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One of the outstanding issues in the quantum instanton (QI) theory (or any transi-
tion state-type theory) for thermal rate constants of chemical reactions is the choice
of an appropriate ‘dividing surface’ (DS) that separates reactants and products. (In
the general version of the QI theory, there are actually two dividing surfaces in-
volved.) This paper shows one simple and general way for choosing DS’s for use in
QI Theory, namely using the family of (hyper) planes normal to the minimum energy
path (MEP) on the potential energy surface at various distances s along it. Here the
reaction coordinate is not one of the dynamical coordinates of the system (which will
in general be the Cartesian coordinates of the atoms), but rather simply a parameter
which specifies the DS. It is also shown how this idea can be implemented for an N-
atom system in 3d space in a way that preserves overall translational and rotational
invariance. Numerical application to a simple system (the collinear H + Hy reaction)

is presented to illustrate the procedure.

I. INTRODUCTION

The specification of a dividing surface (DS) is a critical component of any transition
state-like theory for chemical reaction rates. In classical mechanics, for example, transition
state theory (TST)' gives the exactly correct rate if one can find a DS that no trajectories

cross more than once.2”* (With any other DS, TST gives a rate constant that is too large.)



This has been appropriately referred to a Wigner’s ‘fundamental assumption’ for the validity
of classical TST.?> Choosing the best possible DS is also important for the accuracy of any
quantum versions of TST®, though here one does not have the variational principle of classical
TST (i.e., that since the TST rate is an upper bound to the correct rate for any DS, the
best DS is the one that makes the TST rate a minimum).

A theory of reaction rates recently developed in this research group — referred to as the
quantum instanton (QI) model or approximation”™® — has shown a high degree of accuracy
both at low temperature, where tunneling effects are large, and also at higher temperature
where they are not. The term ‘quantum instanton’ refers to its relation to an earlier semiclas-
sical (SC) theory? of reaction rates that became known as the instanton model (though the
originator referred to it as SC-TST). The essential difference between the QI model and its
SC version is that the rate constant is expressed wholly in terms of the quantum Boltzmann
operator rather than its SC approximation. Evaluation of the QI rate expression is thus
possible for very complex molecular systems by using Monte Carlo path integral methods
to evaluate the Boltzmann operator.''® Since the QI model (and its earlier SC version)
incorporate TST-like approximations, it is rightly viewed as a type of quantum TST (of
which there is no unique version, unlike the situation in classical mechanics).

Internal to the QI theory”® is a variational criterion [not to be confused with the varia-
tional principle of classical TST| for choosing a DS (actually two DS’s in the low temperature
tunneling regime, one on the reactant side, and one on the product side of the transition
state region). For systems with many degrees of freedom, however, it is not feasible to vary
the form of the DS without limit. The purpose of this paper is to describe a simple but
general way of choosing a family of DS’s for use in the QI rate theory. A DS is in general

specified by setting some function of coordinates equal to 0,

£(x) =0, (1.1)

where throughout this paper we take the coordinates of the system, x, to be Cartesian. By

convention, £(x) is negative on the reactant side of the dividing surface, and positive on the



product side of the dividing surface.
For relatively simple reaction systems, it is common to postulate a DS based on physical

intuition. For example, in a proton transfer reaction

AH+B — A"+ H'B, (1.2)

it is reasonable to choose the DS function to be the difference between the bond being broken

and that being formed,
f(XA—,XB,XH+) = ‘XH+ — XA—| — ‘XH+ — XB|. (13)

On the other hand, for general complex reactions, it is not always possible to make a choice
based solely on intuition. For example, if the above proton transfer reaction takes place in a
polar solvent, the DS function defined in Eq. 1.3 may be too simple to describe the collective
rearrangement of ambient solvent molecules induced by the proton transfer.

The work of Pollak!4, for example, has shown in a simple model of a condensed phase
reaction (a 1d reaction coordinate coupled to a harmonic bath), if the DS is chosen also to
include the bath coordinates (as well as the 1d reaction coordinate itself), then the frictional
effects of Gtote-Hynes theory'® emerge from ordinary TST. The goal, therefore, is to have a
general way of choosing a DS, one that is not system-specific and as ‘automatic’ as possible,
and also simple enough for application of the QI theory to complex systems.

To this end we consider in this paper a family of planar DS’s that are normal to the
minimum energy path (MEP) at various points along it, connecting reactants and products.
The MEP, also known as the Intrinsic Reaction Coordinate'®, is the steepest descent path
(in mass-weighted Cartesian coordinates) through the saddle point on a potential energy
surface that connects reactants and products. Along the MEP all the atoms of the system
are involved, and computing the MEP for a given system is now a common feature of
modern quantum chemistry software packages such as Gaussian'”. Though the MEP plays a
central role in the Reaction Path Hamiltonian'® (RPH) description of chemical reactions, we

emphasize that we are not using the RPH (with its curvilinear reaction coordinate, and local



harmonic coordinates perpendicular to the MEP). The dynamical coordinates and momenta
used to characterize the system throughout this paper are Cartesian; the MEP is used solely
for the purpose of defining a family of DS’s.

The paper is organized as follows: Section II first presents the basic idea and general
methodology, first for a ‘simple’ Cartesian system (i.e., without rotation involved), and then
for an N atom system in 3d space. Section III briefly reviews the QI rate theory, and then
Section IV presents the application of the approach to the simplest possible example, the

collinear H + H, reaction. Section V concludes.

II. GENERAL APPROACH
A. System without overall rotation and translation

We first consider a generic Cartesian system of an arbitrary number of dimensions (degrees

of freedom), for which the Hamiltonian is of standard form

=

H == +V(x), (2.1a)

p = - (2.1b)

e

9
ox
where the Cartesian coordinates have been scaled so that all degrees of freedom have unit
mass. Figure 1 shows the sketch of a contour plot for a 2d potential energy surface with
a saddle point; the dashed line denotes the MEP. The variable s denotes the (arc length)
distance along the MEP (with s = 0 arbitrarily chosen at the saddle point), a(s) are the
Cartesian coordinates of the MEP at distance s along it, and n(s) = a’(s) is the normalized
gradient vector (which points along the MEP),

n(s) = —sign(s) 2 /|2 |, x = a(s), (2:2)



where negative (positive) s corresponds to the reactant (product) side of the saddle point.
The solid line in Figure 1 is the planar (actually linear in this 2d picture) DS normal to the
MEP at distance s along it. The equation which defines this DS is of standard form

£(x;5) =0, (2.3a)

where the function £(x; s) is given by

£(x;5) =n(s) - (x —a(s)) (2.3b)
i.e., the DS is defined by the criterion that the vector x—a(s) is normal to the gradient vector
n(s), which points along the MEP, at position s along it; this in general defines a (hyper)
plane normal to the DS at position s. We emphasize again that here s is a parameter, not
one of the coordinates of the system (which are the Cartesian coordinates x). Eq (2.3) thus
defines a 1-parameter family of DS’s, normal to the MEP at distance s along it. With a DS
defined in general by Eq (2.3), the flux operator, which is needed in the QI rate expressions
(and also in other rate theories), is given by

0¢(x)

P =21 2 se(x)) + (e 21

ax ' p]'
Since the function £(x;s) in Eq (2.3) for the present 1-parameter family of planar DS’s is a

(2.4)

linear function of x, the flux operator takes on the following particularly simple form

By = 5[b - n(s)3(60%:)) + 5(€0c 5))n(s) - bl (2.5

B. N-atom system in 3d space

For a molecular system of N atoms in 3d space, we still wish to utilize the 3N Cartesian
coordinates for the atoms as the dynamical variables in which path integrals, for example,

are evaluated. However, specifying the family of DS’s as in Section ITA is more complicated



because they should be invariant to overall rotation and translation of the total N atom
system.

The problem can be illustrated by considering a 2d Cartesian system (z; = z, zo = y) with
rotational symmetry; i.e., the potential function V' depends only on the radial coordinate
r= \/m, and we assume that it has a barrier located at r = ry (see Fig 2a). In the 2d
space, there is thus a continuum of saddle points, indicated by the circle of radius ry in Fig
2b. The dashed line shows a MEP going through one particular saddle point; this is the MEP
that would be generated by starting at the indicated saddle point and following the gradient
vector downward to the inside of the circle (‘reactants’) and also outside (‘products’). The
dotted line in Fig 2b is the DS that is normal (actually linear in this 2d picture) to this
MEP at position s along it, as specified by the criterion described in Section ITA, and one
can now see the shortcoming of using this planar DS: the point x in the 2d space shown in
Fig 2b is on the ‘reactant’ side of the planar DS, whereas it is in fact on the ‘product’ side
of the true DS (the circle).

To remedy the situation one needs to rotate the position coordinate x by an angle @,

x' =R(f) - x, (2.6a)

where

cos(f) sin(@
R(#) = (6) (6) (2.6b)

—sin(#) cos(f)
choosing 6 so that x’ is as close as possible to the position a on the MEP. It is clear from Fig.
2b that this rotated position x" will lie along the same radial direction as the point a. One

can now apply the criterion of Section ITA to the rotated position x’ to obtain the function

which defines the DS,

£(x) =n- (R(0) - x — a). (2.7)



It should be clear that this procedure produces a DS that is equivalent to the circle in Fig
2b, while still utilizing the Cartesian coordinates x = (z1,23) as the dynamical variables
of the system. It is now clear how to generalize this idea to the case of N atoms in 3d
space. (One must also take account of overall translational invariance, but this is easy.) Let
z;,1 = 1,2,3 denote the three mass-weighted (z; = /m;r;) Cartesian coordinates of atom
i, and x = (x1,Xg,- -+ ,Xy) the 3N Cartesian coordinates of the entire system, and let a(s)
similarly denote the 3N Cartesian coordinates along a MEP as a function of s, the (signed)
distance along it. Analogous to the 2d plane rotation matrix of Eq (2.6b), we introduce
the 3 x 3 rotation matrix R(¢, 6, x), parameterized by three Euler angles, which rotates a
3-vector in 3d space. The idea is to rotate each vector x;, i.e., the entire N atom system,
so that the 3V vector x is as close as possible to the point a(s) on the MEP at distance s
along it.

One must carry out the rotation of the atomic vectors about the center of mass of the
N atom system. Thus if Xy and A, are the mass-weighted centers of mass of point x and

point a(s), respectively —

where M is the total mass,

M=) "m (2.10)

then the function £(x; s) that defines the (hyper) planar DS at distance s along the MEP is

£(x;8) = an‘(s) AR(,0, x) - (xi — Xo) — [ai(s) — Ao(s)]},

where for each point x (and each position a(s) along the MEP) one chooses the Euler angles

(9,8, x) to minimize the distance between x and a(s). ILe., before projecting the difference



of x and a(s) onto the gradient vector n(s) pointing along the MEP, as in Section ITA, we
rotate x (about its center of mass) to make it as close as possible to a(s) (relative to its center
of mass). This rotation step is an awkward aspect of the procedure, but since it involves no
evaluations of the potential energy surface it should cause minimal additional computational
effort.

If one were to generate the MEP in internal coordinates,'®?® then one could avoid this
step of having to rotate the configuration point x to ‘line up’ (i.e., be as close as possible
to) the point a(s) on the MEP. Use of internal coordinates, however, has its own difficulties.
Also, in a very large molecular system (e.g., a chemical reaction in solution), it is unlikely
that overall rotation of the entire system will be of concern. Furthermore, one will most
likely choose the planar DS only to involve the coordinates of the those atoms involved in
the reaction (and perhaps a first solvation shell), again meaning that overall rotation of the

system will not be involved.

III. APPLICATION TO THE QI MODEL
A. The QI approximation of the canonical rate constant of chemical reaction

To see how to use the above DS’s within the QI rate theory, we first give a brief review
of the working expressions of the QI model (details can be found in Ref. 4). For a general
chemical reaction that involves N atoms in three-dimensional space, the QI approximation

gives the thermal rate constant as

N

= icff(o)Tﬁ, (3.1)

Q@r

where (), is the reactant partition function per unit volume, C;(0) is the zero time value of

koi(T)

the flux-flux correlation function with two separate dividing surfaces,

Crp(t) =tr [e‘ﬂﬁﬂﬁ’sle"Bﬁ/Qemt/hﬁ;ze_m/h], (3.2)



where 3 is the inverse temperature 1/(kgT), H is the Hamiltonian given in Eq. (2.3), and
13“51 and FSQare the flux operators defined by Eq (2.4) with s; and s, indicating two different
dividing surfaces. AH in Eq. (3.1) is a specific type of energy variance, given by

(A€ 51))e PP HPA(E(%; 52))e P/ — A(E(%; 51))e PP HAE (% 50))e P2 H]

AH? = - -
trlA(E(X; s1))e PHPA(E(X; 52))e P12
(3.3)
with A(£(%;s)) being a modified version of the Dirac delta function
N
A 8) = 6(E(s9)y| Y [Vi€(%;9) ]2 (3.4)
i=1

B. Path integral representation

To be convenient for path integral evaluation, the rate constant expression Eq. (3.1) is

rewritten as'®

Caa(0) Cps(0) /7 R

kQI(T) dd( ) ff( )£ : (35)
Q. Cu(0) 2 AH

where Cgyq(0) is the zero time value of the delta-delta correlation function

Cualt) = tr[A(E(X; 51))e PH2HIRA (£ (%; 55))e T 211, (3.6)

The path 1ntegral expression for Cyy(0) is

Caa(0) = 27%25 3P/2/dx(1)/dx / (P )A(g(x(o);81))A(§(X(P/2);82))
xexp[ BO(xM x@ ... xPh), (3.7)
where P is the number of imaginary time slices, x*) = (xg ),xgk), > ,XS@) denotes

the 3N-dimensional Cartesian coordinates of the system for the kth time slice, and

®(xM, x@ ... x(P)) is the discretized action given by
(k) _ (b1
o(x®,x® ... xP)) = %252 szl — x| )2
k=1 =1

P
1
+— ZV x1 ,x2 oo X(Nk)) (3.8)
Pia
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with x(® = x(). The path integral expression for the flux-flux correlation function is then
given by

N
P
Crr(0) = H(m)3P/2/dX(1)/dX(2).../dX(P)fU(X(l),X(Q)’_” ,xP))
i=1
XA(f(X(O)§ 51))A(§(X(P/2); $2)) exp[—ﬁcb(x(l),x@)’ .. ,X(P))];

(3.9)
it is the same as Cyq(0) with the following additional factor in the integrand
. 1 P-1
£, x@ @y = (D )QZL Vie(x@;51) - (xY = x"7Y)
v bl ) Y 277,
P ¢z£il Vi€ (x); 51) 2
N o oe(x(5): (§+1) _ L5
@z TEE
The energy variance is given by
1 Ca(0)
AH = h|—- : 3.11
with
Cl0) = = — = N( L )3P/2/dx<1>/dx<2>---/dx<P)
dd L1 orh2B
x[FQ(x(l),x(z), e ’X(P)) + G(X(l),X(Q), e ’X(P))]
XA 51)) AT 52)) exp[-pR(x!V, x®, - xT))], - (3.12)
where
P/2
(k)
F(X(l):x(z)a"‘ ;X(P)) = h252{z Z }Z )’
k=1 k= P/2+1 i=1
P/2—1
+5 { Z Z }V X 7ng)7 o 7XS\IIC)) (313)
k=1  k=P/2+1
and

N
G(xm’xm),...,X<P>):6Jﬁ\2p 5253 Z Py (e y?. (3.14)

k=P/2+1 i=1
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If the Monte Carlo weight function is chosen as

p(x(l)’X(Q)a e aX(P)) = H(zﬂ_hgﬁ)gp/ZA(g(x(O)a SI)A(f(X(P/Q); 52)
=1
X exp[—ﬁ@(x(l),X(Q)’ U aX(P))]ﬂ (315)

and the ensemble average thus defined as

( fdx(l)fdx@ fdx xP (P))(...). (3.16)
 [dx® [dx® fdx x(l)x 2) .. x(P)) '
then the ratio Cf(0)/Caq(0) and AH can be obtained by one Monte Carlo simulation,
C4(0) (1) %@ )
= (f, (D x® ... 3.17
Q) {x, x) .17
and
1
AH? = 5(FQ(X(I),X(Q)’... x4+ G, x® L x P, (3.18)
respectively.

The delta function in the right side of Eq. (3.4) is approximated by a Gaussian with
sufficiently small width, so that

N

Alei9) ~ o expl— (P52 | Wi ). (3.19)

As pointed out in Ref. 15, the ratio Cfr(0)/Cuq(0) and AH can be evaluated straight-

forwardly by the constrained equilibrium simulation. While, the computation of Cyy(0)/Q,
involves in some tricks to handle the statistical sampling of rare events®'??| because Cyq(0) is
a property associated with the top of the potential barrier while @), is that with the bottom
of the reactant well. In our applications, we rewrite Cy4(0; s1, $2)/@Q, as follows:

Caa(0; 51, 52) _ Cua(0; s1, $2) Caa(0; Sy, Sr)
Qr Cdd(o; Sry S'r) Q'r ’

here s, is chosen so that the dividing surface is deep in the reactant region. The first ratio on

(3.20)

the right side of above equation is calculated via umbrella sampling technique (see Appendix

A). The second ratio can be evaluated analytically.
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IV. NUMERICAL TEST

Now we present the numerical results of a test for the collinear H + H, reaction. The
QI rate calculations were carried out at temperature 300K on the TK potential energy

3

surface?3. K710

We used one dividing surface in our calculations, since earlier wor showed
that this system has only one saddle point on the quantum free surface at 300K.

In normal mode coordinates about the saddle point, the Hamiltonian for the collinear
system is

H= ——(—+7)+V(:c,y), (4.1)

where the reduced mass p = 1224.0 au. Figure 3 shows a contour plot of the PES.

Since this 2d collinear system does not involve overall rotation or translation, one can use
the dividing surface defined in Eq. (2.3). 45 points are evenly distributed along the MEP
shown in Fig 3. The location of each point is indicated by the parameter s, the distance
along the MEP. The ratio Cys(0;5)/Cqq(0;s) and AH are calculated for each point with
s € [-0.62,0]. A sequence of umbrella samplings are carried out along the MEP to obtain
the ratio Cyq(0; 5)/Cqaq(0; s,) with s, denoting the value of s of the end point in the reactant
region (see Appendix A for details). The ratio Cy4(0; s,)/Q, can be evaluated analytically

Cdd(O;ST) _ 2/1,
o=\ 2

In path integral calculations, the number of imaginary time slices is 60, and the number

as

of Monte Carlo cycles is 8 x 10°, which is sufficient to converge the relevant quantities within
2% statistical error. One practical difficulty we encounter is that some sampling points leak
into the product region because the potential barrier along the dividing surface is not high
enough to separate the reactant and product region. In order to confine all sampling points
in the reactant region, we constrain the bond length of the hydrogen molecule r to be less
than two times of its equilibrium length r..

Figure 4 shows the quantum free energy, F = —log[Cyq(0; s)/Caq(0; s)]/ 5, in the vicinity
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of the saddle point. The DVR result is also provided in Figure 4 to make sure that the
umbrella sampling gives accurate results for Cyq(0;s)/Cyq(0; s,) along the MEP. The ratio
Cr7(0;5)/Caa(0; s) and AH (s) are shown in Fig 5 and Fig 6 respectively. These two quantities
vary relatively slowly as the dividing surface moving around the top of barrier. Figure 7 shows
that the QI rate is quit flat when the dividing surface is close to top of barrier and then

increases dramatically as the dividing surface moving further away from the top of barrier.

V. CONCLUDING REMARKS

In this paper, we have presented a simple but general way of choosing a family of DS’s
for application of the quantum instanton approximation for thermal rate constants. In our
definition, the family of planar DS’s is normal to the MEP at various points along it so that it
can correctly describe the collective motion of all atoms invovled in the reaction. The location
of the DS along the MEP is controlled by one parameter, s, the distance along the MEP, so
that the QI variational criterion for choosing DS’s is reduced to a two-variable optimization
problem which is more tractable for general system with many degrees of freedom. We
emphasize again, that the “reaction coordinate” s is not one of the dynamical coordinates of
the system (which we assume will be the Cartesian coordinates); it is simply a parameter
that specifies the location of the planar DS.

To illustrate this approach, we have applied it to the PIMC evaluation of the QI rate of
the collinear H + H, reaction. The results of PIMC evaluation are in excellent agreement
with those of a standard quantum (e.g., DVR) calculation. Comparing with the previous
PIMC implementation of the QI theory, a major modification here is made in the umbrella
sampling procedure for the quantum free energy calculation, which is necessary because each

DS defined in Eq (2.3) is locally associated with one point on the MEP.
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Appendix A: EVALUATING Cy;(0;s)/Cg4(0; s,) VIA THE UMBRELLA SAMPLING
TECHNIQUE

First we note that, once we know the probability density

g = LA dx0 - [ axOEO; Bl )] P 00X A

Al
de fdx .. .de(P —4o’ (x(D) x(), .. x(P)) ( )
with
1 N
(<0, x, 0 ) = B0, X, ) Llog(3 V0
=1
_ log Z |V{: (P/2) ‘ ) (A2)
then
; P
a0 = Pl (A3)

Caa(0;5:) — P(s;)’
However, due to the exponentially small probability density in the region around the top of
barrier, we use the umbrella sampling technique to evaluate P(s) along the MEP. Using a
set of umbrella potentials {U,,(x),m = 1,2,---, M} which forces Monte Carlo procedure to
sample a sequence of sub-configurations along the MEP, we can obtain a set of probability

density distributions, {P,(s),m = 1,2,---, M} in these sub-configurations, and
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A0 - [ B G2 oo )

Fmls) = J dx© [ dx(®) fdx P) B () < x(P))

(Ad)
with
B (xP, x? oo xP)) = o'(xV x@ ... x4+ UL (xO) + U, (xF/2). (A5)

Then we find out P(s) by requiring that A,,(s) = —log P,,(s)/f, is a continuous function
from one sub-configuration to the next. Usually, the umbrella potential is a function of the
reaction coordinate &, but the reaction coordinate in our definition is locally associated with
a point a(s) on the MEP, so it is difficult to set up a umbrella potential with respect to
this reaction coordinate. In our applications to atom-diatom reaction A+ BC, the umbrella

potential is a function of distances (rap,7Bc,rca),

0 mi ; € |bim—1,bm
Up(x) = min(rap,rca) € | 15 bt (A6)

00 otherwise

for sampling in the reactant region. In this simulation, 7 umbrella potentials are used in the
reactant side with (bg, by, -, bg) = (1.0, 1.5,2.0,2.5,3.0,4.0,6.0,8.0,9.0) in a.u..

In the numerical simulations, the probability density distributions P, (s) are actually
associated with a set of points {a(s;),i = 1,2,---, M} on the MEP and the delta function

is replaced by a Gaussian with sufficiently small width, so the final working expression is

Pa(s0) = 5 (e {— 5 5€/ (<% 5 + €<; 5], (A7

where (---),, denotes the ensemble average

f dX(O) f dx(l) .. f dx(P)e_,B¢m(x(1) x(2) X(P))(. . )
[ dx© [ dx® - .. [ dx(P)e=pmx®x®)x®)

(- = (A8)
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Figure 1: A contour of potential energy surface. The dashed line indicates a MEP from the reactant
to the product region. a(s) is a point on the MEP , and n(s) is the tangent vector of the MEP.
s is the arc length from a to the saddle point (indicated by a big black dot) along the MEP. The

dividing surface determined by Eq. (2.3) is a line normal to the MEP at the point a(s).
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Figure 2: (a) PES as a function of the radial coordinate r. The top of barrier is located at r = rg.
(b) The DS in 2d Cartesian coordinates. The dashed line is a MEP passing through one particular
saddle point. a is a point at position s along the MEP. The DS at top of barrier is a circle with the

radius equal to rg. The dotted line indicates the planar DS defined by Eq. (2.3a) at point a.
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Figure 3: PES of the collinear H + Hs reaction. The dashed line shows the MEP on the reactant

side of the saddle point.
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Figure 4: Quantum free energy for the collinear H + H, reaction.
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Figure 5: Cff(0;5)/Caq(0;s) for the collinear H + Hy reaction.
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Figure 6: AH(s) for the collinear H + Hj reaction.
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Figure 7: The QI thermal rate constant for the collinear H 4+ Hs reaction as a function of the

position of DS.



