes

ZHPu

I p=l Wf
—_— = —= .35
Ny W (4.35)

2 117

ll ,/ﬁ
where the probabilities from step (1) have conveniently canceled out. The values of W; and

Wy can be inserted from Eq. (4.21), giving

ZHPM

i p=1 Ty
—_— = 4.36
Njf 7]’" ' ( )
> 117
I =1

where 7, and 77, represent the product of the n initial and final matrix elements, respectively.
"The purpose of the following subsection is now to show how the individual probabilities Py and
!, can be chosen in such a way that Eq. (4.36) is satisfied, in order to be used in step (2) of
the three-step loop-construction algorithm.

Before delving into the details of the probabilities, p, and pj,, there is one last point that
should be made regarding the construction of loops. The purpose of a loop is to change the

initial configuration C; as much as possible, such that the resulting configuration C r is different
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from—and hopefully not strongly correlated with—C;. However, it is often the case that a
single loop is not sufficient to produce uncorrelated configurations. To remedy this, one can
instead construct a number A of loops for each Monte Carlo step, where each loop separately
satisfies detailed balance. To choose the ideal value of A, we count the number of legs that
are encountered in each loop during the initial equilibriation: For a given loop I, each of the
N times step (2) occurs, two new legs are altered,!” so the number of number of legs altered
by the loop is 2/V;. Since there were a total of 4n legs, but 2N, legs were actually altered, the
ideal value of N would have been 2n/Nj, in order to have the opportunity to alter each leg
once. Therefore, to determine N, we simply average the values of 2n/N; that are found during
equilibriation, and round to the to the nearest integer (> 1).1¥ It should finally be stressed
that N, whatever it is chosen to be, must remain fized during a simulation, to ensure that

detailed balance continues to be satisfied.

4.6.3 Directed loop equations

The key to determining the unknown probabilities py and pl, in Eq. (4.36) lies in determining
how the loops I (that can cause the change C; — Cj) are related to the loops I’ (that can cause
the change C; — (;). After carefully examining Figs. 4.2-4.4, it should be clear that the
following (very important) statement is true: For every loop [, there is a corresponding loop
I' that follows the same path, but begins at the last leg of loop I, and ends at the first leg of
loop [, raising the quantum numbers that were lowered in loop I, and lowering the quantum
numbers that were raised in loop 1.1

For the example loop ! from the previous subsection, the corresponding loop I’ would
proceed through the legs (as numbered in Fig. 4.4) in the following order: [9 (—)] — [10 {(+)]

= [T ()] =)= (+)] — [B(=)] — 9 where (+) or (—) refer to quantum numbers

YTo be more precise, two new legs are potentially allered. It is entirely possible that the same leg could be
altered muliiple times by a single loop.

"®The precise value of A that is used can be chosen somewhat arbitrarily. However, if one were to choose
N <« 2n/N,, then the simulation would suffer from a large integrated auto-correlation time {Eq. (3.8)]. i, on
the other hand, one were to use A" 3 2n/N,, then the later loops would be undoing the changes that were
already made by the earlier loops, hence wasting computation time.

9%ince the loops { and !’ follow the same path, it is clear that Ny = Ny, so one can replace Ny — N in
Eq. (4.36).
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being raised or lowered, respectively. To be even more specific, consider both the first (1 = 1)
choice of our loop I (to proceed from leg 3 to leg 4}, which was made with probability p;; and
the last (v = 3) choice of the corresponding loop I (to proceed from leg 4 to leg 3), which
was made with probability p. The former change (u = 1) is shown in Fig. 4.5(a), with the
result shown in Fig. 4.5(b); while the latter change (v = 3) is shown in Fig. 4.5(c), with its
result shown in Fig. 4.5(d). These two changes—and, in fact, every u*" change of loop ! and
(N; — i+ 1)*® change of loop I'—are related to one another in a very important way, allowing
one to satisfy Eq. (4.36).

In order to formulate this crucial relationship between pu and p!N;— ptl first note that the
strange looking index, Ny — p + 1, simply indicates that the pair of related choices—in which
we are interested—occur at the same location on the path: If we count up from p = 1 for
loop I, then (because ! and I’ are constructed in opposite directions) we must count down from
v = N, for loop I’ to arrive at the same location. For this reason, we will henceforth define
v = N;—p+1 for the sake of convenience. Next, let w), represent the initial value of the matrix
element that will be changed—with probability p,—by the ' decision of loop I. Similarly, w,,
will represent the initial value of the matrix element that will be changed—with probability

th

pl,—by the »** decision of loop I'.2% Using this notation, Eq. (4.36) will then be satisfied (as

we will show shortly) if we choose
Du _ B (4.37)
P Wy
for each of the N; decisions that are made during the loop construction.
In order to see that Eq. (4.37) will indeed satisfy Eq. (4.36), first recall that the loops extend
over the same paths in both the numerator and the denominator, encountering the same matrix
elements. Therefore, the summations simply produce a single factor that is common to both

the numerator and the denominator. (For our example path, a factor of 6 would appear in

both the numerator and denominator, since there were 6 possible loops that would accomplish

21t is important to observe that in the p'

step of loop {, the change that occurs is w, — wj; while in the
pth step of I, we have the change w), — W
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Diagrams illustrating (a) the first choice that was made in the
construction of the example loop { (from the end of Sec. 4.6.2),
which results in the matrix element shown in (b); and (c) the
final choice that would be made in the construction of the cor-
responding loop ¥, which results in the matrix element shown
in (d). In (a) and (c), (+) or (—) indicates a quantum num-
ber being raised or lowered, respectively; and the leg numbers
{1-4) have been included in (a)-(d). These diagrams could be
describing any integer spins.
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the change C; — Cy.) The summations can hence be eliminated from Eq. (4.36), giving
N

H D
p=1 _
N; -
1=
v=1

Next, since p, are c-numbers, the order of the product in the denominator can be reversed, such

f
Tn (4.38)

Tn

that the product extends from v = N, to 1, which—still using the definition v = N;— p+ 1—is
equivalent to a product extending from p = 1 to N;. Therefore, the left-hand side of Eq. (4.38)

can be written as a single product,

=In (4.39)

where Eq. (4.39) is now clearly a product of the ratios from Eq. (4.37). Any matrix element that
is not encountered by the loop will be unchanged, and will thus cancel from both the numerator
and denominator the right-hand side of Eq. (4.39), leaving only the N; final (updated) matrix
elements w}, in the numerator and the N initial matrix elements w, in the denominator.
Eq. (4.37) therefore does satisfy detailed balance,?! and can be used for step (2} of the loop
construction algorithm.

‘The only task that remains in order to obtain the individual probabilities—to be used
in step (2} of the loop construction—is to normalize the probabilities such that the total
probability of continuing the the loop (by choosing one of the four legs connected to the current
matrix element) is equal to unity. For example, consider again the first {1 = 1} choice [shown
in Fig. 4.5(a)] that was made in the construction of the example loop I; and, for the sake of
this example, let us now assume that s; = 1 for the j = 1 (left) spin. With 8; = 1, there would
have been three (not four) possible choices that could have been made for where to proceed
from leg 3. Leg 1 would was not an option, because raising its m; = 1 value is impossible
for s; = 1, and lowering the value would have violated angular momentum conservation from

state 11 to state 1o (See Fig. 4.2.) The three other choices {[leg 2 (+)], [leg 4 ()], or [leg 3

#'One could also imagine a situation in which the same matrix element is encountered more than once in the
construction of a loop. In that case, the substitution of Eq. (4.37) into Eq. (4.39) would cause any intermedinte
matrix elements to appear in both the numeraior and the denominator. They would hence cancel out, and
detailed balance would still be preserved.



>

N

s

) ®

Figure 4.6 Diagram showing the three possible legs that could be chosen—-
given an initial leg, and an initial matrix element—for three
different different situations [(a), (b), and (c)]. These 9 proba-
bilities are all related to one another via Egs. (4.40) and (4.41),
and could describe any integer spins.

(—)]} all are possible, so the sum of their probabilities must equal 1. These three options are
shown in Fig. 4.6(a).

We now must adopt a different notation®? in order to write down the final form of the
directed loop equations. In particular, let Fpe, Pap, and Py represent the probabilities of
making the first, second, and third choices in Fig. 4.6(a), respectively; and let the initial
value of this matrix element be represented w,. Additionally, we will define wp and w, to

be the matrix elements that result from the choices whose probabilities are Py, and Py,

22This is necessary because the derivation of Eq. (4.37) requires us to keep track of where we are in the loops
(with the indices i and v), while the final form of the detailed balance contains absolutely no reference to the
rest of the loop.
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respectively. The choices that “undo” Py, and P, are labeled Py, and P,,, and are shown in
Figs. 4.6(b) and 4.6(c), respectively, along with the other possible choices that could be made
when changing from the matrix elements w, and w,.23

Diagrams such as the one shown in Fig. 4.6 were first created in Ref. [1], and are extremely
helpful in determining the probabilities, Pya, Py, etc. From the normalization condition, in
each row of Fig. 4.6 the sum of the three probabilities is equal to one. Therefore, if the
probabilities in Figs. 4.6(a), 4.6(b), and 4.6(c) are multiplied by wq, wy, and w,, respectively;

then one obviously arrives at

FPoawe + Papwa 4+ Pocwe = we (440&)
Poawp + Popwy + Pyewp, = wyp (4.40b)
Pegwe + Poywe + Poowe = wy, (4.40c)

where, from Eq. (4.37), the products satisfy

Fapwe = Ppowy (4.41a)
PoctWe = Prpwsy (4.41b)
Pbc’wb = Pd,wc. (4410)

Therefore, the products on the left-hand sides of Eqs. (4.40a)-(4.40c) form a symmetric 3-by-3
matrix, where the sum of each row is equal to wg, wy, or w,.; and dividing the elements of this
matrix by the appropriate matrix elements (wg, wp, or w.), we obtain the desired probabilities.
Note that there is a great deal of freedom in choosing the specific probabilities, since there
are 6 equations and 9 unknown probabilities. The specific values that we have used in our
calculations are provided in Eq. (4.46) of Sec. 4.7.3.

Finally, note that in some situations any of the four legs are possible choices for how to
continue a loop, and in other situations only two choices are possible. An example of each of

these scenarios is provided in Fig. 4.7. In Fig. 4.7(a), none of the four choices would lead to the

ZNote that the choices along the diagonal of Fig. 4.6 cause the loop to “turn around” and wndo the last
change that was made by the loop. Choices such as these were termed “bounces” in Ref. [1], and are discussed
again in Sec. 4.7.3.
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Figure 4.7 Examples of two situations that could be encountered during
the construction of a loop. In (a) there are four possible choices
for where to proceed next, and in (b) there are only two possible
choices. These scenarios would be encountered for any pairs of
integer spins.

(forbidden) result m; > |s;|, and none of the choices would lead to a (forbidden) difference of
two units between the m; quantum numbers in successive states, ¥ and 111. Therefore, all
choices are possible. In Fig. 4.7(b), two of the choices (leg 2 or leg 4) would cause a difference
of two units between the values of m; between successivre states. Therefore, there are only two
possible choices (leg 1 or leg 3) in Fig. 4.7(b). Following the same recipe that was used to create
Fig. 4.6, the situations in Fig. 4.7(a) and Fig. 4.7(b) would lead to a 2-by-2 symmetric matrix
and a 4-by-4 symmetric matrix, respectively. These probabilities are provided in Sec. 4.7.3 as

well.

4.7 Practical issues

"The material that has been discussed in the previous sections of this chapter has—in some
form, although often in a very terse, sometimes incomplete, fashion—already been published
in one or more of the references that are cited at the end of this chapter. Rather than pro-
ducing original results, the intended purpose of those sections has instead been to provide an
original description of this previously known material, which is hopefully more complete and
easier to understand than the published articles. The current section is somewhat different

in the sense that the information presented here focuses more on the details of our particular
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implementation. The method of determining the truncation L, which we describe in Sec. 4.7.1,
was introduced in Refs. [3] and [11], and we provide data to illustrate why the truncation
does not affect our results. In Secs. 4.7.2 and 4.7.3 we indicate how the issues of dealing with
matrix elements and directed loop equations depend on the intrinsic spins s. This has not
(to our knowledge) been previously published, but follows straightforwardly from the material
that was discussed earlier in this chapter. In Sec. 4.7.3 we also describe the details of how we
have implemented the directed loop equations that were derived in Secs. 4.6.2 and 4.6.3. The
probabilities that we use [given in Eqs. (4.45), (4.46), (4.48), and (4.49)] were arrived at inde-
pendently of Ref. [9] (at roughly the same time as that article’s publication), but are entirely
consistent with the probabilities suggested therein. For further discussion of the efficiency of

various directed loop choices, see Refs. [9] and [10].

4.7.1 Truncating the series expansion

In Sec. 4.4 we claimed that truncating the series expansion at some order L does not
influence the results, provided that L is chosen to be sufficiently large. In this subsection, we
now show why this is true, and we review the simple method that we have used to select L.
First, the claim that truncation does not affect our results can easily be understood with the
inspection of Fig. 4.8, where—for three different temperatures—we have plotted histograms of
the number of times each order n was encountered during a calculation consisting of 100, 000
MCS. Recalling the discussion of Secs. 3.1 and 3.2, these data can be interpreted as the
“importance” of the various terms W;,?* plotted as a function of n. In all cases, for values of n
that are greater than the “peak” value, the data clearly decrease exponentially with increasing
n. Therefore, by choosing L even slightly larger than the largest n that was encountered, we
could have safely used an order of magnitude more Monte Carlo steps, and still would never
have reached n = L.

"To select a value of L that is sufficiently large, we have used the method that was described

#These data are somewhat analogous to Fig. 3.2 from Chapter 3. In that case, terms with high energies are
automatically ignored, whereas in Fig. 4.8 the terms with large n are automatically ignored. In both cases, the
temperature determines which terms are (and are not) important.
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Figure 4.8

sion was encountered during a simulation consisting of 100, 000
Monte Carlo steps. The system being simulated was a ring of
N = 100 spins s = 1/2, interacting via identical
strength J, with # = 0.

in Ref. [11], and relies upon the exponential decrease that occurs at the right edge of each
distribution in Fig. 4.8. Namely, we begin each simulation with a small value of 1,25 and
whenever the diagonal update produces a term with n = L, we increase the value of L. For our
calculations, we have chosen to increase L by 20% whenever n = L, which (for our purposes)
has produced a sufficiently large value of L when using 50, 000 MCS to reach equilibrium. Then,
after this initial equilibriation, L is fixed for the remainder of the MCS. To ensure that L has
indeed been chosen to be large enough, we simply check to make sure that n < L throughout

the subsequent data collection, which—when satisfied-—implies that the terms with n > I are

not important enough to be sampled in the given number of MCS.

%We always begin each simulation with L = 10.

Histogram of how many times the nth order of the expan-

AFM bonds of
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4.7.2 Dealing with matrix elements

As we described in Sec. 4.6, both stages of the Monte Carlo update (the diagonal update
and the directed loops) require us to know the values of two-spin matrix elements in order to
proceed. The corresponding two-spin bond operators were given in Eqgs. (4.23) and (4.9b), and

their matrix elements are easily evaluated using Egs. (2.13) and (2.17). The resulting values

are
{8106y, M) (2(6), Ma() [ Hb,1[51(8): T (8))|S2(8) s Mae))
T (b) mz(b))
=cp— Jp (M +m - H( + a2
b= b (mwy +magy) ~ gun Eiwy o) R
and

{8100y Mgy + Lsaq)s mag) — 1 Hs 21815y (5) ) 528)Mage))

N/
= ——;' [s(s +1)— myey(Mmie) + 1)] [s(s +1) - ml(b}(m1{b) - 1)] (4.43)
(s10)> Mgy — LN{s2(0), Moy + LHp 208107100 5200y Mage))
J)
= —50 [3(3 + 1) - ml(b)(ml(b) - 1)] {S(S + 1) - ml(b)(ml(b) + 1)] ) (4.44)

for the diagonal and off-diagonal matrix elements, respectively. (All other matrix elements are
identically zero.)

Although easy to evaluate, there are potentially many matrix elements that might be
needed. The number of totel matrix elements for two spins s is (2s 4+ 1)? (the square of the
dimension of the Hilbert space), but most of these matrix elements are clearly zero. First,
The states must have the same total spin; i.e., the sum M1(s;) T Maogp,) must be the same for
the state 1 as it is for the state 1,1 in order for the matrix element (Ui |Hog o [06+1) to
be non-zero. Secondly, each individual quantum number can only change by one unit.26 The
number of matrix elements that satisfy these conditions (and are hence non-zero) are shown
in the right-most column of Table 4.1.

We have implemented our calculations for values of s up to 2, and have thus only shown

these values in the table. However, the number of nonzero matrix elements for any s can

*81t is for this reason that only two choices are possible for some of the choices that are made during the
construction of directed loop. [See the example in Fig. 4.7(b).]
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s Total matrix elements Non-zero matrix elements
3 16 6

1 81 17

3 256 34

2 625 57

5 1296 86

3 2401 121

z 4096 162

4 6561 209

3 10,000 262

Table 4.1 The total number of 2-spin matrix elements, and the number of
non-zero non-zero 2-spin matrix elements for intrinsic spins s.

be obtained iteratively. This is accomplished by adding 5 + 12s to the number of non-zero
matrix elements for spins s, to determine the number for s + % 'This number may seem very
random, but the difference (between the values for any s and s+ %) simply increases by six
each time.?” Evaluating hundreds of matrix elements (as shown in Table 4.1) is actually not
at all problematic, especially since the their calculation only needs to be performed once for
each value of the external field H. We perform these calculations before any Monte Carlo steps

take place, and store them in a table, to be looked up later when they are needed during the

MC update.

4.7.3 Solutions to the directed loop equations

The sole purpose of this subsection is to present the specific probabilities that we have
used for the construction of directed loops. First, consider the diagrams [such as the one
shown in Fig. 4.7(b)] for which there are only two possible choices for how to proceed. For
these situations, there are two normalization equations [analogous to Eq. (4.40}], and one
detailed balance equation [analogous to Eq. (4.41)]. Given three equations for the four unknown
probabilities, there is only one free parameter that needs to be fixed. To fix this parameter—

as well as all other parameters that are encountered in this subsection—we always strive to

#TThis is because—when going from spin s to spin s + %mthe number of matrix elements with Mg = 0
increases by 3, and the number of matrix elements that had a value of |Mg| turns into the number of matrix
elements that now have |Ms| = +1. To understand this more clearly, the reader is encouraged to sketch the
matrix representation of the $* operator for a few choices of s.
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eliminate “bounces” (defined in footnote 23) whenever possible. Since bounces undo changes
that have already been made (and computation time that has already been invested), this
is clearly a reasonable choice, and the subsequent effect on efficiency has been previously
investigated.{1, 9, 10] Setting one of the bounce probabilities (P,;) equal to zero, one easily
obtains the following probabilities for the situations when there are only two choices for how

to continue loop construction.

Poo Pup 0 1 wis)
= g
Py Py  1-

In Eq. (4.45) it is clearly necessary that wy > w, in order that Py, > 0, and similar require-
ments are imposed by the other probabilities below. Therefore, for every calculation, after the
matrix elements have been calculated, but before taking any MC steps, we compare the rele-
vant matrix elements with one another in order to define the indices (e, b, etc.) appropriately.
We are then careful to define the larger matrix element to be wy and the smaller matrix to be
wg in Eq. (4.45).

For the cases when a loop can continue in any one of three possible ways (as was the case
in Fig. 4.6), we are able to set both Py, and Py equal to zero (when we define we > wg,wy),

leaving one remaining parameter. The probabilities [from Eqs. (4.40) and (4.41)] are then

given by
Paa Pab Pac 0 ,%3'“ 'g‘:‘
Pba Pbb Pbc = %?; 0 g% 3 (446)
Peo Fep FPee g—z -3;3: wic
where
1
az = §(b + we + wp — We) (4.47a)
1
Bz = —2-(—b + we — W + W) (4.47b)
1
Y3 o= 5(_b — Wq + Wp + wc)- (447C)

Note that if we > w, + wy, then we must set b > w, — w, — w, in order for a3 (and hence Py,

and Fy,) to be positive; whereas if w, < w,+ws, then b can be chosen to be some small positive
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number.?® For our calculations, we have chosen b = € + w, — w, — wp when w, < w, + wy; and
b = ¢ otherwise, and we have typically chosen ¢ = 0.01.

Finally, when all four legs are allowed choices for the continuation of a loop r[as was the
case in Fig. 4.7(a}], there is even more freedom in choosing the probabilities. When wy >

W + Wy + We, all but one of the bounces can be eliminated, allowing the very simple solution,

P, aa P, ab F, ac F, ad 0 0 0 1
Fyo Pw Py P 0 0 0 1
ba  Lob Lb bd | _ (4.48)
F ca F, ch P, cc P, cd 0 0 0 1
Fao Fap Fge Fug o b Mo ] etuidue

Note, however, that if wy < wg + wy + w,, then this solution would give Py < 0, so a different
solution is necessary. Actually, when wg < wq + wp + W, all four bounces can be set equal to

zero, and we use the probabilities,

Po Pay Pac Pag 0 o= L 1-2

Po Foo Foe BPla | _ w 0% o , (4.49)

Poo Py Poe Py e Mmoo

Foo Pay Fye FPug a2 5—1 = 0

where

y = %(wa + wp -+ we — wy) — 28 {4.50a)
B4 = -é—(wwa +wp — we+wy) + 8 (4.50b)
Y4 = %(mwa — wy + we + wg) + 6. (4.50c)

We must (of course) be careful to choose the remaining parameter & such that all probabilities
are positive. In particular, if we + wy + we — wy < 2w,, then we must choose § in the range
0 <6 < (wo + wy + we — wq)/4; and otherwise we must choose 0 < § < w,/2. For the sake of

simplicity, we have simply chosen ¢ to always lie in the center of whichever range is relevant.

% Note that if we < wa 4+ wp, one could in fact set b = 0 and eliminate this bounce as well. This turn out
however to cause the directed loops to not be ergodic. In particular, when the negative sign problem is present
(see Chapter 8) this choice makes it impossible to make transitions between the terms for which W; > 0 and
those with W; < 0.
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s 2 x2diagrams 3 x 3 diagrams 4 X 4 diagrams
1 0 8 0

1 8 16 8

3 24 24 24

2 48 32 48

s 80 - 40 80

3 120 48 120

7 168 56 168

4 224 64 224

3 288 72 288

Table 4.2 The number of diagrams (such as the one shown in Fig. 4.6) that
involve: four probabilities, and are given by the 2 x 2 matrix in
Eq. (4.45); nine probabilities, and are given by the 3 x 3 matrix
in Eq. (4.46); 16 probabilities, and are given by either the 4 x 4
matrix in Eq. (4.48), or the 4 x 4 matrix in Eq. (4.49).

We should stress once again that—in all cases—it is necessary to correctly order the prob-
abilities according to the values of the corresponding matrix elements. This ordering process
must oceur for every diagram, such as (for example) the one diagram that was shown in
Fig. 4.6. In Table 4.2 we have provided the total number of diagrams of each type (i.e., 2 x 2,
3 x 3, and 4 x 4) that exist for a given spin s. There are often several hundred diagrams
to be considered, which might seem imposing. However, the ordering of the matrix elements
(and the corresponding probabilities) only needs to happen once for each simulation. Before
any Monte Carlo steps occur, the probabilities are calculated and written into a table. They
are then accessed later, when they are needed during the construction of loops {much like the

matrix elements are only calculated once and then stored for later use).

4.7.4 Computation

In this final subsection, we provide a description of the computational issues that are
involved in our calculations, including {among other things) the dependence of the computation
time on the relevant parameters: the strength of the exchange interaction J, the temperature
T, the external magnetic field A, the number of spins N, and the intrinsic spin s. In all cases,

these calculations were performed using a linux cluster, were coded using Fortran 90, and
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MPT was used for parallelization. Almost all of the calculations were carried out specifically
using the “Hal2004” cluster, which beibngs to the Ames Laboratory Condensed Matter Physics
group, and is a 64 node cluster, with 128 3.06 GHz Intel Xeon processors. However, a few
calculations were also performed using (1) the Ames Laboratory “Medusa” cluster, which has
11 nodes, with 22 2.4 GHz Intel Xeon processors; and (2) the “HPC-class” cluster, which is
operated by Iowa State University’s High Performance Computing group, and consists of 88
2.8 GHz Intel Xeon processors processors on 44 nodes.
| The sampling method that was described at the end of Chapter 3 is extremely straight-
forward to parallelize. When using p processors to calculate N statistically independent
estimates—or Ny “bins”?®—each processor can simply be assigned Ng;/p of the bins. Each
processor then does the same calculation, but using a different sequence of random numbers;
and there is no need for communication between the processors until after all Monte Carlo
{MC) steps have been completed. The process of taking MC steps is by far the most time
consuming part of a calculation (since many steps are usually needed), so the computation
time scales very efficiently with p. The one detriment to the efficiency of the scaling is that
the initial equilibration—described in Sec. 3.5.1—must take place before the collection of any
useful data, and this is not easily parallelized. Instead, we usually choose the simplest strategy,
Le., reaching equilibrium independently on every processor. This does not require much extra
computation, provided that {on each processor) the number of MC steps that take place after
equilibriation is considerably larger than the number of MC steps used to reach equilibrium.
We have tried various other schemes to avoid this issue, such as having each of the processors
deal with different temperatures or fields. In some cases this can be somewhat more efficient,
but in other cases it can leave a large number of processors idle. We generally only use a few
processors at a time, so the former (simplest) method works quite well.
For a given calculation, we typically use 2-8 processors, and (7'} results-—spanning the ex-
perimentally relevant range (2--300 K)—are obtained in a few minutes; whereas M {H) results—

from H =0 to a few tens of Teslas—typically require a few hours. However, for large N and

29ee Sec. 3.5.2.
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very low T, M(H) calculations can take up to a few days. (For example, the large N data that
is reported in Chapter 5 required multiple days of computation.) The reason for the difference
in computation time between the different types of data [x(T) vs. M(H)), as well as the depen-
dence on N and s, are described below. First though, it is helpful to note that the parameters
J, T, and H do not appear independently in the partition function, since Z depends only on
the ratio, /(ksT). Therefore, if we assume (for the sake of simplicity) that all bonds have the
same strength J, and all spins share the the same g, then only two parameters are necessary
in order to describe how the computation time depends on J, T, and H. These parameters

can be defined

kT

H
ho= 9“:’-; , (4.51b)
and the partition function becomes
I . hn, }
Z ="Tr |exp — Zﬁj'ﬁk_g sl (4.52)
. (ke j=1

It is important to note that low-temperature calculations are always more time consum-
ing, such that low-temperature M(H) calculations take longer than those for x{T). More
specifically, at low temperatures, the computation time grows proportional to 1 /t as the tem-
perature decreases (with fixed J). This dependence can be understood from the inspection
of Eq. (4.19). In the limit ¢ — 0, the internal energy U approaches a constant, temperature-
independent value. In order for the right-hand side of Eq. (4.19) to also be independent of
temperature, (n} clearly must grow proportional to 1/¢. Recalling Sec. 4.6, the amount of work
to be done for each MC step—and hence the resulting computation time—is proportional to
n for both stages of the update.®® Therefore, the computation must grow proportional to 1/¢,
exactly as we have observed.

As for the dependence on h, computation time increases somewhat with with increasing

external field, but this dependence is much less drastic. Specifically, it is typical for the

90 Actually, for the diagonal update, the computation time is proportional to L; but L is always chosen to be
slightly larger than the largest n, so L « {n}.
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computation time (per data point) to grow by roughly a factor of two as h increases from
zero up to the saturation field.3? It should not be a surprise that computation time increases
with k, given the discussion of Sec. 4.5, and Eq. 4.23 in particular. As h increases, larger
values of ¢; become necessary in order for the matrix elements associated with Hp,1 to remain
positive for positive values of myp) and mogy,. Larger values of ¢, are equivalent lower energy
eigenvalues, so U will also be lowered. Therefore, Eq. (4.19) again tells us that (n) increases,
hence resulting in increased computation time. However, the dependence of the computation
time on h depends on the details of the energy spectrum, so there is not a simple relation like
there was for ¢.

As larger systems are considered, the computation time grows linearly with N, which is far
more desirable than the exponential growth with N that is encountered when attempting to
diagonalize the full Hamiltonian matrix. The reason for this growth can again be understood
in terms of Eq. (4.19). The precise value of U will naturally depend on the details of the
structure. However, for similar geometries, the internal energy per spin will be approximately
independent of N. Therefore, U o N, so {n)—and hence the computation time —scale linearly
with V.

Finally, the computation time increases with increasing s, which can be understood in
exactly the same way as the other results. As s increases (with fixed ?), each Heisenberg term
in the Hamiltonian can be “more satisfied”, so the internal energy is again lowered, leading
to longer computations. Specifically, we have found that the increase in computation time is
roughly proportional to s(s + 1) for a fixed value of . In the language of Chapter 6,52 this
means that the computation time actually scales proportional to J./(kgT"), which can replace

the 1/t = J/(kgT) dependence which we already showed for fixed s.
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CHAPTER 5. Low temperature magnetization and the excitation

spectrum of antiferromagnetic Heisenberg spin rings

A paper published in Physical Review B!

L. Engelhardt and M. Luban
Department of Physics and Astronomy and Ames Laboratory,

Iowa State University, Ames, Iowa 50011, USA
Abstract

Accurate results are obtained for the low-temperature magnetization vs magnetic field of
Heisenberg spin rings consisting of an even number NV of intrinsic spins s = 1/2,1,3/2,2,5/2,3,7/2
with nearest-neighbor antiferromagnetic (AF) exchange by employing a numerically exact
quantum Monte Carlo method. A straightforward analysis of this data, in particular the
values of the level-crossing flelds, provides accurate results for the lowest energy eigenvalue
En(S,8) for each value of the total spiﬁ quantum number 5. In particular, the results are
substantially more accurate than those provided by the rotational band approximation. For
s < 5/2, data are presented for all even N < 20, which are particularly relevant for experiments
on finite magnetic rings. Furthermore, we find that for s > 3/2 the dependence of En(8, 5)
on s can be described by a scaling relation, and this relation is shown to hold well for ring
sizes up to N = 80 for all intrinsic spins in the range 3/2 < s < 7/2. Considering ring sizes in
the interval 8 < N < 50, we find that the energy gap between the ground state and the first
excited state a,ppr.oaches zero proportional to 1/N%, where o = 0.76 for s = 3/2 and o =~ 0.84

for s = 5/2. Finally, we demonstrate the usefulness of our present results for En(S,s) by

'Reprinted with permission of Phys. Rev. B 73, 054430 (2006).
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examining the Fejs ring-type magnetic molecule, leading to a more accurate estimate of the

exchange constant for this system than has been obtained heretofore.

5.1 Imntroduction

Since the early 1990s, the field of magnetic molecules has blossomed and the number of
different species that exist is increasing rapidly.[1-5] In particular, there is a large family of so-
called ring-type magnetic molecules[3, 6-16] that we focus on in the present work. Within such
molecules there are embedded an even number N of identical paramagnetic ions of intrinsic spin
s occupying NN equally spaced sites defining a ring. Each such ion (“spin”) is coupled to its two
nearest neighbors via an AF exchange interaction, resulting in systems that can often[6, 7, 10-
12, 14] be well represented by an isotropic Heisenberg model with a single exchange energy,

J > 0, of the form

N N
H=J) & G +gusH ) 5, (5.1)

i=1 i=1

where the spin operators §; are given in units of #, ¢ is the spectroscopic splitting factor, and
tp is the Bohr magneton. In the first term of Eq. (5.1), the cyclic character of the system
is maintained by requiring that §x4; = 8;. The second term describes the standard Zeeman
effect, where the external ficld H is typically defined to be directed along the z-axis. The
total spin operators §% and S, then commute with 7, and the eigenstates are described by
quantum numbers S and Mg whose values range from 0 to Ns and from —S§ to S, respectively.
In Fig. 5.1 we display the zero-field energy spectrum corresponding to Eq. (5.1) for a particular
example, s = 3/2 and N = 6, with the subset of minimal energics (SME) shown in red (gray).
The SME are closely related to what are called level-crossing fields, quantities which are used
to study the SME in great detail throughout this work for many choices of s and N.

In an external magnetic field, the (25 + 1)-fold degeneracy of each field-free multiplet
is lifted due to a shift, gupH Mg, originating in the Zeeman term. As the external field is
increased from H = 0, the ground state will change {among the members of the zero-field
SME) successively from § =0, Mg = 0 to S = 1, Mg = —1, etc., in integer steps of S and

Ms until § = ~Mg = Ns, corresponding to saturation of the magnetization. Each of the
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Figure 5.1 Complete energy spectrum for N = 6 and s = 3/2 obtained
by diagonalizing the Hamiltonain in Eq. (5.1} for H = 0. The
energy levels shown in gray are the subset of minimal energies
(SME) for this system as explained in the text. The solid line

is & parabola, given in the text, that gives an excellent fit to the
SME.

Ns changes of the ground state quantum numbers is referred to as a level-crossing, and the
field at which the nth level-crossing occurs is denoted in the following by H,,. By determining
these fields, we seek to record the characteristics of the SME as a function of s and N. This

is accomplished using the difference equation,
En(S,s) = En(S — 1,5) + gunHn (5.2)

for S = n, where n extends from 1 to Ns. We elaborate on this connection between the SME
and the H, in detail in the following section.

In order to appreciate the details of the SME, we first review some generic features of
the spectra and, in particular, the SME, that are already known. It has been noted,[12, 17]
and is clearly evident in Fig. 5.1, that the SME are accurately approximated by a quadratic

dependence on S of the form E(S) « S(S + 1), as for a quantum rotor. The solid curve in
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Fig. 5.1 describes the parabola E(S) = ¢JS(S +1)/(2N)} + Eg, where ¢ = 4.14 gives the best
fit to this SME which has a ground state energy Ec = —17.393.J. (The reason for the inclusion
of the factor of 2V in this equation will become clear in Sec. 5.2.) If the SME were strictly
parabolic in S, this would give rise to uniformly spaced level-crossing fields. Although uniform
spacing is approximately realized in Fig. 5.2 for our example, we find that the accuracy of such
an approximation deteriorates for larger values of N. This is explored in detail in Sec. 5.2.

Above the SME there exists a large forest of energy levels. Although many of these levels
lie very close to one another, there is a relatively large energy separation between the SME and
the higher energy levels, which has been previously observed.[17, 18] Since at a low temperature
T only the lowest levels can be thermally occupied, and all other levels lie well above the SME,
the magnetization as a function of field A/ (H) consists of a series of thermally broadened steps
that arise at the level-crossing fields and are determined solely by the SME. [The magnetization
is also a function of T', but we will write M (H) for the sake of brevity.] This step-like property
is illustrated in Fig. 5.2, where M(H) and dM/dH, the differential susceptibility, are shown
for the s = 3/2, N = 6 example with kgT/J = 0.1. The data in Fig. 5.2(a) were calculated in
three different ways: using the partition function that includes the complete energy spectrum;
using the quantum Monte Carlo (QMC) method employed in this work; and using a modified
partition function that includes only the states belonging to the SME. The sharp peaks that
appear in Fig. 5.2(b) were calculated using QMC and the susceptibility fluctuation formula to
give dM/dH directly, not by differentiating M(H).

The three data sets shown in Fig. 5.2(a} are all identical to 4 significant figures, supporting
the assertion that the SME are sufficient for analyzing low-temperature experimental data of
this type. For larger values of N, lower temperatures are needed in order to obtain this degree
of agreement, especially in the vicinity of the saturation field. For this reason, we have carefully
checked that as the temperature is lowered, the level-crossing fields, have indeed converged to
their limiting, temperature-independent values. As showﬁ in Sec. 5.2 it is these fields that are
then used to calculate the SME function En(S, s).

Despite the very simple appearance of the Hamiltonian of Eq. (5.1), the evaluation of the
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corresponding energy eigenvalues and resulting thermodynamic properties frequently presents a
major challenge. The most straightforward way to deal with this Hamiltonian, and the method
that is usually employed when analyzing magnetic molecules, is to numerically diagonalize the
Hamiltonian matrix. This yields energy spectra such as that shown in Fig. 5.1. However, even
for relatively small rings, the dimensionality of the Hilbert space, given by D = (2s + 1}V, is
so large that the exact diagonalization of the Hamiltonian matrix becomes totally impractical.
Fér the small ring that has been considered as an example, s = 3/2 and N = 6 gives D = 4096.
If we consider a larger ring, for example s = 5/2 and N = 12, which will be analyzed in Sec. 5.4,
we already have D = 2.2 x 10°, which is well beyond the practical limit of existing computers.
For s =5/2 and N = 20, D is a staggering 3.6 x 1015,

We can entirely avoid the obstacles confronting matrix diagonalization by using a QMC
method that is not restricted by the dimensionality of the Hilbert space. Here, we only focus
on low-temperature M(H) and dM/dH (H), which are used to determine the SME, but other
thermodynamic quantities (such as the temperature-dependent susceptibility, specific heat, and
internal energy) are also readily attainable using this method for all temperatures and fields and
are, in fact, computationally much less demanding than the present low-temperature studies.

As seen above, knowledge of the SME enables one to obtain accurate values of low-
temperature M (H) and dM/dH(H) data. To this end, the SME are calculated in Sec. 5.2
for all s from 1/2 to 5/2 and all even N from 4 to 20. These data are presented in the form
of convenient, dimensionless “spectral coefficients” that will be introduced in Sec. 5.2. The
spectral coefficients are also presented for larger rings, N = 40, 80, and larger intrinsic spins,
s =3 and 5 = 7/2. Such large values of N and s are useful for studying the approach to the
classical limit (s — o0).

In Sec. 5.3 the energy gap A;(N) between the § = 0 ground state and the lowest § = 1
state, which can be inferred from the first level-crossing field, is analyzed in greater detail for
successively larger values of N, up to N = 50, for s = 3/2,2,5/2. This gap is experimentally
relevant for NMR and inelastic neutron scattering (INS) experiments and is also important for

analyzing low temperature, low-field susceptibility data. Finally, as an illustration of the use-
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fulness of the present results, in Sec. 5.4 we analyze an existing ring-type magnetic molecule[11]
composed of 12 Fe?T ions (s = 5/2), leading to an improved estimate for the exchange constant.
With the experimental advancements that are being made both in the synthesis of molecules
and in high field magnetization studies, we anticipate that the use of the theoretical data pre-
sented in this work will complement future experiments in a much needed way, providing more

accurate estimates of microscopic parameters for future ring-type molecules.

5.2 Spectral Coeflicients

Since the Hilbert space associated with H is often too large to allow diagonalization of the
Hamiltonian matrix, other theoretical methods must be found. To analyze low-field suscepti-
bility data, classical spin models and scaled-up data from smaller systems can sometimes be
useful.[6, 11, 12, 14] However, the level-crossings that are observed in high-field experiments
have no classical analog and cannot be easily scaled up. For this reason, reliable theoretical
data have previously been lacking, and a main goal of the current work is to remedy this
situation through detailed QMC calculations.

In order to learn about the nature of the SME, we used the stochastic series expansion
method[19] with directed loops as described in Ref. [20]. This method is based on a series
expansion of the partition function, whereby different orders of the expansion are sampled
by adding and/or removing the diagonal portion of two-spin (bond) operators according to
detailed balance. To ensure that off-diagonal operators are sampled ergodically, “loops” are
constructed in an extended phase space. For the case of s = 1/2, updating proceeds by simply
flipping all spins along a loop from spin down (up) to spin up (down). For s > 1/2, each loop
involves the evaluation of matrix elements of bond operators, acting on spin states that have
been altered by spin raising and/or lowering operators. These loops will fulfill the detailed
balance condition provided that one is careful to incorporate the appropriate “directed-loop
equations” [20] for the given choice of s.

Using this method, we simultaneously calculate both M and dM/dH versus H at fixed

temperatures, an example of which was shown in Fig. 5.2. From these data, we can very
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accurately infer the level-crossing fields and thereby reconstruct the SME. This follows from
Eq. (5.2) which gives

s
En(S,s)=gus Y Hn+Ec, (1<8<Ns), (5.3)

n=1
where Eg = En(0, 5) is the ground state energy. It is convenient to define the quantities

. gupH;, _ eV, S)?’l

hn 7 = N ,

(n=1,...,Ns), (5.4)

where the dimensionless numbers ¢, (N, s) will be referred to as “spectral coefficients”. The
energy spectrum of the SME may thus be written as

g
En(S, s) = %chn(N, s +Eg  (1<S<Ns). (5.5)

n=1
Note that if ¢, (I, s) were independent of n and given by ¢(N, s), Eq. (5.5) would reduce to

c(N, s}J S(8+1)
N 2

En(S,8) = + Fg, (0 <S5 < Ng), (5.6)

the so-called rotational band model, that has often been employed to analyze magnetization
data.[6, 17, 21, 22] Inspecting Eq. (5.4), the rotational band model immediately implies that
the level-crossing fields are equally spaced, which, as we will demonstrate in the Secs. 5.2.1-
5.2.3 subsequent subsections, is hardly the case. Instead, Eq. (5.5), in conjunction with the
spectral coeflicients presented in Secs. 5.2.1-5.2.3, provides a highly accurate, yet convenient
means of representing En (S5, s) and, thus, for analyzing low-temperature magnetization data.

Based on previously known properties of Heisenberg rings, it is easy to show that en(V, 8)
is exactly 4 for a very few special cases. These are listed here and will be useful in discussing
the results of our calculations in subsequent subsections: (i) In the case of the N = 4 ring,
cnl4,s) = 4, independent of n and s. This is easily derived by describing this system in terms
of two sublattices, each consisting of two spins. As a result, the SME is given exactly by
E4(S,s) = JS(§ +1}/2 + E¢. (ii) In the limit of classical spins,? limgnoo cn (N, 8) = 4, for

all n and N. (iil) In all cases ¢,—pns(N,s) = 4, independent of N and s. This follows from

%For rings of classical spins with N even, the SME can be described by the continuous function En{(S.) =
2J.52/N + Eg, given in Eq. (80) of Ref. [41). Replacing the classical exchange constant J; == s{s+ 1)J, and the
classical spin S. by their quantum analogs, we obtain En(S,s — oco) = 2JS(S + 1)/N + Eg from which item
I follows.
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Eq. (5.5) and the fact that the state with § = Ns has energy En(Ns,s) = JNs?, while the
SME energy with § = Ns — 1 is En(Ns — 1,5) = Js(Ns — 4).[23]

Since the spectral coefficients have a value of exactly 4, both in the limit of very small
rings [item (i)] and in the limit of very large intrinsic spins [item ii)], one might expect that
the replacement, c,(N, s) = ¢(N, s) & 4, independent of n, would provide a very good approx-
imation, for example, for Fe®* jons (s = 5/2) in small rings (N < 20). However, as shown in
Secs. 5.2.1-5.2.3 for different choices of s and N, the spectral coefficients do vary significantly

with n.

5.2.1 s=1/2,ands=1

Rings of s = 1/2 spins have been studied using many methods, and a great deal is known
about their spectra. In the 1960s, the lowest energies, Ey—co(S, s = 1 /2), were calculated|24]
in the thermodynamic limit using the Bethe ansatz,[25, 26] while numerical diagonalization|[27]
was carried out on finite rings. More recently, work has continued for finite N using methods
that include the quantum Monte Carlo[28], renormalization group(29, 30], Lanczos(18, 31], and
conformal field theory methods.[32, 33]

The lowest eigenvalues for small s = 1/2 rings can be easily obtained from straightforward
matrix diagonalization, but are included here both for completeness and to assess the usefulness
of Eqgs. (5.5) and (5.6). The spectral coefficients that are shown in Fig. 5.3(a) as a function
of n/(Ns) define the SME for small s = 1/2 rings. One can immediately notice that the ¢,
vary with n, and most are much larger than 4, implying that a rotational band approximation
provides a relatively poor approximation to these spectra.

Also included in Fig. 5.3(a) are the spectral coefficients corresponding to Griffith’s original
M {H) result for the infinite s = 1/2 chain,[24] which is shown as a solid curve in Fig. 5.3(b). In
the thermodynamic limit, the transformation from magnetization to spectral coeflicients can
be accomplished by making the replacement, n/N — myg, where myq is the zero temperature

magnetization per spin in units of gup. Eq. (5.4) can then be rewritten,

fin
mo(hn)’

cp(N = 00,8) = {(5.7)
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Figure 5.3 (a} Spectral coefficients for small s = 1/2 rings. The solid
lines are included to guide the eye, and the continuous curve
corresponds to the N = oo magnetization data of Ref. [24]. (b)
M(H) for N = oo (from Ref. [24]), for N = 20 (QMC) and an
approximation based on (5.8).

As can be seen in Fig. 5.3(a), for N = co the spectral coefficients form a nearly linear

function of n/(Ns) over a very large range of this variable. Approximating these data as a

linear function,

T

%(Nxoovl/2)%a_ﬁm:

(5.8)

and substituting Eq. (5.8) into Eq. (5.7), again replacing n/N — mq, the resulting approximate

mg=—20%(1—1/1—§§2—h), (5.9)

where s = 1/2. Fitting the ¢, {00, 1/2) data to the linear function, we find @ = 8.9 and 8 = 5.07.

magnetization is

The corresponding curve terminates at the peint (h = 1.953, mg = 0.439), rather than at (2,
0.5}, but otherwise is virtually indistinguishable in Fig. 5.3(b) from the exact magnetization
(solid curve). This deviation of the terminus is due to the fact that the linear approximation of
- Eq. (5.8) does not incorporate a small positive curvature of the cluster coefficients as a function
of n/(Ns) as n approaches Ns. Also included in Fig. 5.3(b) is M(H) for the s=1/2, N =20
ring at a temperature kpT/J = 0.05. These data are nearly identical to that of the infinite

ring, except for the existence of thermally broadened steps associated with level-crossings.
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Figure 5.4 Spectral coefficients for small rings of intrinsic spins s = 1. The
solid lines are included to guide the eye.

Heisenberg rings of s = 1 spins have received a great deal of attention since Haldane’s
prediction[34] that a finite gap separates the ground state from the first excited state in infinite
rings of integer spins 5.[35] In the notation of the present work, this gap is given by A (N) =
En(l,8)—Eq = %cl(N, s), and the values of ¢; (N, 1), seen as the left-most points in Fig. 5.4,
are in good agreement with published values[36] of A1(N). Values of A (N) for all s in the
range 1/2 < s < 5/2 will be discussed in Sec. 5.3.

Note, however, that the data presented here and in Sec. 5.2.2 include not only the first
energy gap [associated with ¢, (N, s)], but all energy levels that belong to the SME. Studying
the details of of the SME, we find a very rich structure. For instance, it is evident in Fig. 5.4
that c,(NV,1) decreases rapidly with increasing n, unlike the corresponding data for s = 1/2.
For n > 0.4Ns the value of ¢, (N, 1} has already fallen below 5 for N < 20, whereas for s = 1 /2
this value is not reached until n > 0.75Ns. In this sense, increasing s from 1/2 to 1 is a

significant step on our way toward the classical limit, stated in item (ii) earlier in Sec. 5.2.
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5.2.2 s$=3/2,5=2,and s =5/2

VSystems of larger intrinsic spins have also been studied in recent years[17, 18, 37-39] but
with less frequency than s = 1/2 and s = 1 systems. Since a knowledge of the spectral
coefficients for s = 3/2, 2, and 5/2 is important for a number of molecular rings, these data
are presented in Fig. 5.5 for all N < 20. The values of ¢1(V, s} that appear in Figs. 5.5(a)
and 5.5(b) agree with the values of A4(N) that have been published[39] (N < 10). Again,
besides the first energy gap, the SME exhibit several interesting characteristics, which are

reflected in the spectral coefficients.
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Figure 5.6 Differential susceptibility for a ring of N = 20 intrinsic spins
s = 5/2 at a temperature, kgT/J = 0.05. The large peak
immediately before saturation (gugH/J = 10) is discussed in
the text.

Of course, the spectral coefficients for N = 4 are all equal to 4 as required by item (i).
As N increases with fixed s and n/(Ns), the corresponding spectral coefficients increase from
4 monotonically, resulting in the series of nonintersecting curves seen in Fig. 5.5. This is
consistent with Waldmann’s observation[18] that the rotational band model becomes poorer
for larger rings.

Anchored at 4 for n = Ns [item (iii)], and always approaching 4 from above, the values
of the spectral coefficients decrease sharply as n approaches Ns. This ubiquitous drop can
be discussed in a number of contexts. Recalling Eq. (5.4), this is clearly equivalent to a
compression of the level-crossing fields as saturation is approached. At low temperatures, this
results in a large slope of M(H), as can be seen in Fig. 5.6 for N = 20 and s = 5/2. In terms
of the energy spectrum, this implies that the curvature of the SME decreases for large S.

Finally, note that as s is increased with fixed N and n/(Ns), the spectral coefficients
descend toward 4 [item (ii)], but only very slowly. Even for s = 5/2, most of the spectral
coeflicients shown in Fig. 5.5(c) are considerably larger than 4, indicating that one is still far
from the classical limit that is stated in item II. This behavior is explored in Sec. 5.2.3 with

the inclusion of larger values of intrinsic spin.
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5.2.3 Scaling relation for large s

Thus far we have presented the spectral coefficients that define the SME as a function of
three variables, s, N, and n/(Ns), and some general trends have emerged. Now, considering
larger values of s and N, we would like to make more quantitative statements regarding the
functional dependence of ¢,(N,s) on these variables. To that end, we have calculated the

spectral coefficients for values of s up to 7/2 and present those data for 3/2 < s < 7/2.

2.0
N s=3/2 s=2 5=5/2 =3 $=7/2]
6 =m A o] X +
B = A o » L
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2 12 m a4 o x4
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Figure 5.7 Spectral coefficients adjusted to investigate the scaling behavior
of Eq. (5.10) for all s in the range 3/2 < s < 7/2. The data
shown correspond to p = 1.05. :

In Fig. 5.7, we plot the quantity [c,(N,s) — 4] x sP as a function of n/(Ns) for the choice
p = 1.05. From these data the s dependence of the spectral coeflicients is immediately evident.
For each value of N, the data for all s lie on a single curve, implying that the spectral coefficients
scale according to

cn(N,s) =4+ s Pf(N,n/(Ns)). {(5.10)

In particular, for s — oc Eq. (5.10} will be in accord with item (ii). The slow approach to 4 as

5 1s increased is noteworthy, as even s = 7/2 is still far away from the classical limit. Choosing
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a slightly different value for the scaling exponent p, such as 1.03 or 1.07, yields visibly inferior
results, so we conclude that p = 1.05 4 0.01.

A few of the spectral coefficients are also calculated for larger rings, N = 40 and N = 80.
The inclusion of these data in Fig. 5.7 serves two purposes. First, these data suggest that
f(N,n/(Ns)) is, indeed, converging to a finite limiting curve in the limit N — oo, which
defines the zero temperature.M (H) of an infinite chain of spins s. Secondly, the larger N data
strengthen our belief that the scaling relation (5.10) is valid for all V.

Note that in Fig. 5.7 data are only included for n/(Ns) > 0.1. The data for small n/(Ns)
have not been included because the error in calculating ¢, using the QMC method rapidly

increases as n/(Ns) decreases towards zero. The n. = 1 (gap) behavior is considered in Sec. 5.3.

5.3 Energy Gap

We now explore the energy gap Ag(N) between the ground state and the first excited SME
level. Values of this gap are shown in Fig. 5.8(a) for rings of N < 20 spins s < 5/2. Much
like the behavior of the full SME discussed in Sec. 5.2, this gap systematically approaches
the limiting s = oo form as s increases from 3/2, while the s = 1/2 and s = 1 data exhibit
distinctly different trends.

Specifically, the energy gap for s = 1/2 rings is very similar to the energy gap that would be
obtained for a ring with the same value of N but very large s. This large s limit, indicated in
Fig. 5.8(a) as the “classical rotational band,” follows from item (i) and is given by Ay (N) =
4J/N. By contrast, s = 1 rings have much larger gaps. Note also that these are already
within 3.5% of the limiting, N' = oo value even for N = 20. The known limiting value,[35]
Ai(co) A 0.4105J, is indicated by an arrow on the right side of Fig. 5.8(a).

Recall that for any s, A;(4) = J from item (i). Considering N = 6, the classical result
Aoo(6) = 2J/3 is still a reasonable approximation to A4(6), with a relative error of only a
few percent for any s. However, as N increases further this error continues to grow, and with
N =20 it is nearly 25% for s = 5/2 and nearly 40% for s = 3/2.

Although the classical result is not sufficient, we find that the energy gaps for s > 1 are
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well described by a slightly more general power-law dependence on N of the form
As(N) ~ QN9 (5.11)

The curves in Fig. 5.8(a) were obtained by choosing: € = 2.68.J and o = 0.757 for s = 3/2;
2 =273J and o = 0.781 for s = 2; = 3.03J and « = 0.837 for s = 5/2; while, of course,
{t =4J and o = 1 corresponds to s = co. With these choices of £ and o, excellent agreement
with the QMC data is obtained in the range 8 < N < 20 and it is clear that the classical limit
is, indeed, being approached with increasing s for both € and a.

For the half odd integer spins, s = 3/2 and 5/2, the agreement with Eq. (5.11) continues
for larger values of N. The same data are shown in Fig. 5.8(b), now including N < 50, and
the QMC data agree with the power-law formulas to within a fraction of a percent for all ring
sizes in the range 8 < N < 50, which is comparable to our uncertainties in As(N). The values
of A N) begin to diverge from the power-law dependence for N 2 30, which is to be expected
since they must eventually converge to a nonzero value. This gap for s = 2 chains has been
previously studied in great detail, and density matrix renormalization group calculations have
yielded a value[40] of Ao(N) = 0.0876J £ 0.0013J in the limit as N — oco. One can see in
Fig. 5.8(b) that As(NN) is beginning to approach its limiting value, having become larger than
Agsa(N) for N > 50, but data for much larger rings would be necessary in order to obtain an
accurate estimate for the limit N — oo.

The rotational band result, Ag(N) = 4J/N, has been used in the past[11, 12, 21] as an
estimate of As(V). Although this provides a reasonable approximation for N < 10, as we
have seen it quickly diverges from the correct result with increasing N. As such, it would be
prudent to use the more accurate results presented here when attempting to relate J to the
experimentally measured lowest energy gap, e.g., by using INS, NMR, low-field susceptibility,

or magnetization data.

5.4 An application: Fe;

In this section we apply our results to a known magnetic molecule,[11] whose analysis has

| been challenged by a Hilbert space of dimension D = 6'? ~ 2.2x10?. The molecule is comprised
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of 12 Fe®* ions (s = 5/2), whose interaction was first investigated[11] by measuring the low-field
susceptibility xo(T') as a function of temperature and fitting these data to an approximation
of the s = 5/2, N = oc chain. The exchange energy thus obtained was J/kp = 31.9 K for
g = 2.00. The field-dependent magnetization of the molecule has also been measured and
analyzed, and the first four level-crossing fields at low temperatures were[21] H; = 10.1+0.27,
Hy; =19.6+£ 02T, H3 = 29.6 £ 04T, Hy = 39.1 £ 0.8T. An analysis of the magnetization was
given in Ref. [21] using the classical rotational band ¢(¥, s) = 4, and this yielded the estimate
J/kp = 40.7 K with g = 2.02. Note that the latter estimate is more than 25% larger than the
former(11] estimate. Given the results of Sec. 5.2, one can expect that the estimate J = 40.7 K
will be considerably larger than what will result from an accurate treatment of the Heisenberg
model. This is borne out in the following.

In Fig. 5.9, we compare the four measured level-crossing fields with our low-temperature,
(kgT/J = 0.01) QMC results. At this low temperature, each level-crossing of the theoretical
5 = 5/2, N = 12 Heisenberg ring is clearly indicated by a narrow peak in dM /dH. Note
that the peaks in the QMC data arising from the parameters J = 31.9 K and ¢ = 2.00 occur
at fields that are considerably below the experimental level-crossings indicated by the dashed
vertical lines. On the other hand, the QMC peaks that correspond to J = 40.7 K and g = 2.02
are all at fields significantly greater than the measured values. Particularly at high fields,
these discrepancies become quite pronounced, suggesting that neither choice of parameters is
consistent with the experimental data. However, we find that the predictions of the Heisenberg
model agree very well with the experimental data if we use J = 35.2 K and g = 2.0. With
this choice of parameters, each of the four theoretiéal peaks clearly coincides with a measured
level-crossing shown in Fig. 5.9.

Without using the dM/dH level-crossing field data directly, one can easily arrive at the
same estimate based on the spectral coefficients of Sec. 5.2. Recalling Eq. (5.4), the ratio of
J to g is given by J/g = NupgHy,/incy(N,s)]. An estimate of this ratio for a given molecule
is then obtained by simply inserting a measured value of H,, and the corresponding cn(N, s)

from Fig. 5.5.
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Figure 5.9 The four measured level-crossing fields[21] (dashed vertical
lines) are compared with the theoretical dM/dH that result
from N = 12, 5 = 5/2 Heisenberg rings with kgT/J = 0.01.
The theoretical data are shown for the following three choices
of Jand g: J =319 K and g = 2.00 (diamonds) from Ref. [11];
J =40.7 K and g = 2.02 (squares) from Ref. [21]; J = 35.2 K
and g = 2.0 (circles) are our best estimates.

Alternatively, from the measured H,, we can construct an experimental analog of the spec-
tral coefficients by fixing the ratio J/g in Eq. (5.4). In Fig. 5.10, we display those results for
the four measured H, (and their uncertainties). These data are in good agreement with the
spectral coefficients if we choose the ratio J/(kpg) = 17.6 K, consistent with our previously
stated estimate.

A small decrease with increasing n is observable in the spectral coefficients derived from
the experimental values of the level-crossing fields. This is expected from the data, presented
in Sec. 5.2 but more level-crossings and /or smaller experimental error bars are needed in order
to clarify this point. These data are also useful for getting a sense of the typical errors in the
spectral coefficients that were presented in Sec. 5.2. As shown in Fig. 5.10, the error bars of
the. QMC data decrease very rapidly with increasing n and are in fact not visible in Figs. 5.5
and 5.7.

Our conclusion is that the existing data for the Fe;o molecule are best fit by the choice
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g = 2.0, J = 352 K. This value of J is 13.5% smaller than the value that resulted[21] from
analyzing the experimental level-crossing fields using ¢(N,s) = 4. This reflects the fact that
the spectral coefficients, although not constant, exceed 4 by approximately 13%. A similar
analysis would be equally straightforward for any other rings whose spectral coefficients are

shown in Sec. 5.2.

5.5 Summary

In this paper, we have utilized a quantum Monte Carlo (QMC) method[19, 20] to calcu-
late detailed properties of the general quantum Heisenberg ring. This system consists of an
even number N of equally spaced spins s mounted on a ring, where the spins interact via
nearest-neighbor antiferromagnetic isotropic exchange, with a single exchange constant J. As
this system does not exhibit magnetic frustration, it was possible to calculate thermodynamic

quantities down to very low temperatures. In this work our primary focus has been on the accu-
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rate determination of the level-crossing fields, which, in turn, directly provide the lowest-energy
cigenvalue Ey (5, s) for each value of the total spin quantum number S. By introducing the
notation of spectral coefficients Jsee Eq. (5.4)], denoted by ¢, (I, s), we obtained an especially
convenient representation of En(S, s), given by Eq. (5.5). As the QMC method operates with-
out diagonalizing the Hamiltonian matrix, we were able to obtain results for spins s = 1/2, 1,
3/2, 2, 5/2, 3, 7/2, focusing mostly on N < 20 as these are experimentally relevant, although
N < 80 were also considered. Among our principal results, we have found that the set of
level-crossing fields are not uniformly spaced, and thus the spectral coefficients eV, 8) vary
significantly with n. Equivalently, En(S, s) departs from the strictly quadratic dependence
on S, referred to as the rotational band approximation[17] (equivalently, the Landé interval
rule). These deviations from uniform spacing are fairly small for N < 8, however, they become
increasingly severe with increasing N. Similarly, the ground state energy gap, which may be
written as Ay(N) = En(1,8) — En(0,8) = ¢1(N, 5)J/N, varies significantly with N and s. For
s =1, 2 we find that, consistent with the Haldane result,[34] As(N) is, indeed, converging to a
nonzero limiting gap for large NV and in good agreement with estimates in the literature[35, 40]
for these two choices of s. By contrast, for s = 3/2, 5/2, we find that A4(N) appears to
decrease to zero for large N according to a power law, [see Eq. (5.11)], where the exponent
is given by « = 0.76 for s = 3/2 and a ~ 0.84 for s = 5/2. The increase of a towards unity
with increasing s is consistent with the known rigorous result,[41] Ay (N} = 4J/N, for the
classical Heisenberg ring, which may be pictured as the quantum Heisenberg ring in the limit
s — o¢. We also find that the departure of the general spectral coefficient c,(N, s) from the
classical result cn(V,00) = 4 is characterized by power-law behavior [see Eq. (5.10)]. Finally,
we have illustrated the practical utility of our present results for the level-crossing fields and
En (S, s) by considering the ring-type magnetic molecule known[11] as Fe;s. In particular, our
analysis of the existing[21] experimental data for level-crossing fields shows that this system
can be very well described by the nearest-neighbor Heisenberg model with antiferromagnetic
exchange, and we are able to provide a new and improved estimate of the exchange constant.

Although only rings with even N have been considered in this work, we suspect that similar
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scaling relations may hold for other structures as well.
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CHAPTER 6. Finite quantum Heisenberg spin models and their approach

to the classical limit

A paper submitted for publication in Physical Review B
L. Engelhardt,' C. Schréder,? and M. Luban!
Abstract

We determine the temperature range over which classical Heisenberg spin models closely repro-
duce the zero-field susceptibility of the corresponding quantum Heisenberg models for a finite
number N of interacting quantum spins s. Using mostly quantum and classical Monte Carlo
methods, as well as analytical methods where applicable, we have explored a variety of geome-
tries, including polygons, open chains, and all Platonic and several Archimedean polytopes.
These systems range in size from N = 2 to 120, and we have considered values of s from 1/2
to 50 for both antiferromagnetic and ferromagnetic exchange. Particular attention is devoted
to quantifying the slow convergence of the large s quantum data to the limiting classical data.
This is motivated by the desire to define conditions where classical Monte Carlo methods can

provide useful predictions for finite quantum Heisenberg spin systems.

6.1 Introduction

In the treatment of magnetic systems, a classical spin model is frequently used, though

the microscopic moments are actually quantum in character. For example, this practice is

! Department of Physics end Astronomy & Ames Laboratory, Jowe State University, Ames, Towa 50011, USA
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sometime followed in the field of magnetic molecules[1] in order to circumvent severe computa-
tional difficulties that arise in a quantum treatment. A classical model can, at times, be both
conceptually illuminating and provide sufficiently accurate results. However, the accuracy of
a classical model’s results are generally not known, when compared to those for the quantum
spins that are being represented. For that reason, the goal of the present work is to deter-
mine the circumstances under which classical models will provide a good approximation to
finite systems of interacting quantum spins. In so doing, we are not only able to provide clear
“rules of thumb” for specific systems; we also explore the approach to the classical limit for
large values of intrinsic spin s. In order to ensure the accuracy of these comparisons, we have
compared only quantum model systems and their classical counterparts; we have not included
comparisons with experimental data, whose underlying Hamiltonian may be in question.

To this end, we have performed calculations using the Heisenberg model, describing a finite
number N of interacting spins. Within this model, there are clearly a number of properties
that one could calculate when trying to answer the loosely defined question, “When does a
classical model accurately simulate the corresponding quantum model?”. To select a suitable
metric, and hence clarify this question, there are two requirements that we impose. (i) We
consider a property that is of relevance to experiments, and (ii) the property, for simplicity
reasons, depends on only one physically relevant parameter, such that two regimes exist—In
one regime, the classical and quantum models give results that coincide to within some small
prescribed error, while in the other regime they produce significantly different results. Both
requirements are met by choosing to calculate the zero-field susceptibility ¥ as a function of
temperature 7' and determining the minimum temperature T;,(s) above which the classical
and quantum results for x(7") meet a prescribed accuracy criterion for a given choice of 5. The
details of this correspondence are described in Sec. 6.2.1.

In order to explore the dependence of T;,, on s, we have performed calculations for a variety
of systems ranging in size from N = 2 to 120 sites, with intrinsic spin quantum numbers ranging
from 5 = 1/2 to, in some cases, as large as s = 50. The classical counterpart to each quantum

system is, of course, also considered, as we describe in Sec. 6.2.1. Some of these systems,
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specifically with s < 5/2, are relevant to the study of magnetic molecules.[1] Additionally,
the large s calculations allow us to glean valuable information regarding the approach to the
classical limit; and by studying many different sizes and geometries, we are able to judge the
universality of our conclusions.

These calculations, however, pose a considerable challenge, necessitating the use of a variety
of methods. For many existing magnetic molecules, matrix diagonalization of the Hamiltonian
is not feasible due to the very large dimensionality of the Hilbert spaces, given by D = (2s+1)".
For example, {Fei2} (s = 5/2 and N = 12)[2] has D =~ 2.2 x 10°, which is already pushing the
current limitations of Lanczos diagonalization, while {MorsFeso} (s = 5/2 and N = 30)[3] has
an associated D a2 2.2 x 1023, Instead we use classical and quantum Monte Carlo methods that
allow us to circumvent the obstacles that large Hilbert spaces and complex multidimensional
integrals pose to quantum and classical calculations, respectively. We review these methods
in Sec. 6.2.3. This is preceded in Sec. 6.2.2 with a discussion of the few special cases where
the spectra of energy eigenvalues can be derived analytically, and matrix diagonalization is
Unnecessary.

In Sec. 6.3, we present our results for a wide variety of geometries including spin chains,
polygons, and a number of Platonic and Archimedean polytopes, where, for each polytope,
each vertex represents a spin site and each edge connects a pair of interacting spins. We
consider both antiferromagnetic (AFM) and ferromagnetic (FM) interactions, finding that for
AFM interactions a classical approximation is typically valid down to a substantially lower
temperature T, than for the corresponding FM case. Furthermore, we present numerical
values of T;;, and explore its functional dependence on s. Finally, in Sec. 6.4 we summarize our

findings.

6.2 Models and methods

6.2.1 Quantum and classical spin models

In order to compare the results of classical and quantum spin models, we use as our starting

point the quantum Heisenberg model. We assume all spins to share a common quantum
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number s, and further assume that if a distinet pair of spins (represented (i, §)) interact with
one another, they do so with with the same strength J; as any other pair of interacting spins.

This Hamiltonian is then given by®

N

=Js Zsz 55 +gupH - Zé}, (6.1)

{44 =1

where the spin operators §; are given in units of h, g is the spectroscopic splitting factor,
pp is the Bohr magneton, and H is an external magnetic fleld. Following Fisher,[4] the
classical analog to this quantum Hamiltonian is constructed by first defining rescaled spin
operators €;(s) = §/ m , in the nature of unit vector operators, whose components
satisfy the commutation relation ef (s)e}(s) — e¥(s)ef(s) = ie3(s)/+/s(s + 1) and the cyclic
permutations thereof. With this replacement, and introducing new parameters, J, = Jos{s+1)
and pe = gug/s(s + 1), Eq. (6.1) is rewritten as

=J. Z“ﬂ +;J,CH Zez(s (6.2)

(i.d)

allowing us to consider a sequence of Hamiltonians (6.2) for each geometry, where the members
of a sequence differ only in s, sharing a common value of J.. Since the commutators between
the &(s) vanish in the limit of very large s, each of these sequences converge with increasing

s toward a classical Hamiltonian,*

=

H=Jey & &+ pcH - Eé;, (6.3)
&0

where all ¢; operators are replaced by clessical unit vectors €.

At sufficiently high temperatures, Eqs. (6.2) and {6.3) give the same values of x(T'), while at
low temperatures the values of x(T") diverge from one another. Specifically, quantum systems
that have an § = 0 ground state give x(0) = 0, with x(7") o exp(—A/kpT) for sufficiently
small T, where A is the energy gap between the ground state and the lowest S > 0 excited
state. Classical models, by contrast, do not have a corresponding gap in their energy spectra.

As aresult, an infinitesimal external magnetic field would induce a proportional (infinitesimal)

3Tlldes, writien below symbols, are used to distinguish quantum operators from their classical counterparts.
“Operators and c-numbers are of course distinct mathematical objects. However, in the limit s — oo, Eq. (6.2)
is equivalent to Eq. (6.3) in the sense that they both yield the same energy spectra and thermodynamic data.
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magnetization, so Eq. (6.3) gives values of x(T} that are nonzero in the limit T — 0. For a
system whose ground state has S > 0, x(T' — 0} diverges proportional to 1/T", as we describe
in Sec. 6.3.2.

With this high temperature correspondence (and deviation of classical and quantum results
at low temperatures) in mind, we are now prepared to explicitly state the question to be an-
swered in this article: “What is the minimum temperature T,y (s) for which Eqs. (6.2) and (6.3)
produce the same zero-field susceptibility x(7°) to within some predetermined factor, e.g., 2%?”
This question is answered in detail in Sec. 6.3 using the methods of Secs. 6.2.2 and 6.2.3, where
in all cases x(I) is obtained using the fluctuation formula x(T) = (g%u%/3kpT)(S%)r, where

(8%)r denotes the ensemble average of S2.

6.2.2 Analytical methods

For a few special geometries, it is possible to calculate the zero-field energy eigenvalues F
analytically by expressing them in terms of the total spin quantum number S and additional
spin quantum numbers described below. Given these energies, if one is able to caleulate the
degeneracy vg for each E, it is then straightforward to calculate the zero-field susceptibility.
These special geometries can be grouped into two categories. The first category includes
.systems in which all spins interact equally with all other spins (sometimes referred to as

“pantahedra”). In this case, the energies are given by
Js
E(S,s) = E[S(S + 1) — Ns(s+ 1)) (6.4)

It is also possible to write down the energies in the more general case that the spin lattice can
be decomposed into two or more sublattices, such that each spin of a given sublattice (whose
total spin is labeled Sa, Spg, etc.) interacts with the same strength with all spins of the other
sublattices, but no spins of its own sublattice. To illustrate this, we consider two special cases,
whose resulting energy spectra are very similar to Eq. (6.4). For a ring of four spins with
nearest-neighbor interactions only, there are two sublattices, each of which consists of a pair

of spins that do not interact with one another. In terms of these two sublattices, the energy
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spectrum is given by
B(S, S, 55) = 2[S(S+1) — Sa(Sa+1) - Sa(Sa+ 1), (6.5)
while for the octahedron there are three sublattices, resulting in
E(S,54,58,5¢) = %[S(S +1) ~ Sa(Sa+1) ~ Sp(Sp+1) — Sc(Sc + 1)). (6.6)

The calculation of x(T") for these systems then reduces to enumerating all of the ways in
which the individual spins of each sublattice can couple together to yield a given energy, hence
providing the values of vg. Using these data, we are able to calculate x(7") for very large
values of s and D, which are well beyond the current limitations of matrix diagonalization. To
compare with classical data, we use the results of Ref. [5], as well as additional results that

have been derived for the classical N = 5 pantahedron.[6]

6.2.3 Monte Carlo methods

_For both the quantum and the classical model Hamiltonians that were introduced in
Sec. 6.2.1, the analytic calculation of x(T') is not feasible for general geometries of spins. In
both cases, this calculation involves an ensemble average which becomes very challenging with
increasing N. For quantum spins, the value of the Hilbert space dimensionality D can become
so large (= 107) that it is impractical to attempt to compute all of the energy eigenvalues,
while the classical versions often involve intractable 3N-dimensional integrals.

Both classical and quantum Monte Carlo methods exploit the following idea. Instead of
seemng it as a hinderance that one cannot include the contributions from all of the quantum
eigenstates and all of the classical phase space, one can instead recognize that it is often un-
necessary to include all of the states and use this to our advantage. When the excitation
energy of a state is large relative to the thermal energy kg7, the state will not contribute
significantly to the ensemble average, and can hence be ignored. In this spirit, one can use the
method of importance sampling to perform the necessary averaging, whereby the states that
make large contributions are accurately sampled, and the states that make negligible contri-

butions are ignored. (See, for example, Ref. [7].) While there are statistical errors involved in
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this approach, the errors can be made arbitrarily small by performing longer sampling runs.
Very importantly, no systematic errors are introduced, and the statistical errors are accurately
estimated during the course of a calculation.

For the quantum calculations, we use the method that was introduced in Ref. [8] and has
been recently used to study similar finite systems.[9, 10] The idea of this method is that a high-
temperature expansion can be used to express the partition function in terms of two-spin matrix
elements, which are easily evaluated.[11] The trade-off is that, in order to consider the full range
of temperatures, many complicated terms must be sampled, and the Monte Carlo updating
becomes very involved. However, this updating can be efficiently performed using the so-called
“directed-loop” equations[8] to simultaneously satisfy detailed balance, and ergodically sample
the relevant phase space. For the classical Monte Carlo calculations, importance sampling is
carried out using the standard Metropolis method.[12]

Using these methods we have considered a great variety of geometries in Sec. 6.3, with sizes
ranging up' to N = 120. For this largest system, we considered quantum spins up to s = 9/2,
with dimension D = 10'%0, However, as impressive as this is, the quantum Monte Carlo
(QMC) method also has a serious limitation. For classical systems that have frustrated ground
states,[13] the quantum analogs suffer from the infamous negative sign problem,[14} and results
can only be obtained for relatively high temperatures.[9] As a result, for such frustrated systems
QMC calculations are sometimes able to provide a more complete description of experimental
data than one would obtain from classical Monte Carlo. In other situations, QMC calculations
are limited to temperatures that are greater than T7,, in which case QMC offers no additional
information beyond that which is given by classical Monte Carlo. This issue is addressed in

greater detail in the Appendix.

6.3 Results

6.3.1 AFM interactions

In this section we present and discuss x(T") and Ti,,(s) data for systerns of spins that interact

via AFM interactions. As was described in Sec. 6.2.1, the quantity Tm(s) is defined only in
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terms of some prescribed discrepancy, which we choose here to be a 2% difference between the
values of x for quantum spins s and classical spins. This value is chosen simply because a 2%
difference is just visible to the eye; choosing a different number, such as 5%, does in fact lead

to the same conclusions, only with a different numerical prefactor.

x (AT )

¥ ()

kT,

Figure 6.1 Zero-field susceptibility in units of u2/J, for the AFM (a) square
and (b) tetrahedron. In both cases, results are shown for intrin-
sic spins s = 1/2, 1, 3/2, 2, 5/2, 5, 15, 20 and classical spins.
The s == 1/2 and s = 1 curves are labeled, and the larger values
of s proceed systematically toward the classical results, which
are the uppermost curves. In the inset the same data are plot-
ted with a logarithmic temperature scale, and, as described in
the text, the arrows indicate where a 2% difference is reached
between the s = 1/2 and s = oo data.

In Fig. 6.1 we show x(T) for the square and tetrahedron with quantum spins ranging from
s =1/2 to s = 20 as well as classical spins. For values of s > 5/2 we display only the results

for s = 5, 10, 15 and 20, but calculations were performed for all s < 50, and we observe the
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same trends for all values of s. Note that in both plots an arrow indicates the temperature
at which a 2% difference occurs between the classical and the s = 1/2 data, hence providing
the corresponding values of Ti,(s = -;-) in terms of J.. For both geometries we find that
kaTm(3)/J. = 3.5, and the values of kT, (s)/J, clearly decrease toward zero with increasing
5. These same trends were also found for the other structures described in Sec. 6.2.2, and thus

the corresponding x(7") data are not shown.
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Figure 6.2 Zero-field susceptibility per spin in units of u2/J, for the AFM
(a) N = 20 ring and (b} N = 120 Archimedean solid (great
rhombicosidodecahedron). In both cases, results are shown for
intrinsic spins s = 1/2, 1, ..., 9/2 and classical spins, The
s =1/2 and s = 1 curves are labeled, and the larger values of
s proceed systematically toward the classical results, which are
the uppermost curves.

In Fig. 6.2 is shown the susceptibility per spin, x{T)/N, obtained using Monte Carlo
methods, for a ring of N = 20 spins and an Archimedean solid of N = 120 spins, with s ranging

from 1/2 to 9/2 as well as classical data. In both Figs. 6.1 and 6.2, the classical limit is indeed
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being approached with increasing s, but only slowly. Specifically, for s &~ 5 the quantum and
classical results differ noticeably when kgT < J./2; and in Fig. 6.1 the s = 20 results clearly
diverge from the classical curves for kgT < 0.01J,. We seek to quantify this approach to
the classical limit, and have thus determined kgTin(s)/Js, which equals s(s + 1)kpT}n/J,, for
many geometries.® One could instead analyze kpTm(s)/Je, but, as we will show, by plotting

kBTm(s)/Js the functional dependence of T, on s is easily extracted.
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Figure 6.3 T, vs. s for systems with AFM interactions. In (a) data are
included up to s = 20 for the dimer (O), triangle (o), square
(x), tetrahedron (A), N = 5 pantahedron (V), and octahedron
(+). The same symbols also apply in (b), where data are plotted
for all of the geometries that have been considered. As a guide
to the eye, lines connect successive data points. For additional
details regarding these data, see the Appendix.

In Fig. 6.3(2), we plot kpTn(s)/Js for the geometries described in Sec. 6.2.2, including
values of s extending up to s = 20. For all of these structures, there are clearly two distinct
regimes of s values. For small s (< 5/2) the data increase linearly with s, and for large s
(Z 5) the kgTim(s)/J; data saturate. In the intermediate range, 5/2 < s < 5, the behavior

is crossing-over between the two limiting cases. [For the square, larger values of s (2 40) are

SDescriptions of the geometries, as well as some technical details regarding the results for different geometries,
are contained in the Appendix.
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needed to reach saturation, but kpZ,(s)/Js eventually approaches a constant value, =~ 9.0,
‘These data immediately imply that, although kgT,,(s)/J, decreases monotonically with s, its
functional dependence is different for large and small s: For small s, kpTm(s)/Js x s, or
equivalently, kgTy,(s)/J. < 1/(s + 1); while for large s, kgTin(s)/J. x 1/s>.

In order to formulate a useful rule of thumb, we must include not only the s-dependence, but
also the proportionality constants. For large s there are clearly two proportionality constants
that are relevant for the geometries shown in Fig. 6.3(a). For the dimer and square kgT},/Js ~
9, while kgT;,/Js =~ 4.5 for the pantahedra and octahedron. In Fig. 6.3(b) we have included
data for s < 5 for many additional structures, calculated using the Monte Carlo methods
described in Sec. 6.2.3. Again, we find that in all cases, kgT},/Js increases linearly with s
for small s, and then approaches saturation for larger s. For the pantahedra and octahedron
this saturation is already reached by s &~ 2, while kgT;,/J,; continues to increase for the other
structures. In fact, other than the pantahedra and octahedron, all of this data for s < 3 can
be described to within 30% by the function kgTm(s)/Js & 2(s+ 1), giving the very simple rule

of thumb, kgTy,/J. ~ 2/s for this interval of s.

6.3.2 FM interactions

The same systems (described in the Appendix) but with FM interactions were also studied
in the same manner as was described for AFM systems. There are, however, some distinct
differences between the AFM and FM results. When all interactions are FM, the ground states
of the classical systems are realized by aligning all spins; similarly, the ground states of the
quantum systems have S = Ns. As a result, x(T") diverges at low T" proportional to 1/7" in all
cases, so instead of plotting x(7T), it is more instructive to plot Tx(T") as is shown in Fig. 6.4.
Moreover, the limiting T — 0 values of T'x, henceforth referred to as (T'x)o, converge with
increasing s to the classical result.® Consequently, there will be some value of s = s* which,

when exceeded, will give results that differ by less than 2% even at T = 0. Therefore, T, = 0

SFor FM exchange, the ground state has § = Ns, and the values of (T'x)o are easily calculated from the

2
fluctuation formula for the cases of both classical and quantum spins. For quantum spins, (Tx)o= 5‘%3; N(i"’Ts;"”;

and for classical spins, (T'x)o = 3—'}:%-7\' 2
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for s > s, so for large s we do not obtain the AFM result, ie., kgTi(s)/J. « 1/s%. Note
however that the value of s* is typically quite large (e.g., s* = 45 for N = 10), and there is
still a large region of s values, shown in Fig. 6.5(a), for which kT, /Js is independent of s, or

equivalently, kpTi,(s)/J, oc 1/5%.

Ty, (ilk;)
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Figure 6.4 The product of temperature times zero-field susceptibility per
spin in units of u2/kp for the FM (a) icosahedron and (b) icosi-
dodecahedron. In both cases, results are shown for intrinsic
spins s = 1/2, 1, ..., 9/2 and classical spins. The s = 1/2 and
s = 1 curves are labeled, and the larger values of s proceed sys-
tematically toward the classical result, which are the uppermost
curves.

As shown Fig. 6.5, kpT;,/Js indeed decreases for large s as s* is approached, but the data
are nonetheless quite similar to those obtained for the AFM systems. For s <5, kgTyn/J; is

increasing, and this increase is again linear with s. The most striking feature of Fig. 6.5 is
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perhaps that kT, /Js can be quite large, exceeding 30 for the case of the N = 5 pantahedron
and the octahedron, and exceeding 10 for almost all of the systems when s 2 5/2. There is a
very large variatiOI'l in the data between the geometries, but the median values of 7}, can be
roughly described by kpTh,/Js = bs for s < 5. Comparing with the AFM rule of thumb, for
small s these values of T3, are similar to those found for AFM interactions, but for large s, Ty,

is much larger when the interactions are FM.
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Figure 6.5 T, vs. s for systems with FM interactions. In (a) data are
included up to s = 20 for the dimer (O), triangle (o), square
(%), tetrahedron (A), N = 5 pantahedron (V), and octahedron
(+). The same symbols also apply in (b), where data are plotted
for all of the geometries that have been considered. As a guide
to the eye, lines connect successive data points. For additional
details regarding these data, see the Appendix.

6.4 Summary

In this article we have utilized a combination of quantum Monte Carlo, classical Monte
Carlo, and analytical methods to study and quantify how, with increasing intrinsic spin s,
the results of quantum Heisenberg model systems approach the results of the corresponding

classical Heisenberg models. To this end, the zero-field susceptibility was calculated for many
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geometries, and from these data we have extracted the minimum temperature Ty, (s) at which
the quantum (spin s) results differ by less that 2% from the corresponding classical results. In
terms of the exchange constants J; and J, (defined in Sec. 6.2.1) we have found for small s that
kT /Js o s, or equivalently kT, /Je ox 1/(s + 1), while for large s we found that kpTm/Js
saturates, and thus kgTp,/J. o< 1/s2. In particular, for almost all of the AFM systems that we
have studied, 75, can be described to within 30% by the rule-of-thumb kgT}, /Je = 2/s, which
is valid for s 5 3 and should therefore be relevant to the analysis of experimental susceptibility
data. When FM interactions are present we have found that, to within a factor of 2, the
rule-of-thumb kgT,,/J; ~ 5/(s + 1) applies for s < 5. More precise results have been obtained
for many specific systems and can be found by inspecting Figs. 6.3 and 6.5.

The application of these results to the analysis of any real system of interacting quantum
spins would be straightforward, provided one had some estimate of the relevant energy scale J,.
For example, inspection of Fig. 6.3(b) shows that a classical model will accurately reproduce
the results of quantum spins s = 3/2 for temperatures T > (5 + 1)J;/kp. Additionally, the
present large s results [shown in Fig. 6.3(a)] also underscore the fact that a huge value of s
does not automatically imply that a classical spin model is valid. For example, a spin triangle
with an exchange constant J;/kp = 10 K could accurately be described by a classical model
only for T 2 40 K, even if s = 50. Finally, we remark that these results are only meant to
provide information about static properties. Obtaining classical and quantum time-correlation
functions and comparing them in an analogous manner should provide interesting and useful

results and would be a worthy avenue for future study.
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Appendix: Description of geometries

The various geometries studied here can almost all be placed into one of three general
categories: Open chains, closed rings (polygons), or three-dimensional polytopes. For the
chains and rings, we find that with increasing N the results for 7, (s) rapidly converge to a
single curve that is essentially independent of N and is valid for both even and odd N. The
data labeled “chains” and “rings” in Figs. 6.3(b) and 6.5(b) are hence averages over these data
with N varying from 10 to 20. (For the classical open chains, the exact susceptibility has long
been known, [4] and these exact results are used here.) The category of chains also includes the
simplest possible case, which is one pair of interacting spins (dimer), while the rings include the
triangle and square. Data for these three systems each appear separately in Figs. 6.3 and 6.5.

The polytopes that were studied include four of the 13 Archimedean solids (AS) and all five
Platonic solids (PS). (A complete description of all of these polytopes can be found in Ref. [15].)
Of these AS, three of the structures were chosen because they are the only non-frustrated AS
that exist (i.e., they are bipartite lattices), and hence allow QMC calculations to proceed down
to arbitrarily low T, even for AFM exchange. They are the truncated octahedron (N = 24},
great thombicuboctahedron (N = 48), and great rhombicosidodecahedron (N = 120). They
also share an additional property: As is the case with large N chains and rings, these three
AS produce the same values of T;,,(s), independent of N, so their averages also appear in
Figs. 6.3(b) and 6.5(b), labeled “Archimedean Solids”.

Recall from Sec. 6.3.2 that s* depends on N, which implies for s <

~J

g* that T, must
also depend on N. For s < 5 however, we find that the variation of T}, with N is always
smaller than the associated error-bars for the chains, rings, and non-frustrated AS. For small
s, these error-bars are smaller than the symbols that appear in Figs. 6.3(b) and 6.5(b), while
for s = 9/2 the uncertainties in kgT;,/J, are roughly £1. In Figs. 6.3(a) and 6.5(a), the errors
are considerably smaller than the associated symbols for all s.

The remaining AS that we studied is the icosidodecahedron, whose structure is adopted by
multiple species of magnetic molecules.[3, 9, 16, 17) For this geometry, AFM interactions give

rise to a classical ground state configuration that is frustrated,[18] so the QMC calculations
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are restricted to relatively high T'.[14] Specifically, these QMC calculations for T < T}, were
possible only with s = 1/2, 1, and 3/2. Frustration also occurs for four of the five S, the
cube being the one exception. Two of the PS, the tetrahedron and octahedron, although being
frustrated, were calculated using the method of Sec. 6.2.2; while for the other two PS, the
icosahedron and dodecahedron, QMC calculations were used. For the icosahedron, we were
able to proceed to temperatures below Ty, for s < 2, and, for the dodecahedron, could handle
all s < 5/2. Consequently, data for larger s do not appear in 6.3(b) for the icosidodecahedron,
icosahedron, and dodecahedromn.

There are two other geometries for which x(T) and T, have also been calculated: The
N =5 pantahedron and the deltoidal icositetrahedron.[15] The pantahedra were described in
Sec. 6.2.2, and the deltoidal icositetrahedron is a polytope which is unfrustrated and of lower
symmetry than the PS or AS. For both of these structures, the resulting kT, /Js data appear
in Figs. 6.3(b) and 6.5(b). In order to obtain the T}, data that have been presented here, a
great deal of additional (T} data were obviously calculated which have not been shown; these

data are available from the authors for all of the structures.

Bibliography

[1] A recent useful survey of magnetic molecules is given in R. E. P. Winpenny, Comp. Coord.

Chem. II 7, 125 (2004).

[2] A. Caneschi, A. Cornia, A. Fabretti, and D. Gatteschi, Angew. Chem. Int. Ed. 88, 1295
(1999).

[3] A. Miiller, M. Luban, C. Schréder, R. Modler, P. Kégerler, M. Axenovich, J. Schnack,
P. Canfield, S. Bud’ko, and N. Harrison, ChemPhysChem 2, 517 (2001).

[4] M. E. Fisher, Am. J. Phys. 32, 343 (1964).
[5] O. Ciftja, M. Luban, M. Auslender, and J. H. Luscombe, Phys. Rev. B 60, 10122 (1999).

[6] M. Luban, unpublished.



119

[7] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics
(Cambridge University Press, 2000).

[8] O. F. Syljudsen and A. W. Sandvik, Phys. Rev. E 66, 046701 {2002).

[9] A. Miiller, A. Todea, J. van Slageren, M. Dressel, H. Bégge, M. Schmidtmann, M. Luban,
L. Engelhardt, and M. Rusu, Angew. Chem. Int. Ed. 44, 3857 (2005).

[10] L. Engelhardt and M. Luban, Phys. Rev. B 78, 054430 (2006).
[11] D. C. Handscomb, Proc. Cambridge Philos. Soc. 60, 115 (1964).

[12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller, J. Chem.
Phys. 21, 1087 (1953).

[13] R. Moessner and A. P. Ramirez, Physics Today 59(2), 24 (2006).

[14] M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).

[15] URL http://mathworld.wolfram. com.

[16] B. Botar, P. Kégerler, and C. L. Hill, Chem. Commun. pp. 3138-3140 (2005).
[17} B. Botar, P. Kogerler, and C. L. Hill, J. Am. Chem. Soc. Comm. 128, 5336-5337 (2d06). ‘

[18] M. Axenovich and M. Luban, Phys. Rev. B 63, 100407(R) (2001).



120

CHAPTER 7. Applications to theoretically challenging magnetic

molecules

In this chapter we present our analysis of four different species of recently synthesized mag-
netic molecule systems. Each of these systems is theoretically challenging for methods that
rely on matrix diagonalization, du“e to the large sizes of their Hilbert spaces D. Specifically,
D ranges from 531,441 for {Nij2}, up to over a billion for {V3p}, making these ideal systems
for us to study. In all four of these cases, we have used the QMC method that was described
in Chapter 4, and have determined a microscopic model that accurately reproduces the mea-
sured data.! Furthermore, in most cases (the exception being {Vs0}) we have also calculated
the predicted low-temperature magnetization versus magnetic field, which can be tested with
pulsed-field measurements, and also provides information about the underlying energy spectra
that are associated with these magnetic molecules.

Before coming to our analysis, first note that two of the magnetic molecule systems studied
in this chapter —{CrjgCus} and {Cr;2Niz}-contain two different magnetic ions within each
molecule. The QMC method that we described in Chapter 4 is perfectly applicable to any
combination of intrinsic spins s, but we did not address the matter of different values of g. In
fact, Eq. (4.16) requires that all spins share the same g, and QMC calculations subsequently
involve sampling the quantum number My (defined in Sec. 2.2}). By contrast, when different
values of g are present, the magnetic moments associated with the states 4, (1 <k < L) vary
from state to state within a given term W; [of Eq. (4.21}], even though the quantum number

Mg is fixed. Therefore, we have derived more general formulas for the magnetization and

For all of the magnetic molecules that are studied in this chapter, the value of ¢ associated with each ion
has been suggested by the synthesis chemists, based on their analysis of the system. In the future, we hope to
also include anisotropic interactions, as described in Chapter 9.
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susceptibility which are still applicable when multiple values of g are present. This derivation

is included in Appendix A, where we show that

L N .
1 <
M = us<zzzgjmﬁ,k> (7.1a)
k=1 j=1
2

| LN 1 Lo 2
Buk < Ezzgjmj,k >—<Ezzgjmj,k> , (7.1b)

i

X

where g; is the g-value for the jth spin site (1 < j < N), and m;, is the quantum number

corresponding to the operator 85, acting on the state |4g), of the term W;.2

7.1 Analysis of the {Cr;Cu,} magnetic molecule

‘The first magnetic molecule that we describe in this chapter is the {Cr;pCus} ring that has
been synthesized by R. Winpenny’s group at the University of Manchester, and was initially
reported in Ref. [1]. The system is comprised of 10 chromium {Cr) ions, which each have an
ionization of +3 and a resulting spin s = 3/2; and two copper (Cu) ions, which each have
an ionization of +2 and a resulting spin s = 1/2.3 The structure of this system was studied
using x-ray crystallography, and these data were used to create the representation shown in
Fig. 7.1(a). The two Cu jons are situated on the opposite sides of the ring to one another,
with five Cr ions on each side of a Cu ion. These data also reveal that the ligands (Q and
F atoms) that connect each pair of (crystallographically equivalent) Cr ions are the same for
all Cr-Cr bonds, so the Cr-Cr interactions are modeled with a single exchange interaction .J;.
Furthermore, the molecules possess 180° rotational symmetry, so there are no more than two
distinct Cr-Cu bonds, which we label J; and J3. This can be seen more easily in Fig. 7.1(b),
where we show a further simplified representation, including only the magnetic ions, and
distinguishing the bonds (Jy, Jo, and J3) with different line styles. Note that the two Cr-Cu
bonds—represented J; and J3 in Fig. 7.1(b)—correspond to ligands that clearly differ from
one another in Fig. 7.1(a), so there is no reason to expect that Jy = Js.

Given the symmetries of this molecule—and assuming only nearest-neighbor, isotropic

?Note that M is in fact just the average if the magnetic moments (Ef=1 ;M) associated with each of the
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Figure 7.1 Diagrams showing the structure of the {Cr1oCus} ring. In (a)
the magnetic {Cr and Cu) ions are shown, as well as the ligands
that link them. This structure will be referred to as 1. In
(b) we show a simplified representation, including only the Cr
ions (solid circles numbered 1-5 and 7-11) and Cu ions (open
circles numbered 6 and 12), with lines representing the bonds
that link them. All Cr-Cr bonds are assumed to be identical,
and of strength Jy; whereas two different Cr-Cu bonds, J; and
J3, are considered, as shown in (b).
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Heisenberg interactions—the Hamiltonian that describes this system is

4 10
Ho= D5 G+ 5 G| + (8 5+515)
=1 7
12
+J3 (86 &7+ 31 - Fio) + s H Y g5, (7.2)
j=t

where g; is different for the Cu sites than it is for the Cr sites. For both of these ions, the
typical values of g; are well known, and we have used g; = 2.1 for Cu (j = 6, 12) and g; = 1.96
for Cr (all other j), which were also used in Ref. [1]. There are therefore three parameters (Ji,
Jo, and J3) that must be determined in order to define the theoretical model for this molecule.
This is typically done (at least initially) by measuring the weak-field magnetic susceptibility,
and varying the free parameters until agreement is obtained with this experimental data.
Following the initial synthesis of this system, the magnetic susceptibility was measured
from room temperature down to T = 2 K using a SQUID magnetometer with an exter-
nal magnetic field of H = 1.0 Tesla. Due to the molecule’s large Hilbert space, D =
[2(3) + 1] 10 [2(3) + 1]2 > 4 x 108, matrix diagonalization was not feasible for the real mole-
cule. Instead, calculations were performed for a smaller, imaginary {CrsCus} molecule, having
only four, instead of five, Cr ions on each side of a Cu ion. This data was then “scaled up”
in order to approximate the real system. Using this procedure, the best fit was obtained from
the values Ji/kp = J2/kp = 9.8 K (both AFM) and J3/kg = —2.9 K (FM).[1] In Fig. 7.2 we
show the measured molar susceptibility x,, times temperature,? along with theoretical Ty,
results that we have obtained by performing QMC calculations—for the full Hamiltonian of
Eq. (7.2)—using these published values. Clearly there is room for improvement. We there-
fore sought to answer the following questions: Is there a unique (Ji, Ja, Js)-triplet that does

accurately reproduce the experimental susceptibility data? If so, what does this Hamiltonian

L stales 9. This seems quite reasonable, but is by no means obvious.

For spins s = 1/2 and s = 3/2, the following information could be added to the tabies of Sec. 4.7: There
are 14 non-zero two-spin matrix elements; and for the directed loop equations, there are four 2 x 2 diagrams,
16 3 x 3 diagrams, and four 4 x 4 diagrams.

4 All of the susceptibility data that we present in this chapter is molar susceptibility xm, in units of “em?® per
mole formula unit”. This quantity, and these units, are obtained by multiplying the (dimensionless) susceptibility
x by the volume per mole (of the complete chemical formula).
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Figure 7.2 T'xm as a function of temperature for {CrigCus}, including the
experimental data for 1, as well as the QMC data that is ob-
tained using the Heisenberg Hamiltonian of Eq. 7.2 with the
previously published values of Jy, Js, and Js.

suggest about the energy spectrum (as probed via QMC calculations of M vs. H) that would
be relevant to other experiments?

Since the publication of this initial data,[1] the same group has also synthesized another
{Cr10Cuza} structure, that is very closely related to 1 [shown in Fig. 7.1(a)]. This newer
structure will be referred to as 2, and is shown in Fig. 7.3. It is nearly identical to 1, but
involves slightly different bonding between the Cr and Cu ions, potentially affecting the bonds
labeled J and J3. The structure of 2 shares the same symmetries with 1, so the simplified
representation shown in Fig. 7.1(b) still applies. Furthermore, the ligands that form the Cr-Cr
bonds are very similar in 1 and 2, so the values of J; for 1 and 2 were expected to be similar.

The weak-field magnetic susceptibility has been measured for 2—just as it was for 1-—and
both of these data sets are shown in Fig. 7.4 (symbols), along with our QMC calculations that
provide the best fits (lines). In the cases of both 1 and 2, the high temperature data that we
have calculated are determined almost entirely by Jy, the strength of the Cr-Cr interaction,

and are relatively insensitive to the values of J; and J3.% In fact, by fitting just the T > 100 K

*This should not be surprising, since there are four times as many J, bonds as there are either Ja or Js



Figure 7.3 The crystal structure for the more recently synthesized
{Cri0Cusa} ring. This structure is referred to as 2.

data, we were able to fix the parameters Jy/kp = 17.520.5 K for 1, and J; /kp = 20.0+0.5 K
for 2. When departing from these narrow ranges of .J; values, it was subsequently not possible
to fit the data by varying J» and J3 in some appropriate way. Therefore, a unigue value of
Ji exists for each of 1 and 2 which allows us to fit the data. Furthermore, these values are
similar but not identical to one another, owing to the fact that the y,,,(T") data are similar but
not identical for 7" > 100 K.

Although Jy and J3 have very little effect on the calenlated x,, (T} curves at high tempera-
tures, they have a rather significant effect at low temperatures. The experimental x,(T) data
for 1 show two distinct maxima occurring below T = 40 K, which are both accurately repro-
duced in Fig. 7.4 by choosing J1/kp = 17.26+0.50 K, Jo/kp = 26+ 1 K, and J3/kg = —18+1
K, which are vastly different than the published[1] estimates. The same low-temperature de-
tails are not seen in the x.,(T") data for 2. Instead, the data for 2 show a slight “shoulder”
around T' = 20 K, and reach a larger maximum (xn, ~ 0.24 cm®/mol) at T~ 2 K. (Note that
the initially published estimates of J;, Jz, and J3 yield values of xm that exceed 0.4 cm®/mol
for T < 10 K, well above the scale shown here.)

'These two parameters, Jo and J3, together with Jy, turn out to define a unique, relatively

small, region of the three-dimensional (J;, Jo, J3) parameter space, within which the exper-

bonds.
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Figure 7.4 xm vs. T for both structures (1 and 2) of the {Cr;pCus} ring.
The QMC data were obtained by varying Ji, Ja, and J; in
Eq. (7.2) to find the best fit to the experimental data. The val-
ues of these parameters for the QMC data that are plotted here
are: J1/kp = 17.25+0.50 K (AFM), Jo/kg = 261 K (AFM),
and J3/kp = —18+1 K (FM) for structure 1; J; /kp = 20.0£0.5
K (AFM), Jo/kp =22+ 1 K (AFM), and J3/kp = —13+1 K
(FM) for structure 2. For both QMC data sets, we have fixed
g = 1.96 for the Cr ions, and g = 2.1 for the Cu ions.

imental x;m(7T) data can be accurately reproduced starting from the Heisenberg Hamiltonian
of Eq. 7.2. This can be seen in Fig. 7.5, where we present contour plots of the discrepancy
between the experimental and theoretical x,(T") data. Each of these two-dimensional plots
corresponds to a “cut” through the three-dimensional parameter space, for the fized values of
J1 that were determined by fitting the high temperature data for both 1 and 2. These discrep-
ancies were calculated by simply summing the squares of the discrepancies between experiment
and theory for each of the 32 measured temperatures. The resulting numbers that are shown
in the scale on the right edge of Fig. 7.5 are hence in units of (cm?®/mol)2. Note that these
contours have been plotted using a logarithmic scale, so the goodness of the fits deteriorates

quite rapidly as J or Jg are varied. Recall that the region of best fit is even narrower {(+0.5
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Figure 7.5 Contour maps of the discrepancy (described in the text) be-
tween the experimental and QMC susceptibility data x,(T)
for (a) structure 1, and (b) structure 2. In both cases, J; has
been fixed to the value that provides a good fit to x(T") above
T = 100 K. These values are J1/kg = 17.5 K and 20.0 K for 1

and 2, respectively.
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K} for J1 /kp. The data shown in Fig. 7.5(a) correspond to J; /kg = 17.5 K, however we have
obtained a slightly better fit by altering J1 /kp to 17.25 K, and varying J» and J5 slightly. This
best fit data have been shown in Fig. 7.4.

Also note in Fig. 7.4 that the experimental data do not show any signs of decreasing toward
zero with decreasing temperature for T’ > 2 K (the range that was measured). For this reason,
there was initially some question as to whether or not the ground states of 1 and 2 are S = 0.
Howevér, if the ground states were § = 1, the limiting 7" — 0 value of Ty would be = 1
K-cm?®/mol, which is‘ more than a factor of two larger than the values that were measured for
T' = 2 K. Instead, the low temperature data from Fig. 7.4 merely suggest an § = 0 ground
state, separated from the lowest S > 0 state by a very small gap in the energy spectrum.

It is interesting to note that the total spin of the ground state can also be deduced by simply
placing a classical spin vector at the site of each ion in Fig. 7.1(b), and arranging them such
that each bond is maximally satisfied (i.e., neighboring spin vectors point antiparallel to one
another when they are connected by AFM bonds, and parallel to one another for FM bonds).
Choosing the bonds J; and J3 to be AFM with J3 FM—which is what the data suggest—each
spin vector points in the opposite direction as the spin on the opposite side of the molecule.
Hence the total spin S is zero. If, on the other hand, all bonds were (hypothetically) AFM,
then the spins on the opposite sides of the molecule would point in the same direction as
one another. Assuming the classical spin vectors for the Cr (s = 3/2) sites to have a greater
magnitude than the spin vectors for the Cu (s = 1/2) sites, the ground state would have § > 0.
This classical argument has also been confirmed through QMC calculations.

Finally, we present our QMC calculations for the predicted low-temperature magnetization
M and differential susceptibility % in Fig. 7.6 (both calculated per molecule, and plotted
versus H) for the parameters that give the best fits to x;n(7) for both 1 and 2. These
quantities can be measured directly in pulsed-field experiments (although up to somewhat
weaker flelds than we have considered), so these data should provide an opportunity to test
the validity of the model, i.e. the specific choices of the exchange parameters, at which we

have arrived. As we described in Chapter 5, the locations of the “peaks” in Fig. 7.6(b) also
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Figure 7.6 (a) M vs. H and (b) % vs. M, calculated (per {Cr1pCus} mole-
cule) from Eq. 7.2 for two different sets of the parameters Ji, Js,
and J3. The solid lines were obtained using Jj/kg = 17.25 K
(AFM), Jo/kg = 26.0 K (AFM), and Jz/kp = —18.0 K (FM),
which provides the best fit to the x,»(7T) data for 1. The dot-
ted lines [with symbols in (b)] correspond to Ji/kg = 20.0 K
(AFM), Jo/kp = 22.0 K (AFM), and J3/kg = —13.0 K (FM),
which gives the best fit for 2. In both cases, a temperature of
0.5 K was used, with g = 1.96 for the Cr ions, and g = 2.1 for

the Cu ions.
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reveal information about the energy spectrum of the {model) {Cr;gCus} magnetic molecule
which could be further tested by inelastic neutron scattering or nuclear magnetic resonance
experiments. For very large fields [in excess of 70 Tesla for both (1 and 2)], the predicted
magnetization eventually saturates at a value of 31.5 upg per molecule.

"This section has focused primarily on the analysis of the existing {Cr1pCusz} susceptibility
data, illustrating how the QMC method allows us to determine the unique set of exchange
parameters that give agreement between theory and experiment. An additional challenge was
provided by the existence of two different, but very similar chemical structures, 1 and 2. As
we have shown, it is indeed possible to distinguish two distinct sets of exchange parameters, for
which the corresponding Hamiltonians separately reproduce the data for 1 and 2. These two
Hamiltonians then each yield their own predictions for the low-temperature magnetization,
as well as the corresponding features of the energy spectra.® A manuscript has recently been
completed[2] which includes a description of this analysis, as well as a more detailed description
of the chemical synthesis, and the analysis of EPR spectroscopy data which suggest that the
energies of the lowest S =0, .5 = 1, and S = 2 states are entirely consistent with our predicted
% data. This is an ongoing project, and future measurements of the high-field magnetization

are expected.

7.2 Analysis of the {Cr;Ni3} magnetic molecule

The same group at the University of Manchester that synthesized the {CrioCus} system,
described in the previous section, has also created a {Cr;sNiz} magnetic molecule, whose
synthesis was reported in Ref. [3]. This molecule consists of 12 Cr ions, which again each have
an jonization of +3 and a resulting spin s = 3/2; and three Nickel (Ni) ions which each have
an ionization of 42 and a resulting spin s = 1.7 For this system, x-ray crystallography reveals

an open-chain structure, with a Ni ion situated at each end of the chain, and the remaining Ni

5See Sec. 5.2 for a discussion of the relationship between the low-temperature magnetization and the energy
spectrum.

"For spins ¢ = 1 and s = 3/2, the following information could be added to the tables of Sec. 4.7: There are
24 non-zerc two-spin matrix elements; and for the directed loop equations, there are 14 2 x 2 diagrams, 20 3 x 3
diagrams, and 14 4 x 4 diagrams.
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Figure 7.7 Structure of the {Cri2Niz} magnetic molecule. (a) The actual
structure is shown, with the Cr and Ni ions represented by large
circles. Additional details regarding the chemical composition
of this molecule can be found in Ref. [3]. (b) A simplified rep-
resentation is provided, with the Cr and Ni ions represented by
solid and open symbols, respectively. The bonds are labeled Jj,
Jo, Jaz, and Jg, as described in the text.

residing in the center. However, these chains do not crystallize in a straight line, but instead
form the interesting “S-shaped” structure shown in Fig. 7.7(a). The same ligands link all
nearest-neighbors Cr-Cr pairs, so a single exchange parameter J; can be used to describe all
10 of the Cr-Cr bonds. Also, the ligands that link the central Ni ion to the two neighboring
Cr ions are the same as one another, so these two bonds are deseribed by one parameter Ju,
(“M” for “Middle”). Similarly, the ligands linking the terminal Ni ions to their nearest Cr
ions are the same at both ends of the molecule, so these two bonds can also be described
by a single parameter Jg (“E” for “End”). The ligands represented by Ji; and Jg are not
identical to one another, but for the sake of simplicity, they are (initially) assumed to give rise
to the same interactions, described by J; = Ja = Jg. This labeling is shown in the simplified
representation that appears in Fig. 7.7(b).

With only two different exchange parameters, J; and Js, the Hamiltonian for this system
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is

6 13
H o= J| D & Fu+ D 5 F |+
=2 =9
Jo (8152 + 5 53+ 38 5o + 514 - Bis)
15
+upH Y _ g8, (7.3)
=1

where we assume the same g values that were used[3] in the initial publication: 2.0 for the Cr
ions (i.e., g; =20 for 2<j <7 and 9 < § < 14), and 2.2 for the Ni ions (gj=22forj=1,
8, 15). Following the initial synthesis of this magnetic molecule, X, (T") was measured from
T =300 K down to 2 K in a SQUID magnetometer, and these data were used to estimate .J;
and Jp as reported in Ref. [3]. However, the Hilbert space associated with this Hamiltonian is
quite large, given by D = [2(3) + 1] 212(1) + 1P > 4 x 108. For this reason, Eq. (7.3) was not
used directly, but was instead replaced with its classical analog (as we described in Sec. 6.2.1),
and this classical Hamiltonian was used to fit the experimental data, subsequently yielding the
estimates Ji/kp = 29.2 K and Jy/kg = 29.9 K (both AFM). Given the results that have been
presented in Chapter 6, we were skeptical of the accuracy of these estimates—as compared
with those that would be obtained from Eq. 7.3-—and have thus performed QMC calculations
using this (Quantum) Hamiltonian.

With only 2 free parameters, J; and Ja, the process of fitting the experimental xm(T) data
was exc?edingly straightforward. For a given ratio, Jo/J1, we calculated T'xm as a function
of kpT/Jy. This is possible because Ty depends only on the ratios J JkpT and Jo/kpT—
or equivalently, Jo/J; and kpT/Ji—and does not depend on Ji, Jo, and T independently.
Therefore, we could plot Txm(%?]i), and by varying the value of J; (and hence Js, since their
ratio is fixed) we were able to immediately explore all (J),J2)-doublets that share this same
ratio. This allowed us to quickly determine whether or not a given Jy/J; ratio was feasible.
Then, by performing QMC calculations for many different values of J3/.J;, we were able to
ﬁna the parameters that give the best fit to the experimental data. Again, as was the case for
{Cr10Cuz}, we have found that there is only a small, unique region of the (J1,J2) parameter

space which reasonably reproduces the experimental data. The best fit was obtained upon
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Figure 7.8 Tx, vs. T for the {Cr12Niz} magnetic molecule. The symbols
correspond to the measured data; and the solid line represents
the QMC calculation for J1/kp = 18.0+£0.5 K and J3/kg = 9+1
K, with g = 2.0 for the Cr ions, and g = 2.2 for the Ni ions.

choosing Ji/kg = 18.0 £ 0.5 K and Jo/kg = 9+ 1 K (both AFM), which are quite different
than the previous estimates.? The resulting theoretical T'xm data are shown in Fig. 7.8, along
with the experimental data.

At low temperatures, the data approach a constant value of Ty, slightly larger than 1
K-cm®/mol, which implies an § = 1 ground state. This can also be expected by considering
classical spin vectors (as was the case for {Cr10Cus}), whereby all of the spins cancel one
another out, with the exception of one uncompensated Ni ion. At higher temperatures (in fact
at all temperatures), the experimental data are well fit by the QMC data shown in_ Fig. 7.8.
However, we wanted to know whether such agreement could also be achieved when allowing
Ju and Jg to differ from one another. To that end, we have additionally considered the 3-

parameter Hamiltonian that results from replacing J; with Jyy and Jg, as we have shown at

8 As we have described in Chapter 6, for kgT/.J > 1, a classical Heisenberg model will accurately reproduce
its quantum analog. However, the previous estimates (J; /kg = 20.2 K and Ja/kp = 29.9 K) produce results that
disagree with the experimental data, even for T° = 300 K. Therefore, we suspect that there is a typographical
error in Ref. [3], reporting these estimales in units of em™!, instead of K, hence giving estimates that are a
factor of 1.439 larger than was intended,
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Figure 7.9 Contour plots showing the quality of the fits between theory
and experiment for {Cri2Niz} with a fixed value of J; /kg = 18
K. The precise meaning of these numbers is described in the
text. (a) Data are shown from 2 K to 20 K, which encompass
the entire “banana shaped” region of best fit. (b) A close-up of
this region is shown using a linear scale.

the bottom of Fig. 7.7(b).

When using three parameters, we have found that J; must remain roughly unchanged from
its 2-parameter estimate, J;/kp = 18 K. (This is not surprising, since most of the bonds
are of strength J,.) By subsequently fixing Ji/kp = 18 K, and varying both Jy; and Jg,
we have explored the two-dimensional (Jps,Jg) plane, searching for points—in addition to
Jo = Jy = Jp = 9 K—that produce Tx;, data which are in agreement with the measured
data. Specifically, for each set of parameters, we calculated Tx.,, for each of the 90 measured
temperatures; for each value of T, the square of the difference between the experimental and
theoretical T'x,, was calculated; and these squares were summed to determine the goodness

of the fit. It is this quantity, in units of (K-cm®/mol)?, which is shown in the contour plots
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and g = 2.2 for the Ni ions.
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of Fig. 7.9. Indeed, along the diagonal line that corresponds to Jo = Jyy = J £, there is a
narrow region of good fit centered at Ja/kp = 9 K. However, by simultanecusly increasing Jyy
and decreasing Jg (or vice versa) it is possible to maintain a reasonably good fit throughout
a relatively large “banana-shaped” region, which can be seen in Fig. 7.9(a). In Fig. 7.9(b) we
show a more detailed plot of this region of best fit. The data shown in Fig. 7.8 (for J, [k =18
K and Ja/kp = 9 K) turn out to provide one of the best possible fits, but a slight improvement
to this fit is achieved by choosing Jy/kp = 18 K, Jy/kg = 12 K, and Je/ke=TK.

To summarize, upon fixing Jyr = Jg, there is only a very small region of the two-
dimensional (J,J2) parameter space that will produce a good fit to the experimental data.
However, by varying Ju; and Jg independently, we have found a somewhat extended region in
the three-dimensional parameter space (shown in Fig. 7.9 for J; /kg = 18 K) which yields fits
to the experimental data that are of good quality. We have therefore calculated M (H) and %
for Ji/kp = 18 K and Ja/kg = 9 K (which provides the best fit when using two parameters)
and for J; = 18 K, Jyy = 12 K, and Jg = 7 K (which provides the best fit when using three
parameters). These data are plotted in Fig. 7.10, revealing very similar results for both sets of
parameters. For both molecules, the (predicted) magnetization eventually saturates to a value
of 42.6 pp per molecule when H = 75 Tesla. The low-temperature (T = 0.5 K) magnetization
for this system has very recently been measured using a pulsed-field for H < 30 Tesla, and

this data will be carefully analyzed in the near future.

7.3 Analysis of the {Ni;»} magnetic molecule

We have also used QMC calculations to analyze a {Nija} cluster that was synthesized
locally by Ames Laboratory chemist, P. Kgerler. For this molecule, x-ray crystallography has
revealed the structure shown in Fig. 7.11(a), which includes 12 Ni ions, each of which has an
lonization of +2 and a resulting spin s = 1. Carefully examining this figure, there are a total
of 21 exchange pathways through which the Ni ions can interact with one another. However,
even from this relatively complex picture, the magnetic molecule clearly possesses a great deal

of symmetry. In particular, there is 120° rotational symmetry, as well as mirror symmetry
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Figure 7.11  Structure of the {Nijp} magnetic molecule. (a) The Ni ions
are represented by green circles, and the ligand atoms are rep-
resented as follows: O=red, C=grey, (O positions of OQCHz
groups)=brown, and COz=(central purple/black). (b) Only
the Ni ions are included in this simplified representation, and
the Ji, Ja, and J3 bonds are labeled. The 12 unlabeled (yel-
low) bonds are of strength Jy.

about the plane that passes vertically through Fig. 7.11(a). These symmetries immediately
reduce the number of distinct bbnds from 21 to (at most) four, which we represent Ji, Jo, Ja,
and Jy. These bonds have been labeled accordingly in Fig. 7.11(b), where the 12 uniabeled
(yellow) bonds correspond to Jy. The weak-field magnetic susceptibility was also measured for
this system, providing useful evidence regarding the nature of these magnetic interactions, as
we describe below.

With N = 12 Ni ions, each with s = 1, the Hilbert space associated with this magnetic
molecule is D = 531,441, which is small enough to be solved by numerical diagonalization.
However, the advantage of using QMC in this situation was the relative speed of the calcula-
tions. A QMC calculation of the weak-field susceptibility—from 7" = 2 K to 300 K—required
less than 5 minutes for any particular choice of parameters (J1, Ja, J3, and Jy), while the
numerical diagonalization of the Hamiltonian required several hours of computation. This is
therefore an example of how these two methods can effectively complement one another: QMC

can be used to perform calculations for many different sets of parameters, finding the best fit
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to xm(Z'); then, the resulting Hamiltonian can be diagonalized a single time to determine the
full energy spectrum for the optimum set of parameters.

Initially, several assumptions were attempted in order to further reduce the number of
parameters from four to (a more manageable) three, or perhaps even two. However, we found
that a reasonable fit was impossible to obtain with fewer that four distinct bonds. With four
parameters though, the exploration of the four-dimensional parameter space is a daunting
task, even though each calculation required only a few minutes. For example, sampling a
very crude 10 x 10 x 10 x 10 grid in parameter space would have required multiple days. In
order to expedite this process, we thus used the same strategy that was employed for the
{Cri2Niz} system, performing calculations of x,, as a function of kgT/Jy for different values
of the ratios: Jy/Jy, J3/J1, and Jy/J;. For each set of three ratios, we then found the value
of Jp that provided the optimum fit, and recorded this set of parameters (J1,J2,J3,J4) into
memory, along with the corresponding goodness of the fit-—calculated as a sum of the squares
of the differences between experiment® and theory.

A thorough exploration of the parameter space then took place over the course of a weekend,
finding that the experimental data could be accurately fit by one (and only one) region of the
four-dimensional parameter space. This was then followed by a finer search of the region
that provided the reasonable fits, yielding that data that are shown in Fig. 7.12. The best
fit was subsequently obtained upon choosing J1/kg = 17.5 £ 0.5 K, Jo/kp = =95+ 1.5 K,
Jafkp = -22.0+1.0 K, and J4/kp = -1.9£ 0.1 K, with g = 2.21.10 (The uncertainties given
here represent the approximate size of the region in parameter space in which a good fit is
obtained.) Note that these four values are indeed quite different from one another: Two of
the bonds, J; and J3, are of similar magnitude, but J; is AFM, whereas the other three bonds
are FM. By comparison, the other two bonds, Jg and Jy, are weaker by a factor of roughly 2
and 10, respectively. Also, note that the data are extremely sensitive to the precise value of

J4, which is the weakest FM bond. This could perhaps have been expected, since most of the

9Note that this procedure required the ability to fit for values of T falling between the measured data points,
which was accomplished by replacing the experimental data wilh a series of piece-wise continuous functions.

¥Phe precise value of g = 2.21 was determined by allowing g to deviate slightly from 2.2, in order to find the
value that allowed the best fit to be obtained.
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Figure 7.12 Ty, vs. T for the {Nijs} magnetic molecule. The solid line
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bonds are represented by Jj.

Using these parameters, we have also calculated the predicted low-temperature magneti-
zation as a function of the external magnetic field. These QMC data—calculated using T = 2
K-—are represented by the solid curve in Fig. 7.13. However, for T < 2 K, the QMC method
begins to suffer from the “negative sign problem” ,!! and data become extremely difficult to
obtain as the temperature is lowered toward T = 1 K. For this reason, the ability to diagonal-
ize the Hamiltonian was particularly important. Data for T = 0.5 K have also been included
in Fig. 7.13, which were obtained by numerically diagonalizing the Hamilténian {Ising the
MAGACK([4] package, and reveal a number of “steps” that are not visible in the 2 K QMC
data. Furthermore, this diagonalization provided the full energy spectrum, from which we have
included a listing (Table 7.1) of all of the energies that lie within 10 K of the § = 0 ground

state. These should prove valuable for the analysis of future data.

1The negative sign problem is the subject of the next chapter, and in Sec. 8.2 the emergence of the negative
sign problem is described for {Nij2} in particular.
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Figure 7.13 Predicted M vs. H per {Nijo} molecule. Both curves assume
the same Hamiltonian, but the solid curve represents QMC
data with T = 2.0 K, whereas the dashed curve represents
data with T' = 0.5 K that were obtained by diagonalizing the
Hamiltonian matrix.

Following the analysis that has been described above, M (H) was measured for the {Nia}
system, using a pulsed field, with a temperature of T = 0.5 K. These data were expected to
either confirm or refute the prediction contained in Fig. 7.13, however there are problems with
these experimental data that are currently unresolved. In particular, SQUID measurements
had been made for H < 5 T, with T' = 2 K, giving results that are very similar to the QMC
data shown in Fig. 7.13. Upon lowering the temperature from 2 K to 0.5 K, the M (H) curve
should become more “sharp” as is the case in Fig. 7.13. However, the 0.5 K pulsed-field data
actually lie below the 2 K SQUID data, a trend which does not make sense thermodynamically.
Therefore, a detailed analysis of M(H) is being reserved until reliable data are available. An
article describing the synthesis of this system, as well as the results of our QMC analysis
was submitted to the Journal of the American Chemical Society, but was not accepted for
publication. A revised manuscript is currently being prepared which will be submitted to a

different journal in the near future.
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S Excitation energy (kpK) Multiplicity
0 0 1

1 0.316
1 0.379
2 0.859
2 1.195
2 1.234
3

3

3

4

4

5

6

1.641
1.803
1.969
2.825
3.024
4.245
5.990

L S T e B T - I N B i

Table 7.1 ~ All of the energy eigenvalues (relative to the ground state, £ = 0)
that lie within 10 K of the ground state energy for the {Nijs}
model Hamiltonian.

7.4 Analysis of the {V3} magnetic molecule

The final magnetic molecule to be described in this chapter is the recently synthesized {Vzg}
system, which was first synthesized by A. Miiller’s group at the University of Bielefeld,'? and
has since been synthesized at Ames Laboratory as well.[6, 7] The structure of this molecule
is shown in Fig. 7.14(a), where 30 V ions—residing at the centers of the large polyhedra—
occupy the 30 vertices of a slightly distorted icosidodecahedron. It should be noted that this
same geometrical arrangement [shown in the simplified representation of Fig. 7.14(b)] was also
adopted by the previously synthesized {Fezp} (s = 5/2) magnetic molecule.[8] Each of the 30
V ions have an ionization of +4, and a resulting spin s = 1/2; so these systems offer a great
deal of potential for comparing the effects of different intrinsic spins in the same geometrical
structure. To that end, the weak-fleld magnetic susceptibility of {V3g} was measured and
analyzed, as we describe below.!3

The magnetic susceptibility was measured in an applied field of 0.1 Tesla, finding a large

'2%We have provided the analysis for this initial report, which was published in Ref. [5], and has also been
included as Appendix B.
" Note that the expected value of ¢ for the V ions was 1.95, which we have assumed throughout the following.
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Figure 7.14 Structure of the {V3o} magnetic molecule. (a) The V ions are
situated at the centers of the large polyhedra, and additional
details regarding the chemical composition can be found in
Appendix B. (b) The V ions reside at the vertices of a nearly
regular icosidodecahedron, such as the one shown here.

magnetization at T' = 2 K, which was the lowest temperature measured. The value of Ty,
at 2 K was 0.86 K-cm®/mol, somewhat smaller than the T — 0 limiting value for an S = 1
ground state, which is 0.95 K-cm®/mol. Furthermore, T, was increasing with T, even at
T = 2 K, suggesting an S = 0 ground state with some “additional” contribution to the
measured susceptibility. This was attributed to the presence of approximately two detached,
non-interacting V ions per molecule, which would be very difficult to measure experimentally,
and would properly account for the large value of T, at low temperatures. The data that
would result from these detached s = 1/2 V ions were thus subtracted from the measured data,
leaving the “intrinsic” data shown in Fig. 7.15.

For N = 30 spins s = 1/2, the Hilbert space for this system is 23° > 10°, which is far
larger than what is currently solvable by matrix diagonalization. We have therefore used the
QMC method to attempt to fit these data, and have obtained the solid curve that is shown in
Fig. 7.15 for J =245+ 3 K and g = 1.95. Note that QMC data are conspicuously absent for
T < 120 K. This is because the negative sign problem becomes insurmountable for this system

when kgT/J < 1/2. [The structure of {V3g}—in particular the icosidodecahedron, defined by
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Figure 7.15 Txpm vs. T for the {V3p} magnetic molecule. The “intrin-
sic” experimental data (described in the text) are represented

with symbols, and the solid line represents QMC data for
J =245+ 3 K, and g = 1.95.

the sites of the magnetic ions and shown in Fig. 7.14(b)—involves many AFM triangles, causing
strong “geometrical frustration” and a severe negative sign problem, as described in the next
chapter.] This is therefore an example of a situation wherein the QMC method is effective in
determining the optimum choice for a single J, but can provide no additional information. For
instance, it is entirely possible that {V3p} should actually be described by multiple J values,
given the slightly distorted structure of the molecule. Furthermore, it would be very interesting
to perform low-temperature QMC calculations to learn about the low-energy excitations, but

this is unfortunately not feasible for the present system.
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CHAPTER 8. The negative sign problem

8.1 Introduction

Recall the following very important message from Secs. 3.1 and 4.1: If a thermodynamic

average can be written in the form

2. QWi
(@) = =2=——, (8.1)
2 Wi
then one can proceed! with the calculation by using the detailed balance condition,
P f
I = E, (8.2)
Py W

to sample the terms W;, regardless of the complexity of the summation. However, some of
the terms W; from Eq. (4.21) turn out to be negative for certain types of systems, leading to
the so-called “negative sign problem” (NSP). The origin of these negative terms is associated
with the presence of negative matrix elementé (as we discussed in Sec. 4.5) which depend on
. Whether a bond is ferromagnetic (FM) or antiferromagnetic {AFM). As we describe in Sec. 8.2,
the origin of negative terms also depends strongly on the geometry of a system, allowing us
to formulate a clear statement as to whether the NSP would, or would not, be present in any
given spin system.

From Eq. (8.2), it is clear that these negative values of W; are potentially problematic,
since the left-hand side involves probabilities, which of course cannot be negative. However,
Egs. (8.1) and (8.2) can still be applied, with only a slight modification, as we describe in
Sec. 8.3. This modification allows one to salvage detailed balance, but at the price of some —

sometimes considerable—cancellation among the data which are recorded in the process of a

'Recall that—in order for this to be useful —each term W; must be easy to evaluale, as is the case for
Eq. {4.21).
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QMO calculation. In situations that a great deal of cancellation occurs, the data that remain
(after said cancellation) may be barely discernable —or not discernable—from the statistical
fluctuations that are inherent in a Monte Carlo calculation, hence causing very large statistical
errors. This cancellation is described in greater detail Sec. 8.4, and attempts to overcome the
NSP are reviewed in Sec. 8.5. Unfortunately, a general solution to the NSP does not exist,[1]
so in Sec. 8.6 we seek to ascertain when the NSP is—and is not—insurmountable for systems

that are relevant to the study of magnetic molecules.

8.2 The origin of negative signs

In Sec. 4.5, we showed that the presence of an odd number of off-diagonal, antiferromagnetic
(AFM) operators will give rise to a negative value of W;, defined in Eq. (4.21). We now wish
to provide a better appreciation for how this occurs, specifically with regard to the geometry
of spin systems. The simplest geometry for which a term W; can be negative is an N = 3 ring
(ie., a triangle) with AFM interactions. This very simple geometry is shown in Fig. 8.1(a). For
reasons that will soon become clear, it is helpful rto represent this triangle as a one-dimensional
chain with a periodic boundary condition. This is shown in Fig. 8.1(b), where the j = 1 spin
is shown on both the left and right ends of the chain to stress the periodicity. With the system
represented in one-dimension, we can now construct a two-dimensional diagram-—analogous to
the one in Fig. 4.2—representing a particular term W;. Such a diagram? is shown in Fig. 8.1(c).

The key feature of Fig. 8.1(c), which is responsible for negative terms, is that it takes
an odd number of operators—each of which contributes a negative matrix element to W; in
Eq. {4.21)—to encircle the ring. In so doing, these operators alter each spin state m; twice—
raising the quantum number once, and lowering the quantum number once—such that the
same quantum numbers (0, 0, 0) appear at both the top and the bottom of the diagram; and
equivalently, the same spin state, [+;) = |0,0,0}), appears at both the left and right sides of a
term W; in Eq. (4.21). This is in contrast to the earlier example of an N = 3 open chain, shown

in Fig. 4.2, for which each change (raising or lowering a spin state) could only be undone by

For additional details regarding the meaning of this diagram, see the description of Fig. 4.2, provided both
in its caption, and in the text of Sec. 4.4.
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Figure 8.1 Diagrams illustrating the origin of negative terms for an AFM
triangle. (a) A triangle is shown. (b) The triangle is repre-
sented in one dimension. (¢) Using this one-dimensional rep-
resentation, a diagram is shown, analogous to Fig. 4.2, which
represents a term for which W; < 0.

another operator corresponding to the same bond (i.e., the same value of b in Fig. 4.2} as the
initial change. In other words, for an open chain, all off-diagonal operators must come in pairs
in order for the same spin state to appear at both the top and the bottom of the diagram.
Furthermore, each pair of operators involves matrix elements that are either both positive or
both negative (since they correspond to the same bond), so in either case their product is
positive, hence yielding only positive terms W;.

Now suppose that the triangle consisted of only two AFM bonds, and one ferromagnetic
(FM) bond. It is still possible to encircle the triangle with an odd number (three) of off-
diagonal operators, but only two—not three—of the corresponding matrix elements would be
negative. Therefore, the associated term W; would be positive, and no NSP would be present.
If only one of the triangle’s bonds were AFM, and the other two were both FM, encircling
the ring with off-diagonal operators would produce one negative matrix element, so again Wi

would be negative, just as it was for the original scenario (of three AFM bonds).
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Rather than a triangle, one could instead consider a ring composed of an arbitrary number
N > 2 of coupled spins. As is the case with the triangle, it would again be possible to return
to the same state ¢, by encircling the ring with N off-diagonal operators; a,ﬁd whether or
not the corresponding term W; is positive or negative would again depend on the number of
AFM bonds—and hence the number or negative matrix elements—that are encountered in
the process of going around the ring. If the ring consists of an odd number of AFM bonds,
the resulting term W; would be negative, whereas an even number of AFM bonds would vield
W; > 0. This finally provides a very general rule that describes whether or not the NSP is

present for an arbitrary geometry:

Theorem 8.1. A system will suffer from the NSP if and only if that system includes a polygon

(or multiple polygons) composed of an odd number of AFM bonds.

When only AFM bonds are present, it is easy to determine whether or not the NSP is
present by simply looking at the geometry. If odd-sided polygons (e.g, triangles or pentagons)
are present, so is the NSP.? When both AFM and FM bonds are present, the situation is slightly
more complicated. To illustrate this, we now present three specific examples in Fig. 8.2.

Consider first the {Nijs} magnetic molecule from Sec. 7.3. Its structure is shown in
Fig. 8.2(a), and was also shown in Fig. 7.11. Based on our analysis, this system includes
three AFM bonds, labeled Ji, and all other bonds are FM. This structure involves many (12)
triangles, but they are formed entirely from FM bonds, so they do not produce negative signs.
However, the central hexagon, formed by the J; and J; bonds, involves three AFM (and three
FM) bonds, so it does cause negative signs. Fortunately though, for this system the NSP only
becomes severe for T < 2 K.

We have also analyzed another magnetic molecule, synthesized by R. Winpenny's group,
composed of 9 Fe ions (s = 5/2), which we refer to as {Feg}.* This molecule consists of
two “fragments“—ox_le with three Fe ions, and one with six Fe ions—which appear to be

magnetically uncoupled from one another. The structure of the 6-spin fragment is shown in

*Examples of systems composed of triangles and pentagons include the dodecahedron (pentagons), icosido-
decahedron (both pentagons and triangles), and icosahedron (triangles), all of which are considered in Sec. 8.6. -
1This analysis did not involve QMC, and has hence not been included in this thesis.
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Figure 8.2 Examples of frustrated geometries. (a) The {Nija} magnetic
molecule, described in Sec. 7.3, is described by four distinct
bond strengths. Three of them (J1, J2, and J3) are shown, and
the fourth (Jy) corresponds to the 12 unlabeled bonds. (b) The
6-spin fragment of the {Feg} magnetic molecule is described
(briefly) in the text. (¢} The {Feg} magnetic molecule is also
described (briefly) in the text.

Fig. 8.2(b), with the bonds labeled J; and J5.5 Our analysis has found that both J; and Jp
are AFM, such that each of the four triangles contribute to the NSP. For this reason, QMC
calculations were not useful for the present system. However, suppose (hypothetically) that
only the six bonds labeled J; in Fig. 8.2(b) were AFM, and the bonds labeled J; were FM. If
this were the case, there would have been no polygons with an odd number of AFM bonds, so

the NSP would not have been present.

We have also recently studied an {Feg} magnetic molecule, synthesized by E. Brechin’s

>The symmetry of this molecule allows no more than two different interactions, which we label J; and Js.
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group at the University of Edinburgh. This system is composed of 8 Fe ions, four of which
couple with one another (with a certain strength, J;) to form an “inner” tetrahedron. The
other four Fe ions each couple (with strength Jz) to three of the inner Fe ions, forming an
“outer” tetrahedron. This structure is shown in Fig. 8.2(c). It appears as though both J; and
Jo are AFM in the {Feg} magnetic molecule, such that all 16 triangles would contribute to the
NSP. However, if (hypothetically again) J; had been FM, then the inner four triangles would
have had only FM bonds, and the outer 12 triangles would have each had two (not three) AFM
bonds. Therefore, this hypothetical systern would not have suffered from the NSP.

For each of the examples shown in Fig. 8.2, one could also construct larger “reducible” poly-
gons by including certain edges—and omitting other edges—of multiple “primitive” polygons.
In Fig. 8.2(a), these primitive polygons include the central hexagon, as well as the 12 triangles;
and in Figs. 8.2(b) and 8.2(c), the only primitive polygons are triangles. Although one could
construct reducible polygons, it is not necessary to do so in order to determine whether or
not the NSP is present for the following reason: If the NSP is not present (as determined by
Theorem 8.1) in any of the primitive polygons, then it will also not be present in any reducible
polygons. One can easily be convinced of this by considering a handful of examples, such as
those included in Fig. 8.2.

Finally, it is interesting to note that the condition which determines whether or not the
NSP is present, stated in Theorem 8.1, is identical to the condition which determines whether
or not a system is “frustrated”. A frustrated spin system can be distinguished by placing
a clossical spin vector at the site of each (quantum) spin, and attempting to simultaneously
satisfy (minimize the energy of) all bonds. To do so, spins that interact via FM bonds should be
parallel, and spins that interact via AFM bonds should be anti-parallel. If such an arrangement
is not possible, the system is said to be frustrated. If, on the other hand, such an arrangement

is possible, it can be realized in the following manner:
(1) Pick a starting spin, and let it point in a particular direction.®

(2) Next, move to a spin that is connected to the previous spin via a FM (AFM) bond, and

%Both the spin and its direction can be chosen arbitrarily.
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let it be parallel (anti-parallel} to the previous spin.
(3) Repeat step (2) until all spins have been reached.

Note that in step (2), an AFM bond requires the next spin to be “fipped” relative to the
direction of its predecessor. However, if an odd number of AFM bonds leads back to the same
spin (i.e., if there is a polygon with an odd number of AFM bonds), then an odd number of
spin-flips would occur, contradicting a direction that had already been determined, and hence
meaning that the system is frustrated. This is perfectly analogous to the previous discussion
in which an AFM bond “flipped” the sign of the term W;, hence causing the NSP: An odd
number of sign-flips—resulting from an odd number of AFM bonds—cause the NSP; whereas
an odd number of spin-flips—resulting from an odd number of AFM bonds—cause frustration.
For recent discussions regarding the effects of frustration in classical and quantum systems,

see Refs. 2] and [3], respectively.

8.3 Modified sampling strategy

"This section describes how it is possible to generalize the thermodynamic averages that
take the form of Eq. (8.1)—specifically the quantities discussed in Sec. 4.3-—in such a way that
Eq. (8.2) involves only positive probabilities. This generalization is the topic of the following
subsection, and leads to formulas that involve the ratios of multiple QMC estimates. As a
result, it was also necessary to estimate our statistical errors in a slightly different manner

than that which was presented in Sec. 3.5. This is described in Sec. 8.3.2.

8.3.1 Averaging when negative terms are present

When negative terms W; [defined in Eq. {4.21)] are present in the partition function,
Eq. (8.2) can give the result —E’:—; < 0, which is clearly inconsistent with our desire to in-
térpret P;_,; and F;_.; as the probabilities of making transitions. However, as we describe in
the following, it is possible—and in fact quite straightforward—to rewrite Eq. (8.1) in such a

way that these transition probabilities depend upon the absolute values of the terms W;, and
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not the terms themselves, some of which have negative values. First, one can trivially replace”

W; = sgn(W;)|W;| in Eq. (8.1), giving

_ > Qisgn(W) | Wy
Q= Sl

(8.3)

Now, upon dividing both the numerator and the denominator by >, |W;|, Eq. (8.3) becomes

such that the two fractions in Eq. (8.4) each have the same form as Eq. (8.1}. In fact, the

only difference between these fractions and the fraction in Eq. (8.1) is that now |W;| (which is
always positive} appears in the both the numerators and denominators, rather than W; (which

is sometimes negative). To clarify this analogy to Eq. {8.1), we now define

A o= Zi Qs Wi 5
Qi) = Sl (8.5)

to represent averages that are weighted by |W;|—as opposed to W;—and Eq. (8.4) becomes

_ {Qisgn(Wy))’
e A

(8.6)
which is a ratio of two averages. The numerator is the average of the quantity Q;sgn(W;), and
the denominator is the average of sgn(W;).

The résult of the preceding algebra is that Eq. (8.1) can be replaced by Eq. (8.6). This

is advantageous because each average (. --)’, defined in Eq. (8.5), can be calculated by taking

Monte Carlo steps corresponding to the detailed balance condition,

Bjoi _ Wi
Py Wl

(8.7)

which involves only positive values on the right-hand side, and hence positive probabilities on
the left-hand side.®
In order to calculate thermodynamic properties, we must now rewrite the averages from

Sec. 4.3 in the form of Eq. (8.6). This is a straightforward task, but to do so it is helpful

"The function sgn(W;) simply returns the “sign” of Wi: sgn{W;) = 1 for W; > 0, and sgn(W;} = —1 for
W; < 0. ’

8 Although Eq. (8.6) has the desired property that all probabilities are positive, negative terms W; cause
undesired cancellation problems in the numerator and denominator, as we describe in Sec. 8.4.
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to introduce notation that is more compact. Specifically, for every QMC calculation that
we perform, there are five quantities whose averages are calculated for each bin.? They are

henceforth defined using the following notation:!0

N,
1 3t

S = —N—Z(sgn(W)) (8.8a)
82 i=1
N,
1 81

M = =) (gnsMssgn(Wi))’ (8.8b)
st im1
N<
1 St

Mg = N ((QI-LBMS) sgn(W;))’ (8-8¢)
s i=1
NS‘I

N o= o (usgn(W)y (8.84)
st im1
N<

1 3t ,

Nog = 5= (nfsgn(Wy) (8-8¢)

F:H i=1

In these definitions, N represents the number of (statistically independent) bins that are used,
and the quantities {---)’ are averages, calculated using Eq. (8.7), for each of the N,; bins. In

terms of these newly defined averages, the formulas from Sec. 4.3 become

M

M o= 2 (8.9a)
1 My MP

x o= kBT( s 52) (8.90)

U = kaT%—c (8.9¢)
o [Ny NTN

C = AB(S “E_Ts‘)’ (8.94)

where the constant ¢ was defined in Sec. 4.5.

We should stress an important distinction between this strategy and the strategy that was
described at the end of Chapter 3: Here, we do not estimate the thermodynamic quantities—
M, x, U, and C—for each bin. Instead, we estimate the five quantities shown in Eq. (8.8) for
each bin; average over the Ng; bins to obtain §, M, My, N, and Ny,; and then use these five

estimates to calculate M, x, U, and C from Eq. (8.9). This distinction might seem somewhat

®The use of “bins” for calculating Monte Carlo averages was discussed in Sec. 3.5.2.
°In situations that different values of g are presemi in a system, one should replace gupMs —
Lp s E_-, 1 934,k in Eqgs. (8.8b} and (8.8¢). This replacement was mentioned at the beginning of Chapter
7 and has been derived in Appendix A.



trivial, but is actually quite important when (sgn(W;))’ becomes small.}! Since all four of
' these thermodynamic quantities involve division by S, it is crucial that a precise estimate of
this quantity be used, which is accomplished by averaging over all bins in Eq. (8.8a).

The formulas shown in Eq. (8.9), which use the estimates obtained from Eq. (8.8), are
what we use for our calculations. Note, however, that each of these formulas depend on either
two [in the cases of Egs. (8.9a) and (8.9¢)] or three [in the cases of Egs. (8.9b) and (8.9d)]
estimates, each of which have some associated statistical error. The uncertainties in our final
estimates subsequently depend on the statistical errors associated with Eq. (8.8); as well as

the covariance between these estimates, as we describe in the following subsection.

8.3.2 Estimating statistical errors with the negative sign problem

Recall from Sec. 3.5 that the error associated with N; independent estimates of a quantity

Q is given by

QR-Q

6Q =5 (8.10)

where we now use overbars to denote averages. Eq. (8.10) can be used to estimate the uncer-
tainties in our estimates of S, M, M, N, and N, since each of these quantities are averages
over Nj; statistically independent bins. However, the thermodynamic quantities—as they are
written in Eq. (8.9)—are functions of multiple (estimated) variables. Therefore, to estimate
the uncertainty in these quantities, we use the following:{4]

Consider a quantity!? Q, which is a function of multiple other quantities,’® ¢;, go, etc.
Furthermore, suppose that these other quantities have each been obtained from Ny statistically
independent estimates, represented g1, gos, ete., where 1 < i < Ng. The error in @ is then

given by

_ Q0@ |
8Q = JZ; 5a; g, T (8.11)

HIf, for a particular bin, the uncertainty in (sgn(W;))" were larger than the quantity itself, division by
this quantity could produce nearly infinite estimates of the thermodynamic properties, which would clearly be
disastrous to a calculation.

1209 could represent M, x, U, or C.

3 These quantities could represent &, M, Mg, N, or Ny,
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where the summation includes all permutations of two quantities (g; and g), from the set
{q1; ge, etc.}. For example, when calculating x, there are three quantities (S, M, and Msq)
corresponding to ¢; and g, so there would be 9 terms in the summation. The symbol Tk
represents the element of the variance-covariance matrix corresponding to the quantities q;

and g, and is defined,
1 Nsi

Tik = 7 > (95— ) (qei — T) - (8.12)
5t i=1
Finally, to determine the uncertainties that are associated with our estimates in Eq. (8.9},
we differentiate each formula in Eq. (8.9}, and insert this result—as well as the results of

our calculations from Eq. (8.12)—into Eq. (8.11). This yields the following formulas for our

uncertainties:
M Us.s UM M Ts5,.M
M = i — 2= .
6 ’ ‘ \/ + S (8.13a)
1 62 gs.5 + /\;‘ZRUTA?A + D'Mj&.;\/!sq
X = =% i " i (8.13b)
B _2/\m 2 + 2&71_‘3‘1 - 2/\m‘fm 5 M
N Ts,5 UN N Os.n
= kgT — — 2= .
oU B ‘ ’ \/ N2 SN ‘ (8.13c)
55 + NI L + Pt
§C = & N N (8.13d)

—2>\n%"{ﬂ + 25,1”?57"“1 — 2n&n IS

It is precisely these formulas that we have used to calculate our uncertainties in M, x, U, and

C, where Apm, &m, An, and &, are defined as,

A = 2% (8.14a)
M

fn = A (8.14b)

Mo = 1+2%f (8.14¢)

t = Ap— N (8.14d)
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8.4 Cancellation of positive and negative contributions

Thus far in this chapter, we have first described how it is that negative signs emerge. Then—
given the existence of negative signs—we have also described how Monte Carlo sampling can
still take place, using [W;] (rather than W;) to determine transition probabilities. However, we
have not yet clarified why the negative sign problem is actually a problem. This is the purpose
of the present section.

"The problem lies in the fact that—especially at low temperatures—almost complete cancel-
lation can take place between positive and negative terms, leading to a poor “signal-to-noise”
ratio. This can be most easily understood by examining the frequency with which different
types of terms W are encountered, and observing how this frequency varies with temperature.
For example, let us again consider the icosidodecahedron, where a spin (s = 1/2) resides at
each vertex, and each edge connects a pair of spins that interacting via an AFM bond of
strength J. This model was used in the analysis of the {V39} magnetic molecule in Sec. 7.4,
and the geometry was shown in Fig. 7.14(b). In Fig. 8.3 we now display histograms for this
system (analogous to the histogram shown in Fig. 4.8) which include the relative number of
" times a given order n of the scries expansion was encountered in 10° MCS; i.e., a value of 10~2
means that this n was encountered 10° times. Note that we have further distinguished whether
the order was encountered with a positive term (W; > 0) or a negative term (W; < 0), and the
difference between the positive a negative data is included as well.

Although it is not obvious by looking at Egs. (8.9¢) and (8.9d), the data labeled “difference”
in Fig. 8.3 actually determine both I/ and C. To calculate U, %’r is nothing more than the
average value of the data labeled difference (i.e., the location of the peak). Similarly, to
calculate C, J\%‘l - ASf.z is the variance of the data labeled “difference” (i.e., the square of the
width of the distribution). Therefore, an accurate estimate of U and C depend on accurate
estimates of this distribution, represented by a thick line in Fig. 8.3.

First, consider that data in Fig. 8.3(d), corresponding to a temperature' kpT/.J, = 1.8.

At this (relatively high) temperature, the terms W; < 0 occur much less frequently than the

" The parameter J. = s(s + 1).J was described in Sec. 6.2.1.
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terms W; > 0, such that the difference between these data yields the smooth, robust curve
shown with the thick line. At kpT/J. = 1.4, shown in Fig. 8.3(c), the difference between
the W; > 0 and W; < 0 data is not as great, but the difference between these data is still
quite smooth. As the temperature is lowered to kgT/J. = 1.0, shown in Fig. 8.3(b), the
cancellation between the W; > 0 and W; < 0 data becomes more substantial; and slight
“wiggles” become visible in the difference, demonstrating that the statistical errors are no
longer small compared with the the data that remains after the cancellation. Finally, in
Fig. 8.3(a), we include data for kpT/J. = 0.6. At this temperature, there is almost complete
cancelation between the terms W; > 0 and W; < 0, such that the difference is indistinguishable
from the statistical fluctuations. At this temperature and below, useful averages cannot be
obtained in a reasonable number of Monte Carlo steps—and a correspondingly reasonable
amount of time—so the negative sign problem is indeed a very serious problem.

Inspecting Eqgs. (8.9a) and (8.9b), the calculation of M and yx are perfectly analogous to
the calculation of U and C, respectively. In particular, we can construct histograms that
are analogous to Fig. 8.3, but which show the values of Mg that have been encountered,
rather than the values of n. These histograms are shown in Fig. 8.4, corresponding to the
same four temperatures that were represented in Fig. 8.3. The data labeled “difference” in
Fig. 8.4 now provide the values!® of M (from the average of the distribution) and y (from
the width of the distribution) for the s = 1/2 AFM icosidodecahedron. These data were
collected during the same 107 Monte Carlo steps that provided the data in Fig. 8.3, and again
the cancellation (between the W; > 0 data and the W; < 0 data) becomes more severe with
decreasing temperature. At kgT/J, = 0.6, the remaining data are (again) indistinguishable
from the statistical fluctuations, leading to very poor estimates of M and y, and very large

error bars.

YSSince I = 0 for this calculation, the data are (of course) symmetrically distributed about Mg = 0.
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Figure 8.4 Histograms showing the relative number of times that the quan-
tum number Mg was encountered for the s = 1/2 AFM icosi-
dodecahedron (i.e., {V30}) for four different temperatures. (a)
At the lowest temperature, kgT/J. = 0.6, virtually complete
cancellation occurs between positive and negative terms. (b)
At kgT/J, = 1.0, large cancellation occurs, but considerable
information remains. (c¢) At kgT/J. = 1.4, some cancellation
occurs; and (d) at kgT/J. = 1.8, the cancellation is relatively
small.

8.5 Attempts to overcome the negative sign problem

The NSP provides a major challenge to QMC calculations for many different types of
systems. It is not unique to the particular representation of the partition function that we
have used (i.e., Handscomb’s method, described in Sec. 4.2.2), as it also oceurs for the Trotter-
Suzuki method[5] (described briefly in Sec. 4.2.1). In addition to spin systems—which have
been the focus of the present work—the NSP also occurs for other types of QMC calculations
as well: When performing calculations that involve interacting fermions on a lattice, the NSP is

present in all but a few special cases.[6, 7] Furthermore, the NSP arises in the QMC calculation
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of path integrals for electrons, necessitating certain “fixed-node” approximations. 6

Since the NSP is so pervasive, a general means of avoiding the problem would be very
desirable. One possibility that people have considered is to choose a different basis (rather
than the “z-states”, introduced in Sec. 2.2) to represent the system of interest. This suggestion
can be motivated by observing that if the eigenstates of the Hamiltonian had been chosen as
the basis states, then all matrix elements would have been diagonal, so the NSP would not
have been present. However, using the eigenstates cannot be considered a “solution” to the
negative sign problem, since their determination has a complexity that grows exponentially
with the system size—exactly what one uses QMC to aveid.'” Although the eigenstates of the
Hamiltonian would not be a useful basis to choose, in certain (very specific) cases, the choice of
a different basis has proven to be useful. These include the use of the x-states (analogous to the
z-states, defined in Sec. 2.2) for a two-dimensional triangular lattice with certain anisotropic
interactions,[9] and the use of a “dimer basis” for a spin-ladder, also with specific types and
strengths of anisotropic interactions.[10]

In some other (also very specific) situations, the NSP can be avoided because there are
positive portions of the partition function which exactly cancel the negative portions of the ‘
partition function. These are referred to as “merons”, and their existence was originally recog-
nized and exploited in the context of interacting fermions on a lattice.[11] However, this method
can also be applied to XXZ spin models, given by the Hamiltonian

H=J) [sig+a (55 + )] (8.15)

(1.3}
eliminating the NSP if (and only if} A = —1.[12] More recently, it has been shown[13] that the
meron strategy can also be used for the more general situation of —1 < A < 1. For A > —1,
the NSP is reduced, but not eliminated, by the introduction of merons. This reduction is very
significant for A close to -1, but vanishes continuously as A approaches 1. Note that for A = 1
the XXZ model becomes the Heisenberg model; hence this strategy is of no help (i.e., merons

do not exist) for the Heisenberg model.

16See, for example, Ref. [8] and the references therein.
'"Fhis point was stressed in Ref. [1].
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To summarize, strategies to overcome the NSP have been found—and successfully implemented—

for certain, specific systems for which the NSP is present. However, it was recently shown in
Ref. {1] that the NSP is a so-called “NP hard” problem; and since it is generally believed (al-
though unproven) that no polynomial time solution to NP problems exists, a general solution
to the NSP also does not exist. Furthermore, the authors of Ref. [1] also argue that a solu-
tion to the NSP for the frustrated Heisenberg model-—in which we are interested—is “almost
certainly impossible” based upon the physics of the problem. Therefore, we are interested.in
assessing the types of magnetic molecules, and the temperature ranges, for which the NSP
| does, and does not, allow us to perform calculations in a reasonable amount of time. This is

the subject of the following section.

8.6 Assessing the limitations of quantum Monte Carlo for magnetic

molecules

From the discussion of Sec. 8.2, we are able to quickly “diagnose” whether or not the
NSP is present in any given magnetic molecule, provided we are able to make some initial
assumptions as to the sign (AFM or FM) of the interactions. If the NSP is not present, QMC
Vca,n be used, and accurate results can be obtained, for arbitrarily low temperatures.!® If, on
the other hand, the NSP is present, then results can only be obtained above some minimum
temperature, which depends upon both the geometry of the system and the strength of the
interactions. In these situations, it is important to have some (albeit approximate) sense of
what this minimum temperature might be. Then, given this rough estimate of the minimum
temperature, we can assess whether—for the particular system—the use of QMC would be:
very useful (as was the case for the {Nij2} magnetic molecule described in Sec. 7.3); of some-—
although limited—usefulness (as was the case for the {V30} magnetic molecule described in
Sec. 7.4); or not at all useful.

In order to get some sense of the temperature range for which QMC is useful, first consider

rings of N spins, coupled via AFM interactions, where N is odd. Recalling Sec. 8.2, such

8 As we described in Sec. 4.7.4, the computation time grows with decreasing temperature proportional to
1/T. However, in the absence of the NSP, results can be obtained in a reasonable amouni of time for 7' < 1 K.
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Figure 8.5 (sgn(W;))’ vs. kpT/J, for rings of N = 3, 5, 7, and 9 spins.
For each N, data are included for s = 1/2, 1, ..., 9/2. In all
cases, the uppermost data correspond to s = 1/2, and the data
proceed systematically toward the s = 9/2 (lowermost) data.
Note that the temperature at which the negative sign problem
becornes serious decreases with increasing ring size, N.

systems will suffer from the NSP, so we wish to know the minimum accessible temperatures
for systems such as these. To that end, we have calculated the average sign of the terms W;
that are encountered for these systems (i.e. (sgn(W;)}’), and plot that quantity in Fig. 8.5 as
a function of temperature for all intrinsic spins from s = 1/2 to s = 9/2.

There are a number of interesting features to be noted in Fig. 8.5. First, note that in
all cases (sgn(W;))’ decreases with decreasing temperature, eventually dropping toward zero.!®
Although this drop toward zero is ubiquitous, the temperature at which it occurs varies consid-
erably with V. Specifically, for larger values of N, lower temperatures can be achieved before
(sgn(W;))" drops toward zero; or in other words, for larger N rings, QMC is useful to lower
temperatures than it is for small N rings. This can be (at least qualitatively) understood in
terms of diagrams such as Fig. 8.1. For the triangle, the sign of a term W; is determined by a

mere three matrix elements; while at low temperatures, the total number of matrix elements

19This is of course consistent with Sec. 8.4.
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will be much larger. Hence, the magnitude of W; is affected only a small amount by the three
maftrix elements that determine the sign of W;, resulting in nearly perfect cancellation when
n > 3. For larger-rings, more matrix elements are involved in determining whether or not
W; > 0, so larger » (and hence lower T') are necessary in order to achieve the same cancellation.

The other very interesting feature of Fig. 8.5 is that for each N, the data rapidly approach
a single limiting curve as s — oo, when plotted as a function of kgT/J.. [The quantity
Je = s(s + 1) was introduced in Sec. 6.2.1.] In one sense this could be expected, since the
physics of the problem scales with® J. as s — oco. However, it is interesting that QMC
calculations are limited to a minimum temperature {(at which (sgn(W;)}’ — 0) in the limit
s — oo, even though this limitation—or an analogous limitation—is absent in a classical
Monte Carlo calculation of the same system. This point seems to be closely related to the
details of how this classical (s — oo) limit is achieved, a fundamental issue that is still not
sufficiently well understood.

In addition to rings, magnetic molecules also often adopt the structure of polyhedra. We
have therefore performed a similar analysis (to that which was just provided for rings) for
three ployhedra for which the presence of all AFM bonds gives rise to the NSP. These structure
include the dodecahedron, icosidodecahedron [that was shown in Fig. 7.14(b)}, and icosahedron;
- and the corresponding results are shown in Fig. 8.6. Again, calculations have been performed
for all s in the range from 1/2 to 9/2; and again, for each geometry, a single curve is approached
as s — oc. However, unlike the data in Fig. 8.5, these data are plotted on semilog scales to
underscore how dramatically (sgn(W;))’ plummets toward zero as the temperature is lowered.

When examining Fig. 8.6, first note that for the dodecahedron [Fig. 8.6(a)] the value
(sgn(W;))’ remains large down to a significantly lower temperature, as compared with the data.
for the other two structures. From the previous results of the rings, this is to be expected since
the dodecahedron is composed of only pentagons, whereas the other two structures include
triangles. For all three of these structures though, the value of kgT/J. at which the data

rapidly plummet toward zero is larger than the corresponding temperature for rings. In other

209Gee Sec. 6.2.1.
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words, a system composed of multiple frustrated polygons will stuffer from the NSP at a
higher temperature than a system with only the single frustrated polygon. In this respect,
the icosahedron [Fig. 8.6(c)] can be viewed as a “worst case scenario”, since it is composed of
entirely triangles, allowing QMC calculations only above kgT'/J. = 1.0.

One should also carefully observe that the s = 1/2 data shown in Fig. 8.6(b) is indeed
consistent with the results that have been presented in Secs. 7.4 and 8.4. In Sec. 7.4, T
was calculated for ;cl1e {Vso} magnetic molecule (i.e., the s = 1/2 icosidodecahedron) for
keT/J Z 1/2, or equivalently, kgT/J. 2 2/3. At that temperature, (sgn(W;)Y is extremely
small (< 1072), so it was not possible to extend to lower temperatures without prohibitively
long computations. (This important connection between (sgn(W;))’ and computation time will
be clarified shortly.) The values of (sgn(W;})’ can also be (at least approximately) inferred
from the histograms that were shown in Figs. 8.3 and 8.4. In both of these figures, examine
the data corresponding to kgT/J. = 1.4. At this temperature, the useful data—remaining
after cancellation—is somewhat larger than the W; < 0 data, implying?' that (sgn(W;)) is
somewhat larger than 1/3, which is consistent with Fig. 8.6(b).

Finally, it is important to be clear as to the important connection between the value
of (sgn(W;))" and the computation time that is necessary in order to obtain useful results.
When we obtain a value of (sgn(W;)) = 1072, that means that 99% of the data that was
recorded during the QMC calculation “disappeared” due to cancellation between the positive
and negative values of W;. For a calculation that would take one second,?? were it not for the
NSP, 100 seconds—i.e., a factor of 1/(sgn(W;))’ longer—would instead be necessary in order
to obtain the same statistical errors. For a single temperature, this means investing less than
2 minutes, which is certainly not unreasonable. However, it is clear in Fig. 8.6 that by the
time {sgn(W¥;))’ has become this small, a small decrease in temperature causes {(sgn(W;)} to
become exponentially smaller, leading to exponentially longer computation times.

As an example of this increase in computation time, we again consider the AFM icosido-

211f the data for Wi < 0 exactly coincided with the “difference” that remained after cancellation, then one
would find (sgn{W;))' = 1/3.

22One second is a typical computation time for the calculation of a single temperature, k57T = 1, when the
NSP is not, present.
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Figure 8.7 The estimated time that would be necessary in order to perform
calculations with fixed (small) statistical error-bars for the AFM
icosidodecahedron, of arbitrary spins s, as a function of kgT'/ J...
The solid curve with symbols was obtained using Eq. (8.16), as
described in the text, and takes into account the temperature
dependence of (sgn{WW))’. The dashed line shows the computa-
tion time that would be necessary for the same system if the
NSP were not present (e.g., the FM icosidodecahedron), and
the computation time were proportional to (kgT/J;)~ .

decahedron. For kgT'/J. = 4.0, (sgn(W;)} = 1, and very small statistical errors were obtained
with approximately one second of computation. This computation time is roughly independent
of s for any fixed value of kpT/J.; and as kgT'/J. is varied, (sgn(W;)}" depends only weakly
on s. Therefore, in Fig. 8.7 we are able to plot estimated computation times* for an icosido-
decahedron of arbitrary spins s. The solid curve was obtained by starting with the observation
that one second of computation time was involved for kgT/J, = 4.0, for which (sgn(W;)) ~ 1.
Then, the computation time for lower temperatures was estimated to be,

1 sec
4 x % x {sgn(W;)y

computation time =

, (8.16)

accounting for both the J,/(kgT) scaling of the computation time, described at the end of

*38ince (sgn{W;))’ does have some weak dependence on s, Fig. 8.7 was produced by averaging (sgn{W,)}’ for
all values of s in the range 1/2 < 5 < 9/2.
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Chapter 4, and the factor of 1/(sgn(W;))’, described above. The dashed curve assumes instead
that (sgn(W;))’ = 1 (i.e., that there is no NSP) and describes the J./(kpT) scaling. This
dashed data can be thought of as representing the same (icosidodecahedron) but with all FM
interactions instead of all AFM interactions.

Note in Fig. 8.7 that the dashed curve (without the NSP) does not exceed one minute of
computation time per temperature until kg7T/J, < 1. This is to be contrasted with the solid
curve, which takes the NSP into account, and exceeds one minute for all kgT/J. < 1. As the
temperature is lowered below kgT'/J. = 1, this computation time then grows so rapidly that
days of computation would be necessary in order to obtain reasonable data for kgT/J, = 0.5;
and for yet lower temperatures, the estimated computation time would soon grow to years.
Not only would such calculations be impractical from the standpoint of time, but would also
be potentially problematic in terms of numerical precision. As the cancellation becomes nearly
perfect, many significant figures would be necessary in order to retain the important data, and
could exceed the numerical precision of the computer being used. The combination of these
factors hence make it very important to have some initial estimation of the feasibility of QMC

calculations, as provided in this chapter.
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CHAPTER 9. Conclusions and outlook

9.1 Capabilities and limitations

As we have described in Sec. 2.4, and shown schematically in Fig. 2.1, the theoretical
methods that have been previously employed in studying magnetic molecules each have a
serious limitation, making calculations very challenging—and sometimes impossible—for cer-
tain magnetic molecule systems. These limitations provided the primary motivation for the
present work, which has focused on adding an additional method (that has not been pre-
viously employed in the study of these types of systems) to the “toolbox” that is used for
studying magnetic molecules. To this end, we have implemented a quantum Monte Carlo
(QMC) algorithm—-described in Chapter 4, and based upon the principles from Chapters 2
and 3—to perform calculations for complex systems of interacting quantum spins. This method
is applicable to arbitrarily large quantum Hilbert spaces D (defined in Sec. 2.2), enabling, for
example, calculations for which D > 10'% in Chapter 6, while simultaneously avoiding any
systematic approximations.

In our current implementation of the QMC method, we have included the capability to
study all values of intrinsic spins in the range s < 9/2, which has proven quite adéquate,
both for the study of general systems (in Chapters 5 and 6) and for the analysis of specific
magnetic molecules (in Chapter 7). Although we have not studied values of & > 9/2, there is no
fundamental limitation precluding such calculations. The implementation would simply require
the calculation of more matrix elements (see Sec. 4.7.2), and the Monte Carlo updating would
subsequently involve more directed loop diagrams (see Sec. 4.7.3). Therefore, calculations for
larger values of s will be a topic for future study, if motivated by either the synthesis of new

systems for which s > 9/2, or open theoretical questions for which s < 9/2 is not sufficient.
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This method is also applicable to arbitrary combinations of different ions—such as the
{Cr16Cusy} and {CrlzNig} magnetic molecules that are discussed in Secs. 7.1 and 7.2—by
sampling the quantity that is derived in Appendix A. Furthermore, calculations are possible
(at least to some extent) for arbitrary geometries. However, when the “negative sign problem”
(NSP) is present, we are restricted to some minimum temperature, which is determined by
both the geometry and the interactions of a given system. In some situations this minimum
temperature can be relatively low (e.g., < 2 K for the {Nijp} magnetic molecule of Sec. 7.3),
such that QMC calculations are able to provide a great deal of useful information, in spite
of the NSP. For other systems though, the minimum temperature can be rather large (e.g.,
> 100 K for the {V3p} magnetic molecule of Sec. 7.4), in which case QMC calculations are of
limited usefulness. When the NSP is not present, calculations for larger systems and/or lower
temperatures can proceed by simply investing more computation time and/or more computer
processors, as we have described in Sec. 4.7.4. However, when the NSP occurs, the investment
of additional computational resources quickly becomes impractical, as we have described at
the end of Sec. 8.6. This limitation is very important, and has hence been discussed in detail
in Chapter 8.

Throughout Chapters 5-8, results have been presented for various systems, all of which
have been described by the isotropic Heisenberg Hamiltonian,!

N
M= Jiwdi & +usH Y g (9.1)

{7k j=1
However, we have also implemented calculations which include certain (very specific) types
of anisotropic interactions, because (as we describe below) their inclusion required only min-
imal modifications to the method that was described in Chapter 4. Upon including these
anisotropies, the most general Hamiltonian for which we are currently able to perform QMC

calculations is

N
H=2 Ji [ﬁjﬁﬁ + Ak (ﬁj.’-"ﬁi + Qf,sj)] +3 [pBng_gf +D; (ﬁ?)QJ : (9.2)
(k) g=1

)This is identical to Eq. (2.11), with the exception that we now allow for g5 to vary from sitle {o site.
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which includes exchange anisotropy (if Ajy, # 1) and single-ion anisotropy (if D; # 0). Note
though that the direction of these anisotropies is currently restricted to the z-axis, defined by
the direction of the external magnetic field. Given this restriction, these anisotropies do not
provide a realistic description of magnetic molecules, and hence results have only been included
for Eq. (9.1).

The reason that these anisotropies are restricted to the z-axis lies in the details of Chapter
4. A value of Ajx # 1 would change the numerical prefactor in Eq. (4.9b), and hence also
Eqs. 4.43 and 4.44. Similarly, a nonzero D; would change the values of the existing diagonal
matrix elements in Eq. (4.42). These changes would then yield different numerical values of W;
in Eq. (4.21}, but our QMC calculations would be otherwise unaffected. Consider, however,
a more general anisotropy, such as single-ion anisotropy with a direction? that varies from
site to site, Ej D; (é;, . ,5;},-)2. This term would produce new ofi-diagonal operators and matrix
clements, which would be different (than the ones described in Sec. 4.7.2) in that they would
not conserve the quantum number Mg (defined in Sec. 2.2). For this reason, the construction
of directed loops (described in Secs. 4.6.2 and 4.6.3) would need to be greatly modified. The
implementation of such modifications should be feasible, and has been mentioned in Refs. [1]
and [2]. The inclusion of these interactions will thus be a topic of future work, and should allow
us to study of other types of magnetic molecules, for which the isotropic Heisenberg model is

known to be insufficient.

9.2 General discussion

In conclusion, we have implemented the QMC method described in Chapter 4; and it has
proven very useful for the study of many interesting systems. In particular, the magnetization
of Heisenberg rings was studied in detail, as described in Chapter 5. This study revealed the
striking result that for large values of intrinsic spin (s > 3/2), the low-temperature magneti-
zation is independent of s, with the exception of a particular {(power-law) scaling relation, as

shown in Fig. 5.7. Also described in Chapter 5, we have determined the energy gap between

2This direction is specified in the following by the unit vector €j, which can depend on the index j.
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the ground state and first excited state for these systems, from which we have inferred the
functional dependence of this quantity on the rings size N for several values of s. These data.
are shown in Fig. 5.8, providing results that are immediately applicable to experiments involv-
ing magnetic molecules, and are much more accurate than the assumptions that are typically
employed. For example, the results of Chapter 5 were applied to the {Fejs} magnetic mole-
cule, as described in Sec. 5.4, leading to an improved estimated of the exchange energy for this
system.

In Chapter 6, the zero-field susceptibility was calculated for a wide variety of structures,
for the purpose of determining the temperature range for which a classical spin model (and
hence classical Monte Carlo calculations) will provide an accurate approximation to a system
ol quantum spins. Qur findings are shown in Figs. 6.3 and 6.5, wherein we show that a classical
model provides accurate results when the thermal energy (kpT) is several times the exchange
energy”® J;. Specifically, for the values of s for which classical approximations are typically used
(3/2 £ s £ 5/2), classical and quantum results are in good agreement for kgT/J, 2 5, if the
system is described by antiferromagnetic interactions, whereas this temperature is considerably
higher (kgT/Js 2 10) for ferromagnetic interactions.

In Chapter 7, we have reported the results of our analysis (which relied upon QMC calcu-
lations) for four different species of magnetic molecules. Two of these systems, {Cr;pCuz} and
{Cr12Niz}, were previously analyzed using approximate theoretical methods, which we have
shown to have produced poor results. By instead performing QMC calculations—which do not
introduce such approximations—we have reanalyzed these systems, obtaining good agreement
with the existing experimental data, and providing predictions for future experiments. The
third species of magnetic molecules, {Nij2}, was newly synthesized, so had not been previously
analyzed using an approximate method. The process of analyzing this system differed from that
of {CrioCus} and {Cr12Nis} in a number of other respects as well: (1) For this system, there
are four different types of bonds, each of which (as determined by our analysis) turn out to give

rise to different strengths of interactions. Hence, there was a corresponding four-dimensional

3Here we assume that all vahues of Jix in Eq. 9.1 have the same value, J,.
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parameter space to be searched in order to determine the Hamiltonian that best describes
these magnetic molecules. (2) The NSP is present for this system,? so QMC calculations were
limited to T' 2, 2 K. This did not hinder the calculation of (and comparison with) weak-field
susceptibility data, but prohibited the use of QMC to calculate the low-temperature magneti-
zation. (3) For this system, D < 10%, so calculations could also be performed by diagonalizing
the Hamiltonian, although this required several hours of computation for any given point in
parameter space. Due to the combination of these three factors, {Nijs} provides an ideal ex-
ample of a system for which QMC and diagonalization effectively complement one another.
We first performed QMC calculations for thousands of different points in parameter space,
and compared these results with the measured susceptibility data in order to determine the
ideal Hamiltonian. Then, the resulting Hamiltonian was diagonalized in order to obtain the
associated energy spectrum, and the predicted low-temperature magnetization. The fourth
magnetic molecule reported in Chapter 7 was {Vgp}. For this system, the NSP prohibited
QMC calculations® for 7' < 120 K, which allowed us to determine the average strength of the
interactions, but did not allow a more detailed analysis.

As we have already mentioned, the negative sign problem provides a serious limitation
to QMC calculations for certain geometries of magnetic molecules. It is therefore important
to understand whether or not the NSP will be present for a given system, a description of
which has been provided in Sec. 8.2. Furthermore, if the NSP is present, it is then necessary
to know whether or not the desired calculations will still be feasible. To that end, some
typical examples have been provided in Sec. 8.6. Finally, it should be stressed once again that
these calculations are applicable only to eguilibrium properties, e.g., the magnetization and
magnetic susceptibility, of magnetic molecules. However, it has been shown[3] that a similar
QMC strategy can be used to estimate Green’s functions, from which dynamical correlation
functions can be derived. The ability to perform such calculations would be quite valuable, and
will be explored as another possibility for future research. In conclusion, the quantum Monte

Carlo method that has been implemented and used for this thesis can provide a great deal

*A description of why the negalive sign problem is present for this system has been provided in Sec. 8.2.
5See Chapter 8 for further details.



174

of information for certain systems (although sometimes limited by the NSP) and for certain
quantities (although not yet applicable to dynamic calculations). It has therefore proven to be
an effective fool, although other tools are certainly more appropriate for certain tasks.
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APPENDIX A. Derivation of the magnetization for dissimilar ions

In this appendix we derive a formula for the magnetization which is applicable to situations
in which dissimilar ions—and hence multiple values of g—are present in the same magnetic
molecule. This formula (and its proof) could not be found in the literature, but is absolutely
vital in order for the method that was described in chapter 4 to be applicable to magnetic
molecules. For example, this situation occurs in the {Cr;pCus} and {Cr12Niz} molecules
(which are described in Secs. 7.1 and 7.2, respectively), hence providing the motivation for
this derivation. In order to be useful, we specifically desired the magnetization in a form that
is readily amenable to importance importance sampling—i.e., in the form of Eq. (4.17}—such
that the methods described in chapters 3 and 4 could be immediately applied. This desired
result is eventually obtained in Eq. (A.15¢c), as we describe in the following. Repeating the
same process a second time, an analogous result for dA/dH is obtained, which is provided in
Eq. (A.16)

In chapter 2, the general form of the magnetization M was given in terms of the partition

function Z as
1 82

M=Gzam

(A1)

The form of the partition function that we have used for our QMC calculations was given in
Eq. (4.21), which we use here as well, but in (at least initially) a slightly different notation.
Note that this new notation has been adopted solely because it is more convenient for the

present purpose. In particular, we now write the partition function as

Z=> Wiw, (A.2)
?:f
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with each term given by

L

L' — o)
Wi = S o4 ) ol ) - bl ) (A3a)
= w‘ﬂ'y}n:, _ (A3b)

where 7y, represents the product of n' matrix elements in the term Wy ,.. Eq. (A.3) is
identical to Eq. (4.21), with the following (notational) exceptions: Here, we truncate the
expansion at L' = L -+ 1 total operators, with n' = n + 1 bond operators, and n' = n + 1
corresponding matrix elements.! We also have now labeled each term Wy with the additional
index ', indicating the number of matrix elements that it contains. Finally, in Eq. (A.3) we
have not distinguished between the diagonal and off-diagonal portions of the bond operators
Hp,.. Again, this is merely a more convenient notation,? since, for a given pair of states, 1, and
P41, the matrix element (1g|Hs, |[¥r1) will be either diagonal or off-diagonal, but obviously
not both.

Using the present notation, and combining the previous equations, the magnetization is

1 BW-' !
M:ﬁ—z-z 8}1;“. (A.4)

Differentiating Wy ,,» with respect to H yields many zeros (from both the identity operators,
and the off-diagonal matrix elements), and n{, non-zero terms, where we now define n, to be the

number of diagonal matrix elements in the term Wy . Differentiating these matrix elements

gives
Ol Hoplb1) _ 1 IO, I ) (A5)
OH £o,(1) €bi(2)
for each term. There are n/, such terms, so
Wit v pr (L' = /) [(gbkmmbk(l) gbk(z)mbk(z)) ]
) = up —]- 'n"'l ; A.6
o~ M ; €01 Sy /0 A9

'The L' — ' identity operators have matrix elements that are equal to unity, so we henceforth use the term
“matrix elements” to refer only to the remaining bond operator mairix elements, not the identity operator
matrix elements.

2%When one derives Eq. (4.21), as we showed in chapter 4, it is desirable to distinguished between the diagonal
and off-diagonal operators simply for the sake of convenience during the diagonal update (described in Sec. 4.6.1).
For our present purpose, it is instead more convenient to leave the full bond operators He, .
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where the summation over % includes n; values of k. Now, in Eq. (A.6), T;n Tepresents the
product of the n matrix elements that remain after the kth matrix element has been “removed”
as we have shown in Eq. (A.5). Inserting Eq. (A.6) into Eq. (A.4), the magnetization becomes

1B ~— B (L — ) [ (gbk(l)mbkm Qbk(mmbk(z)) }
M==—= _— + Tin| - AT
iz 2| Tan by )T (A1)

Note that the product m;, also appears in a different term W, (as opposed to Wy ) with
only n matrix elements (instead of n’ matrix elements) and truncated at a total of L operators

{instead of L' operators). This other term is

(L —n)!
Win = ?(T)-Wi,n (A.8)
from Eq. (4.21), and is a part of the partition function written
Z=Y Win. (A.9)
i

By comparing Eq. (A.7) with Egs. (A.8) and (A.9), we now wish to show how the magnetization
can be written in terms of these terms, Wj,. Some of the (apparent) differences between
Egs. (A.7) and (A.8) are trivial to rectify. Namely, % — (" and (L' — 0/} — (L — n}l. The
challenge is then that we must be very careful to properly treat the two sums; i.e., the sum
over all terms ¢ in Eq. (A.7), and the sum over all ¢ in Eq. (A.9). This is addressed in the

following:

(a) Note first that for any fized k, the sum over ¢ includes all N, possible values that the

bond by can take in the matrix element {1,|Hy, [¥r). Writing this out explicitly, we have

A B ) FL—n)1 ) f (Qbkmmbk(l) + gbk(Z)mbkm)) ﬂ (A.10)
= — — "n y .
Z o L L& oy &b (1) €br(2) '

where the sum Zi{, does not include the N, different values of bz that were included in

the sum } ... Note however that

Ny N
Gb (1)1 Gor.(2) M0y (2
> ( LT (1) | on () )) =3 grmi, (A.11)
be=1 Ebk(l) ébk(2) i=1
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where g; is the g-value for the jth spin site, and m;y is the quantum number corre-
sponding to the operator g s7, acting on the state [¢), of the term W;. The magnetization
therefore becomes

”BZﬁ ._ﬂ L2 Z Zgjmgmn : (A.12)

Next, we must take into account the various values of k (being summed over in Zi; Do)
that can result in the creation of a term W;, with the quantum numbers mj k. To do
80, note that there are L' values of k in the sum Zz‘; that produce the same value of m;
(upon differentiating (¢%|Hs, [¥e+1)), but multiplied by different values of gimy i, each
corresponding to a matrix element in the product 7;,. Writing ﬂlis portion of the sum

> i 2y out explicitly, we have
L—n)1 _
M =2 Z A Z Zgjmj Ein | (A13)
Ll k=1 \ j=1

where the sum over all of the L' possible values of k has been included explicitly in Zﬁ;l,

and has been removed from Zif,‘

There is, however, one slight problem with Eq. (A.13). The sum over k extends over all
L’ states that exist in the terms Wit e, but there are only L states in the resulting terms

Wi.n. To account for this, we note that the replacement

r I L
.o T 2 (A.14)
k=1 k=1

will leave the total sum unchanged, as the slight reduction in the sum is compensated by

the ratio % Now writing the magnetization in its final form, with the summation >
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extending over all terms W;, we have

(L —n)! 1
M = #Bzﬁ Tl ) Zgg’mj,k?ﬁn (A.15a)
Lt L 1 \j=1
1 L N
2| 22D g | W
i k=1 j=
— up i (A.15b)

>

L N i
— < ZZ m:,,> (A.15c¢)
k=1 j=1

which also appears in Eq. (7.1a).

Following all of the same steps as we showed above, the derivation of the analogous formula
for dM/dH is now straightforward. The only difference is that one should begin by considering
terms that include L” = L + 2 total states, and n” = n + 2 bond operators. Then, since the
calculation of dM/dH involves differentiating the partition function fwice with respect to H,

the familiar terms W; are eventually obtained. The resulting formula for dM/dH is

2

L N Ll 2
X = Bui < T2 9mik >_<Ezzgjmj,k> : (A.16)
],= j=1

k=1 j=1

which also appears in Eq. {7.1b).
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APPENDIX B. Triangular Geometrical and Magnetic Motifs Uniquely

Linked on a Spherical Capsule Surface

A paper published in Angewandte Chemie International Edition!

A. Miiller,? A. M. Todea,? J. van Slageren,® M. Dressel,? H. Bégge,?2 M. Schmidtmann,2 M.

Luban,? L. Engelhardt,? and M. Rusu®

Polygons can be placed on spherical surfaces such that periodical structures of a cyclic
nature result, while these can be considered as discrete models for two-dimensional (extended)
structures. If we wish to construct a chemical structure on a spherical capsule surface in
the same way, we have to remember that 1) pentagons are the basic units for sphere con-
structions, as is well known, for example, from virus structures, 2) they exist, for exam-
ple, in the form of {(MOVI)MOVI5} type units, and that 3) they occur in Keplerates of the
type {(MOVI)MOVI5}12 {Linker}sq [1-5] (linker can be of the mononuclear M (M=metal cen-
ter) or dinuclear type My ; for the definition of Keplerates, see ref. [5b]). However, until
now it was not possible to synthesize a spherical capsule surface directly by the addition
of linkers to the pentagonal units that are available in a dynamic library.{1-5] It is signifi-
cant that in the Keplerates the linkers describe generic Archimedean solids: in the case of
dinuclear linkers My a distorted truncated icosahedromn, {Ms2}30, and in the case of mononu-
clear linkers the unique icosidodecahedron (Figure B.1)[6] {Ms¢}, which has-geometrically
speaking-linked My triangles. Surprisingly the related consequences for chemistry have not

been discussed until now. In the {Maso} situation, there is a network of corner-shared trian-

'Reprinted with permission of Angew. Chem. Int. Ed. 44, 3857 (2005).

2 Faculty of Chemistry, University of Bielefeld, 38501, Bielefeld, Germeny

3 Department of Physics, University of Stuttgart, 70550, Stutigart, Germany

4 Department of Physics and Astronomy & Ames Laboratory, lowa State University, Ames, Towe 50011, USA
5 Faculty of Chemistry, Babes-Bolyai University, 3400, Cluj-Napoca, Romania
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gles on the sphere surface, this can result unique magnetic properties as in the case of the
“classical” Keplerate {(Mow)MOVIs}lgFeHIgg.['?, 8] This is the first laboratory example of a
“zero-dimensional” system that at low temperatures embodies characteristics of geometrical
frustration/magnetic ordering[8b] which otherwise have only been observed in selected one-,
two-, and three-dimensional lattice spin systems.[9] Herein we report on the spherical clus-
ter 1a where the twelve {(MoVI)Mows} type units fix 30 d! vVl linkers/centers with spin
S = 1/2 in the form of an icosidodecahedron, and thus 1) demonstrating for the first time
that the spherical capsule/Keplerate can be directly constructed from the mononuclear linkers
and the appropriate molybdate library,[5¢c] 2) providing the chance to obtain new information
regarding the unique molecular magnetism of the {Msg} type network of linkers/triangles, and
3) clarifying the quantum effects of the spin S = 1/2 vanadyl linkers especially in connection
with the two-dimensional S = 1/2 Kagomé lattice which contains linked triangles and exhibits
unique magnetic properties.[9a]

After adding vanadyl sulfate to an acidified molybdate solution, in the presence of K™ ions,
compound 1 precipitates after some time in high yield. (A simpler expression for the cluster

anion la without referring to structural differences is given as well.)

Na3K14 (VO)Q[{(MOVI)MOVI5021 (H20)3}10{(M0VI)M0VI5021 (H20)3(SO4)}2

(VIVO(H,0)}20{VIV 0 }10({KSO4 1} 5)s] ~150H,0 (1)

Ko C{(Mo V)Mo V1502 (H20)3(S04) HaH(VIVO)so(HaO)20} I8~ - (1a)

Compound 1, which crystallizes in the monoclinic space group C2/c, was characterized by
elemental analysis, thermogravimetry (to determine the crystal water content), redox titrations
(to determine the number of vV centers), spectroscopic methods (IR, Raman, UV/Vis),
single-crystal X-ray structure analysis (including bond valence sum (BVS) calculations),[10]

and'susceptibility measurements (including related quantum Monte Carlo calculations).
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Figure B1 a) The M centers (small colored spheres) of the
{(MOVI)Mows}lgMgo type Keplerates {e.g., M=VIV, FeIH)
describe the icosidodecahedron shown, which is unique among
the icosahedral Archimedean solids as all edges are equivalent
and all dihedral angles equal. Referring to the special sitnation
of M=FeHI, there are three groups (“sublattices”) of 10 spins
(colors: red, blue, green), with all spins of a sublattice pointing
in the same direction, while nearest-neighbor spin vectors
(three are highlighted)} differ in angular orientation by 120°.
Also shown: b} A fragment highlighting five linked triangles
around a pentagon. ¢) A fragment of a planar Kagomé lattice
with six linked triangles around a hexagon.
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Figure B.2 Combined polyhedral and ball-and-stick representation of the
structure of 1a showing the triangles and pentagons of the icosi-
dodecahedron (green sticks), and additionally the basic {VO;}
and {VOg} units as green polyhedra; as the interaction between
the “lattice K*” jons and the 20 pores is not homogeneous, this
interaction was not considered here (blue Mo, red O, purple K,
vellow tetrahedra: {SO4} groups; yellow spheres: disordered S
atoms).

The cluster anion 1a of 1 is of the expected (Pentagon);s- (Linker)sq type and is a slightly
compressed sphere, while the heptacoordinate MoV centers of the 12 pentagonal units corre-
spondingly describe a slightly distorted icosahedron and the 30 24 centers—acting as linkers
for the pentagonal {(MOVI)Mows} type units—describe a (slightly distorted) icosidodecahe-
dron (Figure B.2; the VIVVIV distances in the distorted Archimedean solid vary from 6.3
to 6.6 A). The distortion is in agreement with the fact that 20 VIV centers in the equatorial
region have octahedral coordination and the two sets of five VIV centers in the polar area have
squarepyramidal coordination; the distances from the 10 equatorial VIV \nits to the center of
the cluster are a little shorter (10.3 A) than the related distances of the other 20 VIV units

(10.6 A). Ten of the twelve [SO4])2~ ligands are coordinated by three oxygen atoms to three
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Figure B.3 Combined polyhedral and ball-and-stick representation of a
fragment of 1a (view in direction of the C; axis) showing one of
the two {I(SO4}s rings and the coordination of {SO4} groups
to Mo centers as well as the disorder of one of the two sulfate
groups (color code as in Figure 2, additional light blue pentag-
onal bipyramids: {MoQ7}).

adjacent Mo Y] centers of the {(MOVI)MOVI5} groups such that two {KSO,}s rings parallel
to the equator result, with the K* ions (formally) bridging the [SO4|?~ ions (Figure B.3). The
other two sulfate groups are disordered and act as ligands to the two polar {(MOVI)MOVIs}
groups. The structure of la comprising the twenty triangular and twelve pentagonal faces of
the icosidodecahedron built up by 30 VIV centers shows an interesting relation to the much
less symmetrical cluster anion 2a which has a non-complete spherical {V3} type net. In 2a, a
strongly distorted icosidodecahedron is described by 10 Mo VL and 20 vVI centers, while the
equatorial {Va} belt-formed by 10 linked {V3} triangles—is identical to the related equatorial

segment of la.
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[{MoV103(H0)}10{ (Mo Yh)Mo V1504 (H20)a }10-

{VIVO(H20)} 20({Mo VI05(H20)2}s5/2)2({NaSO4 }s5)a] 20 (2a)

The presence of K and [SO4)*>~ jons in the reaction medium seems to be of fundamental
importance for the structure formation, as the potassium cations of the two {KSQ4}s rings
of 1a attract the two negatively charged polar {(I\’IOVI)MOVI5} units thus causing the slight
compression of the sphere. This distortion leads to an inclination of the adjacent {VOs}
polyhedra and thus prevents an octahedral coordination of the 10 polar VIV centers. The
sixth (H20) ligand required for octahedral coordination would be too close to the [SO4)%~
ligands of the {KSO4}s rings.

The investigations nicely show that {(MOVI)Mows} type units are potentially available
in a dynamic polymolybdate library; remarkably, they can be “used” in thé present case as
virtual units in the presence of potential linkers. In agueous solution at low .pH values, the
pentagonal structural unit occurs in the [MOVI350112(H20) 16)%~ ion,[11] which is the only(!)
abundant species under those conditions. Correspondingly, 1a is formed from that solution
in the presence of VO?* linkers by a “split-and-link” process with the {(MOVI)MOVI5} unit
being formed from the {Mogg} species after the addition of the linkers. The option to extend
this to mixed-metal species such as {M0V8V1V22},[12] {M0V4VIV25}, or {FeHIngIvg}{IL’)]
will be reported elsewhere.

Turning to the magnetic properties, two circumstances are of pivotal importance for the
possible occurrence of geometrical frustration in the type of system considered herein: First,
the 30 mononuclear magnetic Keplerate linkers occupy the vertices of an icosidodecahedron,
which may be pictured as 20 linked (corner sharing) triangles arranged around 12 pentagons
and corresponds to an equidistant distribution of the spins on the surface of a spherical clus-
ter; second, each magnetic center (“spin vector”) interacts with its four nearestneighbors by
isotropic antiferromagnetic exchange as a consequence of the special geometry of the unique
{Mao} type quasi-regular solid (Figure B.1). Analogous to what occurs for the Kagomé spin

system {planar lattice of triangles framed around hexagons; Figure B.1c),[9] the geometric frus-
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tration of the individual Keplerate can be achieved by the cooperative interactions among the
full set of spin vectors. In the special case of the above mentioned {(Mow)Mows}lgFeIHgg,
we may refer to it as a “classical” Keplerate (because of the relatively high spin, § = 5/2, of

III centers) and the spin frustration/magnetic ordering may therefore be visual-

individual Fe
ized in geometrical terms[8c| (Figure B.1). The 30 spin vectors are composed of three groups
(“sublattices”) of 10 spins each; all spins of a given sublattice point in the same direction, and
any pair of nearest-neighbor spin vectors differ in angular orientation by 120° (Figure B.1).[8¢]

I centers by VO?T ions which have the much smaller spin of

In 1a we have replaced the Fe
8§ =1/2, that is, “quantum spins”. In addition, in 1a the 3d electrons are not “localized” at the
vertices of the icosidodecahedron as is approximately the case in the {FeIHgg} Keplerate.[14]
However, the spin frustration of these quantum spins can not be visualized in geometric terms.
More generally the magnetism of the “quantum” Keplerate 1a is expected to be significantly
different from that of its classical counterpart {Fesp}, and more properties are expected to
elnerge.

Our experimental susceptibility data versus T, recorded for an applied field of H = 0.1
T, and corrected for the d! centers of two VO?t ions which are magnetically /structurally
independent from the cluster skeleton 1a, are shown in Figure B.4.[15] These results show the
strong antiferromagnetic coupling in 1a, in contrast to the { (MOVI)MOW5}12FeIH3G case.[16]
The behavior of T'x at low T is qualitatively what could be expected for a spin system having
a ground state with § = 0 and with very strong exchange coupling. This situation can be
explained by a strong delocalization of the 3d electrons which arises because the 3d V levels
are comparable in energy with the LUMOs of the molybdate fragment system.[16] This is a
completely different situnation than the classical {Fegy} type Keplerate where the exchange
interaction is very weak, and therefore the room temperature value of T'x corresponds to 30
uncoupled S = 5/2 jons. The quantum Monte Carlo (QMC) method provides accurate values
of susceptibility for the Heisenberg model of the {Vzo} system for T > 0.5.J/kp, and as seen in
Figure B.4, a very good fit to Ty is achieved for T' > 120 K for the choices J/kp = 245 K and

g = 1.95. Unfortunately, reliable resulis cannot be obtained for lower temperatures using the.
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Figure B.4 Magnetic susceptibility of {Vzg} versus temperature: Exper-
imental data corrected for the two d'/VO?** centers (O);[15]
quantum Monte Carlo results (solid curve).

QMC method owing to the “sign problem” that occurs for spin systems with antiferromagnetic
exchange based on lattice geometries where the classical counterpart exhibits spin frustration.

To summarize:We have demonstrated that it is possible to “use” pentagonal units as “build-
ing units” which play, geometrically speaking, the same role as the pentagonal units in other
sphere-based constructions, such as spherical viruses, fullerenes, and geodesic domes; in our
context they are used as a glue for trapping magnetic centers, such that triangles are linked
to form an icosidodecahedron, that is, a part of a Keplerate. As the “quantum” Keplerate 1a
obtained is a new example of a frustrated magnetic system which shares a topological feature
with the classical Keplerate {(MOVI)MOVIs}lgFeIII;;U a.ﬁd the Kagomé-lattice antiferromag-
net, its exploration is expected to provide a deeper understanding of basic aspects of magnetic
frustration and the role played by the size of the intrinsic spin of the interacting magnetic ions.
This study silould also shed light on the parallel problem, and the focus of an intense effort, to

characterize and understand the S = 1/2 Kagomé lattice, which is considered to have unique
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magnetic/electronic properties originating in the small value of § .[9] The behavior of the mag-
netization‘of the quantum Keplerate la in high magnetic fields will be of key importance in
studies aimed at elucidating the characteristics of its magnetic frustration.[17]

A solution of VOSO, - 5Hz0 (2.53 g, 10 mmol) in HyO (35 mL) was added to a stirred
solution of NagMoO,-2H;0 (2.42 g, 10 mmol) in HySO4 (0.5m; 8 mL) in an conical flask. The
resulting dark purple mixture was stirred at room temperature for 30 min (flask closed with a
rubber stopper) and then treated with KCI (0.65 g, 8.72 mmol). After additional stirring for 30
min the solution was stored in the flask which was closed with a rubber stopper. After 5 days,
the purple-black rhombic crystals of 1 were collected by filtration, washed with cold water, and
finally dried in air. Yield: 1 g; elemental analysis: caled (%) for NagKaiMo7aV328120538Ha12:
Na 0.96, K 4.92, V 855, S 2.02; found: Na 1.0, K 5.1, V 8.5, § 2.1. IR (KBr pellet): & = 1622
(m), (6(H20)) 1198 (w), 1130 (w), 1055 (W) (45(SO4) triplet), 964 (s) (w(V = O)/v(Mo = 0)),
791 (vs), 631 (w), 575 (s), 449 (w) em™'; FT-Raman (solid; Xe = 1064 nm): 7 = 941 (w,
v(V=0)}/v(Mo=0)), 872 (s, A140s breathing) cm™!; UV/Vis (in Hy0): A = 510 (vs), 689
(w), 845 (w) nm.
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In spite of these expected differences, there are some important features common to the
two Keplerates, such as similar characteristics of the ground state and the low-lying ex-
citation states, which arise because of their otherwise common geometrical structure and

the existence of antiferromagnetic exchange between nearest-neighbor spins. As one ex-
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ample, the total spin quantum number of the ground state eigenvector for the “quantum”
Keplerate 1 is expected to be § = 0, as it is for the “classical” Keplerate {Feso}, and
its direct manifestation would be in the vanishing of T'x (proportional to ($2}), in the

low-temperature regime; x is the zero-field susceptibility.

The raw M/H(= x) data display a rapid rise on decreasing the temperature below 50 K
that js very accurately simulated by a term proportional to 1/7 (Curie behavior). This
observation suggests the presence of additional non-interacting paramagnetic centers in
the sample. In fact, fitting the low temperature data leads to a value of approximately 2
S = 1/2 centers. These centers are considered to be the non-interacting VO** (d!) ions. In
large cluster systems like 1, they can take the same place as the other diamagnetic cations,
which are usually disordered in the large voids between the clusters and can therefore
not be discovered by single-crystal structure analysis (see ref. {10]). On subtracting the
contribution of these discrete paramagnetic centers, we obtain a corrected magnetization
M’ as well as the corrected susceptibility data, Ty = T /H, shown in Figure B.4. The
Curie behavior of the paramagnetic centers shows that they do not interact with each other
and with the {V3p} cluster. The possibility that thé finite Ty value at low temperatures
is due to a non-zero spin ground state can be precluded. Regarding the presented Tx
curve: As always there is uncertainty as to the appropriate choices for diamagnetic and
temperature-independent paramagnetism (TIP) corrections. Additionally, because of the
large voids between the clusters the VO?t groups need not be present stoichiometrically in
the compound; correspondingly, there is a very small error limit in the given/used number
of two VO?* groups which influences the correction of the raw magnetic data ((VO); g

could, for example, correspond to Kj44).

The exchange coupling difference between the classical and quantum Keplerates discussed
herein is analogous to that of the cluster pair with 6 VIV and 6 Felll centers embedded
in the {Mos7} type skeleton; see D. Gatteschi, R. Sessoli, W. Plass, A. Miiller, E. Krick-
emeyer, J. Meyer, D. Sélter, P. Adler, Inorg. Chém. 1996, 35, 1926-1934.
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[17] Note added in proof, April 27, 2005: Very recent measurements by H. Nojiri (Tohokun
University) of M versus H at 0.5 K up to 27 Tesla, as well as ESR measurements at 190
GHz for several temperatures, show features which are fully consistent with our physical
interpretation of a strong intracluster exchange constant and approximately two VO2+
lons per formula unit that are magnetically independent of the {V3} cluster. Full details

will be published elsewhere.
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