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ABSTRACT 

Both compressional  and s h e a r  wave v e l o c i t i e s  were measured i n  

w a t e r - f i l l e d  Berea sands tone  as a f u n c t i o n  of po re  p r e s s u r e  under a con- 

s t a n t  c o n f i n i n g  p r e s s u r e  of 200 b a r .  A t  1 4 5 . 5 ' C ,  compressional  v e l o c i t y  

i n c r e a s e d  from s t eam-sa tu ra t ed  ( low pore p r e s s u r e )  t o  w a t e r - s a t u r a t e d  

(h igh  po re  p r e s s u r e )  rock ,  whereas s h e a r  wave v e l o c i t y  dec reased .  Fu r the r -  

more, a v e l o c i t y  minimum, a t t e n u a t i o n  and d i s p e r s i o n s  occur  a t  water-steam 

t r a n s i t i o n  f o r  compressional  wave. R e s u l t s  a t  198°C show t h a t  b o t h  com- 

p r e s s i o n a l  and s h e a r  v e l o c i t i e s  d e c r e a s e  from s t e a m s a t u r a t e d  t o  water- 

s a t u r a t e d  rock ,  and a s m a l l  v e l o c i t y  minimum i s  observed f o r  compressional  

waves, bu t  no a t t e n u a t i o n  no r  d i s p e r s i o n  occur .  A t  both t empera tu res ,  t h e  

V / V  r a t i o  and P o i s s o n ' s  r a t i o  i n c r e a s e d  from s t e a m s a t u r a t e d  t o  water- 

s a t u r a t e d  rock.  
P S  

The r e s u l t s  are r easonab ly  compatible  w i t h  t h e  mechanical e f f e c t s  o f  

mixing steam and water i n  t h e  p o r e  space near t h e  phase t r a n s i t i o n ,  and 

may be  a p p l i c a b l e t o  i n  s i t u  geothermal  f i e l d  e v a l u a t i o n .  
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INTRODUCTION 

One of the methods of exploration for geothermal resources is seismic 

surveying, including microearthquake studies, V /V ratios, and seismic 

wave attenuation. 
P S  

However, few laboratory measurements of velocity of  rocks at high tem- 

perature with hot water or steam have been made (e.g., Spencer and Nur, 

1976). It is important therefore to extend our knowledge of velocities in 

water-filled rocks at high temperature with an emphasis of difference be- 

tween the liquid (water) and gas (vapor) phase of pore fluid, which we have 

done in this study. Specifically, we have measured both compressional V 
P 

and shear V velocities and wave amplitudes in porous rock at geotherma 

temperatures, as the water in the pores is converted to steam and steam 

water, with particular attention to the effects of the phase transition 

self. From the velocities, we also computed Poisson's ratio. 

S 

to 

it- 

Experimental Procedure 

The basic method used is the measurement of pulse travel time through 

rock samples with pore water. 

sure P back and forth across the transition from steam (low P ) to water 

(high P >. 
189OC, were taken from Keenan et al., 1969. 

At fixed temperature, we vary the pore pres- 

P P 
0 The transition pressures for the temperatures used,145.5 C and 

P 

Ultrasonic compressional and shear wave velocities and amplitudes were 

measured by the conventional pulse transmission method, with a mercury delay 

line as a reference. 1 MHz PZT ceramic transducers were used for generating 

compressional and shear waves. 
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Results 

We measured both compressional and shear wave velocities at a con- 

stant coni-ining pressure (300 bar) and temperature (19.5OCY 145.5OC, and 

189OC) as a function of pore pressure. The pore pressure was changed from 

high pore pressure to low pore pressure (decreasing pore pressure cycle) 

and then increased again (increasing pore pressure cycle). Varying the 

pore pressure over the range of 7.0 bars in a saturated sample at 19.5 C 

produced almost no changes in either V or V . 

0 

P S 

In contrast, marked changes of velocities, Poisson's ratios, and wave 

amplitudes with changing pore pressure were observed at the higher tem- 

peratures of 145.5OC and 198OC. The results show: 

(1) There is a minimum for compressional velocity at pore pressure of 

4 bar (Fig. 2) which is very close to the water-vapor transition pressure 

of 4.212 bar at 145.5OC (Keenan et al., 1969). Below this pore pressure, 

water is in vapor phase (steam) and above the transition pressure it is in 

Liquid phase. No minimum is observed for shear wave velocity (Fig. 3 ) .  

(2) Compressional wave velocity of steam-filled rock is lower than 

that of water-filled rock. Shear wave velocity in steam-filled rock is 

higher than that of water-filled rock. 

(3)  Poisson's ratio and V /V ratio calculated from compressional and 
P S  

shear wave velocities increase from steam-saturated to water-saturated rock, 

as shown in Fig. 4. 
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( 4 )  We observe changes of wave amplitude vs pore pressure (Fig. 5 

and Fig. 6 ) .  We notice a sharp drop in the compressional wave amplitude 

at the water-vapor transition, which is reproducible with pore pressure 

cycling. However, no minimum of shear wave amplitude is observed. In 

Fig. 5, the time intervals from first arrival to the first, second, and 

third peaks are plotted vs pore pressure with a large time interval cor- 

responding to lower frequency of the wave. Again the water-steam transi- 

tion, a peak time interval, was observed for compressional wave but not 

for shear wave. 

compressional wave are significantly more attenuated at the water-vapor 

This suggests that high frequency components of the 

transition. 

Because attenuation depends so sensitively on many factors, and be- 

cause the sample length is short, we cannot yet calculate exact Q values 

for these data. Nevertheless, it is obvious that attenuation and disper- 

sion occur at the water-steam transition in our rock sample for compres- 

sional waves, but not for shear waves. 

CONCLUSION 

We have studied experimentally the nature of wave propagation in 

steam-, water-, and mixture-saturated sandstone. The results show that 

the P wave velocity is abnormally low in the phase transition region at 

145 C and 198 C, whereas the shear velocity has no minimum there. Poisson's 0 0 

ratio undergoes a marked increase upon the transition from the steam- 

saturated to water-saturated state. The amplitude of the P wave at 1 4 5 O C  

also has a strong minimum at the transition region, whereas the S ampli- 

tude does not. 

-87- 



All these results can be explained by the effects of a mixture of 

steam, vapor, and water in the pores at the transition conditions: for a 

few percent steam, the density of the mixture is relatively high, similar 

to water, whereas the bulk modulus, K, is low, similar to steam. The 

shear velocity, which is insensitive to the bulk modulus of the fluid in- 

clusion, is therefore barely influenced, whereas the compressional velocity 

is sensitive to E, and thus undergoes a measurable change. 

the large relative P attenuation at the transition is probably due to local 

flow in the partially saturated state. 

- 

Furthermore, 

The results of this study suggest that in situ interfaces between steam 

and hot water, if they exist, may be recognizable using the seismic method. 

Furthermore, regions with both steam and hot water should exhibit anomalous 

low velocity and high attenuation of P waves, but not of S waves. Further- 

more, Poisson's ratio is, as expected, a good discriminator between steam 

and hot water in the pore space and may be a useful tool, as suggested in 

previous work (e.g., Combs and Rotstein, 1976) on the basis of room tem- 

perature measurements. The data presented here demonstrate that the con- 

clusion is valid also at temperatures anticipated in a geothermal area. 
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TABLE 1 

Physical Properties of Berea Sandstone 

grain density 

to tal porosity 

crack p o r o s i t y  

pore porosity 

water permeability 

* present measurement 
* f: Z ob a ck 
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2.66 

18.9% 

18.75% 

0.25% 

18.50% 

160 md 
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FIG. 2. Compressional wave velocity V vs pore P pressure at 19.5"C and 145.5"C. Open circles 
show the data during decreasing pore pressure 
cycle, closed circles show the velocities dur- 
ing increasing pore pressure cycle. 
pressure at 145.5"C is also shown. 
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FIGURE 3 .  Shear wave velocity Vs vs pore 
pressure at 19.5"C and 145.5"C. 
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FIGURE 6. Peak amplitude (first and third) of compressional 
wave vs pore pressure at 1 4 5 . 5 O C .  
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