
Approved for public release; further dissemination unlimited

Preprint
UCRL-CONF-222171

Strengthening Software
Authentication with the
ROSE Software Suite

G.K. White

This article was submitted to
47th Annual Meeting of the Institute of Nuclear Materials
Management, Nashville, Tennessee

June 2006

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before
publication, this preprint is made available with the understanding that it will not be cited or reproduced without the
permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Strengthening Software Authentication with the ROSE
Software Suite

Greg K. White
Lawrence Livermore National Laboratory

June 2006

Abstract
Many recent nonproliferation and arms control software projects include a software
authentication regime. These include U.S. Government-sponsored projects both in the United
States and in the Russian Federation (RF). This trend toward requiring software
authentication is only accelerating. Demonstrating assurance that software performs as
expected without hidden “backdoors” is crucial to a project’s success. In this context,
“authentication” is defined as determining that a software package performs only its intended
purpose and performs said purpose correctly and reliably over the planned duration of an
agreement. In addition to visual inspections by knowledgeable computer scientists, automated
tools are needed to highlight suspicious code constructs, both to aid visual inspection and to
guide program development. While many commercial tools are available for portions of the
authentication task, they are proprietary and not extensible. An open-source, extensible tool
can be customized to the unique needs of each project (projects can have both common and
custom rules to detect flaws and security holes). Any such extensible tool has to be based on a
complete language compiler. ROSE is precisely such a compiler infrastructure developed
within the Department of Energy (DOE) and targeted at the optimization of scientific
applications and user-defined libraries within large-scale applications (typically applications
of a million lines of code). ROSE is a robust, source-to-source analysis and optimization
infrastructure currently addressing large, million-line DOE applications in C and C++
(handling the full C, C99, C++ languages and with current collaborations to support
Fortran90). We propose to extend ROSE to address a number of security-specific
requirements, and apply it to software authentication for nonproliferation and arms control
projects.

1. Introduction to Authentication

As we make progress toward the deployment of
monitoring systems for nuclear material, two important
goals must be observed: protection of the host country’s
sensitive information and assurance to the monitoring
party that the nuclear material is what the host country
has declared it to be. These goals are met by
certification in the host country and authentication by
the monitoring party. During both certification and
authentication, each party needs to understand all of the
operating parameters of all hardware and software in
the deployed system. This paper concentrates on
software authentication, but similar principles apply to
hardware authentication, as well as to software and
hardware certification.

Authentication is the process of gaining assurance
that a system is performing robustly and precisely as
intended. The simpler the system, the easier it is to
authenticate. It is important to limit functionality to
only what is needed to satisfy the requirements of the

task. Each design decision makes authentication easier,
or harder. For example, a design with Microsoft MS-
DOS (which requires a 4.77-MHz processor and runs
on a single 1.44-MB floppy disk) is significantly easier
to authenticate than a Windows Vista (beta 2)
installation (which requires an 800-MHz processor 512-
MB of memory, and 15 GB of free disk space).1
Simpler hardware, expressed in the number of gates,
chips, or boards, is easier to authenticate than more
complex hardware. The same can be said for software.

Other industries have a similar need for
authentication. Computers that perform electronic
voting2 and gambling are disparate examples.

In my 2001 INMM papers,3 I discussed a
hypothetical perfect system for authentication, with
transparent (to both parties) hardware and software
development, and advocated “open source” hardware
and software solutions.

In my 2005 INMM paper,4 I advocated software
language choices that lower authentication costs. I
compared procedural languages with object-oriented
languages. In particular, I examined the C and C++
languages, comparing language features, code
generation, implementation details, and executable
image size, and demonstrated how these attributes aid
or hinder authentication. I showed that programs in
lower level, procedural languages are more easily
authenticated than object-oriented ones. I suggested
some possible mitigations for using object-oriented
programming languages.

2. What must be authenticated?

To authenticate a piece of application software
most easily, both the source and binary versions are
needed. Compilers and assemblers, the tools used to
convert from the application’s source to binary form are
also needed. These must also be authenticated to a
lesser extent, because they could also alter the code
which will be executed. Other software which runs on
the target system, such as the operating system and
BIOS must be authenticated. To be complete, the
compilers and assemblers used on the operating system
and BIOS must also be authenticated. Often these
compilers and assemblers are different from the one
used for the application code.

In his classic paper5 from 1984, Ken Thompson
described that compilers are often written in the same
language they compile. Binary versions of the compiler
are often created using older versions of the same
compiler. The GNU C compiler uses this approach. He
shows that the compiler can be altered to look for a
specific sequence of symbols in source code, and then
alter the resulting binary. He specifically shows an
example where the UNIX login program is “trojaned”
by the compiler. (i.e., malicious code is embedded in
the target binary.) He takes this attack one step further,
creating a version of the compiler that trojans the login
program, and also propagates the change into all future
versions of the compiler, without altering their source
code.

He concludes, “No amount of source-level
verification or scrutiny will protect you from using
untrusted code… I could have picked any program-
handling program such as an assembler, a loader, or
even hardware microcode. As the level of program gets
lower, these defects will be harder and harder to
detect.” He then released a live version of the attack to
a rival Bell Labs organization—an intramural prank
that was never detected.6

In a recent paper7, Dennis Wheeler revisits the
Thompson paper, and offers a solution, Diverse Double
Compilation, where the suspect compiler’s source code
is first compiled using a different, trusted compiler,
then the suspect compiler source code is compiled using
the compiler generated in the first step. If the two
resulting binaries are bit-for-bit exact, then the compiler
is no longer suspect. He suggests that security can be
further enhanced by increasing the diversity of compiler
implementation (for example, not sharing a common
development heritage), development period (in time),
the environment (operating system, processor and
standard libraries), and carefully mutating the source
code (whitespace, variable names, reordering
statements) in ways that would not affect the resulting
binary. He suggests that an overly simple compiler
would be a good choice for the trusted compiler,
because it contains less source code, and because
performance is not important, in either the compilation
process, or the resulting binary code.

If we do not resolve the inherited trojaned compiler
problem by the method described in Wheeler, we are
stuck with a chain of previous versions of the compiler
which must also be authenticated.

3. How to authenticate software

Effective authentication requires that the developer
not know the exact or complete specifics of the
authentication process to be performed. The more the
developer understands about the authentication
measures, the more likely he is able to defeat the
authentication. The authentication must not be done
under an overly compressed or fixed timeline, nor can it
be done solely in the presence of the developer. The
parties to an agreement must allow and preserve a
continuing ability to re-test the software into the future,
should new concerns come to light, or new
authentication tools or methods become available.

There are five primary methods of authentication
of software:

• Extensive software testing with widely diverse
inputs

• Visual inspection of the source code by a
knowledgeable computer scientist

• Automated Code Coverage Tools
• Automated analysis of the source code
• Automated analysis of the resulting binary code.

Another software authentication method is
technically feasible, but would never be used in a non-
proliferation or arms control regime, because it involves

automated augmentation of the source code.† This is
because augmentation of the source code would be
done by the monitoring party (authentication).
Thereafter the host country would no longer be able to
trust the altered code in the production environment
(compromised certification).

The first three methods are relatively well
understood. In software testing, the software is
subjected to a large number of diverse inputs to make
sure the software performs correctly. Some inputs
should be explicitly chosen by a knowledgeable domain
expert in the application software to exploit known
boundary conditions. Other input should be chosen
randomly to further test the application software.
Automation can simplify this kind of testing. The inputs
might include some tests known to the developer ahead
of time, but if all inputs were known, then a clever
developer could exploit them. Even with random
inputs, this kind of testing could not discover a
backdoor. And even if it were possible to generate all
inputs for testing, that would still be insufficient since it
could be a combination of inputs that triggers a
backdoor or bug. In 1985–1987, the Canada’s Therac-
25 radiation therapy machine was affected by this class
of problem. The problem arose when the operator set an
input level, and then cleared that value to put in another
value. Because of a code flaw, a huge radiation dose
was delivered instead. Three of these patients were
believed to have died from the overdoses. This tragedy
shows that, in effect, you have to try all combinations
of possible inputs, a choice that grows as N! in the
number of inputs.

Visual inspection by a knowledgeable computer
scientist is also a useful method of authentication. The
computer scientist must have a deep understanding of
both application domain, and the implementation
computer language. Moreover, obtusely written code,
code with comments and variable names in a different
natural language, or code with misleading comments,
can make this task difficult to impossible even for an
expert.

Automated code coverage tools evaluate test
coverage, i.e., telling you whether there are segments of

† An accepted design principle for detectors intended for use
on classified objects is that the protection of the host country
classified information is paramount. Thus, no authentication
measure that would negate host country certification—such as
alteration of detection source code—would be acceptable.
[Ref: The Functional Requirements and Design Basis for
Information Barriers, Pacific Northwest National Laboratory,
May1999.]

code that are not getting executed at all during a
“normal operation” test suite.

Finally, automated analysis of the source and
binary code complement each other as methods; some
classes of exploits can be detected in either the source
or the binary, while others require analysis of both. As
another benefit, analyzing both source and binary code
might lessen the need to authenticate compilers,
assemblers, etc.

4. Automated analysis of the source code

Automated analysis of the source code by a
software product will more easily find some classes of
problems. These tools are needed to help this visual
inspection process by highlighting code constructs that
need additional and/or deeper scrutiny. The worst flaws
and best concealed intentional trapdoors are likewise
hidden by obfuscation techniques.8 Some of these flaws
and exploits can be avoided by putting restrictions on
the language constructs used such as restricting the use
of virtual functions in C++. This argues for applying a
set of agreed coding standards to automated analysis,
because the same tool used by the developer to enforce
good programming practice could also be used during
authentication to disclose suspicious code constructs.
Expanding the rule set for authentication would provide
still more assurance.

While some specific tests are unique to a specific
regime, many tests are generic to any code inspection.
Many tests also bring about the desired side effect of
making the software more secure and robust.

4.1 Commercial tools for source code analysis

The development of software verification
techniques has led to a number of commercial efforts to
define tools that read source code and apply numerous
proprietary tests.9,10,11,12 These efforts to date have
resulted in distinctly closed systems, protecting each
company’s intellectual property. The proprietary tools
typically have limits on the order of 100K lines of code.
This code size limit should not be a problem for arms
control and nonproliferation regimes. However, many
large software projects exceed this limit, so existing and
derivative tools could not easily be applied to these
codes.

4.2 DOE’s ROSE software suite

Properly scaled for this challenge, ROSE13 is a
compiler infrastructure developed under DOE
sponsorship, and originally targeted at the optimization

of scientific applications and user-defined libraries
within large-scale applications (typically applications of
a million lines of code). ROSE is a robust, source-to-
source analysis and optimization infrastructure
currently addressing large, million-line DOE
applications in C and C++ (handling the full C, C99,
and C++ languages, with current collaborations to
support Fortran90), and targeting a noncompiler
audience. As a result, ROSE is extensible and uses a
modular design to build custom optimization solutions
for diverse applications. A Lawrence Livermore
National Laboratory (LLNL) research project14 will
extend ROSE to address a number of security and
authentication specific requirements and work with
software analysis research groups to demonstrate its use
on large-scale applications.

ROSE supplies a robust open infrastructure for
source-to-source analysis and optimization, and thus
could not only perform authentication and security
analysis, but also automate transformations to make
existing code more secure. Specific techniques include
documenting specific security flaws for code reviews,
instrumenting suspicious code for use in testing or
production environments, and modeling applications
using external verification tools (model checking,
assertion testing, contract verification techniques,
formal proof techniques, etc.). The automating of
corrections to existing software could in many cases
make it more secure (e.g., performing assertion testing
on input buffers for buffer overflow, and switching
standard unsecured library functions for more secure
variants).

4.3 More examples of source code analysis

Source code contains information that is not in the
binary. The binary treats memory as a linear array,
whereas the source code expresses higher levels of
granularity in structures (e.g., structs, class, unions).
Recovering this nuanced information from the binary
would likely be very difficult. Moreover, type
information is largely lost in the binary, and the rules
interpreting aliasing (because data of different types are
not aliased) cannot be leveraged from it. Explicit or
implicit casts that would compromise this are also lost
in the binary (i.e., used by the compiler and thrown
away).

One example of the need for source code analysis
is the One-Definition Rule (ODR). The C and C++
language specifications stipulate that only one software
module can define a template, type, function, or object.
Unfortunately, no known compiler enforces this rule
between two different files in the same program.

Compilers are essentially defined to work on “well
formed programs” as it can be expensive to detect all
errors. Here, because detecting ODR violations requires
whole program analysis, and because compilers
typically operate on a single source file at a time, it is
difficult to actually test for violations. If two software
modules both include code to define the same structure,
the one that is first in the linking process will succeed,
and the other will be ignored. The order is specified not
in the source code, but in the Makefile. This is not
obvious to many programmers, and could easily evade
a visual inspection. This is especially true where
software modules are inspected individually. Only with
whole program source code analysis, such as is
available with ROSE, can this rule be properly tested.15

ROSE analysis can detect subtle exploitation of
object-oriented language vulnerabilities. Dr. Quinlan’s
paper16 describes a particularly simple compromise of
the C++ class structure by violating ODR. The VPTR
exploit replaces an object’s virtual function table
pointer (VPTR) with one containing malicious code.17

The most trivial case redefines the existing definition of
an inline virtual function. The paper shows a complete
and working example of this exploit; it consists of 5
files, and under 60 lines of code. Existing C++
compilers do not catch this violation of the ODR rule,
because they do not perform whole-program analysis.
However, ROSE does. ROSE was the first product to
identify the security flaw, and the first to enforce it in
the C language.18

The most common exploit is the buffer overflow.
In this attack, the code overwrites the end of a buffer,
which can contain the return address of the function. By
inserting a new address, the code can now call any
other function. Tools could be written (using the ROSE
infrastructure) that detect buffer overflows in source
code, and could also detect standard library calls, which
are susceptible to this kind of attack.

Another exploitation of particular concern to arms
control and nonproliferation is the time-dependent
control flow. An example of this would follow the rule:
“Every Friday, pass the third container measured.” This
exploitation cannot be found through input testing,
because it depends on the state of the clock. This kind
of exploitation can only be found by tracing the effect
of time-dependent variables through the control flow of
a program. Again, source analysis tools are required to
help measure the range of effect of time-dependent
variables.

In his paper,19 Lingxiao Jiang describes Osprey, a
system for performing measurement unit checking on C
source code. The programmer first attaches

measurement units to initial constants and variables.
Osprey then automatically detects potential errors
involving measurement units. They have shown good
success in finding unknown measurement unit errors in
mature computational physics codes. Since many arms
control and nonproliferation regimes include a
computational physics code, they could benefit from
this analysis. In 1999, the Mars Climate Orbiter crashed
into the surface of Mars, when one module of the
software passed a variable using imperial units (feet,
inches, etc.) to another module expecting the metric
units.

5. Automated analysis of the binary code

There are a number of valid reasons to analyze
binary code as well as source code. In some situations,
only the binary version of the code is available (for
instance, where proprietary commercial software is
used in the system and the source code cannot be
obtained). Another motivation is the need to ensure that
the binary code exactly reflects the transformation of
the source code. One example is where the compiler’s
optimizer eliminates writes to a data structure before
freeing memory. In a famous example in Microsoft’s
Internet Explorer, a function stored an important
password in heap memory. At the conclusion of the
function, there was a source code segment specifically
intended to overwrite the password on the heap with
zeros. Unfortunately, the compiler’s optimizer removed
that segment during the optimization pass, leaving the
password intact and vulnerable.

Some problems can only be detected in the binary
version of the code. For example, binaries contain the
binding of function names to locations in memory.
Those bindings are vulnerable to subtle manipulations
at runtime.

Another argument for analysis of the binary code is
that C++ compilers have the freedom to determine
when constructors and destructors should be called
(though not the order in which they are called). This
makes the source code a misleading indicator of the
actual sequence of data manipulations, while the binary,
though less transparent, is more reliable in this regard.
Compiler-generated temporaries are a classic example
of instances where the destructor may be called early.
The compiler is also free to optimize away any
redundant copy constructor calls. It seems likely that
one could turn this to an advantage in an attack.

Each place in the language specification where the
compiler has a degree of freedom represents an
opportunity for an exploit, and there are quite a number

of these in C and C++ (That said, C++ cleans up many
C details—disallowing many—and has a very tight
specification compared to the specification for
Fortran90.)

Progress has been made in defining requirements
and techniques for to analyzing binary files, but more
work needs to be done. The IDA Pro20 tool is useful,
but it is unclear how to resurrect meaningful data from
disassembled machine code. An LLNL-funded research
project21 will explore this topic in the coming year.

6. Other uses for authentication technologies

Authentication can also be used to improve cyber
security in existing software applications. As operating
systems become more robust, cyber attacks are
increasingly targeting the more numerous applications
that are correspondingly more vulnerable. Such
applications are often not developed with the same
attention to security as operating systems and are
developed by smaller, more obscure companies lacking
sufficient resources or expertise to address such
complex security problems. Application software is
also built on top of a huge software stack of user-
written libraries, utility libraries not written by the
software team, and system libraries. This compounds
the security problem, because we are in essence trying
to write secure software out of non-secure parts. Source
and binary analysis are necessary to more fully
understand the internals of these application software
systems and to mitigate and find software flaws and
intentional exploits.

7. References

1http://www.microsoft.com/windowsvista/getready/syst
emrequirements.mspx
2 As an aside, a genius co-worker of mine stated, “If I
wanted to rig an election with an electronic voting
machine, and I could choose any computer language to
write my hide my deception in, I’d do it in C++.”
3 White, G., Increasing Inspectability of Hardware and
Software for Arms Control and Nonproliferation
Regimes, Proceedings of the INMM 2001 Annual
Meeting, Indian Wells, California
4 White, G., Computer Language Choices in Arms
Control and Nonproliferation Regimes, Proceedings of
the INMM 2005 Annual Meeting, Phoenix, Arizona
5 Thompson, K., Reflections on Trusting Trust, Turing
Award Lecture, Communications of the ACM, Volume
27, Number 8, August 1984.
6 http://en.wikipedia.org/wiki/Backdoor

7 Wheeler, D., Countering Trusting Trust though
Diverse Double-Compiling
8 The Underhanded C contest
http://bingweb.binghamton.edu/~scraver/underhanded/
and the Obfuscated V (vote) contest
http://graphics.stanford.edu/~danielrh/vote/vote.html
are two examples of contests to produce unexpected
results from seemingly innocuous source code.
9 http://coverity.com
10 http://klocwork.com/
11 http://www.polyspace.com/
12http://www.grammatech.com/products/codesonar/over
view.html
13 ROSE is not an acronym.
http://www.llnl.gov/CASC/rose/
14 Quinlan, et. al., An LDRD Proposal on Cyber
Security for Software Security Analysis, June 2006
15 Quinlan, et. al., Using Whole-Program Analysis to
Detect Security Flaws, May 19, 2006.
16 Quinlan, et. al., Using Whole-Program Analysis to
Detect Security Flaws, May 19, 2006.
17 Rix, Smashing C++ VPTRs, Phrack, May 2000.
18 Quinlan, et. al., Software Security Analysis, LLNL
LDRD Presentation, May 2006.
19 Jiang and Su, Osprey: A Practical Type System for
Validating Dimensional Unit Correctness of C
Program, UC Davis, ISCE ’06, May 2006.
20 http://www.datarescue.com/idabase/
21 Quinlan, et. al., An LDRD Proposal on Cyber
Security for Software Security Analysis, June 2006

nunes18
Text Box
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

