

~~ESL 90-330~~
UURI-90-330

PUBLICATIONS
and
GEOTHERMAL SAMPLE LIBRARY FACILITIES

of the

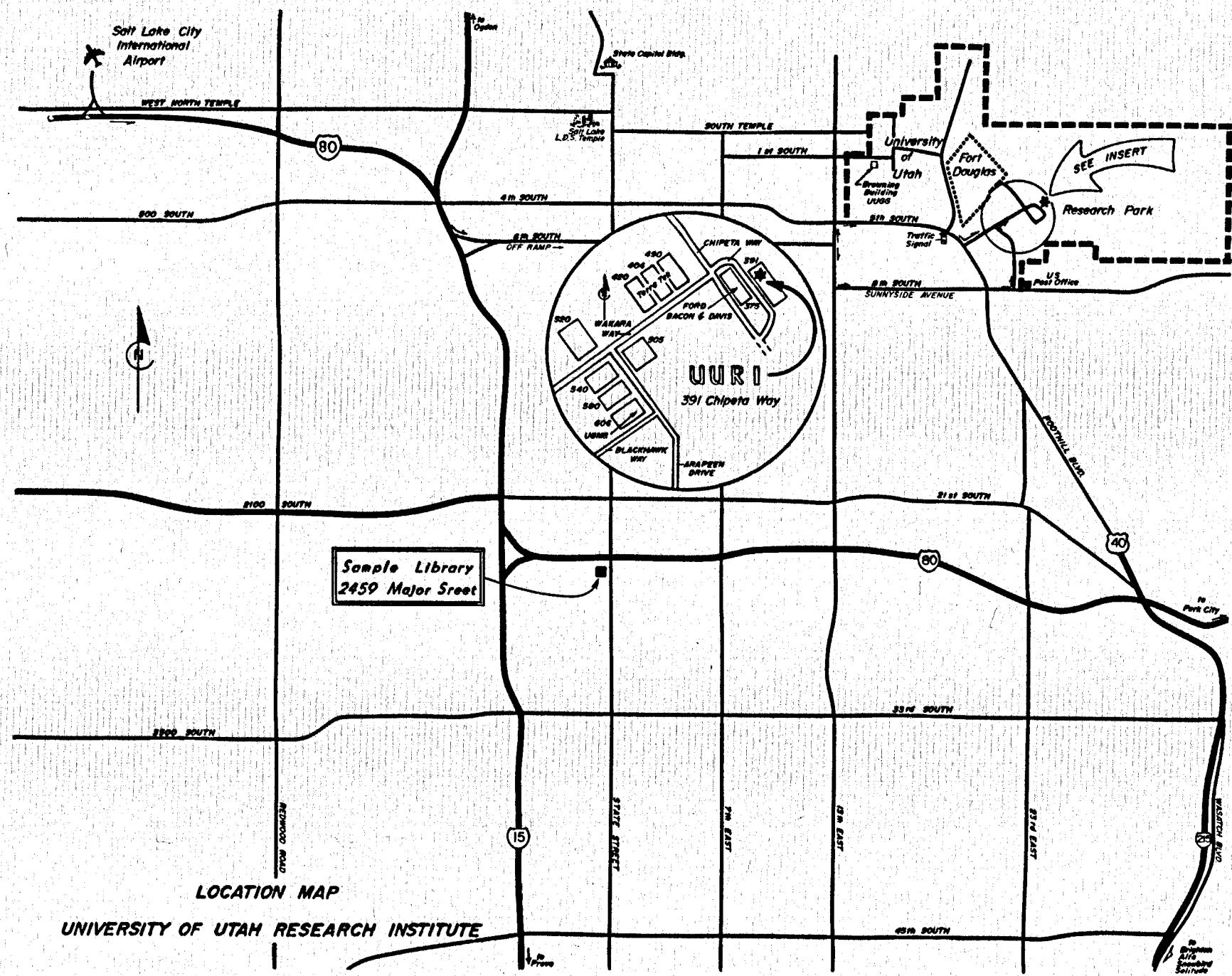
Earth Science Laboratory
University of Utah Research Institute

by

*Phillip M. Wright
Kathryn A. Ruth
David R. Langton
Michael J. Bullett*

Earth Science Laboratory

University of Utah Research Institute
391 Chipeta Way, Suite C
Salt Lake City, Utah 84108
(801) 524-3422


REV 2.0
30 March 1990

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNIVERSITY OF UTAH RESEARCH INSTITUTE

391 CHIPETA WAY, SUITE C
SALT LAKE CITY, UTAH 84108-1295
TELEPHONE 801-524-3422

March 30, 1990

Dear Colleague:

The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

We maintain a commitment to be of assistance to the geothermal industry. Inquiries or comments regarding our work and its results are always welcome.

Sincerely,

A handwritten signature in black ink, appearing to read "Phillip M. Wright".

Phillip M. Wright
Technical Vice President

TABLE OF CONTENTS

INTRODUCTION	1
FACILITIES OF UURI	2
Geochemical Laboratory	2
X-Ray Diffraction Laboratory	2
Physical Properties Laboratory	2
Geophysical Electronics Laboratory	2
Remote Sensing Laboratory	2
Computer	3
Geothermal Sample Library	3
HOW TO USE THIS DOCUMENT	5
SUBJECT INDEX TO PUBLICATIONS	Pink Section
PUBLICATION LIST	Blue Section
GEOOTHERMAL SAMPLE LIBRARY	Gold Section

INTRODUCTION

The University of Utah Research Institute (UURI) is a self-supporting non-profit corporation wholly owned by the University of Utah. The Institute receives no direct financial support from either the University of Utah or the State of Utah. We conduct both public and proprietary scientific and educational work for governmental agencies, academic institutions, private industry, and individuals.

UURI is a highly flexible organization of about 20 professionals, 8 support personnel and 5 to 25 students. Most of the professionals are full-time scientists and engineers. We comprise four divisions: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC) and the Engineering Technology Laboratory (ETL).

UURI and the University of Utah maintain a close relationship. Dr. James J. Brophy, President of UURI, is the Vice President for Research at the University and Dr. Milton E. Wadsworth, Secretary of UURI, is Dean of the College of Mines and Earth Sciences. Our Board of Trustees consists of five University vice presidents and four people from the private sector.

For the past eleven years, the Earth Science Laboratory of UURI has been involved in geothermal energy research on behalf of the U. S. Department of Energy. Our work predominately concerns the development of new exploration, reservoir definition, mapping and monitoring techniques for hydrothermal systems. This document presents a list of our publications in geothermal energy and related fields in the blue section. Selected publications of the University of Utah Department of Geology and Geophysics in geothermal energy are also included. In order to make this publications list more useful, we have included a subject index in the pink section. The 167,000 meters of drill chip samples and 37,000 meters of core in the Geothermal Sample Library are inventoried in the gold section.

Copies of our most of our reports are available through UURI at our reproduction cost. Many of these reports are also available through the National Technical Information Service. Most of the samples in the Geothermal Sample Library are available for public inspection, and in many cases, splits of these samples can be made available at nominal cost. More information on these topics is given below in the section entitled "How to Use This Document".

FACILITIES OF UURI

UURI has about 15,000 sq. ft. of laboratory and office space in Research Park, adjacent to the University of Utah campus (see Location Map, inside front cover). We also have about 6,000 sq. ft. of storage space for core and chip samples from geothermal areas.

Geochemical Laboratory

A geochemical laboratory designed especially for geothermal and mineral studies has been operational since 1977. The laboratory is equipped with an ARL Inductively Coupled Plasma Spectrometer (ICP), capable of analyzing 37 elements simultaneously, an Varian Atomic Absorption Spectrophotometer, 2 UV/Visible Spectrophotometers, Jerome Gold Film Mercury Detectors, an Orion Specific Ion Meter and electrodes, and complete sample preparation facilities. For study of fluid inclusions, the laboratory has a dedicated petrographic microscope equipped with heating and cooling stages and color TV monitor. In addition, an electron microprobe, a scanning electron microscope, and K-Ar and fission track age dating are available at the University of Utah.

X-Ray Diffraction Laboratory

Our x-ray diffraction laboratory is equipped with a Philips Model 3100 X-ray unit for the identification of primary and secondary minerals in rocks from geothermal systems.

Physical Properties Laboratory

UURI maintains laboratory facilities for the in-house determination of a variety of physical properties and associated chemical properties. Measurement capabilities include: electrical resistivity/induced polarization; cation exchange capacity; magnetic susceptibility; remanent magnetism, thermal conductivity, density and porosity.

Geophysical Electronics Laboratory

The Electronics Laboratory is well equipped for development of microprocessor-integrated geophysical instrumentation. Test, design, and prototype construction facilities are state-of-the-art. Recent projects include: 1) the redesign and modification of a state-of-the-art magnetotelluric recording system; 2) system integration of a portable (button-on) aeromagnetic data acquisition system which incorporates a radar altimeter and VHS recording of flight path and digital magnetic and altimeter data; and 3) instrumentation for remote monitoring of landslides.

Remote Sensing Laboratory

UURI has a variety of software and hardware for use in remote sensing application and research. A large portion of our software

is integrated into the image processing package called ELAS (Earth Resources Laboratory Application Software) designed and written by NASA's National Space Technology Laboratories, Earth Resources Laboratory. ELAS is currently one of the most powerful tools for the analysis of remotely sensed data. Its capabilities include the analysis of any digitally based remote sensing data collected from spaceborne, airborne or ground based sensors.

We currently operate ELAS from our in-house PRIME 2655 super minicomputer. Digitizing equipment includes a Tektronic 4954 digitizing tablet interfaced with a Tektronic 4014-1 graphics monitor. RGB color monitor equipment includes an Advanced Electronic Design (AED) 767 high-resolution display device. Hard copy is obtained from a Texas Instruments ink-jet plotter.

Backup and support to ELAS is provided by the micro-based ERDAS image processing system and geographic information system (GIS). ERDAS currently runs on an enhanced IBM PC/AT with 40 megabyte storage.

Computer

Computer facilities consist of a PRIME 2655 super mini-computer system with links to the University of Utah's Microvax II cluster computer and to the San Diego Supercomputer Center. The system includes a PRIME 2655 CPU with time-sharing capability and virtual memory, 4 M bytes of main memory, 615 M bytes of disk storage, a 9-track magnetic tape drive, a 36-inch Zeta pen plotter, two line printers, 2 Tektronix 4014 graphics terminals with digitizing tablets, a DECwriter terminal and 15 CRT terminals. Three dial-in phone lines are available to users. The system is specifically oriented to scientific and engineering computation and to handling and interpreting geoscience data.

Geothermal Sample Library

The Geothermal Sample Library provides open-file accessibility and archival storage for both public domain and proprietary field and drill samples. At present, the Library contains over 550,000 feet (167,000 m) of drill chip samples and 121,000 feet (37,000 m) of core from more than 180 holes ranging from shallow thermal gradient holes to deep production or injection wells, mainly from geothermal areas of the western United States.

The sample library's functions are to archive samples from DOE projects and to distribute samples for authorized research and study. Chipboards have been prepared for most DOE-supported geothermal holes in order to facilitate study. Downhole geophysical and temperature logs from many geothermal wells are also archived at UURI. The Library has been used to advantage by geologists and researchers in preparation for new drilling within the represented areas, and for comparison with drill samples from their own project areas.

A current inventory of drill core and cuttings curated at the Library and a map summarizing the more important sample collection in the western United States are included in the Gold section of this document.

HOW TO USE THIS DOCUMENT

This document is divided into four sections, each with a different color. The white section gives introductory information, the pink section is a subject index for our publications, the blue section is the publications list and the gold section gives the inventory for the Geothermal Sample Library.

Publications

Publications in the blue section are listed by year and alphabetically by the first author within each year. Each publication is given a unique number designator (ND) which is a combination of the position of the publication in the yearly list and the year itself. For example, 10-86 is the tenth publication in the list for 1986. The subject index in the pink section uses the NDs to refer to reports in the blue section, where complete reference information on the publication can be found. Locating a publication on a certain topic is relatively easy using this system.

In our files at UURI, we refer to reports by sequential publication numbers and contract numbers that are assigned on the basis of year published, type of publication (technical report, journal publication, abstract, progress report, etc) and other factors. We do not file publications by the NDs used in our publications lists. Publications lists change as they grow, so the ND for a certain report may change from list to list. Inquiries about a certain report should use the complete reference as given in the publication list in the blue section, not the ND.

The majority of the publications listed in this document are public information. A few are not public information, and are marked PROPRIETARY. They are included herein for information and completeness.

Samples

Most of the samples stored in the Geothermal Sample Library can be inspected at the UURI facilities by prior arrangement. Some samples were donated to UURI on a proprietary or semi-proprietary basis, and are not available to the general public. Some samples donated by companies are available to federal researchers but not to industry representatives. UURI will be happy to answer inquiries about the availability of samples.

Splits can be made of some of the samples for shipment to investigators by following established procedures. The protocol for obtaining samples involves written request including a brief description of the work to be done on the samples, why it is important and the amount of sample needed. These requests are forwarded to the Idaho Operations Office of the U. S. Department of Energy for approval. Samples for non-destructive testing are

relatively easy to obtain in this way. Requests for samples for destructive testing should be accompanied by more thorough descriptions of the work and its justification. UURI asks that the results of work done by others on samples from our Library be made available to the public whenever possible.

UURI believes that the preservation of samples of drill chips and core is extremely important. Sampling of drill cuttings is still not done on a routine basis in geothermal drilling, and often samples are discarded after initial use, wasting an important source of data. UURI will provide free consultation on obtaining samples of drill cuttings at minimum expense that are adequate for exploration and other purposes. UURI also would be happy to have the option to store samples from geothermal drilling projects especially if the samples can be made available for research work.

UNIVERSITY OF UTAH RESEARCH INSTITUTE
EARTH SCIENCE LABORATORY

SUBJECT INDEX

FOR

PUBLICATION LIST

MARCH, 1990

Africa

Ethiopia

Lakes District: 30-78

Kenya

Olkaria: 28-78, 23-79

Alaska

Adak Island

Geophysics: 26-82

Alteration: 06-76, 05-77, 02-78, 03-78, 04-78, 17-78, 18-78, 25-78, 26-78, 27-78, 13-79, 16-79, 03-80, 37-80, 39-80, 03-81, 01-83, 09-83, 16-83, 05-84, 09-85, 10-85, 11-85, 08-86, 12-86, 13-86, 31-86, 01-87, 10-87, 08-88, 09-88, 15-88, 26-88, 16-89, 17-89, 30-89, 32-89, 11-90, 17-90

Analytical Chemistry: 08-77, 10-80, 15-81, 10-84

Arkansas

Bluff: 49-89

Ascension Island

Case Study: 16-90

Geology: 51-82, 12-84, 14-84, 19-84, 35-89, 16-90

Geophysics: 15-84, 16-84, 17-84, 18-84, 07-88

Basins: 57-82

Basin and Range

Exploration: 32-79, 38-81, 35-85

Geology: 17-86, 04-87, 06-89

Geophysics: 23-80, 26-81, 20-82, 24-83, 27-83

Bibliography: 21-78

Borehole Breakouts: 02-87, 03-88, 04-88, 05-88, 06-88, 14-88, 31-88, 06-89

Breccia: 10-85, 13-87, 18-88, 30-89

British Columbia

Meager Creek

Conceptual Models: 02-85, 04-85, 01-87

Geochemistry: 11-83, 04-85, 13-85, 01-87

Geology: 13-85, 31-85

Geophysics: 31-85

Bureau of Land Management: 15-82

California

Coso

Geochemistry: 28-88, 23-89, 25-89, 26-89, 13-90, 14-90

Geology: 14-78, 17-78, 09-85, 08-86, 14-88, 17-90

Geophysics: 11-78, 12-78, 14-78, 09-79

East Mesa

Geochemistry: 01-85

Injection/backflow: 02-83, 01-85

The Geysers

Geochemistry: 05-78, 11-84, 24-89, 30-89

Geology: 30-89, 15-90

Heber

Geochemistry: 01-88, 04-89, 05-89

Long Valley

Geophysics: 43-88, 44-88, 54-89

Salton Sea

Geochemistry: 15-86, 10-87, 26-88, 27-89, 28-89

Susanville: See Wendel-Amedee

Wendel-Amedee

Case Studies: 30-84

Geochemistry: 01-84

Geology: 27-85

Canada

Meager Creek: See British Columbia

Cascades: 33-85, 23-86, 31-86, 24-88, 36-88, 41-88

Case Studies: 30-80, 12-81, 27-81, 44-82, 45-82, 61-82, 27-84, 30-84, 23-85, 38-85

Clays: 02-76, 02-78, 03-78, 25-78, 03-80, 03-81, 08-88, 09-88, 19-88

Coal: 20-89

Collocation: 15-82

Colorado

Alamosa

Case Studies: 27-84, 38-85

Geophysics: 27-82, 10-83

Computer General

Geochemistry: 52-80, 53-80, 68-82
Geophysics: 24-81, 30-81, 38-82, 39-82, 42-82
Plotting: 01-80, 02-80, 25-80, 52-80, 53-80, 23-81, 24-81, 39-82,
68-82
Text: 65-82

Computer Modeling Programs

Geochemistry: 21-81, 22-81, 66-82, 67-82
Geophysics: 13-78, 16-78, 32-78, 14-79, 19-79, 20-79, 24-79, 29-79,
30-79, 01-80, 02-80, 19-80, 29-80, 35-80, 36-80, 18-81,
19-81, 20-81, 33-81, 34-81, 37-81, 25-82, 35-82, 37-82,
40-82, 41-82, 48-82, 53-82, 54-82, 55-82, 56-82, 57-82,
62-82, 63-82, 13-83, 22-84, 23-84, 06-85, 14-85, 28-85,
29-85, 30-85, 36-85, 37-85, 39-85, 07-86, 14-86, 25-86,
26-86, 33-86, 08-87, 15-87, 16-87, 11-88, 12-88, 20-88,
22-88, 23-88, 37-88, 49-88, 50-88, 08-89, 19-89, 20-89,
51-89, 22-90, 23-90, 24-90

Congressional Testimony: 18-87

Continental Scientific Drilling

Hole VC-1: 10-85, 06-87, 18-88
Hole VC-2A: 19-85, 13-88, 15-88, 19-88, 32-89
Hole VC-2B: 16-88, 09-89, 11-89, 16-89, 17-89, 18-89, 32-89
Valles caldera: 08-85, 10-85, 19-85, 20-85, 21-85, 09-86, 06-87,
07-87, 12-87, 13-87, 13-88, 15-88, 16-88, 17-88,
18-88, 19-88, 32-88, 09-89, 10-89, 11-89, 12-89,
13-89, 14-89, 16-89, 17-89, 18-89, 22-89, 32-89,
36-89, 08-90

Crustal Stress: 33-79, 02-87, 04-87, 03-88, 04-88, 05-88, 06-88, 06-89,
33-89, 15-90

Crustal Structure: 33-79, 13-83, 24-83, 25-83, 14-85, 24-86, 04-87, 46-88,
47-88, 52-89, 53-89

Direct Heat: see Low Temperature

Drilling

Costs: 06-79
Cuttings: 13-81, 23-82
Gradient Drilling: 16-77, 19-84, 28-84, 24-88

DOE Programs

Caldera Research: 19-87
Case Studies: 37-78, 38-78
Continental Scientific Drilling: 08-85, 09-86, 16-88
ECRE: 55-89
Exploration Technology: 12-77, 15-77, 01-78, 35-78, 02-79, 18-79, 06-80, 02-84, 08-84, 05-85, 28-86, 56-89, 30-90
Industry Coupled: 05-80, 61-82
Injection Research: 05-86, 56-89, 30-90
Program Reviews: 25-84, 22-85, 34-85, 05-88, 09-88, 27-88, 29-88, 42-88, 44-88, 52-88, 31-89
Recommendations: 17-87, 18-87
Reservoir Definition: 16-85, 17-85, 18-85, 18-86, 19-86, 20-86, 28-86, 56-89, 30-90
State Coupled: 36-78, 08-79, 28-81, 29-81, 46-82, 47-82, 05-83, 19-83, 06-84, 07-84, 14-87, 33-88, 34-88, 40-89, 41-89, 42-89, 43-89, 56-89, 30-90
User-Coupled Drilling: 27-84, 30-84, 27-85, 38-85

ECRE: 55-89

Ecuador

Valle de los Chillos: 22-86, 29-86

EMSLAB: 45-88, 46-88, 47-88, 52-89, 53-89

Enhanced Oil Recovery (EOR): 08-89, 05-90

Environment: 69-82, 03-84, 06-86, 09-87, 10-88, 25-88, 30-88, 35-88, 48-88, 44-89, 18-90

Ethiopia

Lakes District: 30-78

Exploration

Architecture: see Strategies

Ascension Island: 51-82, 12-84, 14-84, 15-84, 16-84, 17-84, 18-84, 07-88, 35-89, 16-90

Case Studies: 30-80, 12-81, 26-81, 27-81, 44-82, 45-82, 61-82, 30-84, 23-85, 38-85

Drilling: 16-77, 06-79, 13-81, 23-82, 19-84, 28-84, 24-88

Geochemistry: 07-77, 05-78, 06-78, 23-78, 03-79, 04-80, 13-80, 05-82, 32-82, 33-82, 22-83, 12-85, 16-86, 03-87, 09-88, 10-88, 27-88, 26-90

Geology: 13-81, 23-82, 22-83, 16-86, 04-88, 29-88, 36-88, 26-90

Geophysics: 31-78, 29-79, 23-80, 40-80, 25-81, 39-81, 40-81, 07-82, 20-82, 43-82, 55-82, 64-82, 13-83, 22-83, 24-83, 25-83, 26-83, 27-83, 28-83, 23-85, 25-85, 33-85, 34-85, 35-85, 43-88, 26-90

Hill Air Force Base: 21-80, 44-89

Lackland Air Force Base: 28-84, 29-84

Strategies: 13-77, 14-77, 32-79, 38-81, 22-83, 27-83, 24-84, 12-85, 25-85, 33-85, 36-88, 26-90

Fission Track Dating: 12-82

Fluid Sources: 10-82

Fluid Inclusions: See Geochemistry

Fluorescein: 01-90

Fractures: 02-85, 15-85, 22-85, 24-85, 29-83, 34-85, 07-86, 16-86, 32-86, 06-87, 07-87, 13-87, 03-88, 04-88, 05-88, 06-88, 14-88, 18-88, 31-88, 06-89, 16-89, 22-89, 30-89, 32-89, 09-90

Geochemistry

Airborne: 07-77

Alteration: see Alteration main heading

Analysis: 08-77, 10-80, 10-84

Arsenic: 06-86, 03-87, 10-88

Case Studies: 12-81, 44-82, 45-82

Carbon Dioxide: 29-89, 14-90

Chemical Lithology: 11-84, 38-89

Clay Minerals: 02-76, 02-78, 03-78, 25-78, 03-80, 37-80, 03-81, 08-88, 09-88

Computer: 52-80, 53-80, 21-81, 22-81, 66-82, 67-82, 68-82

Experimental: 13-80, 03-85, 01-86, 02-86, 03-86

Fluids: see Waters

Fluid Inclusions: 15-86, 16-86, 10-87, 01-88, 26-88, 27-88, 28-88, 21-89, 23-89, 24-89, 25-89, 26-89, 27-89, 28-89, 29-89, 30-89, 10-90, 13-90, 14-90

Fluid/Mineral Equilibria: 02-76, 04-79, 21-81, 06-82, 66-82, 15-83

Fluorescein: 01-90

Gas: 23-78, 29-89, 14-90

General: 06-76, 09-77, 32-82, 23-83, 22-85, 12-85, 06-86, 16-86, 11-87, 29-88, 31-89, 26-90

Geothermometry: 32-82, 08-88, 09-88

Hydrologic Models: 04-83, 02-85, 04-85, 15-86, 01-87, 01-88, 27-88, 28-88, 21-89, 03-90, 10-90, 12-90

Injection: 25-84, 05-87, 02-88, 02-89, 03-89, 46-89, 01-90, 02-90, 04-90
Injection/Backflow: 02-83, 04-84, 25-84, 26-84
Isotope: 04-79, 13-80, 39-80, 03-81, 03-82, 04-82, 09-82, 10-82, 04-83, 02-85, 04-85, 13-85, 01-87
Mineralogy: 03-78, 25-78, 67-82, 11-84, 11-87, 08-88
Mineralization: 15-83, 06-87, 07-87, 10-87, 16-89, 17-89, 32-89
Mineral Stability: 02-76, 66-82, 67-82
Modeling: 02-76, 66-82, 67-82
Mercury: 06-78, 33-82
Plotting: 52-80, 53-80, 67-82, 68-82
Radon: 23-78, 25-88, 30-88, 18-90
Rocks: 08-77, 02-78, 03-78, 04-78, 05-78, 25-78, 03-79, 04-80, 08-80, 09-80, 11-80, 04-81, 04-82, 06-82, 08-82, 03-83, 15-83, 11-84, 06-86, 16-86, 03-87, 11-87, 10-88, 42-88, 38-89
Sampling: 15-81
Soils: 06-78, 05-82, 33-82, 03-87
Springs: 15-81, 09-82, 10-82, 04-83, 06-83, 31-83, 01-84
Spring Deposits: 15-83, 08-86
Statistics: 11-84
Trace Elements: 05-78, 06-78, 03-79, 04-80, 08-80, 09-80, 11-80, 52-80, 53-80, 04-81, 05-82, 08-82, 03-83, 11-84, 06-86, 03-87, 10-88
Tracers: 02-83, 04-84, 10-84, 25-84, 26-84, 01-85, 03-85, 01-86, 02-86, 03-86, 05-87, 02-88, 02-89, 03-89, 01-90, 02-90, 04-90
Tracer Interpretation: 46-89
Waters: 06-76, 04-79, 03-81, 15-81, 02-82, 03-82, 06-82, 09-82, 10-82, 32-82, 04-83, 06-83, 11-83, 15-83, 22-83, 31-83, 01-84, 04-84, 10-84, 01-85, 02-85, 04-85, 13-85, 15-86, 16-86, 01-87, 10-87, 11-87, 01-88, 27-88, 28-88, 01-89, 04-89, 05-89, 21-89, 23-89, 24-89, 25-89, 26-89, 27-89, 28-89, 29-89, 30-89, 03-90, 13-90
Zoning: 05-78, 03-79, 04-80, 08-80, 09-80, 11-80, 04-81, 05-82, 08-82, 03-83, 05-84, 03-87, 19-88

Geology

Alteration: see Alteration main heading
Calderas: 17-82, 18-82, 21-82, 22-82, 09-86, 17-88, 36-89, 08-90
Case Studies: 12-81, 27-81, 44-82, 45-82, 38-85
Chemistry of Melts: 08-77, 22-78, 17-79, 15-80, 26-80, 04-82, 34-82
Computer Programs: 39-82
Conceptual Models: 24-78, 01-83, 14-83, 16-83, 02-85, 04-85, 15-85, 21-86, 23-86, 36-88
Faulting: 33-79, 07-80, 11-81, 04-83, 06-89

Geochronology: 03-77, 15-80, 16-80, 08-81, 09-81, 11-82, 12-82, 04-86, 17-86, 13-89
General: 09-77, 21-78, 28-80, 31-80, 31-81, 18-82, 24-82, 52-82, 70-82, 01-83, 08-83, 21-83, 23-83, 13-84, 21-84, 13-85, 20-85, 21-85, 22-85, 12-86, 13-86, 16-86, 21-86, 13-88, 29-88, 32-88, 31-89, 07-90, 26-90
Guidebooks: 31-80, 32-80, 13-82, 16-82, 36-82, 12-83
History: 12-82
Hydraulic Fracturing, Brecciation: 10-85, 29-88, 30-89, 09-90
Lithology: 02-78, 14-78, 18-78, 32-81, 50-82, 09-83, 14-83, 12-86
Logging: 13-81, 23-82, 50-82, 27-85
Magmatism: 04-76, 10-78, 22-78, 24-78, 16-79, 17-79, 15-80, 17-80, 26-80, 06-81, 04-82, 12-82, 34-82, 13-84, 14-85, 17-86, 21-86, 23-86, 24-86, 17-88, 36-88, 36-89, 08-90
Mapping: 06-77, 17-78, 24-78, 13-79, 15-79, 16-79, 25-79, 33-80, 43-80, 44-80, 49-80, 06-81, 14-81, 16-81, 17-81, 31-81, 01-82, 49-82, 51-82, 52-82, 70-82, 08-83, 12-84, 14-84, 26-85, 04-86, 08-86, 21-86, 07-90
Mineralization: 06-87, 07-87, 10-87, 15-88, 16-89, 17-89, 32-89
Molybdenum: 06-87, 07-87
Road Logs: 09-77, 13-82, 16-82, 12-83
Petrology and Petrography: 04-76, 04-78, 16-79, 15-80, 06-81, 30-89
Sampling: 13-81, 23-82
Stratigraphy: 24-78, 01-82, 21-82, 22-82, 09-83, 12-86, 17-88, 38-89, 11-90
Stress: 02-87, 03-88, 04-88, 05-88, 06-88, 14-88, 31-88, 06-89, 33-89, 15-90
Structure: 24-78, 33-79, 07-80, 11-81, 01-82, 12-82, 21-82, 04-83, 08-83, 14-83, 16-83, 13-84, 15-85, 16-86, 21-86, 02-87, 04-87, 13-87, 03-88, 04-88, 05-88, 06-88, 14-88, 15-88, 17-88, 31-88, 36-88, 06-89, 33-89, 17-90, 07-90, 08-90, 15-90
Volcanism: 04-76, 10-78, 22-78, 16-79, 17-79, 15-80, 17-80, 26-80, 06-81, 04-82, 34-82, 09-83, 17-86, 21-86, 23-86, 17-88, 36-88, 36-89, 08-90
Zoning: 31-85, 19-88

Geophysics

Aeromagnetics: see Magnetics
Alpha Centers: 20-79, 25-81, 22-90
Audiomagnetotellurics: 40-80, 28-83, 26-86, 50-88
Borehole: 35-82, 06-85, 24-85, 34-85, 36-85, 37-85, 39-85, 07-86, 10-86, 14-86, 26-86, 32-86, 33-86, 08-87, 11-88, 20-88, 21-88, 22-88, 23-88, 49-88, 50-88, 52-88, 08-89, 19-89, 20-89, 48-89, 50-89, 05-90, 06-90, 22-90, 25-90

Casing: 31-78, 20-88, 22-88, 06-90
Case Studies: 12-81, 26-81, 27-81, 44-82, 45-82, 23-85
Controlled-Source AMT: 40-80
Controlled-Source EM: 26-83
Conductivity: 24-83, 24-86
Coupling: 40-88
Cross-Borehole: see Borehole
Earthquakes: 05-76, 11-77, 31-79, 41-80, 24-81, 26-82, 69-82, 07-88
Electrical Methods: 14-77
Electrical Properties: 26-79, 41-88, 42-88
Electromagnetics: 14-77, 48-82, 63-82, 26-83, 22-84, 31-86, 12-88, 37-88, 38-88, 49-88, 47-89, 48-89, 50-89, 06-90
Gamma Ray: 18-90
General: 09-77, 14-77, 28-80, 07-81, 39-81, 40-81, 29-82, 27-83, 23-85, 24-85, 25-85, 33-85, 35-85, 19-87, 31-89, 26-90
Gradients: 02-77, 16-77, 08-78, 19-78, 20-78, 05-79, 19-84, 11-86
Gravity: 01-76, 07-76, 04-77, 10-77, 07-78, 09-78, 15-78, 14-80, 24-80, 29-80, 35-80, 38-80, 42-80, 07-81, 10-81, 20-81, 30-81, 39-81, 27-82, 37-82, 40-82, 10-83, 22-86, 07-90
Heat Flow: 02-77, 16-77, 08-78, 19-78, 20-78, 05-79, 37-80, 46-80, 51-80, 05-81, 07-82, 25-82, 57-82, 32-85
Hydrology: 20-90
Induced Polarization: 13-78, 29-78, 07-79, 14-79, 21-79, 22-79, 26-79, 12-80, 19-80, 35-81, 43-82, 64-82, 31-85, 39-88, 40-88, 41-88, 48-88, 49-89
Injection/Backflow: 17-83, 18-83
Interpretation Methods: 13-78, 16-78, 32-78, 12-79, 14-79, 19-79, 20-79, 24-79, 30-79, 19-80, 35-80, 36-80, 51-80, 18-81, 19-81, 25-81, 34-81, 33-81, 37-81, 25-82, 35-82, 37-82, 40-82, 41-82, 53-82, 54-82, 55-82, 56-82, 62-82, 22-84, 63-82, 23-84, 28-85, 29-85, 30-85, 36-85, 37-85, 15-87, 16-87, 11-88, 12-88, 23-88, 37-88, 38-88, 39-88, 40-88, 08-89, 19-89, 20-89, 51-89
Inversion: 32-78, 20-79, 24-79, 25-81, 37-81, 11-88, 23-88, 08-89, 19-89, 20-89, 22-90
Magnetometric Resistivity: 14-86, 08-87
Magnetics: 01-76, 10-77, 07-78, 12-78, 15-78, 14-80, 29-80, 42-80, 19-81, 39-81, 41-82, 03-84, 17-84, 18-84, 37-89, 39-89, 45-89

Magnetotellurics: 03-76, 16-78, 14-77, 33-78, 34-78, 19-79, 29-79, 30-79, 36-80, 50-80, 18-81, 28-82, 31-82, 43-82, 58-82, 59-82, 60-82, 62-82, 13-83, 20-83, 24-83, 25-83, 28-83, 23-84, 14-85, 28-85, 29-85, 30-85, 25-86, 15-87, 16-87, 43-88, 44-88, 45-88, 46-88, 47-88, 51-89, 52-89, 53-89, 54-89, 23-90, 24-90

Magnetotelluric Data Processing: 58-82, 59-82, 60-82, 20-83

Microearthquakes: see **Earthquakes**

Mise-a-la-masse: 06-85, 07-86

Modeling: 13-78, 16-78, 12-79, 14-79, 19-79, 20-79, 24-79, 29-79, 30-79, 19-80, 29-80, 35-80, 36-80, 51-80, 18-81, 19-81, 20-81, 25-81, 33-81, 34-81, 37-81, 25-82, 35-82, 37-82, 40-82, 41-82, 53-82, 54-82, 55-82, 56-82, 62-82, 63-82, 13-83, 22-84, 23-84, 06-85, 14-85, 28-85, 29-85, 30-85, 36-85, 37-85, 39-85, 07-86, 14-86, 25-86, 26-86, 33-86, 08-87, 15-87, 16-87, 11-88, 12-88, 20-88, 21-88, 22-88, 23-88, 37-88, 08-89, 19-89, 20-89, 20-90, 22-90, 23-90, 24-90

Paleomagnetic Dating: 03-77

Radiometric: 30-88

Reciprocity: 38-88

Resistivity: 08-76, 09-76, 14-77, 11-78, 13-78, 20-78, 28-78, 29-78, 30-78, 31-78, 07-79, 09-79, 12-79, 14-79, 19-79, 20-79, 21-79, 22-79, 23-79, 24-79, 26-79, 28-79, 12-80, 19-80, 20-80, 27-80, 45-80, 47-80, 07-81, 18-81, 25-81, 34-81, 35-81, 37-81, 29-82, 30-82, 35-82, 43-82, 64-82, 18-83, 24-83, 25-83, 03-84, 15-84, 16-84, 06-85, 28-85, 31-85, 36-85, 37-85, 39-85, 07-86, 10-86, 14-86, 24-86, 29-86, 31-86, 32-86, 33-86, 08-87, 11-88, 20-88, 21-88, 22-88, 23-88, 35-88, 41-88, 48-88, 08-89, 19-89, 20-89, 44-89, 49-89, 05-90, 07-90, 19-90, 20-90, 21-90, 22-90

Rock Properties: 26-79, 54-82, 13-83, 24-83, 24-86, 41-88, 42-88, 49-89, 25-90

Self Potential: 27-79, 33-81, 53-82, 54-82, 55-82, 56-82, 64-82, 17-83, 03-84, 20-90

Seismic Method: 01-77, 01-79, 10-79, 28-79, 47-80, 26-81, 40-81

Seismology: 05-76, 11-77, 31-79, 41-80, 24-81, 26-82, 69-82, 07-88

Statistics: 58-82, 59-82, 60-82, 20-83

Terrain Corrections: 20-81, 30-81

Thermal Methods: 02-77, 16-77, 08-78, 05-79, 46-80, 51-80, 05-81, 07-82, 25-82, 57-82, 19-84, 11-86

Topographic Effects: 13-78, 22-79, 19-80, 25-86

Well Logging: 14-78, 11-79, 01-80, 02-80, 22-80, 23-80, 28-80, 13-81, 32-81, 19-82, 20-82, 38-82, 42-82, 24-85, 02-87, 03-88, 04-88, 05-88, 06-88, 39-88

Geothermal

Advocacy: 28-90

Assessment: 33-80, 01-81, 02-81, 05-81, 14-81, 36-81, 02-82, 15-82, 24-82, 51-82, 07-83, 19-83, 23-83, 09-84, 20-84

Briefings: 17-87, 18-87

Case Studies: 30-80, 12-81, 44-82, 45-82, 61-82, 27-84, 30-84, 23-85, 38-85

Development: 17-87, 59-89

Drilling: 16-77, 06-79, 13-81, 28-84

Economics: 34-89

Environments: 17-82, 18-82, 32-85, 21-86, 17-88, 36-88, 33-89

Exploration: 07-77, 13-77, 14-77, 05-78, 06-78, 23-78, 31-78, 04-80, 13-80, 21-80, 23-80, 40-80, 13-81, 26-81, 38-81, 07-82, 17-82, 18-82, 20-82, 23-82, 32-82, 55-82, 64-82, 13-83, 22-83, 24-83, 25-83, 26-83, 27-83, 28-83, 12-84, 14-84, 24-84, 02-85, 12-85, 25-85, 33-85, 34-85, 35-85, 27-86, 03-87, 11-87, 04-88, 09-88, 10-88, 17-88, 27-88, 29-88, 36-88, 43-88, 06-89, 22-89, 29-89, 34-89, 35-89, 54-89, 57-89, 07-90, 16-90, 25-90, 27-90, 26-90

Exploration Strategies: 13-77, 14-77, 32-79, 38-81, 22-83, 27-83, 24-84, 12-85, 25-85, 33-85, 36-88, 26-90

General: 18-80, 31-80, 54-80, 14-82, 17-82, 18-82, 32-82, 33-82, 27-83, 09-84, 07-85, 32-85, 27-86, 29-86, 30-86, 17-87, 05-88, 27-88, 29-88, 51-88, 15-89, 31-89, 34-89, 35-89, 55-89, 59-89, 16-90, 26-90, 28-90

Industry: 30-86, 18-87, 51-88, 34-89, 59-89

Information: 28-90

Nature and Occurrence: 54-80, 17-82, 18-82, 27-86

Publications: 58-89, 29-90

Regional: 26-90

Reservoir Monitoring: 47-89, 48-89

System Models: 08-78, 19-78, 24-78, 18-80, 28-80, 32-80, 46-80, 48-80, 17-82, 18-82, 32-82, 01-83, 04-83, 14-83, 16-83, 04-85, 02-85, 15-85, 15-86, 21-86, 23-86, 01-87, 36-88, 04-89, 05-89, 21-89, 23-89, 25-89, 26-89, 29-89, 13-90, 15-90

Vapor-Dominated Systems: 33-82, 19-85, 15-90

Gold: 01-89

Guatemala

Zunil

Geology: 07-90, 11-90

Geochemistry: 03-90, 10-90, 12-90, 14-90

Geophysics: 07-90, 19-90, 21-90

Guidebooks: 31-80, 34-80, 13-82, 16-82, 36-82, 12-83

Heat Transfer: 19-78

Hydrogeochemistry, Hydrology: 08-78, 19-78, 46-80, 48-80, 57-82, 02-85, 04-85, 15-86, 16-86, 01-87, 01-88, 26-88, 27-88, 28-88, 04-89, 05-89, 21-89, 23-89, 25-89, 26-89, 29-89, 03-90, 10-90, 12-90, 13-90, 17-90, 20-90

Idaho

Artesian City

Exploration: 22-83

Banbury Hot Springs

Assessment: 01-81

Big Creek Hot Springs

Assessment: 36-81

Guyer Hot Springs

Assessment: 02-81

INEL Site

Environmental: 09-87

Geology: 26-85

Mackay

Assessment: 20-84

Magic Reservoir

Geology: 70-82, 21-83, 21-84

Raft River

Geochemistry: 04-84

Geology: 11-81, 01-83

Geophysics: 17-83, 18-83

Injection/backflow: 02-83, 04-84

Snake River Plain

Geothermal Systems: 07-85

Wood River

Geochemistry: 06-83, 07-83, 31-83

Geology: 07-83

India

Tattapani: 23-83

In-Situ Leaching: 29-83, 30-83

Isotopes: see entries under Geochemistry

Injection and Injection/Backflow: 02-83, 17-83, 18-83, 25-84, 26-84, 01-85, 05-87, 02-88, 02-89, 03-89, 46-89, 01-90, 02-90, 04-90

Juan de Fuca

Geophysics:45-88, 46-88, 47-88, 52-89, 53-89

Kenya

Olkaria: 28-78, 23-79

Low Temperature: 08-78, 15-78, 20-78, 36-78, 33-80, 01-81, 02-81, 12-81, 14-81, 28-81, 29-81, 02-82, 15-82, 24-82, 27-82, 46-82, 47-82, 70-82, 04-83, 06-83, 07-83, 10-83, 19-83, 21-83, 22-83, 31-83, 01-84, 09-84, 20-84, 21-84, 28-84, 29-84, 30-84, 07-85, 27-85, 38-85, 29-86, 01-89

Magmatism: see entries under Geology

Mexico

Los Azufres:

Geochemistry: 21-89, 14-90
Geology: 38-89
Geophysics:37-89, 45-89
Remote Sensing: 57-89, 27-90

Mining

Exploration: 39-81, 40-81

In-Situ Leaching: 29-83, 30-83

Nevada

Baltazar

Geology: 13-79, 08-83
Geophysics:07-81

Basin & Range

Exploration: 32-79, 38-81
Geology: 04-87, 06-89
Geophysics:23-80, 26-81, 20-82, 24-83, 27-83

Beowawe

Geochemistry: 09-80, 15-83, 05-84
Geology: 49-80, 16-83, 05-84
Geophysics:28-79, 45-80, 46-80, 47-80

Blackburn oil field: 15-89, 09-90

Brady Hot Springs: 12-83

Colado

Geochemistry: 08-80, 04-81
Geology: 43-80
Geophysics:27-80, 29-82

Desert Peak: 12-83

Dixie Valley:
 Geochemistry: 03-89
 Tracer Test: 03-89
Guidebooks: 12-83
Humboldt House
 Geology: 32-81, 12-83
 Geophysics: 32-81
Getchell: 12-83
Golconda: 12-83
MacFarlane's Spring
 Geology: 52-82
McCoy
 Geology: 01-82
Painted Hills
 Geology: 13-79
 Geophysics: 07-81
Road Logs: 12-83
San Emidio
 Geology: 15-79, 28-80, 09-81
 Geophysics: 28-80
Soda Lake
 Geology: 25-79
Stillwater
 Geology: 50-82
Test Site
 Geophysics: 29-78, 22-79, 35-81
Tuscarora
 Geochemistry: 03-82
 Geology: 31-81, 49-82
 Geophysics: 28-82, 30-82, 31-82
Wells Area
 Geology: 14-81, 24-82

New Hampshire
Hillsboro
 Geology: 17-81

New Mexico
Baca: See Valles Caldera
Las Alturas
 Geophysics: 12-79
Valles Caldera

Geology: 21-82, 22-82, 09-83, 14-83, 13-84, 08-85, 10-85,
11-85, 19-85, 20-85, 21-85, 09-86, 12-86, 13-86,
06-87, 07-87, 12-87, 13-87, 13-88, 15-88, 16-88,
17-88, 18-88, 19-88, 32-88, 09-89, 10-89, 11-89,
12-89, 13-89, 14-89, 16-89, 17-89, 18-89, 22-89,
32-89, 36-89, 08-90

Oklahoma

Glen Mountains

Geophysics: 39-89

Oregon

Clackamas

Coring: 24-88

Geophysics: 19-87, 41-88

Rock Properties: 41-88

EMSLAB: 45-88, 46-88, 47-88, 52-89, 53-89

Geology: 19-87, 36-88

Newberry

Coring: 24-88

Geology: 31-86

Geophysics: 31-86, 19-87

Rock Properties: 41-88

Overthrust: 36-82

Permeability: 11-81, 21-82, 22-82, 08-83, 14-83, 16-83, 04-85, 02-85,
06-85, 15-85, 22-85, 24-85, 34-85, 07-86, 14-86, 16-86,
26-86, 32-86, 06-87, 07-87, 13-87, 03-88, 04-88, 05-88,
06-88, 14-88, 17-88, 18-88, 31-88, 06-89, 15-89, 16-89,
17-89, 21-89, 22-89, 23-89, 25-89, 26-89, 29-89, 30-89,
32-89, 08-90, 09-90, 13-90

Petroleum: 43-82, 07-89, 08-89, 15-89, 47-89, 05-90, 09-90

Publications: 58-89, 29-90

Quality Assurance: 09-87

Remote Sensing: 07-89, 57-89, 27-90

Radon: see entries under Geochemistry

Road Logs: 09-77, 18-80, 34-80, 13-82, 16-82, 12-83

Rock Properties: 24-83, 24-86, 31-86, 41-88, 42-88, 49-89

Sampling: 13-81, 15-81, 23-82

Satellite Imagery: see Remote Sensing

Scientific Drilling

See Continental Scientific Drilling

Solution Mining: 29-83, 30-83

Spain: 12-85, 25-85

Springs and Spring Deposits: 15-81, 09-82, 10-82, 04-83, 15-83, 08-86

Strategy: see entries under Exploration

Texas

Balcones Zone

Geology: 09-84, 32-85

Lackland Air Force Base

Geology: 28-84, 29-84

Tracers: see entries under Geochemistry

United States

Air Force: 51-82, 12-84, 14-84, 15-84, 16-84, 17-84, 18-84, 19-84,
28-84, 29-84, 07-88, 35-89, 44-89, 16-90

Central: 19-83

Eastern: 19-83

University of Utah Research Institute

Annual Reports: 56-89, 30-90

Publications: 58-89, 29-90

Utah

Basin & Range

Exploration: 32-79, 38-81

Geology: 17-86, 04-87, 06-89

Geophysics: 23-80, 26-81, 20-82, 24-83, 27-83

Black Rock Desert:

Geology: 26-80

Geophysics: 42-80

Central Utah

Geology: 31-80, 32-80, 16-81, 17-86

Geophysics: 07-78, 24-80, 10-81

Geothermal Systems: 31-80, 34-80, 14-82

Cove Creek

Geology: 16-81
Cove Fort/Sulphurdale
Case Studies: 27-81, 44-82, 23-85
Geochemistry: 03-79, 03-81, 08-82
Geology: 16-79, 04-88
Geophysics: 05-76, 04-77, 11-77, 07-78, 21-79, 14-80, 41-80,
19-82, 23-85
Crystal Hot Springs
Geophysics: 11-86
East Shore
Geochemistry: 10-82
Escalante Desert
Geophysics: 05-79, 38-80, 05-81
General: 30-86
Geochemistry: 06-76
Geophysics: 31-79, 24-80, 10-81
Geothermal Development: 30-86
Geothermal Systems: 31-80, 34-80, 14-82, 30-86
Guidebooks: 31-80, 32-80, 34-80, 36-82
Hill Air Force Base
Environmental: 03-84, 35-88, 44-89
Exploration: 21-80
Geology: 21-80
Geophysics: 21-80, 35-88
Joseph Hot Springs:
Geophysics: 15-78
Mineral Mountains
Geology: 04-76, 06-77, 10-78, 21-78, 22-78, 24-78, 17-79,
44-80, 04-82, 12-82, 34-82, 04-86, 21-86
Geochemistry: 04-82
Geophysics: 01-76, 07-76, 04-77, 07-78, 33-78, 34-78
Monroe
Case Studies: 12-81
Geophysics: 08-78, 15-78, 20-78
Newcastle
Geophysics: 05-81, 20-90
Red Hill: See Monroe
Overthrust: 36-82
Road Logs: 09-77
Roosevelt Hot Springs
Case Studies: 30-80, 45-82
Geochemistry: 06-76, 05-77, 07-77, 09-77, 02-78, 03-78, 04-
78, 05-78, 06-78, 23-78, 25-78, 26-78, 27-
78, 04-79, 03-80, 04-80, 11-80, 37-80, 39-
80, 03-81, 04-82, 05-82, 06-82, 03-83

Geology: 04-76, 05-77, 06-77, 09-77, 02-78, 03-78, 04-78, 10-78, 18-78, 21-78, 22-78, 24-78, 17-79, 33-79, 07-80, 22-80, 32-80, 44-80, 04-82, 12-82, 34-82, 04-86, 21-86

Geophysics: 01-76, 03-76, 05-76, 07-76, 08-76, 09-76, 01-77, 02-77, 03-77, 09-77, 11-77, 16-77, 07-78, 09-78, 33-78, 34-78, 01-79, 07-79, 10-79, 11-79, 27-79, 12-80, 20-80, 22-80, 37-80, 41-80, 50-80, 51-80, 69-82, 50-89

Hydrology: 48-80

Southwestern

Geophysics: 07-78, 31-79, 24-80, 05-81, 10-81, 25-83

Thermo Hot Springs

Geophysics: 10-77

Twin Peaks

Geology: 15-80, 06-81, 16-81

Uinta Basin

Geophysics: 07-82

Wasatch Front: 09-82

Volcanism: see entries under Geology

Washington

North Bonneville: 33-80

Waste Disposal: 03-84, 35-88, 44-89

Well Logging: see entries under Geophysics

Wilderness Study Areas: 15-82

Workshops: 14-77

Wyoming

Auburn

Assessment: 02-82

Guidebooks: 13-82, 16-82

Johnson Hot Springs

Assessment: 02-82

Road Logs: 13-82, 16-82

Yellowstone

Geology: 18-80, 17-82

Road Logs: 18-80, 13-82, 16-82

UNIVERSITY OF UTAH RESEARCH INSTITUTE
EARTH SCIENCE LABORATORY
PUBLICATION LIST
MARCH 1989

Explanation

This publication list includes technical reports, progress reports, journal publications, and meeting abstracts completed by ESL/UURI mostly under Department of Energy funding. Selected geothermal publications by the Department of Geology and Geophysics, University of Utah, are also listed. Certain other geothermal or related project reports completed by ESL/UURI for other U. S. government agencies (e.g. U.S. Geological Survey, U.S. Bureau of Mines) or foreign agencies (e.g. United Nations) are also included.

Non-proprietary UURI reports may be obtained from UURI at reproduction and handling costs. When requesting information about a report, always give the complete reference as shown in this publication list. Reprints of journal publications are sometimes available upon request to the author. Many publications listed herein can also be obtained from the National Technical Information Service.

	CONTENTS	Page
Publications, 1976		1
Publications, 1977		2
Publications, 1978		4
Publications, 1979		8
Publications, 1980		11
Publications, 1981		16
Publications, 1982		20
Publications, 1983		26
Publications, 1984		29
Publications, 1985		32
Publications, 1986		36
Publications, 1987		39
Publications, 1988		41
Publications, 1989		46
Publications, 1990		53

1976

- 01-76. Crebs, T. J. and Cook, K. L., 1976, Gravity and ground magnetic surveys of the central Mineral Mountains, Utah: Univ. of Utah/Dept. Geol. & Geophys., Final Report, Volume 6, 129 p.
- 02-76. Dedolph, R. E. and Parry, W. T., 1976, A thermodynamic model of the hydrolysis of microcline in acid sulfate solutions: Univ. of Utah/Dept. Geol. & Geophys. Rept., Technical Volume 76-2, ERDA, EY-76-S-07-1601, 63 p.
- 03-76. Geotronics Corp., 1976, Magnetotelluric survey and resistivity maps, Roosevelt Hot Springs KGRA: Univ. of Utah/Dept. Geol. & Geophys. Topical Report, Volume 76-3.
- 04-76. Nash, W. D., 1976, Petrology of the quaternary volcanics of the Roosevelt KGRA, and adjoining area, Utah: University of Utah/Dept. Geol. & Geophys. Rept., Final Volume 1, NSF GI-43741, 99 p.
- 05-76. Olson, T. L. and Smith, R. B., 1976, Earthquake surveys of the Roosevelt Hot Springs and the Cove Fort areas, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., Final Volume 4, NSF, GI-43741, 83 p.
- 06-76. Parry, W. T., Benson, N. L. and Miller, C. D., 1976, Geochemistry and hydrothermal alteration at selected Utah Hot Springs: Univ. of Utah/Dept. Geol. & Geophys. Rept., Final Volume 3, NSF, GI-43741, 131 p.
- 07-76. Thangsüphanich, I., 1976, Regional gravity survey of the southern Mineral Mountains, Beaver county, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., with maps, 38 p.
- 08-76. Ward, S. H. and Sill, W. R., 1976, Dipole-dipole resistivity surveys, Roosevelt Hot Springs, KGRA: Univ. of Utah/Dept. Geol. & Geophys. Rept., 6 p.
- 09-76. Ward, S. H. and Sill, W. R., 1976, Dipole-dipole resistivity delineation of the near-surface zone at the Roosevelt Hot Springs area: Univ. of Utah/Dept. Geol. & Geophys. Rept., Technical Volume 76-1, ERDA, EY-76-S-07-1601, 7 p.

1977

01-77. Anonymous, 1977, Refraction shooting near Roosevelt Hot Springs — Data: Univ. of Utah/Dept. Geol. & Geophys. Final Report, Volume 77-4, survey by Micro Geophysics, 56 p.

02-77. Bodell, J., 1977, Thermal gradients and heat flow at Roosevelt Hot Springs: Univ. of Utah/Dept. Geol. & Geophys. Topical Report, Volume 77-3, Contract No. EY-76-07-1601, (3 maps only).

03-77. Brown, F. H., 1977, Attempt at paleomagnetic dating of opal, Roosevelt Hot Springs, KGRA: Univ. of Utah/Dept. Geol. & Geophys. Rept.

04-77. Brumbaugh, W. D., and Cook, K. L., 1977, Gravity survey of the Cove Fort/Sulphurdale KGRA and the north Mineral Mountains area, Millard and Beaver counties, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., ERDA, EY-76-S-06-1601, 131 p.

05-77. Bryant, N. L. and Parry, W. T., 1977, Hydrothermal alteration at Roosevelt Hot Springs, KGRA - DDH 1971-1: Univ. of Utah/Dept. Geol. & Geophys. Rept., Technical Volume 77-5, ERDA, EY-76-S-07-1601, 86 p.

06-77. Evans, S. H., (compiled by) 1977, Geologic map of the central and northern Mineral Mountains, Utah: Univ. of Utah/Dept. Geol. & Geophys. Topical Rept., Volume 77-7, (map).

07-77. James, L. P. and Bamford, R. W., 1977, An evaluation of AIRTRACE in the geothermal environment: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-1, ERA EY-76-S-07-1601, 54 p.

08-77. Nash, W. P. and Crecraft, H., 1977, The analysis of sodium and potassium in silicate rocks by a lithium metaborate fusion method: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-6, 6 p.

09-77. Parry, W. T., Ward, S. H., Nash, W. P., 1977, Part I-Geology and geochemistry of the Roosevelt Hot Springs - A Summary, 19 p. Part II - Geophysics of the Roosevelt Hot Springs, thermal area, Utah, 25 p. Part III - Roosevelt Hot Springs area field trip, 12 p.: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-2, DOE/DGE/EY-76-S-07-1601.

10-77. Sawyer, R. F. and Cook, K. L, 1977, Gravity and ground magnetic surveys of the Thermo Hot Springs KGRA Region, Beaver County, Utah: Univ. of Utah/Dept. Geol. & Geophys. Technical Rept., 77-6, 142 p.

11-77. Smith, R. B., 1977, Long-term seismic monitoring of the Roosevelt/Cove Fort KGAs: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-3, 6 p.

12-77. Ward, S. H., 1977, Final Report, Volume 77-0: Univ. of Utah/Dept. Geol. & Geophys. Rept., ERDA, EY-76-S-07-1601, (with maps), 7 p.

13-77. Ward, S. H., 1977, Geothermal exploration architecture: Univ. of Utah/Dept. Geol. & Geophys. Technical Report, Volume 77-2, ERDA, EY-76-S-07-1601, 37 p.

- 14-77. Ward, S. H., 1977, Workshop on electrical methods in geothermal exploration: Univ. of Utah/Dept. Geol. & Geophys. Rept., USGS, 14-08-0001-G-359, 177 p.
- 15-77. Ward, S. H., and Whelan, J. A., 1977, Final Report: Univ. of Utah/Dept. Geol. & Geophys., Volume 77-5, DOE/DGE, EY-76-S-07-1601, 71 p.
- 16-77. Whelan, J. A., 1977, Thermal gradient and heat flow drilling: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 5, NSF, GI43741, 46.

1978

- 01-78. Anonymous, 1978, Final Report — Geothermal exploration and assessment technology program plan: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-1701.b.5A, 114 p.
- 02-78. Ballantyne, G. H., 1978, Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah — characterization of rock types and alteration in Getty Oil Company well Utah State 52-21: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-1701.a.1.1.4, 24 p.
- 03-78. Ballantyne, J. M., 1978, Hydrothermal alteration at the Roosevelt Hot Springs thermal area — modal mineralogy, and geochemistry of sericite, chlorite, and feldspar from altered rocks, Thermal Power Company Well, Utah State 14-2: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-1701.a.1.1.5, 42 p.
- 04-78. Ballantyne, J. M. and Parry, W. T., 1978, Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah— petrographic characterization of the alteration to 2 kilometers depth: Univ. of Utah/Dept. Geol. & Geophys. Technical Rept. No. 78-1701-a.1.1, 23 p.
- 05-78. Bamford, R. W., 1978, Geochemistry of solid materials from two U.S. geothermal systems and its application to exploration: University of Utah Research Institute, Earth Science Laboratory Rept. No. 6, DOE/ID/77-14, 222 p.
- 06-78. Capuano, R. M. and Bamford, R. W., 1978, Initial investigation of soil mercury geochemistry as an aid to drill site selection in geothermal systems: University of Utah Research Institute, Earth Science Laboratory Rept. No. 13, DOE/ID/ 28392-20, 131 p (2 plates).
- 07-78. Carter, J. A. and Cook, K. L., 1978, Regional gravity and aeromagnetic surveys of the Mineral mountains and vicinity, Millard and Beaver counties, Utah (with maps): Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-11, DOE/DGE/EY-76-S-07-1601, 177 p.
- 08-78. Chapman, D. S. and Harrison, R., 1978, Monroe, Utah, Hydrothermal System — Results from drilling of test wells MC1 and MC2: Univ. of Utah/Dept. Geol. & Geophys. Rept., 76-1601-77-16, 26 p.
- 09-78. Cook, K. L. and Carter, J. A., 1978, Precision leveling and gravity studies at Roosevelt Hot Springs KGRA, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/DGE, EY-76-S-07-1601, 56 p.
- 10-78. Evans, S. H., Jr. and Nash, W. P., 1978, Quaternary rhyolite from the Mineral mountains, Utah: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-10, DOE/DGE/EY-76-S-07-1601, 59 p.
- 11-78. Fox, R. C., 1978, Dipole-dipole resistivity of a portion of the Coso Hot Springs KGRA, Inyo County, California: University of Utah Research Institute, Earth Science Laboratory Rept. No. 2, DOE/ID/77-5.6, 21 p.
- 12-78. Fox, R. C., 1978, Low-altitude aeromagnetic survey of a portion of the Coso Hot Springs KGRA, Inyo County, California: University of Utah Research Institute, Earth Science Laboratory Rept. No. 4, DOE/ID/77-5.7, 19 p.

13-78. Fox, R. C., Hohmann, G. W. and Rijo, L., 1978, Topographic effects in resistivity surveys: University of Utah Research Institute, Earth Science Laboratory Rept. No. 11, IDO/78-1701.b.3.2.1, 33 p.

14-78. Galbraith, R. M., 1978, Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California: University of Utah Research Institute, Earth Science Laboratory Rept. No. 5, DOE/ID/28392-5, 39 p.

15-78. Halliday, M. E. and Cook, K. L., 1978, Gravity and ground magnetic surveys in the Monroe and Joseph KGAs and surrounding region, south central Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/DGE/EY-76-S-07-1601, 164 p.

16-78. Hohmann, G. W. and Ting, S. C., 1978, Three-dimensional magnetotelluric modeling: University of Utah Research Institute, Earth Science Laboratory Rept. No. 7, DOE/ID/28392-13, 27 p.

17-78. Hulen, J. B., 1978, Geology and alteration of the Coso geothermal area, Inyo Co., California: University of Utah Research Institute, Earth Science Laboratory Rept. No. 3, DOE/ID/28392-4, 36 p.

18-78. Hulen, J. B., 1978, Stratigraphy and alteration of fifteen shallow thermal gradient holes, Roosevelt H.S. KGRA and vicinity, Millard and Beaver Counties, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 9, DOE/ID/28392-9, 15 p.

19-78. Kilty, D., Chapman, D. S., Mase, C., 1978, Aspects of forced convective heat transfer in geothermal systems: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-1701.a.6.4.1., 62 p.

20-78. Mase, C. W., Chapman, D. S. and Ward, S. H., 1978, Geophysical study of the Monroe-Red Hill geothermal system: Univ. of Utah/Dept. Geol. & Geophys. Rept., with maps, 76-1601-77-17, 89 p.

21-78. McKinney, D. B., 1978, Annotated bibliography of the geology of the Roosevelt Hot Springs known geothermal resource area and the adjacent Mineral Mountains: University of Utah Research Institute, Earth Science Laboratory Rept. No. 10, DOE/ID/28392-10, 15 p.

22-78. Nash, W. P. and Evans, S. H., Jr., 1978, Fluid Dynamic properties of rhyolitic magmas, Mineral Mountains, Utah. Part I—Volatile content and flow characteristics. Part II—Physical Properties: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-13, DOE/DGE/EYL-76-S-07-1601, 45 p.

23-78. Nielson, D. L., 1978, Radon emanometry as a geothermal exploration technique—Theory and an example from Roosevelt Hot Springs KGRA, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 14, DOE/ID/28392-18, 31 p.

24-78. Nielson, D. L., Sibbett, B. S., McKinney, D. B., Hulen, J. B., Moore, J. N. and Samberg, S. M., 1978, Geology of Roosevelt Hot Springs KGRA, Beaver County, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 12, DOE/ID/28392-19, 121 p.

25-78. Parry, W. T., 1978, Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah. Part I - Mineralogy of the clay fraction from cuttings, Thermal Power Company Well Utah State 14-2, 8 p. Part II - Chemical compositions of rocks, Thermal Power Company Well Utah State 14-2, 12 p.: Univ. of Utah/Dept. Geol. & Geophys. Technical Rept., IDO/78-1701-a.1.1.2.

26-78. Parry, W. T., Bryant, N. L., Dedolph, R. E., Ballantyne, J. M., Rohrs, D. and Mason, J. L., 1978, Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., EY-76-S-07-1601, DOE/ET/128392-17, 37 p.

27-78. Rohrs, D. and Parry, W. T., 1978, Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah, Thermal Power Co. Well Utah State 72-16: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-1701.a.1.1.3., 23 p.

28-78. Ross, H. P., 1978, Numerical modeling of apparent resistivity profiles, dipole-dipole lines 6, 7, 8; Olkaria Geothermal Field, Kenya (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 1, United Nations, 5 p.

29-78. Ross, H. P. and Lundbeck, J., 1978, Interpretation of resistivity and induced polarization profiles, Calico Hills and Yucca Mountain areas, Nevada Test Site (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 8, U.S. Geological Survey, 21 p. (18 plates).

30-78. Ross, H. P., Smith, C. and Atwood, J. W., 1978, Numerical modeling and interpretation of dipole-dipole resistivity data, Lakes District, Ethiopia (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 15, United Nations, 19 p.

31-78. Sill, W. R. and Ward, S. H., 1978, Electrical energizing of well casings: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., Volume 77-8, DOE/DGE/EY-76-S-07-1601, 5 p.

32-78. Shuey, R. T. and Wannamaker, P. E., 1978, Discussion on Applications of the Generalized Inverse to the Inversion of Static Potential Data, by J. Cribb: Geophysics, 43, 1, 194-196.

33-78. Wannamaker, P. E., 1978, Magnetotelluric investigations at the Roosevelt Hot Springs KGRA and Mineral mountain, Utah: Univ. of Utah/Dept. Geol. & Geophys. Topical Rept., 78-1701.a.6.1, 54 p.

34-78. Wannamaker, P. E., Sill, W. R. and Ward, S. H., 1978, Magnetotelluric observations at the Roosevelt Hot Springs, KGRA and Mineral Mountains, Utah: Geothermal Resources Council, Transactions, 2, 697-700.

35-78. Ward, S. H., 1978, Program Review — Resource evaluation, reservoir confirmation, and exploration technology: Univ. of Utah/Dept. Geol. & Geophys. Technical Rept., 78-1701.b.5.1., 121 p.

36-78. Wright, P. M., Foley, D., Nichols, C. R., Grim, P. J. and Swanson, J., 1978, Western states cooperative direct heat geothermal program of DOE: Geothermal Resources Council, Transactions, 2, Sec. 1, 739-741.

37-78. Wright, P. M., 1978, Retrospective Case Studies: University of Utah Research Institute, Earth Science Laboratory Rept. No. 77-2, EY-76-S-07-1601, 14 p.

38-78. Wright, P. M., 1978, Geothermal Reservoir Assessment Case Study, Utah: University of Utah Research Institute, Earth Science Laboratory Rept., Volume 77-1, EY-76-S-07-1601, 14 p.

1979

- 01-79. Anonymous, 1979, Seismic refraction survey Roosevelt Hot Springs thermal area - edited data tape release.
- 02-79. Anonymous, 1979, Final Report for DOE contract EY-76-S-07-1601: Univ. of Utah/Dept. Geol. & Geophys. Rept., Volume 77-15, 65 p.
- 03-79. Bamford, R. W. and Christensen, O. D., 1979, Multi-element geochemical exploration data for the Cove Fort/Sulphurdale KGRA, Beaver and Millard Counties, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 19, DOE/ID/28392-28, 56 p.
- 04-79. Bowman, J. R., 1979, Stable isotope investigation of fluids and water-rock interaction in the Roosevelt Hot Springs thermal area, Utah: Univ. of Utah/Dept. Geol. & Geophys. Topical Rept., Volume 77-10, 18 p.
- 05-79. Chapman, D. S., 1979, Escalante Desert heat flow: Univ. of Utah/Dept. Geol. & Geophys. Topical Rept., Volume 77-11.
- 06-79. Chappell, R., N., Prestwich, S. J., Miller, L. G. and Ross, H. P., 1979, Geothermal well drilling estimates based on past well costs: Geothermal Resources Council, Transactions, 3, 99-102. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-79001-JP.
- 07-79. Chu, J. J., Sill, W. R. and Ward, S. H., 1979, Induced polarization measurements at Roosevelt Hot Springs thermal area, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-1701.a.2.4.1, 34 p.
- 08-79. Foley, D., Wright, P. M., Struhsacker, D. W., Nichols, C. R., Mink, L. L., Brophy, G. P., Grim, P. J. and Berry, G., 1979, State coupled resource assessment program - An update: Geothermal Resources Council, Transactions, 3, 217-219.
- 09-79. Fox, R. C., Ross, H. P. and Wright, P. M., 1979, Dipole-dipole resistivity survey of a portion of the Coso Hot Springs, KGRA, Inyo County, California: Presented at Annual Meeting, Society of Exploration Geophysicists. Also University of Utah Research Institute, Earth Science Laboratory Abst. ESL-79002-ABS.
- 10-79. Gertson, R. C. and Smith, R. B., 1979, Interpretation of a seismic refraction profile across the Roosevelt Hot Springs, Utah and vicinity: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-1701.a.3, 116 p.
- 11-79. Glenn, W. E. and Hulen, J. B., 1979, Interpretation of well log data from four drill holes at Roosevelt Hot Springs KGRA: University of Utah Research Institute, Earth Science Laboratory Rept. No. 28, DOE/ID/28392-38, 79 p. (4 plates).
- 12-79. Hohmann, G. W. and Jiracek, G. R., 1979, Bipole-dipole interpretation with 3D models (including a field study of Las Alturas, New Mexico): University of Utah Research Institute, Earth Science Laboratory Rept. No. 20, DOE/ID/28392-29, 20 p.

13-79. Hulen, J. B., 1979, Geology and alteration of the Baltazar Hot Springs and Painted Hills thermal areas, Humboldt County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 27, DOE/ID/2839236, 21 p.

14-79. Killpack, T. J. and Hohmann, G. W., 1979, Interactive dipole-dipole resistivity and IP modeling of arbitrary two-dimensional structures (IP2D Users Guide and Documentation): University of Utah Research Institute, Earth Science Laboratory Rept. No. 15, DOE/ID/28392-22, 120 p.

15-79. Moore, J. N., 1979, Geology map of the San Emidio geothermal area, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 23, DOE/ID/28392-33, 8 p.

16-79. Moore, J. N. and Samberg, S. M., 1979, Geology of the Cove Fort/Sulphurdale KGRA with bibliographic annotations and petrographic descriptions by B. S. Sibbett: University of Utah Research Institute, Earth Science Laboratory Rept. No. 18, DOE/ID/28392-27, 44 p.

17-79. Nash, W. P. and Evans, S. H., 1979, Mineral Mountain magmatism chemical and thermal evolution: Univ. of Utah/Dept. Geol. & Geophys. Topical Rept., Volume 77-9.

18-79. Nielson, D. L. (ed.), 1979, Program Review, Geothermal Exploration and Assessment Technology Program (including a Report of the Reservoir Engineering Group): University of Utah Research Institute, Earth Science Laboratory Rept. No. 29, DOE/ID/27002-6, 128 p.

19-79. Nutter, C., 1979, An interactive modeling system for 2-D magnetotelluric and line source resistivity data (MT2D Users Guide and Documentation): Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/DOE/ET27002-1, 178 p.

20-79. Petrick, W. R., Jr., Sill, W. R. and Ward, S. H., 1979, Three-dimensional resistivity inversion using alpha centers: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET27002-3, 64 p.

21-79. Ross, H. P., 1979, Numerical modeling and interpretation of dipole-dipole resistivity and IP profiles, Cove Fort/Sulphurdale KGRA, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 26, DOE/ID/28392-37, 22 p.

22-79. Ross, H. P. and Smith, C., 1979, Interpretation of resistivity and induced polarization profiles with severe topographic effects, Yucca Mountain area, Nevada Test Site (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 21, for U.S. Geological Survey, 74 p. (7 plates).

23-79. Ross, H. P., Smith, C., Glenn, W. E., Atwood, J. W. and Whipple, R. W., 1979, Numerical modeling and interpretation of dipole-dipole resistivity data, Olkaria Field, Kenya (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 16, for United Nations, 25 p.

24-79. Sandberg, S., 1979, Documentation and analysis of the Schlumberger interactive 1-D inversion program slumb: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/DOE/ET27002-2, 84 p.

25-79. Sibbett, B. S., 1979, Geology of Soda Lake area, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 24, DOE/ID/28392-34, 14 p.

26-79. Sill, W. R., 1979, Electrical properties of core samples: Univ. of Utah/Dept. Geol. & Geophys. Topical Rept., Volume 77-12.

27-79. Sill, W. E., Johng, D. S., 1979, Self potential Survey, Roosevelt Hot Spring, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/28392-21, 37 p.

28-79. Smith, C., 1979, Interpretation of electrical resistivity and shallow seismic reflection profiles, Whirlwind Valley and Horse Heaven areas, Beowawe KGRA, Nevada (with maps): University of Utah Research Institute, Earth Science Laboratory Rept. No. 25, DOE/ET/28392-35, 43 p.

29-79. Stodt, J. A., Hohmann, G. W., Ting, S. C., 1979, The telluric-magnetotelluric method in two- and three-dimensional environments, DOE/ET/28392-25, 52 p.

30-79. Ting, S. C. and Hohmann, G. W., 1979, Integral equation modeling of three-dimensional magnetotelluric response: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/DOE/ET27002-4, 56 p.

31-79. Wechsler, D. J. and Smith, R. B., 1979, An evaluation of hypocenter location techniques with applications to southern Utah — regional earthquake distributions and seismicity of geothermal areas: Univ. of Utah/Dept. Geol. & Geophys. Rept., IDO/78-28392.a.12, 131 p.

32-79. Ward, S. H., Ross, H. P. and Nielson, D. L., 1979, A strategy of exploration for high-temperature hydrothermal systems in the Basin and Range provinces: University of Utah Research Institute, Earth Science Laboratory Rept. No. 22, DOE/ID/27002-5, 42 p.

33-79. Yusas, M. R. and Bruhn R. L., 1979, Structural fabric and in-situ stress analyses of the Roosevelt Hot Springs, KGRA: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/28392-31, 78-1071.a.6.5.1, 62 p.

1980

01-80. Atwood, J. W., Glenn, W. E. and Killpack, T. J., 1980, Computer system for digitizing, analyzing, and plotting well log data (A User's Guide to WELLOG REV1): University of Utah Research Institute, Earth Science Laboratory Rept. No. 31, DOE/ID/12079-1, 70 p.

02-80. Atwood, J. W., Killpack, T. J., Glenn, W. E. and Nutter, C., 1980, WELLOG — Computer software system for analyzing and plotting well log data (A User's Guide to WELLOG REV2): University of Utah Research Institute, Earth Science Laboratory Rept. No. 45, DOE/ID/12079-17, 138 p.

03-80. Ballantyne, J. M., 1980, Geochemistry of sericite and chlorite in Well 14-2, Roosevelt Hot Springs geothermal system, and in mineralized hydrothermal systems: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/28392-43, 99 p.

04-80. Bamford, R. W., Christensen, O. D. and Capuano, R. M., 1980, Multi-element geochemistry of solid materials in geothermal systems and its application — Part 1, The hot-water system at the Roosevelt Hot Springs KGRA, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 30, DOE/ID/27002-7, 168 p.

05-80. Bowman, J. R., Bruhn, R. L., Chapman, D. S., Cook, K. L., Evans, S. H., Jr., Hohmann, G. W., Nash, W. R., Reynolds, G. R., Sill, W. R., Smith, R. B., Ward, S. H., Christensen, O. D., Foley, D., Forsberg, W. L., Glenn, W. E., Killpack, T. J., Moore, J. N., Nielson, D. L., Ross, H. P., Struhsacker, D. W. and Wright, P. M., 1980, Management assistance for the development of hydrothermal energy in the Rocky Mountain/Basin and Range region: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., October 19, 1977 - December 31, 1979, DOE/ET/28392-47, 78-28392.a.13, 92 p.

06-80. Bowman, J. R., Evans, S. H., Jr., Hohmann, G. W., Nash, W. P., Reynolds, G. R., Sill, W. R., Ward, S. H., Christensen, O. D., Forsberg, W. L., Glenn, W. E., Killpack, T. J., Moore, J. N., Nielson, D. L., and Wright, S. H., 1980, Management assistance and technical support for the programs in exploration technology: Univ. of Utah/Dept. Geol. & Geophys. Final Rept., December 1, 1978 - February 28, 1980, IDO/DOE/ET/27002-10, 41 p.

07-80. Bruhn, R. L., Yusas, M. R. and Huertas, F., 1980, Mechanics of low-angle faulting, Roosevelt Hot Springs: EOS, Transactions, AGU, 61, 1118-1119. Also Univ. of Utah/Dept. Geol. & Geophys. Rept. DOE/ID/12079-35, 25 p.

08-80. Christensen, O. D., 1980, Geochemistry of the Colado geothermal area, Pershing County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 39, DOE/ID/12079-9, 31 p.

09-80. Christensen, O. D., 1980, Trace element geochemistry of gradient hole cuttings, Beowawe geothermal area, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 48, DOE/ID/12079-21, 28 p.

10-80. Christensen, O. D., Kroneman, R. L. and Capuano, R. M., 1980, Multi-element analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy: University of Utah Research Institute, Earth Science Laboratory Rept. No. 32, DOE/ID/12079-2, 33 p.

11-80. Christensen, O. D., Moore, J. N. and Capuano, R. M., 1980, Trace element geochemical zoning in the Roosevelt Hot Springs thermal area, Utah: Geothermal Resources Council, Transactions, 4, 149-152. Also University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-53.

12-80. Chu, J. J., 1980, Induced polarization data at Roosevelt Hot Springs, geothermal area, Utah: Univ. of Utah/Dept. Geol. & Geophys., Masters Thesis, 85 p.

13-80. Cole, D. R. and Ohmoto, H., 1980, Mechanisms and rates of oxygen-isotope exchange in experimental hydrothermal systems: University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-54.

14-80. Cook, K. L., Serpa, L. F. and Win, Pe, 1980, Detailed gravity and aeromagnetic surveys of the Cove Fort/Sulphurdale KGRA and vicinity, Millard and Beaver counties, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/28392-30, 88 p.

15-80. Crecraft, H., Nash, W. P. and Evans, S. H., 1980, Petrology, geochronology, and chemical evolution of the Twin Peaks rhyolite domes, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-4, 212 p.

16-80. Evans, S. H. and Brown, F. H., 1980, Summary of potassium/argon age dating: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-23, 23 p.

17-80. Evans, S. H., Jr. and Nash, W. P., 1980, Compositional gradients in natural silicic liquids: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/78-1701.a.4.1, 29 p.

18-80. Foley, D., Nielson, D. L. and Nichols, C. R., 1980, Geothermal systems of the Yellowstone Caldera: Geothermal Resources Council Field Trip No. 1, 69 p.

19-80. Fox, R. C., Hohmann, G. W., Killpack, T. J. and Rijo, L., 1980, Topographic effects in resistivity and induced-polarization surveys: Geophysics, 46, 182-197. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 11, DOE/ID/28392-11.

20-80. Frangos, W. and Ward, S. H., 1980, Bipole-dipole survey at Roosevelt Hot Springs thermal area, Beaver County, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 43, DOE/ID/12079-15, 41 p.

21-80. Glenn, W. E., Chapman, D. S., Foley, D., Capuano, R. M., Sibbett, B. S., Cole, D. R. and Ward, S. H., 1980, Geothermal program, Hill AFB, Davis and Weber Counties, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 34, DOE/ID/28392-42, 77 p.

22-80. Glenn, W. E., Hulen, J. B. and Nielson, D. L., 1980, A comprehensive study of LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah and application to geothermal well logging: Los Alamos Scientific Laboratory, Rept. LA-8686-MS, 175 p.

23-80. Glenn, W. E., Ross, H. P. and Atwood, J., 1980, Review of well logging in the Basin and Range known geothermal resource areas: Paper presented to Society of Petroleum Engineers/AIME Annual meeting. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-80002-JP, 16 p.

24-80. Green, R. T. and Cook, K. L., 1980, A gravity survey of the southwestern part of the southern Utah geothermal belt, Washington County, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 46, DOE/ID/12079-18, 115 p.

25-80. Killpack, T. J., Maruer, J. and Atwood, J. W., 1980, UUPLT — A device independent plotting system for the PRIME 400 Computer (UUPLT Rev1 Users Guide): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-46, 239 p.

26-80. Lynch, W. C. and Nash, W. P., 1980, Chemical trends in Ice Springs basalt, Black Rock Desert, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-12, 86 p.

27-80. Mackelprang, C. E., 1980, Interpretation of a dipole-dipole electrical resistivity survey, Colado geothermal area, Pershing County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 41, DOE/ID/12079-11, 25 p.

28-80. Mackelprang, C. E., Moore, J. N. and Ross, H. P., 1980, A summary of the geology and geophysics of the San Emidio KGRA, Washoe County, Nevada: Geothermal Resources Council, Transactions, 4, 221-224. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-80001-JP.

29-80. Maurer, J. and Atwood, J. W., 1980, GM3D — Interactive 3D gravity and magnetic modeling program (GM3D REV. 1 User's Guide): University of Utah Research Institute, Earth Science Laboratory Rept. No. 44, DOE/ID/12079-16, 27 p.

30-80. Moore, J. N., 1980, Geology, geochemistry and geophysics of the Roosevelt Hot Springs KGRA, Utah: *in* Basic Geology for the Exploration of Geothermal Systems, Geothermal Resources Council Technical Training Course No. 5.

31-80. Nielson, D. L. (ed.) 1980, Geothermal systems in Central Utah: Geothermal Resources Council Guidebook to Field Trip No. 7, 54 p.

32-80. Nielson, D. L., 1980, Summary of the geology of the Roosevelt Hot Springs geothermal system, Utah: *in* Nielson, D. L. (ed.), Geothermal Systems in Central Utah, Geothermal Resources Council Guidebook to Field Trip No. 7, 25-29.

33-80. Nielson, D. L. and Moran, R. M., 1980, Geologic interpretation of the Geothermal potential of the North Bonneville area, (with maps) 18 p.

34-80. Nielson, D. L., Moore, J. N. and Forrest, R. J., 1980, Road log to geothermal systems in central Utah: *in* Nielson, D. L. (ed.), Geothermal Systems in Central Utah, Geothermal Resources Council Guidebook to Field Trip No. 7, 44-54.

35-80. Nutter, C., 1980, GRAV2D, An interpretative 2-1/2 dimensional gravity modeling program (User's Guide and Documentation for REV. 1): University of Utah Research Institute, Earth Science Laboratory Rept. No. 42, DOE/ID/12079-13, 71 p.

36-80. Nutter, C. and Wannamaker, P. E., 1980, MT3D — A three-dimensional magnetotelluric modeling program (User's Guide and Documentation for REV. 1): University of Utah Research Institute, Earth Science Laboratory Rept. No. 47, DOE/ID/12079-2, 23 p.

37-80. Parry, W. T., Ballantyne, J. M. and Bryant, N. L., 1980, Hydrothermal alteration, enthalpy and heat flow in the Roosevelt Hot Springs thermal area, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept.

38-80. Pe, W. and Cook, K. L., 1980, Gravity survey of the Escalante Desert and vicinity, in Iron and Washington Counties, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-14, 156 p.

39-80. Rohrs, D. T., and Bowman, J. R., 1980, A light stable isotope study of the Roosevelt Hot Springs thermal area, southwestern Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/28392-46, 78-1701.a.1.1.5, 89 p.

40-80. Sandberg, S. M. and Hohmann, G. W., 1980, Controlled-source audiomentellurics in geothermal exploration: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-5, 95 p.

41-80. Schaff, S. C., Glenn, W. E. and Ward, S. H., 1980, Induced seismicity and seismic baseline studies at Roosevelt Hot Springs and Cove Fort/Sulphurdale, Utah, Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/01823-1, 29 p.

42-80. Serpa, L. F. and Cook, K. L., 1980, Detailed gravity and aeromagnetic surveys in the Black Rock Desert area, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/28392-39, 87 p.

43-80. Sibbett, B. S., 1980, Geology of the Colado geothermal area, Pershing County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 38, DOE/ID/12079-8, (2 plates) 38 p.

44-80. Sibbett, B. S. and Nielson, D. L., 1980, Geology of the central Mineral Mountains, Beaver County, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 33, DOE/ID/28392-40, 42 p.

45-80. Smith, C., 1980, Delineation of an electrical resistivity anomaly, Malpais area, Beowawe KGRA, Eureka County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 40, DOE/ID/12079-10, 25 p.

46-80. Smith, C., 1980, Heat flow and thermal hydrology of Beowawe geothermal area, Nevada: Geophysics, 48, 5, 618-626. Also University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-34.

47-80. Smith, C., 1980, Interpretation of electrical resistivity and shallow seismic reflection profiles, Whirlwind valley and Horse Heaven areas, Beowawe KGRA, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 25, DOE/ID/28392-35, (6 plates) 47 p.

48-80. Smith, C., 1980, Model study of the regional hydrogeologic regime, Roosevelt Hot Springs, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ET/28392-44, 35 p.

49-80. Struhsacker, E. M., 1980, The geology of the Beowawe geothermal system, Eureka and Lander Counties, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 37, DOE/ID/12079-7, (2 plates), 82 p.

50-80. Wannamaker, P. E., Ward, S. H., Hohmann, G. W. and Sill, W. R., 1980, Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah: Univ. Utah/Dept. Geol & Geophys. Rept., DOE/ET/27002-8, 213 p.

51-80. Wilson, W. R. and Chapman, D. S., 1980, Three topical reports; I. thermal studies at Roosevelt Hot Springs, Utah; II. Heat flow above an arbitrarily dipping plane of heat sources; III. A datum correction for heat flow measurements made on an arbitrary surface: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-19, 144 p.

52-80. Withrow, C., 1980, Computer plotting of drill hole geochemical data (SECTION, REV. 1, User's Guide): University of Utah Research Institute, Earth Science Laboratory Rept. No. 36, DOE/ID/12079-6, 50 p.

53-80. Withrow, C., 1980, Computer plotting of geochemical data in plan view (PLANMAP, REV. 1, User's Guide): University of Utah Research Institute, Earth Science Laboratory Rept. No. 35, DOE/ID/12079-3, 11 p.

54-80. Wright, P. M., 1980, Nature and occurrence of geothermal resources in the United States: *in* Commercial Uses of Geothermal Heat, Geothermal Resources Council Special Report, 9, 123-134. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-80003-TR.

1981

- 01-81. Blackett, R. E., 1981, A geothermal resource site evaluation near Banbury Hot Springs - Twin Falls county, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept., ID/BHS/ESL-1, (with maps) 14 p.
- 02-81. Blackett R. E., 1981, Preliminary investigation of the geology and geothermal resources at Guyer Hot Springs and vicinity, Blaine County, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept., ID/GHS/ESL-1, (with maps) 26 p.
- 03-81. Bowman, J. R. and Rohrs, D. T., 1981, Light stable isotope studies of spring and thermal waters from the Roosevelt Hot Springs and Cove Fort/Sulphurdale thermal areas and of clay minerals from the Roosevelt Hot Springs thermal area: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-44, 36 p.
- 04-81. Christensen, O. D., Sibbett, B. S. and Bullett, M. J., 1981, Geochemistry of selected rock samples, Colado geothermal area, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 50, DOE/ID/12079-24, 17 p.
- 05-81. Clement, M. D. and Chapman, D. S., 1981, Heat flow and geothermal assessment of the Escalante Desert, Southwestern Utah, with emphasis on the Newcastle KGRA: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-28, 118 p.
- 06-81. Crecraft, H., Nash, W. P. and Evans, S. H., Jr., 1981, Late Cenozoic volcanism at Twin Peaks, Utah — Geology and petrology: Journal of Geophysical Research & Journal of Geology & Petrology, 86, B11, 10303-10320. Also Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-55.
- 07-81. Edquist, R. K., 1981, Geophysical investigation of the Baltazar Hot Springs known geothermal resource area and the Painted Hills thermal area, Humboldt County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 54, DOE/ID/12079-29, 89 p.
- 08-81. Evans, S. H., Jr. and Brown, F. H., 1981, Summary of potassium-argon dating - 1981: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-45, 32 p.
- 09-81. Evans, S. H., Jr., Moore, J. N. and Adams, M. C., 1981, K/Ar ages of the Pyramid Sequence in the vicinity of the San Emidio geothermal prospect, Washoe County, Nevada: Isochron/West, 31, 19-21. Also University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-52, 3 p.
- 10-81. Green, R. T. and Cook, K. L., 1981, Gravity survey of the southwestern part of the southern Utah geothermal belt, Washington county, Utah: Univ. of Utah/Dept Geol. & Geophys. Rept., University of Utah Research Institute, Earth Science Laboratory Rept. No. 46, DOE/ID/12079-18, 106 p.
- 11-81. Guth, L. R., Bruhn, R. L. and Beck, S. L., 1981, Fault and joint geometry at Raft River geothermal area, Idaho: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-41, 19 p.

12-81. Hulen, J. B. and Sandberg, S. M., 1981, Exploration case history of the Monroe KGRA, Sevier County, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 49, DOE/ID/12079-22, 82 p.

13-81. Hulen, J. B. and Sibbett, B. S., 1981, Interpretation of drill cuttings from geothermal wells: University of Utah Research Institute, Earth Science Laboratory Rept. No. 57, DOE/ID/12079-36, 21 p.

14-81. Jewell, P. W., 1981, Geology and geothermal potential of the area north of Wells, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 106, DOE/ID/12079-83, 41 p.

15-81. Kroneman, R. L., 1981, Guide to Water Sampling: University of Utah Research Institute, Earth Science Laboratory Rept., DE-AC07-80ID-12079, 11 p.

16-81. Nash, W. P., 1981, Geologic map of the south Twin Peak-Cove Creek area, west-central, Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., (2 plates), DOE/ID/12079-38, 8 p.

17-81. Nielson, D. L., 1981, The bedrock geology of the Hillsboro quadrangle, New Hampshire: New Hampshire Dept. of Resources and Economic Development Bulletin No. 8, 76 p.

18-81. Nutter, C., 1981, MT2D — An interactive 2-D magnetotelluric and line-source modeling program (User's Guide and Documentation for REV. 3): University of Utah Research Institute, Earth Science Laboratory Rept. No. 55, DOE/ID/12079-31, 47 p.

19-81. Nutter, C., 1981, MAG2D — An interactive 2-1/2 dimensional magnetic modeling program (User's Guide and Documentation for REV. 1): University of Utah Research Institute, Earth Science Laboratory Rept. No. 56, DOE/ID/12079-32, 79 p.

20-81. Nutter C., 1981, TCOR — A gravity terrain correction program: Univ. of Utah/Dept. Geol. & Geophys. Rept. No. 65/U, 8 p.

21-81. Nutter, C., 1981, SOLUPLOT to calculate equilibrium Eh-pH: Univ. of Utah/Dept. Geol. & Geophys. Rept. No. 66/U, 6 p.

22-81. Nutter, C., 1981, DISCRIM — Interactive program for dissecting normal/ lognormal distribution: Univ. of Utah/Dept. Geol. & Geophys. Rept. No. 67/U, 12 p.

23-81. Nutter, C., 1981, UM-PLATE — Program to generate longitude overlay: Univ. of Utah/Dept. Geol. & Geophys. Rept. No. 68/U, 9 p.

24-81. Nutter, C., 1981, EQPLOT Rev. 1 — Earthquake hypocenter output: Univ. of Utah, Dept. Geol. & Geophys. Rept. No. 69/U, 39 p.

25-81. Petrick, W. R., Sill, W. R., and Ward, S. H., 1981, 3-D resistivity inversion using alpha centers, *Geophysics*, 46, 8, 1148-1162.

26-81. Ross, H. P., Glenn, W. E. and Swift, C., 1981, Reflection seismic surveys for Basin and Range geothermal areas - an assessment: presented to 66th Annual American Association of Petroleum Geologists Meeting, San Francisco. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-81003-ABS.

27-81. Ross, H. P., Moore, J. N. and Glenn, W. E., 1981, The Cove Fort/Sulphurdale KGRA - A geological and geophysical case study: presented to the 50th Annual meeting of the Society of Exploration Geophysicists, abstract, *Geophysics*, 46, 4, 459. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-81004-ABS.

28-81. Ruscetta, C. A. and Foley, D., 1981, Glenwood Springs Technical Conference Proceedings, I, Papers: University of Utah Research Institute, Earth Science Laboratory Rept. No. 59, DOE/ID/12079-39, 313 p.

29-81. Ruscetta, C. A. and Foley, D., 1981, Glenwood Springs Technical Conference Proceedings, II, Bibliography: University of Utah Research Institute, Earth Science Laboratory Rept. No. 60, DOE/ID/12079-40, 39 p.

30-81. Serpa, L. F. and Cook, K. L., 1981, TERRAIN — A terrain correction program for gravity data (User's Guide and Documentation for REV. 0): University of Utah Research Institute, Earth Science Laboratory Rept. No. 52, DOE/ID/12079-26 12 p.

31-81. Sibbett, B. S., 1981, Geology of the Tuscarora geothermal project, Elko County, Nevada: Geological Society of America, Bulletin, 93, 1264-1272. Also University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-33.

32-81. Sibbett, B. S. and Glenn, W. E., 1981, Lithology and well log study of Campbell E-2 geothermal test well, Humboldt House geothermal project, Pershing County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 53, DOE/ID/12079-27 (1 plate) 28 p.

33-81. Sill, W. R., 1981, Self potential modeling from primary flows: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-42, 28 p.

34-81. Smith, C., Glenn, W. E., Tripp, A. C. and Ross, H. P., 1981, An examination of 2-D earth model resolution with the dipole-dipole resistivity method: Extended abstract, 50th Annual Society of Exploration Geophysicists meeting, 46, 4, 459. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-81005-ABS.

35-81. Smith, C., Ross, H. P. and Edquist, R., 1981, Interpreted resistivity and IP Section, Line W1, Wahomie area, Nevada Test Site, Nevada (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-81002-TR, for U. S. Geological Survey.

36-81. Struhsacker, D., 1981, An analysis of geothermal electrical power generation at Big Creek Hot Springs, Lemhi County, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 58, DOE/ID/12079-37 71 p.

37-81. Tripp, A. C. and Killpack, T. J., 1981, IPINV — A two-dimensional dipole-dipole resistivity modeling and inversion program (User's Guide and Documentation for REV. 1): University of Utah Research Institute, Earth Science Laboratory Rept. No. 51, DOE/ID/12079-25, 47 p.

- 38-81. Ward, S. H., Ross, H. P. and Nielson, D. L., 1981, Exploration strategy for high-temperature hydrothermal systems in the Basin and Range province: American Association of Petroleum Geologists, Bulletin, 65/1, 86-102. Reprinted in Energy Minerals, American Association of Petroleum Geologists reprint Series No. 25, 232-248. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-81001-JP.
- 39-81. Wright, P. M., 1981, Gravity and magnetic methods in mineral exploration: *in* Seventy-Fifth Anniversary Volume, Economic Geology, Society of Economic Geologists, 829-839.
- 40-81. Wright, P. M., 1981, Seismic methods in mineral exploration: *in* Seventy-Fifth Anniversary Volume, Economic Geology, Society of Economic Geologists, 863-870.

1982

- 01-82. Adams, M. C., 1982, The stratigraphy and structure of the McCoy geothermal prospect, Churchill and Lander Counties, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 112, DOE/ID/12079-95, 84 p.
- 02-82. Adams, M. C. and Capuano, R. M., 1982, Evaluation of the geothermal reservoir associated with Auburn and Johnson Hot Springs, Upper Star Valley, Wyoming: Geothermal Resources Council, Transactions, 6, 73-76. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 96, DOE/ID/12079-76.
- 03-82. Bowman, J. R. and Cole, D. R., 1982, Hydrogen and oxygen-isotope geochemistry of cold and warm waters from the Tuscarora thermal area, Nevada: Geothermal Resources Council, Transactions, 6, 77-87. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 95, DOE/ID/12079-70.
- 04-82. Bowman, J. R., Nash, W. P. and Evans, S. H., Jr., 1982, Oxygen isotope geochemistry of Quaternary rhyolite from the Mineral Mountains, Utah, U.S.A.: DOE/ID/12079-61, 24 p.
- 05-82. Capuano, R. M., 1982, Depositional environments of trace elements in soil - Roosevelt Hot Springs, Utah: Geological Society of America, Abstract. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 91.
- 06-82. Capuano, R. M. and Cole, D. R., 1982, Fluid-mineral equilibria in a hydrothermal system, Roosevelt Hot Springs, Utah: Geochimica et Cosmochimica Acta, 46, 1353-1364. Also University of Utah Research Institute, Earth Science Laboratory Rept. (No Number), DOE/ID/12079-30.
- 07-82. Chapman, D. and Keho, T., 1982, A thermal resistance method for computing surface heat flow and subsurface temperatures with application to the Uinta Basin of Northeastern Utah: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-79, 26 p.
- 08-82. Christensen, O. D., 1982, Multi-element geochemistry of 3 geothermal wells, Cove Fort/Sulphurdale geothermal area, Utah: University of Utah Research Institute, Earth Science Laboratory Rept. No. 101, DOE/ID/12079-80, 41 p.
- 09-82. Cole, D. R., 1982, Chemical and sulfur isotope variations in a thermal spring system sampled through time: Geothermal Resources Council, Transactions, 6, 81-84. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 97, DOE/ID/12079-77.
- 10-82. Cole, D. R., 1982, Tracing fluid sources to the East Shore area, Utah: Ground Water Journal, 20, 586-593. Also University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-51.
- 11-82. Evans, S. H., Jr., 1982, Summary of potassium/argon dating - 1982: University of Utah Research Institute, Earth Science Laboratory Rept. No. 103, DOE/ID/12079-82, 8 p.

12-82. Evans, S. H., Jr. and Nielson, D. L., 1982, Thermal and tectonic history, Mineral Mountains intrusive complex: Geothermal Resources Council, Transactions, 6, 15-18. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 94, DOE/ID/12079-75.

13-82. Foley, D., 1982, Road Log, Field Trip #3 Emphasizing Geothermal Phenomena: Wyoming Geological Association. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82004-TR.

14-82. Foley, D., 1982, Hydrothermal Systems of Central Utah - A regional perspective: Utah Geological Association. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82005-ABS.

15-82. Foley, D. and Dorschner, M., 1982, Tables of co-located geothermal sites and BLM wilderness study areas: University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-88, 166 p.

16-82. Foley, D., Nielson, D. L. and Nichols, C., 1982, Road Logs — West Yellowstone to Canyon Junction, Canyon Junction to Mud Volcano - Sulphur Cauldron area, Canyon Junction to Tower Junction to Mammoth Hot Springs, Mammoth Hot Springs to Norris Junction, Madison Junction to Old Faithful: *in* Reid, S. G. and Foote, D. J. (eds.), Geology of Yellowstone Park area, Wyoming Geological Association Guidebook. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82006-TR.

17-82. Foley, D. and Nielson, D. L., 1982, Geothermal systems of Yellowstone: University of Utah Research Institute, Earth Science Laboratory Rept. No. 105.

18-82. Foley, D. and Nielson, D. L., 1982, Calderas and hydrothermal systems: University of Utah Research Institute, Earth Science Laboratory Rept. No. 104, 107 p.

19-82. Glenn, W. E. and Ross, H. P., 1982, A study of well logs from Cove Fort/Sulphurdale KGRA, Millard and Beaver Counties, Utah, U.S.A.: University of Utah Research Institute, Earth Science Laboratory Rept. No. 75, DOE/ID/12079-62, 50 p.

20-82. Glenn, W. E., Ross, H. P. and Atwood, J. W., 1982, Review of well logging in the Basin and Range known geothermal resource areas: Journal of Petroleum Technology, May, 1104-1118.

21-82. Hulen, J. B., 1982, Stratigraphy, structure and permeability in the Redondo Creek Project area (Valles caldera, New Mexico): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82003-TR.

22-82. Hulen, J. B. and Nielson, D. L., 1982, Stratigraphic permeability in the Baca geothermal system, Redondo Creek area, Valles caldera, New Mexico: Geothermal Resources Council, Transactions, 6, 27-30. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 93, DOE/ID/12079-67.

23-82. Hulen, J. B. and Sibbett, B. S., 1982, Sampling and interpretation of drill cuttings from geothermal and mineral exploration boreholes: Society of Professional Well Log Analysts, Reprint Volume, IV3-IV54. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 57, DOE/ID/12079-78.

24-82. Jewell, P. W., 1982, Geology and geothermal potential north of Wells, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept., NV/WLS/ESL-1, DOE/ID/12079-83, 38 p.

25-82. Killpack, T. J., 1982, CONDUCT — A 3-D intrusive heat conduction program: Univ. of Utah/Dept. Geol. and Geophys. Rept. No. 77/U, 10 p.

26-82. Mackelprang, C. E., 1982, Preliminary results of microearthquake survey, northern Adak Island, Alaska: University of Utah Research Institute, Earth Science Laboratory, 22 p.

27-82. Mackelprang, C. E., 1982, Results of a detailed gravity survey in the Alamosa area, Alamosa County, Colorado: University of Utah Research Institute, Earth Science Laboratory Rept. No. 126., DOE/ID/12079-109, 36 p.

28-82. Mackelprang, C. E., 1982, Two-dimensional modeling results of telluric-magnetotelluric data from the Tuscarora area, Elko County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 63, DOE/ID/12079-48, 25 p.

29-82. Mackelprang, C. E., 1982, Interpretation of geophysical data from the Colado geothermal area, Pershing County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 71, DOE/ID/12079-58, 27 p.

30-82. Mackelprang, C. E., 1982, Interpretation of dipole-dipole electrical resistivity survey, Tuscarora geothermal area, Elko County, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 72, DOE/ID/12079-59, 16 p.

31-82. Mackelprang, C. E., Lange, A. L., Sibbett, B. S. and Pilkington, H. D., 1982, Interpretation of a telluric-magnetotelluric survey at the Tuscarora geothermal exploration Unit, Elko County, Nevada: presented to Society of Exploration Geophysicists Annual meeting, abstract, *Geophysics*, 47, 4, 421. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82007-ABS.

32-82. Moore, J. N., Capuano, R. M. and Christensen, O. D., 1982, Geochemical indicators of a high-temperature geothermal system: presented to 9th International Geochemical Exploration Symposium, Saskatoon, Canada. Also University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-49.

33-82. Moore, J. N., Christensen, O. D. and Bamford, R. W., 1982, Mercury as a pathfinder element in the exploration of vapor dominated geothermal systems: *Geothermal Resources Council, Transactions*, 6, 99-102. Also University of Utah Research Institute, Earth Science Laboratory Rept. 61, DOE/ID/12079-43.

34-82. Nash, W. P. and Crecraft, H., 1982, Evolution of Quaternary magmatic system, Mineral Mountains, Utah — Interpretations from chemical and experimental modeling, DOE/ID/12079-74, 50 p.

35-82. Newkirk, D. and Hohmann, G. W., 1982, Downhole electrode resistivity interpretation with 3-D models: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-47, 28 p.

36-82. Nielson, D. L. (ed.) 1982, Overthrust belt of Utah: Utah Geological Association Publication 10, 335 p.

37-82. Nutter, C., 1982, BOTT— A 2-D sedimentary basin gravity modeling program: Univ. of Utah./Dept. Geol. & Geophys. Rept. No. 76/U, 20 p.

38-82. Nutter, C., 1982, DIG — Menu-driven well-log digitizing software package: Univ. of Utah./Dept. Geol. & Geophys. Rept. No. 79/U, 19 p.

39-82. Nutter, C., 1982, MAP — A general purpose menu-driven program: Univ. of Utah./Dept. Geol. & Geophys. Rept. No. 73/U, 20 p.

40-82. Nutter, C., 1982, G-REGION — A 2-1/2D gravity modeling program: Univ. of Utah./Dept. Geol. & Geophys. Rept. No. 82/U, 35 p.

41-82. Nutter C., 1982, M-REGION — A 2-1/2D magnetic modeling program: Univ. of Utah./Dept. Geol. & Geophys. Rept. No. 83/U, 35 p.

42-82. Nutter, C., 1982, PICKS — Interactive seismic log data input: Univ. of Utah./Dept. Geol. & Geophys. Rept. No. 85/U, 23 p.

43-82. Ross, H. P., 1982, A review of electrical geophysical methods in petroleum exploration: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82010-TR, 17 p.

44-82. Ross, H. P., Moore, J. N. and Christensen, O. D., 1982, The Cove Fort/Sulphurdale KGRA — a geologic and geophysical case study: University of Utah Research Institute, Earth Science Laboratory Rept. No. 90, DOE/ID/12079-64, 41 p.

45-82. Ross, H. P., Nielson, D. L. and Moore, J. N., 1982, An exploration case study of the Roosevelt Hot Springs geothermal system, Utah: American Association of Petroleum Geologists Bulletin, 66, 7, 879-902. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 89, DOE/ID/12079-63.

46-82. Ruscetta, C. A., 1982, Geothermal Direct Heat Program, Roundup Technical Conference Proceedings, I— Papers Presented: University of Utah Research Institute, Earth Science Laboratory Rept. No. 98, DOE/ID/12079-71, 312 p.

47-82. Ruscetta, C. A., 1982, Geothermal Direct Heat Program, Roundup Technical Conference Proceedings, II— Bibliography of Publications: University of Utah Research Institute, Earth Science Laboratory Rept. No. 99, DOE/ID/12079-72, 312 p.

48-82. San Filipo, W. A. and Hohmann, G. W., 1982, Computer simulation of low frequency electromagnetic data acquisition: University of Utah Research Institute, Earth Science Laboratory Rept. No. 62, DOE/ID/12079-46, 33 p.

49-82. Sibbett, B. S., 1982, Geology of the Tuscarora geothermal prospect, Elko County, Nevada: Geological Society of America Bulletin, 93, 1264-1272. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82008-JP.

50-82. Sibbett, B. S. and Blackett, R. E., 1982, Lithologic interpretation of the De Braga #2 and Richard Weishaupt #1 geothermal wells, Stillwater project, Churchill county, Nevada: University of Utah Research Institute, Earth Science Laboratory Rept. No. 70, DOE/ID/12079-57, (2 plates) 32 p.

51-82. Sibbett, B. S., Nielson, D. L., Ramsthaler, J. and Shane, K., 1982, Geothermal Potential of Ascension Island, South Atlantic, Phase I, - Preliminary Examination: University of Utah Research Institute, Earth Science Laboratory Rept, (3 plates), 85 p.

52-82. Sibbett, B. S., Zeisloft, J. and Bowers, R., 1982, Geology of MacFarlane's Spring thermal area, Nevada: Geothermal Resources Council, Transactions, 6, 47-50. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-82009-JP.

53-82. Sill, W. R., 1982, Self-potential effects due to hydrothermal convection-velocity cross coupling: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-68, 15 p.

54-82. Sill, W. R., 1982, A model for the cross coupling parameters of rocks: University of Utah Research Institute, Earth Science Laboratory Rept. DOE/ID/12079-69, 29 p.

55-82. Sill, W. R., 1982, Diffusion coupled (electrochemical) self-potential effects in geothermal areas: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-73, 21 p.

56-82. Sill, W. R. and Killpack, T. J., 1982, SPXCPL — Two-dimensional SP modeling program of self-potential effects from cross coupled fluid and heat flow (User's Guide and Documentation for Version 1.0): University of Utah Research Institute, Earth Science Laboratory Rept. No. 74, DOE/ID/12079-60, 26 p.

57-82. Smith, L. and Chapman, D., 1982, The effects of regional ground water flow on the thermal regime of a basin: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-65, 68 p.

58-82. Stodt, J. A., 1982, Probability distributions for magnetotellurics: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-84, 67 p.

59-82. Stodt, J. A., 1982, Generalized error analysis for conventional and remote reference magnetotellurics: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/12079-85, 43 p.

60-82. Stodt, J. A., 1982, Weighted least squares estimates of the magnetotelluric transfer functions from non-stationary data: Univ. of Utah/Dept. Geol. & Geophys. Rept., DOE/ID/1207986, 33 p.

61-82. Stringfellow, J., 1982, Industry Coupled Case Study Program Final Report: University of Utah Research Institute, Earth Science Laboratory Rept. No. 102, DOE/ID/12079-81, 108 p.

62-82. Wannamaker, P. E., Ward, S. H. and Hohmann, G. W., 1982, Magnetotelluric responses of 3-D bodies in layered earths: University of Utah Research Institute, Earth Science Laboratory Rept. No. 106, DOE/ID/12079-87, 83 p.

63-82. Wannamaker, P. E. and Hohmann, G. W., 1982, Electromagnetic modeling of three-dimensional bodies in layered earth using integral equations: University of Utah Research Institute, Earth Science Laboratory Rept. No. 64, DOE/ID/12079-50, 51 p.

64-82. Ward, S. H. and Sill, W. R., 1982, Resistivity, induced polarization and self-potential methods in geothermal exploration: University of Utah Research Institute, Earth Science Laboratory Rept. No. 108, DOE/ID/12079-90, 100 p.

- 65-82. Withrow, C. A., 1982, DRAFT — Drafting aid for initial text layout: Univ. of Utah/Dept. Geol. & Geophys. Rept No. 80/U, 15 p.
- 66-82. Withrow, C. A., 1982, PATH — Program to model distribution of species in solution: Univ. of Utah/Dept. Geol. & Geophys. Rept. No. 84/U, 6 p.
- 67-82. Withrow, C. A., 1982, RIPLEY — Program to produce mineral stability diagrams: Univ. of Utah/Dept. Geol. & Geophys. Rept. No. 87/U, 4 p.
- 68-82. Withrow, C. A. and Maurer, J., 1982, PLANMAP — Interactive plan view - Geochem data, REV2: Univ. of Utah/Dept. Geol. & Geophys. Rept. No. 86/U., 24 p.
- 69-82. Zandt, G., McPherson, L., Schaff S. and Olson, S., 1982, Seismic baseline and induction studies - Roosevelt: University of Utah Research Institute, Earth Science Laboratory Rept. No. 100, DOE/ID/1821, 60 p.
- 70-82. Zeisloft, J. and Struhsacker, D. W., 1982, The geology and geothermal setting of the Magic Reservoir area, Blaine and Camas Counties, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ID/12079-56, 69 p.

1983

- 01-83. Blackett, R. and Kolesar, P. T., 1983, Geology and alteration of the Raft River geothermal system: Geothermal Resources Council, Transactions, 7, 123-128. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 116, DOE/ID/12079-99.
- 02-83. Capuano, R. M., Adams, M. C. and Wright, P. M., 1983, Tracer recovery and mixing from two geothermal injection-backflow studies: *in* Proceedings, 9th Stanford Workshop on Geothermal Reservoir Engineering, 299-304. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-83008-TR.
- 03-83. Christensen, O. D., Capuano, R. M. and Moore, J. N., 1983, Trace element distribution in an active hydrothermal system, Roosevelt Hot Springs thermal area, Utah: *Journal of Volcanology and Geothermal Research*, 16, 99-129.
- 04-83. Cole, D. R., 1983, Chemical and isotopic investigations of warm springs associated with normal faults in Utah: *Journal of Volcanology*, 16, 65-98. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 92, DOE/ID/12079-66.
- 05-83. Foley, D., 1983, U. S. Dept of Energy, State Coupled Resource Assessment Program-Final Rept. for FY 82: University of Utah Research Institute, Earth Science Laboratory Rept. No. 131, DOE/ID/12079-114, 60 p.
- 06-83. Foley, D. and Blackett, R., 1983, Water geochemistry of hydrothermal systems, Wood River District, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-83006-TR, DOE/ID/12079-107, 23 p.
- 07-83. Foley, D., Zeisloft, J. and Blackett, R., 1983, Hydrothermal systems of the Wood River District, Idaho: presented to Geological Society of America Regional meeting. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-83004-ABS.
- 08-83. Hulen, J. B., 1983, Structural control of the Baltazar Hot Springs geothermal system, Humboldt, County, Nevada: Geothermal Resources Council, Transactions, 7, 157-162. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 119, DOE/ID/12079-102.
- 09-83. Hulen, J. B. and Nielson, D. L., 1983, Stratigraphy of the Bandelier Tuff and characterization of high-level clay alteration in borehole B-20, Redondo Creek, Valles caldera, New Mexico: Geothermal Resources Council, Transactions, 7, 163-168. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 118, DOE/ID/12079-101.
- 10-83. Mackelprang, C. E., 1983, Results of a detailed gravity survey in the Alamosa area, Alamosa county, Colorado, University of Utah Research Institute, Earth Science Laboratory Rept. No. 126, DOE/ID/12079-109, 36 p.
- 11-83. Moore, J. N., Adams, M. C. and Stauder, J. J., 1983, Geochemistry of Meager Creek Geothermal Field, British Columbia, Canada: Geothermal Resources Council, Transactions, 7, 315-320. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 117, DOE/ID/12079-100.

12-83. Moore, J. N. (ed.), 1983, Guidebook to Brady, Desert Peak, Humbolt House, Golconda, and Getchell: Field Trip No. 4, Geothermal Resources Council Symposium, The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province, 85 p.

13-83. Newman, G., Wannamaker, P. E. and Hohmann, G., 1983, Detection of conductive bodies in a layered earth using the magnetotelluric method — Application of silicic magma bodies: University of Utah Research Institute, Earth Science Laboratory Rept. No. 113, DOE/ID/12079-96, 51 p.

14-83. Nielson, D. L. and Hulen, J. B., 1983, Geologic model of the Baca geothermal reservoir, Valles caldera, New Mexico: *in* Proceedings, 9th Workshop on Geothermal Reservoir Engineering, Stanford University, 145-150. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-83002-TR.

15-83. Rimstidt, J. D., and Cole, D. R., 1983, Geothermal mineralization — The mechanism of formation of the Beowawe, Nevada siliceous sinter deposit: American Journal of Science, 283, 861-875. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 111, DOE/ID/12079-92.

16-83. Sibbett, B. S., 1983, Structural control and alteration at Beowawe KGRA, Nevada: Geothermal Resources Council, Transactions, 7, 187-191. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-83007-JP.

17-83. Sill, W. R., 1983, Interpretation of SP measurements during injection tests at Raft River, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 120, DOE/ID/12079-103, 20 p.

18-83. Sill, W. R., 1983, Resistivity measurements before and after injection test No. 5 at Raft River KGRA, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 121, DOE/ID/12079-104, 14 p.

19-83. Sorey, M. L., Reed, M. J., Foley, D., and Renner, J. L., 1983, Low-temperature geothermal resources in the central and eastern United States: *in* Reed, M. J., (ed.), Assessment of low-temperature geothermal resources of the United States-1981, U. S. Geological Survey Circular 892, 51-65. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-83005-TR.

20-83. Stodt, J. A., 1983, Bias removal for conventional magnetotelluric data, University of Utah Research Institute, Earth Science Laboratory Rept. No. ESL-123, DOE/ID/12079-106, 58 p.

21-83. Struhsacker, D. W., Jewell, P. W., Zeisloft, J. and Evans, S. H., Jr., 1983, The geology and geothermal setting of the Magic Reservoir area, Blaine and Camas Counties, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 123, DOE/ID/12079-106 58 p.

22-83. Struhsacker, E., Smith, C. and Capuano, R. M., 1983, An evaluation of exploration methods for low-temperature geothermal systems in the Artesian City area, Idaho: Bulletin, Geological Society of America, 94, 58-79. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 110, DOE/ID/12079-91.

23-83. Thussu, J., Moore, J. N. and Capuano, R. M., 1983, Preliminary geothermal assessment of the Tattapani thermal area, Madya Pradesh, India: Geothermal Resources Council, Transactions, 7, 337-342. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-83001-JP.

24-83. Wannamaker, P. E., 1983, Resistivity structure of the northern Basin and Range: *in* The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province, Geothermal Resources Council Special Rept. 13, 345-362.

25-83. Wannamaker, P. E., Ward, S. H., Hohmann, G. W. and Sill, W. R., 1983, Deep resistivity structure in southwestern Utah and its geothermal significance, University of Utah Research Institute, Earth Science Laboratory Rept. No. 109, DOE/ID/12079-89, 96 p.

26-83. Ward, S. H., 1983, Controlled source electromagnetic methods in geothermal exploration: University of Utah Research Institute, Earth Science Laboratory Rept. No. 114, DOE/ID/12079-97, 46 p.

27-83. Ward, S. H., 1983, Geophysical studies of active geothermal systems in the northern Basin and Range: *in* The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province, Geothermal Resources Council Special Rept. 13, 121-157. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 125, DOE/ID/12079-108.

28-83. Ward, S. H. and Wannamaker, P. E., 1983, The MT/AMT Electromagnetic method in Geothermal exploration: UNU Geothermal Training Program, Iceland, Report 1983-5, 107 p.

29-83. Wright, P. M., 1983, In-Situ leaching and solution mining - State of the art and recommended research - Summary report, Phase I: University of Utah Research Institute, Earth Science Laboratory Rept., to U.S. Bureau of Mines and industry participants, 174 p.
Appendix 1 - Geological characterization for solution mining and direct leaching, by Jeffrey B. Hulen, William C. Larson, William P. Nash, Richard L. Nielsen, Dennis L. Nielson and Phillip M. Wright, 162 p.
Appendix 2 - Chemistry, by Michael C. Adams, John A. Apps, Regina M. Capuano, David R. Cole, Charles L. Kusik, Donald Langmuir and Milton E. Wadsworth, 345 p.
Appendix 3 - Fracturing and rubblization, by Dennis V. D'Andrea, Wayne O. Ursenbach, Howard M. Wells and Stephen R. Winzer, 79 p.
Appendix 4 - Fluid flow management, by Steven E. Follin, Larry W. Lake, Subir Sanyal, Ronald C. Schroeder, Devraj Sharma and Phillip M. Wright, 134 p.

30-83. Wright, P. M., 1983, In-situ leaching and solution mining - Evaluation of state of the art - Bibliography: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-83011-TR, 128 p.

31-83. Zeisloft, J., Foley, D. and Blackett, R. 1983, Water geochemistry of hydrothermal systems, Wood River District, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 124, DOE/ID/12079-107, 20 p.

1984

- 01-84. Adams, M. C., 1984, Geochemistry of the Wendel-Amedee geothermal system, California: Geothermal Resources Council, Transactions, 8, 363-368. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-84010-JP.
- 02-84. Anonymous, 1984, Final Progress Report — Research and technology development for geothermal reservoir definition program, U. S. DOE: University of Utah Research Institute, Earth Science Laboratory Rept. 155, DOE/SAN/12196-10, 32 p.
- 03-84. Belan, R. A., Lessley, S. D. and Ross, H. P., 1984, Hill AFB, Utah Installation restoration program, Phase IIB IRP survey (PROPRIETARY): UURI/UBTL Final Report.
- 04-84. Capuano, R. M., Kroneman, R. L. and Yorgason, K., 1984, Chemical analyses of water samples collected during injection-backflow testing at Raft River, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 129, DOE/ID/12079-112, 108 p.
- 05-84. Cole, D. R. and Ravinsky, L., 1984, Hydrothermal alteration zoning in the Beowawe geothermal system, Eureka and Lander Counties, Nevada: Economic Geology, 79, 759-767. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 138,
- 06-84. Foley, D., 1984, State low-temperature resource assessment program: University of Utah Research Institute, Earth Science Laboratory Rept. No. 128, DOE/ID/12079-111.
- 07-84. Foley, D., 1984, State Coupled Resource Assessment U. S. DOE Program - Final Rept. for FY 83: University of Utah Research Institute, Earth Science Laboratory Rept. No. 132, DOE/ID/12079-115, 28 p.
- 08-84. Foley, D., Moore, J. N., Nielson, D. L., Ross, H. P., Ward, S. H. and Wright, P. M., 1984, Research, technology development and technical support for geothermal energy: University of Utah Research Institute, Earth Science Laboratory Rept., 145 p.
- 09-84. Foley, D. and Zeisloft, J., 1984, Geothermal resources of the Balcones-Ouachita Trend, Central Texas: presented to the annual meeting of the American Association of Petroleum Geologists. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-84009-ABS.
- 10-84. Kroneman, R. L., Yorgason, K. and Moore, J. N., 1984, Preferred methods of analysis for chemical tracers in moderate- and high-temperature geothermal environments: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-84001-TR, DOE/ID/12079-128, 42 p.
- 11-84. Moore, J. N., 1984, The geochemistry and mineralogy of The Geysers - A reconnaissance study: University of Utah Research Institute, Earth Science Laboratory Rept. No. 136, DOE/ID/12079-119.
- 12-84. Nielson, D. L., 1984, Phase II Briefing — Geothermal exploration and geothermal power plant update for Ascension Island, South Atlantic Ocean (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., 36 p.

13-84. Nielson, D. L. and Hulen, J. B., 1984, Internal geology and evolution of the Redondo Dome, Valles caldera, New Mexico: *Journal of Geophysical Research*, 89, 8695-8711, Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 122, DOE/ID/12079-105.

14-84. Nielson, D. L., Sibbett, B. S., Shane, K. and Whitbeck, J., 1984, Final Report - Geothermal exploration and geothermal power plant update for Ascension Island, South Atlantic Ocean (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 135R, DOE/ID/12079-118, 48 p.

15-84. Ross, H. P., Green, D. J., Sibbett, B. S. and Nielson, D. L., 1984, Electrical resistivity surveys, Ascension Island, South Atlantic Ocean (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-840003R-TR, 30 p.

16-84. Ross, H. P., Mackelprang, C. E. and Dajany, S. F., 1984, Supplemental electrical resistivity surveys, Ascension Island, South Atlantic Ocean (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 142, DOE/ID/12079-123, 43 p.

17-84. Ross, H. P., Nielson, D. L. and Green, D. J., 1984, Aeromagnetic map of Ascension Island, South Atlantic Ocean (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-84007R-TR.

18-84. Ross, H. P., Nielson, D. L. and Green, D. J., 1984, Interpretation of aeromagnetic survey, Ascension Island, South Atlantic Ocean (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-84004R-TR, 37 p.

19-84. Sibbett, B. S., 1984, Geothermal gradient drilling and measurements, Ascension Island, South Atlantic Ocean (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept. No. 134, DOE/ID/12079-117, 77 p.

20-84. Sibbett, B. S. and Capuano, R. M., 1984, Potential for low-temperature geothermal resource near Mackay, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 137, DOE/ID/12079-120, 13 p.

21-84. Struhsacker, D. W., Jewell, P. W., Zeisloft, J. and Evans, S. H., 1984, The geology and geothermal setting of the Magic reservoir area, Blaine and Camas counties, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept., 58 p.

22-84. Wannamaker, P. E., Hohmann, G. W. and San Filipo, W. A., 1984, Electromagnetic modeling of three dimensional bodies in layered earths using integral equations: *Geophysics*, 49, 60-74.

23-84. Wannamaker, P. E., Hohmann, G. W. and Ward, S. H., 1984, Magnetotelluric responses of three-dimensional bodies in layered earths: *Geophysics*, 49, 1517-1533.

24-84. Ward, S. H., Foley, D., Moore, J. N., Nielson, D. L., Ross, H. P. and Wright, P. M., 1984, Exploration strategies for regional assessment of hydrothermal resources: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-84006-TR.

25-84. Wright, P. M., 1984, Applications of geochemistry to problems in geothermal injection: DOE/Program Review for 1984. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85034-TR, DOE/ID/12079-133, 42 p.

26-84. Wright, P. M., Capuano, R. M., Adams, M. C. and Moore, J. N., 1984, Uses of geochemistry with injection -backflow testing in geothermal reservoir studies: Geothermal Resources Council, Transactions, 8, 349-354. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-84006-TR.

27-84. Zeisloft, J., 1984, Case study of the city of Alamosa geothermal project of the User-Coupled Confirmation Drilling Program: University of Utah Research Institute, Earth Science Laboratory Rept. No. 130, DOE/ID/12079-113.

28-84. Zeisloft, J., 1984, Lackland AFB geothermal summary report - Phase I: University of Utah Research Institute, Earth Science Laboratory Rept. No. 133, DOE/ID/12079-116, 35 p.

29-84. Zeisloft, J. and Foley, D., 1984, Geothermal evaluation of the Hosston Formation, Lackland AFB, San Antonio, Texas: University of Utah Research Institute, Earth Science Laboratory Rept. No. 127, DOE/ID/12079-110, 64 p.

30-84. Zeisloft, J., Sibbett, B. S. and Adams, M. C., 1984, Case study of the Wendel-Amedee KGRA exploration drilling, Project, Lassen County, California — User Coupled Confirmation Drilling Program: University of Utah Research Institute, Earth Science Laboratory Report No. 162, DOE/ID/12079-127, 97 p.

1985

- 01-85. Adams, M. C., 1985, Tracer stability and chemical changes in an injected geothermal fluid during East Mesa injection testing: *in* Proceedings, 10th Workshop on Geothermal Reservoir Engineering, Stanford University, 10, 247-252. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85013-TR.
- 02-85. Adams, M. C. and Moore, J. N., 1985, Geothermal systems in mountainous terrains - An example from Meager Mountain: *American Journal of Science*, 287, 720-755.
- 03-85. Adams, M. C. and Moore, J. N., 1985, Development and application of tracers — Examples of field and experimental studies: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85017-TR, DOE/ID/12079129, 6 p.
- 04-85. Adams, M. C., Moore, J. N. and Forster, C., 1985, Fluid flow in volcanic terrains - Hydrogeochemistry of the Meager Mountain thermal system: *Geothermal Resources Council, Transactions*, 9, 377-382. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 151.
- 05-85. Anonymous, 1985, Final Progress Report - Research and Technology Development for Geothermal Reservoir Definition Program, 1985: (prepared with INEL) University of Utah Research Institute, Earth Science Laboratory Rept. No. 155, DOE/SAN/12196-10, 27 p.
- 06-85. Beasley, C. W. and Ward, S. H., 1985, 3-D mise-à-la-masse modeling applied to mapping fracture zones (with Documentation for Program GRDIP3, Program for Modeling the IP - Resistivity Response of Three-dimensional Earth Structures, August, 1988 34-85): University of Utah Research Institute, Earth Science Laboratory Rept. No. 143, DOE/SAN/12196-3.
- 07-85. Foley, D. and Street, L., 1985, Geothermal systems of the Snake River Plain, Idaho batholith and Northern Rocky Mountain transition zone: presented to Geological Society of America Regional meeting. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85011-ABS.
- 08-85. Goff, F., Nielson, D. L. and Wollenberg, H., 1985, Investigation of magma-hydrothermal systems — CSDP proposal for the Valles caldera, New Mexico: *in* Continental Scientific Drilling Program Workshop, Houston, 50-52.
- 09-85. Hulen, J. B., 1985, Significance of surficial alteration in the Coso geothermal area: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85007-TR.
- 10-85. Hulen, J. B. and Nielson, D. L., 1985, Altered tectonic and hydrothermal breccias in Corehole VC-1, Valles caldera, New Mexico: *EOS, Transaction, AGU*, 66, 1081.
- 11-85. Hulen, J. B. and Nielson, D. L., 1985, Subsurface hydrothermal alteration in the Baca geothermal system, Redondo Dome, Valles caldera, New Mexico: *Los Alamos National Laboratory Rept. LA-10339-C*, 26-28.

12-85. Moore, J. N., Adams, M. C. and Foley, D., 1985, The application of geochemical methods to geothermal exploration, I and II (PROPRIETARY): prepared for Law Engineering Iberica, S. A., 1 & 2.

13-85. Moore, J. N., Adams, M. C. and Stauder, J., 1985, Geologic and geochemical investigations of the Meager Creek geothermal system, British Columbia, Canada: *in* Proceedings, 10th Workshop in Geothermal Reservoir Engineering, Stanford University, 523-528. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 147, DOE/SAN/12196-7.

14-85. Newman, G. H., Wannamaker, P. E. and Hohmann, G. W., 1985, On the detectability of crustal magma chambers using the magnetotelluric method: *Geophysics*, 50, 1136-1143.

15-85. Nielson, D. L., 1985, Predictive structural models for the development of fracture permeability in geothermal areas: *in* LBL Fracture Definition Workshop. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 160, DOE/SAN/12196-15, 5 p.

16-85. Nielson, D. L., 1985, Quarterly Progress Report for U.S. Dept. of Energy Geothermal Reservoir Definition Program-June 1, 1984 — Sept. 30, 1984: University of Utah Research Institute, Earth Science Laboratory Rept. No. 156, DOE/SAN/12196-11 22 p.

17-85. Nielson, D. L., 1985, Quarterly Progress Report for U.S. Dept. of Energy Geothermal Reservoir Definition Program-January 1, 1985 — March 31, 1985: University of Utah Research Institute, Earth Science Laboratory Rept. No. 157, DOE/SAN/12196-12, 13 p.

18-85. Nielson, D. L., 1985, Quarterly Progress Report for U.S. Dept. of Energy Geothermal Reservoir Definition Program -April 1, 1985 — June 30, 1985: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85022-PR, DOE/SAN/12196-16, 14 p.

19-85. Nielson, D. L. and Goff, F., 1985, Scientific drilling in a vapor-dominated geothermal system, VC-2A, Sulphur Springs, Valles caldera, New Mexico: abstract, presented to 1985 fall meeting American Geophysical Union. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. ESL-85030-TR.

20-85. Nielson, D. L. and Hulen, J. B., 1985, Observations in an active hydrothermal system through deep drilling, Valles caldera, New Mexico: *in* Observation of the Continental Crust through Drilling I, Springer-Verlag, 308-322. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 140, DOE/SAN/12196-1.

21-85. Nielson, D. L. and Hulen, J. B., 1985, Results of deep drilling in the Valles caldera, New Mexico: University of Utah Research Institute, Earth Science Laboratory Rept. No. 146, DOE/SAN/12196-5, 12 p.

22-85. Nielson, D. L. and Moore, J. N., 1985, Geological and geochemical techniques for fracture definition in geothermal reservoirs: *in* Proceedings, Geothermal Program Review IV, U. S. Department of Energy CONF-8509142, 69-75. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85018-TR, DOE/SAN/12196.

23-85. Ross, H. P. and Moore, J. N., 1985, Geophysical investigations of the Cove Fort/Sulphurdale geothermal system, Utah: *Geophysics*, 50, 1732-1745. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85001-JP.

24-85. Ross, H. P. and Ward, S. H., 1985, Borehole electrical geophysical methods - A review of the state-of-the-art and preliminary evaluation of the application to fracture mapping in geothermal systems: University of Utah Research Institute, Earth Science Laboratory Rept. No. 141, DOE/SAN/12196-2, 61 p.

25-85. Ross, H. P. and Wright, P. M., 1985, The Application of geophysical methods to geothermal exploration (PROPRIETARY): prepared for Law Engineering Iberica, S. A.

26-85. Sibbett, B. S., 1985, Field check of photogeological map of proposed NPR site E and vicinity, INEL, Idaho: University of Utah Research Institute, Earth Science Laboratory Rept. No. 139, DOE/ID/12079-122, 9 p.

27-85. Sibbett, B. S., 1985, GeoProducts Wen-2 Well, Wendel-Amedee, California: University of Utah Research Institute, Earth Science Laboratory Rept. No. 152, DOE/ID/12079-125, 17 p.

28-85. Wannamaker, P. E., 1985, Very low-frequency magnetotelluric and dipole-dipole responses of three-dimensional thin-layer resistivity structure modeled using finite elements: University of Utah Research Institute, Earth Science Laboratory Rept. No. 159, DOE/SAN/12196-14, 32 p.

29-85. Wannamaker, P. E., Stodt, J. A. and Rijo, L. 1985, PW2D-Finite element program for solution of magnetotelluric responses of two-dimensional earth resistivity structure — User Documentation: University of Utah Research Institute, Earth Science Laboratory Rept. No. 158, DOE/SAN/12196-13, 43 p.

30-85. Wannamaker, P. E., Stodt, J. A. and Rijo, L., 1985, A stable finite-element solution for 2-dimensional magnetotelluric modeling: *Geophysical Journal of the Royal Astronomical Society*, 88, 277-296. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85019-JP, NSF Contract No. EAR-8500248.

31-85. Ward, S. H., Moore, J. N., Zhao, J. X. and Groenwald, J., 1985, Indications of mineral zoning in a fossil hydrothermal system at the Meager Creek prospect, B.C., Canada from induced polarization: University of Utah Research Institute, Earth Science Laboratory Rept. No. 154, DOE/SAN/12196-9, 36 p.

32-85. Woodruff, C. and Foley, D., 1985, Thermal regimes of the Balcones-Ouachita trend, Texas: presented to Gulf Coast Association of Geological Societies. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85012-ABS.

33-85. Wright, P. M. and Ward, S. H., 1985, Application of geophysics for concealed hydrothermal systems in volcanic terrains: *Geothermal Resources Council, Transactions*, 9, 423-428. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 150.

34-85. Wright, P. M. and Ward, S. H., 1985, Borehole geophysical techniques for defining permeable zones in geothermal systems: Annual DOE Program Review. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85014-JP.

35-85. Wright, P. M., Ward, S. H., Ross, H. P. and West, R., 1985, State of the art - geophysical exploration for geothermal resources: *Geophysics*, 50, 2666-2696. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85015-JP.

36-85. Yang, F., 1985, On sensitivity of surface-to-borehole resistivity measurements to the attitude and the depth to center of a three-dimensional oblate spheroid: *Geophysics*, 50, 1173-1178. Also University of Utah Research Institute, Earth Science Laboratory Rept. 144, DOE/SAN/12196-4, 20 p.

37-85. Yang, F. W., and Ward, S. H., 1985, Single-borehole and cross-borehole resistivity anomalies of thin ellipsoids and spheroids: *Geophysics*, 50, 637-655.

38-85. Zeisloft, J. and Sibbett, B. S., 1985, City of Alamosa, Colorado, Alamosa #1 geothermal test well UCCDP project case study: University of Utah Research Institute, Earth Science Laboratory Rept. No. 161, DOE/ID/12079-126, 34 p.

39-85. Zhao, J. X., Rijo, L. and Ward, S. H., 1985, The effects of geological noise on cross-borehole electrical surveys: University of Utah Research Institute, Earth Science Laboratory Rept. No. 148, DOE/SAN/121968, 37 p.

1986

- 01-86. Adams, M. C., Ahn, J. H., Bentley, H., Moore, J. N., and Veggeberg, S., 1986, Derivitized hydrocarbons as geothermal tracers: Geothermal Resources Council, Transactions, 10, 415-420. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86014-JP, DOE/ID/12489-2.
- 02-86. Adams, M. C., Ahn, J. H., Benley, H., Moore, J. N. and Veggeberg, S., 1986, Tracer developments — Results of experimental studies: *in* Proceedings, 11th Workshop on Geothermal Reservoir Engineering, Stanford University, 97-102. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86001-TR.
- 03-86. Adams, and Moore, J. N., 1986, Tracer development - experimental studies: Geothermal injection technology program annual progress report, FY86: University of Utah Research Institute, Earth Science Laboratory Rept., joint publication with the Idaho National Engineering Laboratory.
- 04-86. Aleinkoff, J. N., Nielson, D. L., Hedge, C. E. and Evans, S. H., 1986, Geochronology of Precambrian and Oligocene rocks in the Mineral Mountains, south-central Utah: U. S. Geological Survey Bulletin, 1622, 1-12.
- 05-86. Anonymous, 1986, Geothermal Injection Technology Program, Annual Progress Report, FY-85: University of Utah Research Institute, Earth Science Laboratory Rept., joint publication with the Idaho National Engineering Laboratory.
- 06-86. Ballantyne, J. and Moore, J. N., 1986, Arsenic geochemistry in geothermal systems: Geological Society of America, Abstracts with Programs, 17, 7, 518. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86025-TR, DOE/ID/12489 p. 5.
- 07-86. Beasley, C. W. and Ward, S. H., 1986, Three-dimensional mise-à-la-masse modeling applied to mapping fracture zones: Geophysics, 51, 98-113. (with Documentation for Program GRDIP3, Program for Modeling the IP - Resistivity Response of Three-dimensional Earth Structures, August, 1988).
- 08-86. Echols, T., Hulen, J. B. and Moore, J. N., 1986, Surficial alteration and spring deposits of the Wheeler mercury prospect, with initial results from Wheeler corehole 64-16, Coso geothermal area, California: Geothermal Resources Council, Transactions, 10, 175-180. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86016-JP, DOE/SAN/12196-20.
- 09-86. Goff, F. and Nielson, D. L. (eds.) 1986, Caldera processes and magma-hydrothermal systems, Continental Scientific Drilling Program - Thermal Regimes, Valles caldera Research, Scientific and Management Plan: Los Alamos National Laboratory Rept. AL-10737-OBES, 163 p.
- 10-86. Green, D. J. and Ward, S. H., 1986, Report on preliminary design for multi-array borehole electrical geophysical method: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86022-TR, DOE/SAN/1219623, 12 p.

11-86. Howell, J. and Chapman, D., 1986, Analysis of temperature-time data from 3 m drill holes at Crystal Hot Springs, Utah: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86006-TR, DOE/ID/12079-130, 51 p.

12-86. Hulen, J. B. and Nielson, D. L., 1986, Stratigraphy and hydrothermal alteration in well Baca-8, Sulphur Springs area, Valles caldera, New Mexico: Geothermal Resources Council, Transactions, 10, 187-192. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86013-JP, DOE/SAN/12196-19.

13-86. Hulen, J. B. and Nielson, D. L., 1986, Hydrothermal alteration in the Baca geothermal system, Redondo Dome, Valles caldera, New Mexico: Journal of Geophysical Research, 91, 1867-1886. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. 145, DOE/SAN/12196-6.

14-86. LaBrecque, D. and Ward, S. H., 1986, Evaluation of borehole MMR for fracture detection: Expanded Abstracts of the 57th Annual International Society of Exploration Geophysicists Meeting, 66-67. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86024-TR, DOE/SAN/12196-24.

15-86. Moore, J. N. and Adams, M. C., 1986, Thermal and chemical evolution of the caprock in the Salton Sea geothermal field, California: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86019-ABS, DOE/SAN/12196-22.

16-86. Moore, J. N. and Nielson, D. L., 1986, Geological and geochemical techniques for mapping fractures and fluid flow patterns in geothermal reservoirs: presented at 56th California Regional Meeting, Society of Petroleum Engineers, Oakland, California, April 2-4, 307-316. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-86004-JP.

17-86. Nash, W. P., 1986, Distribution, lithology and ages of late cenozoic volcanism on the eastern margin of the Great Basin, west-central Utah: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86007-TR, DOE/SAN/12079-131, 82 p.

18-86. Nielson, D. L., 1986, Quarterly Progress Report for U.S. Department of Energy Reservoir Definition Program - June 30, 1985 — Sept. 30, 1985 and Annual Report Sept. 30 — Dec. 31, 1985: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86005-PR, DOE/SAN/12196-17, 27 p.

19-86. Nielson, D. L., 1986, Quarterly Progress Report for U.S. Department of Energy Reservoir Definition Program, Jan. 1, 1986 — Mar. 31, 1986: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86028-TR, DOE/SAN/12196-25.

20-86. Nielson, D. L., 1986, Quarterly Progress Report for U.S. Department of Energy Reservoir Definition Program, April 1, 1986 — June 30, 1986: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86029-TR, DOE/SAN/12196-26.

21-86. Nielson, D. L., Evans, S. H., Jr. and Sibbett, B. S., 1986, Magmatic, structural and hydrothermal evolution of the Mineral Mountains intrusive complex, Utah: Geological Society of America Bulletin, 97, 765-777. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85006-JP.

22-86. Ross, H. P., 1986, Detailed gravity surveys in Valle de los Chillos, Ecuador, and gravity survey mission for INE (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Final Report INE-GRAVE-1 to Instituto Nacional de Energia, Ecuador, 34 p.

23-86. Sibbett, B. S., 1986, Stratovolcano model/geothermal systems: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86023-TR, DOE/ID/12489-4.

24-86. Wannamaker, P. E., 1986, Electrical conductivity of water under-saturated crustal melting, *Journal of Geophysical Research*: 91, 6321-6327. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-85023-JP, Contract No. EAR-8417765.

25-86. Wannamaker, P. E., Stodt, J. A. and Rijo, L., 1986, Two-dimensional topographic variations in magnetotellurics modeling using finite elements: *Geophysics*, 51, 2131-2144.

26-86. West, R. C. and Ward, S. H., 1986, The borehole controlled-source audiomagnetotelluric response of a three-dimensional fracture zone: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86012-JP.

27-86. Wright, P. M., 1986, Geothermal energy - An overview of occurrence and exploration: Geothermal Resources Council Special Workshop Paper. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86003-JP.

28-86. Wright, P. M., 1986, Final Report for DOE Contract DE-AC07-80ID12079: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86010-TR, DOE/ID/12079-132.

29-86. Wright, P. M., 1986, Final Report — Electrical resistivity survey for low- and moderate-enthalpy geothermal resources in Valles De Los Chillos, Ecuador (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86033-PR, Final Report to Instituto Nacional de Energia, Ecuador, 184 p.

30-86. Wright, P. M., 1986, Geothermal development in Utah and status of the U.S. geothermal industry: Interstate Oil Compact Commission Committee Bulletin, 28, 49-61. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86027-TR, 54 p.

31-86. Wright, P. M. and Nielson, D. L., 1986, Electrical resistivity anomalies at Newberry volcano, Oregon: Comparison with alteration mineralogy in GEO Corehole N-1: Geothermal Resources Council, Transactions, 10, 247-252. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86015-JP, DOE/ID/12489-3.

32-86. Wright, P. M. and Ward, S. H., 1986, Borehole geophysical techniques for defining permeable zones in geothermal systems: Geothermal Resources Council, Transactions, 10, 253-258. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86017-JP, DOE/SAN/12196-12, 100 p.

33-86. Zhao, J. X., Rijo, L. and Ward, S. H., 1986, The effects of geologic noise on cross-borehole electrical surveys: *Geophysics*, 51, 1978-1991.

1987

01-87. Adams, M. C. and Moore, J. N., 1987, Hydrothermal alteration and fluid geochemistry of the Meager Mountain geothermal system: *American Journal of Science*, 287, 720-755. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-87004-JP.

02-87. Allison, M. L. and Nielson, D. L., 1987, Survey of borehole breakouts from active geothermal systems: *EOS, Transactions, AGU*, 68, 1460-1461.

03-87. Ballantyne, J. M. and Moore, J. N., 1987, Arsenic geochemistry in geothermal systems: *Geochimica et Cosmochimica Acta*, 52, 475-483. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88015-JP, DOE/ID/12489-24.

04-87. Boyer, S. E. and Allison, M. L., 1987, Estimates of extensions in the Basin and Range province: *Geological Society of America, Abstracts with Programs*, 19, 7, 597.

05-87. Horne, R. N., Johns, R. A., Adams, M. C., Moore, J. N. and Stiger, S. G., 1987, The use of tracers to analyze the effects of reinjection into fractured geothermal reservoirs: *in Proceedings Geothermal Program Review V*, Washington, D. C., April 14-15, 37-52.

06-87. Hulen, J. B., Nielson, D. L., Goff, F., Gardner, J. N. and Charles, R. W., 1987, Molybdenum mineralization in an active geothermal system, Valles caldera, New Mexico: *Geology*, 15, 748-752.

07-87. Hulen, J. B., Nielson, D. L., Goff, F. and Gardner, J. N., 1987, Hydrothermal alteration and molybdenum mineralization in the active geothermal system at Sulphur Springs, Valles caldera, New Mexico: *EOS, Transactions, AGU*, 68, 469.

08-87. LaBrecque, D. J. and Ward, S. H., 1987, Evaluation of borehole MMR for fracture detection: *Expanded Abstracts of the 57th Annual International Society of Exploration Geophysicists Meeting*, 66-67. Also ESL-86024-TR, DOE/SAN/12196-24.

09-87. Moore, J. N., 1987, Quality assurance sampling plan for the hydrofluoric acid storage tank area, Idaho Chemical Processing Plant (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., 41 p.

10-87. Moore, J. N. and Adams, M. C., 1987, Early diagenetic mineralization in the Salton Sea geothermal system, California: *Geothermal Resources Council, Poster Session*. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-87008-TR.

11-87. Moore, J. N. and Adams, M. C., 1987, Mineral and chemical geochemistry in geothermal exploration: *Exploration 87, Transactions* (in press).

12-87. Nielson, D. L., Goff, F., Hulen, J. B. and Gardner, J., 1987, Significant results from continental scientific drilling in the Valles caldera, New Mexico, USA: *Third International Symposium on Observation of the Continental Crust through Drilling, Mora and Orsa, Sweden*. Also University of Utah Research Institute, ESL-85003-TR.

13-87. Nielson, D. L. and Hulen, J. B., 1987, Hydraulic fracturing and hydrothermal brecciation in active geothermal systems: *Geothermal Resources Council, Transactions*, 11, 473-478.

14-87. Ross, H. P., 1987, State Cooperative Program, Annual Report for 1986: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-87001-PR, DOE/ID/85ID12489.

15-87. Wannamaker, P. E., Stodt, J. A. and Rijo, L., 1987, A stable finite element solution for two-dimensional magnetotelluric modeling: *Geophysical Journal of the Royal Astronomical Society*, 88, 277-296.

16-87. Wannamaker P. E., Stodt, J. A. and Rijo, L., 1987, PW2D — Finite element program for solution of magnetotelluric responses of two-dimensional earth resistivity structure — User Documentation, revised edition: University of Utah Research Institute, Earth Science Laboratory Rept. No. 158, DOE/SAN12196-13, 40 p.

17-87. Wright, P. M., 1987, A briefing on hydrothermal energy resource development: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-87011-TR, 14 p.

18-87. Wright, P. M., 1987, Status of the U. S. geothermal industry and recommendations for research: Report to the U. S. House of Representatives, University of Utah Research Institute, Earth Science Laboratory Rept., ESL-87006-TR, 35 p.

19-87. Wright, P. M., 1987, Caldera reservoir investigations program: *in* Proceedings Geothermal Program Review V, Washington, D. C., April 14-15, 61-66.

1988

- 01-88. Adams, M. C., Lemieux, M. M., Moore, J. N. and Johnson, S. D., 1988, Fluid chemistry and hydrology of the Heber geothermal system, California: 14th Annual Stanford Reservoir Engineering Conference, in press. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88015-JP, DOE/ID/12489-15.
- 02-88. Adams, M. C. and Moore, J. N., 1988, Development of chemical tracers for reservoir studies: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88037-JP, DOE/ID/12489-33, 3 p.
- 03-88. Allison, M. L., 1988, Fault-controlled thermal stresses as a fracturing mechanism in hydrothermal systems: *EOS, Transaction, AGU*, 69, 1451.
- 04-88. Allison, M. L. and Nielson, D. L., 1988, Application of borehole breakout studies to geothermal exploration and development — An example from Cove Fort/Sulphurdale, Utah: *Geothermal Resources Council, Transactions*, 12, 213-219. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88012-JP, DOE/ID/12489-14.
- 05-88. Allison, M. L. and Nielson, D. L., 1988, Stress in active geothermal systems: *in Proceedings of the Technical Review on Advances in Geothermal Reservoir Technology*, Lawrence Berkeley Laboratory, Rept. No. 25635, 11-17. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88036-JP, DOE/ID/12489-32.
- 06-88. Allison, M. L. and Nielson, D. L., 1988, Multiple, fault-bounded stress fields identified by borehole breakouts: *Geological Society of America, Abstracts with Programs*, 20, 7, A182.
- 07-88. Allison, M. L., Ross, H. P. and Reinbold, D. R., 1988, Seismic monitoring, Ascension Island, South Atlantic (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88011-TR, DOE/ID/12489-15, 43 p.
- 08-88. Ballantyne, J. M., 1988, A sheet zipper theory of smectite illitization — Implications and evidence: *Geological Society of America, Abstracts with Programs*, 20, 7, A357. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88023-JP, DOE/ID/12489-24.
- 09-88. Ballantyne, J. M., 1988, Illite-smectite uses in geothermal systems: *in Proceedings of the Technical Review on Advances in Geothermal Reservoir Technology — Research in Progress*, LBL-25635, 18. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88032-JP, DOE/ID/12489-27.
- 10-88. Ballantyne, J. M. and Moore, J. N., 1988, Arsenic geochemistry in geothermal systems: *Geochimica et Cosmochimica Acta*, 52, 475-483. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88022-JP, DOE/ID/12489-23.
- 11-88. Beasley, C. W. and Ward, S. H., 1988, Cross-borehole resistivity inversion: Expanded Abstracts of the 58th Annual International Society of Exploration Geophysicists meeting, 1, 198-200. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88018-JP, DOE/ID/12489-19.

12-88. Fraser, D. C., Stodt, J. A. and Ward, S. H., 1988, The effect of displacement currents on the response of high frequency electromagnetic systems: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88029-JP, DOE/ID/12489-26.

13-88. Goff, F., Gardner, J. N., Hulen, J. B. and Nielson, D. L., 1988, Some results from continental scientific drilling program core hole VC-2A, Valles caldera, New Mexico, U.S.A.: International Symposium on Geothermal Energy, Kumamoto and Beppu, Japan, 434-437 pp.

14-88. Hulen, J. B., Copp, J., Allison, M. L. and Nielson, D. L., 1988, Fracture permeability in the Coso geothermal system, California: EOS, Transactions, AGU, 69, 1172.

15-88. Hulen, J. B., Gardner, J. N., Nielson, D. L. and Goff, F., 1988, Stratigraphy, structure, hydrothermal alteration and ore mineralization encountered in CSDP corehole VC-2A, Sulphur Springs area, Valles caldera, New Mexico: University of Utah Research Institute, Earth Science Laboratory Rept., DOE/ER/13555-1, 44 p.

16-88. Hulen, J. B., Gardner, J. N. and Goff, F. and the Valles Scientific Drilling Team, 1988, Site-specific science plan for Continental Scientific Drilling Program corehole VC-2B, Los Alamos National Laboratory Rept. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88025-TR.

17-88. Hulen, J. B., Little, T. M. and Nielson, D. L., 1988, Intracaldera clastic deposits as guides to the evolution of the Valles caldera complex and associated hydrothermal systems, Jemez Mountains, New Mexico: submitted to Journal of Geophysical Research. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88026-JP.

18-88. Hulen, J. B. and Nielson, D. L., 1988, Hydrothermal brecciation in the Jemez fault zone, Valles caldera, New Mexico — Results from CSDP corehole VC-1: Journal of Geophysical Research, 93, 6077-6089. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88024-JP.

19-88. Hulen, J. B. and Nielson, D. L., 1988, Clay mineralogy and zoning in CDSP corehole VC-2A — Further evidence for collapse of isotherms in the Valles caldera, New Mexico: Geothermal Resources Council, Transactions, 12, 291-298. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88013-JP, DE-AC07-85-12489.

20-88. LaBrecque, D. J., 1988, The effect of a metal casing on 3-D interpretation of resistivity: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88009-JP, DOE/ID/12489-11, 15 p.

21-88. LaBrecque, D. J., 1988, Design of a borehole-to-surface resistivity survey for the magma energy deep exploration well: Geothermal Resources Council, 12, 257-261. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88020-JP.

22-88. LaBrecque, D. J. and Ward, S. H., 1988, The effect of a metal well casing on 3-D interpretation of borehole resistivity data: Expanded Abstracts of the 58th Annual International Society of Exploration Geophysicists meeting, 1, 211-214. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88001-ABS, DOE/ID/12489-17, 9 p.

23-88. LaBrecque, D. J. and Ward, S. H., 1988, Two-dimensional inversion of cross-borehole resistivity data using moveable boundaries: Expanded Abstracts of the 58th Annual International Society of Exploration Geophysicists meeting, 1, 194-197. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88002-ABS.

24-88. Lemieux, M. M., Wright, P. M. and Moore, J. N., 1988, Research coring in the Cascades — A status report: Geothermal Resources Council, Transactions, 12, 41-47. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88019-JP, DOE/ID/12489-20.

25-88. Linpei, Cui, 1988, The regional evaluation of radon hazard: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88048-TR, 96 p.

26-88. Moore, J. N. and Adams, M. C., 1988, Evolution of the thermal cap in two wells from the Salton Sea geothermal systems, California: Geothermics, 17, 5/6, 695-710. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88010-JP.

27-88. Moore, J. N. and Adams, M. C., 1988, Use of fluid inclusion studies in geothermal exploration and reservoir characterization: *in* Proceedings of the Technical Review on Advances in Geothermal Reservoir Technology Research in Progress, Lawrence Berkeley Laboratory Rept., LBL-25635, 19-22. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88015-JP, DOE/ID/12489-16.

28-88. Moore, J. N. and Adams, M. C., 1988, Fluid inclusion systematics of the Coso geothermal system: presented to the 2nd Annual meeting of the Pan American Conference on Research in Fluid Inclusions (PACROF II). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89012-ABS, DOE/ID/12489-47.

29-88. Nielson, D. L. and Ballantyne, J. M., 1988, Hydrothermal processes: *in* Proceedings of the Technical Review on Advances in Geothermal Reservoir Technology Research in Progress, Lawrence Berkeley Laboratory Rept., LBL-25635. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88018-JP, DOE/ID/12489-25.

30-88. Nielson, D. L., Cui, L.-P. and Ward, S. H., 1988, Gamma-ray spectrometry and radon emanometry in environmental geophysics: submitted to Society of Exploration Geophysicists Volume on Geotechnical and Environmental Geophysics. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88042-JP, DOE/ID/12489-35.

31-88. Nielson, D. L., Hulen, J. B. and Allison, M. L., 1988, Fracture systematics in high-temperature geothermal fields — Roles of inherited structures and stress field reorientation: Transactions, International Symposium on Geothermal Energy, Kumamoto and Beppu, Japan, 28-30. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88048-JP.

32-88. Nielson D. L., Hulen, J. B., Goff, F. and Gardner, J. N., 1988, Scientific exploration of an active magma-hydrothermal system in the Valles caldera, New Mexico, through drilling: *in* Boden, A. and K. G. Eriksson, eds., Deep Drilling in Crystalline Bedrock, 2, 361-380, Springer-Verlag, New York, NY. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88028-JP.

33-88. Ross, H. P., 1988, State Cooperative Reservoir Analysis Program Quarterly Report, Jan. 1 - March 31, 1988/April 1 - June 30, 1988: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88040-PR, DOE/ID/12489-34, 8 p.

34-88. Ross, H. P., 1988, State Cooperative Reservoir Analysis Program — Quarterly Report, July 1 - September 30, 1988: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88046-PR, DOE/ID/12489-35, 14 p.

35-88. Ross, H. P., Mackelprang, C. E. and Wright, P. M., 1988, Dipole-Dipole electrical resistivity surveys at waste disposal study sites in northern Utah: submitted to Society of Exploration Geophysicists Volume on Geotechnical and Environmental Geophysics. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88044-JP.

36-88. Sibbett, B. S., 1988, Size, depth and related structures of intrusions under stratovolcanoes and associated geothermal systems: *Earth-Science Reviews*, 25, 291-309.

37-88. Tripp, A. C., 1988, Group theoretic reduction of the electromagnetic impedance matrix for large-contrast symmetric prisms in a layered earth: accepted by *Pure and Applied Geophysics*. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88008-JP.

38-88. Tripp, A. C. and Hohmann, G. W., 1988, Short Note — Application of electromagnetic reciprocity. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88045-TR.

39-88. Tripp, A. C. and Klein, J. D., 1988, Departure curves for induced polarization well logging: *The Log Analyst*, March-April Issue, 103-111.

40-88. Tripp, A. C., Klein, J. D., Halverson, M. D. and Kingman J., 1988, Induced polarization interpretation using electromagnetic coupling data — A field example: *Society of Exploration Geophysicists Special Monograph on Induced Polarization*. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88021-JP.

41-88. Tripp, A. C., Lemieux, M. M., Wright, P. M. and Moore, J. N., 1988, Induced polarization spectra of Cascade core samples: *Geothermal Resources Council, Transactions*, 12, 265-271. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88013-JP, DOE/ID/12489-15.

42-88. Tripp, A. C., Lemieux, M. M., Wright, P. M. , Moore, J. N. and Ross, H. P., 1988, Physical and chemical rock property measurements in geothermal exploration and reservoir studies: *in Proceedings of the Technical Review on Advances in Geothermal Reservoir Technology Research in Progress*, Lawrence Berkeley Laboratory Rept., LBL-25635, 65-69. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88034-JP, DOE/ID/12489-30.

43-88. Wannamaker, P. E., 1988, Magnetotellurics in deep geothermal exploration — Applications to the Long Valley magnetic system: *in Proceedings of the Technical Review on Advances in Geothermal Reservoir Technology Research in Progress*, Lawrence Berkeley Laboratory Rept., LBL-25635, 59-64. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88035-JP, DOE/ID/12489-31.

44-88. Wannamaker, P. E., 1988, Magnetotelluric profile across Long Valley caldera: *in* Proceedings of the Symposium on the Long Valley caldera — a pre-drilling data review, (ed.) by N. L. Goldstein, Lawrence Berkeley Laboratory Rept., LBL-23940, 150-158. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88007-PR, DOE/ID/12489-10.

45-88. Wannamaker, P. E., Booker, J. R., Fernandez, R., Jiracek, G. R., Martinez, M., Rogers, J. C., Stodt, J. A., Young, C. T. and Waff, H. S., 1988, Verification of five magnetotelluric systems in the mini-EMSLAB experiment: *Geophysics*, 53, no. 4, 553-557.

46-88. Wannamaker, P. E., fourth author in the EMSLAB Group, 1988, The EMSLAB electromagnetic sounding experiment, *EOS, Transaction, AGU*, 69, (7), 89, 98-99.

47-88. Wannamaker, P. E. and fourteen coauthors, 1988, Magnetotelluric transect of the Juan de Fuca subduction system in EMSLAB: IXth International Workshop on Electromagnetic Induction in the Earth and Moon, Sochi, U.S. S. R., Oct. 24-31, 1988. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88010-JP.

48-88. Ward, S. H., 1988, The resistivity and induced polarization methods: submitted to Society of Exploration Geophysicists Volume on Geotechnical and Environmental Geophysics. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88005-JP, DOE/ID/12489-8.

49-88. Ward, S. H. and West, R. C., 1988, The borehole transient electromagnetic response of a three-dimensional fracture zone in a conductive half-space: *Geophysics*, 53, 11, 1469-1478. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88003-JP, 40 p.

50-88. West, R. C. and Ward, S. H., 1988, The borehole controlled-source audiomagnetotelluric response of a three-dimensional fracture zone: *Geophysics*, 53, 2, 215-230. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-86012-JP, DOE/SAN/12196-18.

51-88. Wright, P. M., 1988, Forecast and outlook for geothermal energy, 1988-1998, Presentation to American Association of Petroleum Geologists annual meeting. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88005-TR, 25 p.

52-88. Wright, P. M., Ward, S. H., Beasley, C. W., LaBrecque, D. J., Stodt, J. A. and Ross, H. P., 1988, Research in borehole geophysics: *in* Proceedings, Technical Review on Advances in Geothermal Reservoir Technology Research in Progress, Lawrence Berkeley Laboratory Rept., LBL-25635, 40-50. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88039-JP.

1989

01-89. Adams, M. C. and Moore, J. N., 1989, An evaluation of the thermal fluid from the Post and Betze deposits, submitted to Barrick Goldstrike Mines, Inc (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89022-TR.

02-89. Adams, M. C., Moore, J. N. and Wright, P. M., 1989, The use of tracers to analyze the effects of reinjection into fractured geothermal reservoirs: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89043-JP, DOE/ID/12489-69.

03-89. Adams, M. C., Benoit, W. R., Doughty, C., Bodvarsson, G. S. and Moore, J. N., 1989, The Dixie Valley, Nevada tracer test: Geothermal Resources Council Transactions, 13, 215-220. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89042-JP, DOE/ID/12489-70.

04-89. Adams, M. C., Lemieux, M., Moore, J. N., Johnson, S. D., 1989, Fluid chemistry and hydrology of the Heber geothermal system, California: 14th Annual Stanford Geothermal Reservoir Engineering Workshop. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89002-JP, DOE/ID/12489-41 10 p.

05-89. Adams, M. C., Lemieux, M., Moore, J. N., Johnson, S. D., 1989, Hydrogeochemistry of the Heber Geothermal System, California, University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89023-JP, DOE/ID/12489-57.

06-89. Allison M. L. and Nielson, D. L., 1989, Variations of in-situ stress in geothermal systems of the Basin and Range province: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89047-JP, DOE/ID/12489-75.

07-89. Allison, M. L., Frederick, B. H., III, and Peters, D. C., 1989, Developments in remote sensing, poster Session Overview (invited abs.): AAPG Bull., 73, p. 327.

08-89. Beasley, C. W., 1989, Cross-borehole resistivity inversion — theory and application to monitoring enhanced oil recovery: Ph.D. thesis, University of Utah, Department of Geology and Geophysics, January, 1989, 133 p. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89003-TR, DOE/ID/12489-42, 133p.

09-89. Gardner, J. N., Hulen, J. B., Goff, F., and Nielson, D. L., 1989, Continental scientific drilling program core hole Valles Caldera #2B (VC-2B), New Mexico, USA--an overview of initial results: EOS, 70, p. 1414.

10-89. Gardner, J. N., Hulen, J. B., Goff, F., Nielson, D. L., Adams, A., Criswell, C. W., Gribble, R., Meeker, K., Musgrave, J. A., Shevenell, L., Smith, T., Snow, M. G., and Wilson, D., 1989, Scientific drilling in the Valles-Toledo caldera complex and its high-temperature geothermal systems: *in* Continental magmatism abstracts, International Association of Volcanology and Chemistry of the Earth's Interior, general assembly, Santa Fe, New Mexico (June 25 - July 1, 1989): New Mexico Bur. of Mines and Minrl. Res., Bull. 131, p. 104.

11-89. Gardner, J. N., Hulen, J. B., Lysne, P., Jacobson, R., Goff, F., Nielson, D. L., Pisto, L., Criswell, C. W., Gribble, R., Meeker, K., Musgrave, J. A., Smith, T. and Wilson, D., 1989, Scientific corehole Valles Caldera # 2B (VC-2B), New Mexico drilling and some initial results: *Geothermal Resources Council Transactions*, 13, 133-139.

12-89. Goff, F., Gardner, J. N., Baldridge, W. S., Hulen, J. B., Nielson, D. L., Vaniman, D., Heiken, G., Dungan, M. A., and Broxton, D., 1989, Volcanic and hydrothermal evolution of Valles Caldera and Jemez volcanic field: *in* Field excursions to volcanic terranes in the western United States, 1 — Southern Rocky Mountain region (ed. by C. E. Chapin and J. Zidek): New Mexico Bur. of Mines and Minrl. Resources, Mem. 46, Field Trip Guide for Excursion 17B, 381-434.

13-89. Goff, F., Gardner, J., Woldegabriel, G., Geissman, J.W., Hulen, J.B., Sasada, M., Shevenell, L., Sturchio, N.C., and Trainer, F.W., 1989, Dating of multiple hydrothermal events in active geothermal systems — example from the Valles Caldera, New Mexico, U.S.A: *in* Continental magmatism abstracts, International Association of Volcanology and Chemistry of the Earth's Interior, general assembly, Santa Fe, New Mexico (June 25 - July 1, 1989): New Mexico Bur. Mines and Minrl. Res., Bull. 131, p. 110.

14-89. Heiken, G., Goff, F., Gardner, J. N., Baldridge, W. S., Hulen, J. B., Nielson, D. L. and Vanimon, D., 1990, The Valles/Toledo caldera complex, Jemez volcanic field, New Mexico: *Annual Reviews Earth and Planetary Sciences*, 18, 27-53.

15-89. Hulen, J. B., Bereskin, S. R., and Bortz, L. C., 1989, High-temperature hydrothermal origin for fractured carbonate reservoirs in the Blackburn oil field, Nevada: *Geologic Note submitted to AAPG Bull.* Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89052-JP.

16-89. Hulen, J. B., Gardner, J. N., Goff, F., Nielson, D.L., Lemieux, M., Snow, P., Meeker, K., Musgrave, J. and Moore, J. N., 1989, An overview of hydrothermal alteration and vein mineralization in Continental Scientific Drilling Program corehole VC-2B, Valles caldera, New Mexico: *in* Continental magmatism abstracts, International Association of Volcanology and Chemistry of the Earth's Interior general assembly, Sante Fe, New Mexico, (June 25-July 1, 1989), New Mexico Bur. Mines and Minrl. Resources, Bull. 131, p. 139. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89008-ABS, DOE/ER/13936-1.

17-89. Hulen, J. B., Gardner, J. N., Goff, F., Nielson, D. L., Moore, J. N., Musgrave, J., Lemieux, M. M., Meeker, K., and Snow, P., 1989, The Sulphur Springs hydrothermal system, past and present — Initial results from CSDP corehole VC-2B, Valles caldera, New Mexico: *Geothermal Resources Council, Transactions*, 13, 149-156. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89040-JP, DOE/ID/12489-68.

18-89. Hulen, J. B., and Gardner, J. N., 1989, Field Geologic log for Continental Scientific Drilling Program, Corehole VC-2B, Valles caldera, New Mexico, 92 p. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89025-TR, DOE/ER/13936-4.

19-89. LaBrecque, D. J., 1989, Theoretical studies of the cross-borehole and borehole-to-surface resistivity methods: Ph.D. thesis, University of Utah, Department of Geology and Geophysics, March 1989, 212 p. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89004-TR, DOE/ID/12489-43.

20-89. LaBrecque, D. J. and Ward, S. H., 1989, Effects of anisotropy on cross-borehole resistivity measurements with applications in a coal environment: Expanded Abstracts of the 59th Annual International Society of Exploration Geophysicists meeting, Oct. 29-Nov. 21, 1989, 1, 375-378. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89028-ABS, DOE/ID/12489-58.

21-89. Lemieux, M. M., Moore, J. N., E. Gonzales P., G. Izquierdo and R. Huitron E., 1989, Chemistry of Los Azufres reservoir fluids - data from fluid inclusions: *in* Proceedings of the Symposium in the Field of Geothermal Energy, San Diego, CA, 29-36. Also University of Utah Research Institute, Earth Science Laboratory Rept. No. ESL-89018-TR, DOE/ID/12489-53, 8 p.

22-89. Little, T. M., Hulen, J. B., and Nielson, D. L., 1989, Implications of an unusual intracaldera clastic deposit for creation of fracture permeability in the Valles hydrothermal system, New Mexico: *in* Continental magmatism abstracts, International Association of Volcanology and Chemistry of the Earth's Interior general assembly, Sante Fe, New Mexico, (June 25-July 1, 1989), New Mexico Bur. Mines and Minrl. Resources, Bull. 131, p. 139. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89011-ABS, DOE/ER/13936-3.

23-89. Moore, J. N., 1989, Fluid inclusion systematics of the Coso geothermal system: *in* Proceedings of the 2nd Annual meeting of the Pan American Conference on Research in Fluid Inclusions, (Abs.) (PACROF II). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89012-ABS, DOE/ID/12489-47.

24-89. Moore, J. N., 1989, Fluid inclusion studies of Geysers Well 54 and P1 (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89024-TR.

25-89. Moore, J. N., Adams, M. C., Bishop, B. P. and Hirtz, P., 1989, A fluid-flow model of the Coso geothermal system— data from production fluid and fluid inclusions: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89001-JP, DOE/ID/12489-40 16 p.

26-89. Moore, J. N., Adams, M. C., Bishop, B. P. and Hirtz, P., 1989, Geochemistry of the Coso geothermal system: *in* Proceedings, 14th Workshop on Geothermal Reservoir Engineering, Stanford University, in press. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89012-JP, DOE/ID/12489-47.

27-89. Moore, J. N. and Lemieux, M.M., 1989, A fluid-inclusion study of UNOCAL Well 8-1 (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89008-PR, 5 p.

28-89. Moore, J. N. and Lemieux, M. M., 1989, Fluid-inclusion studies of the Salton Sea geothermal system (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89048-JP.

29-89. Moore, J. N., Lemieux, M. M., and Adams, M. C., 1989, The occurrence of CO₂-enriched fluids in active geothermal systems — data from fluid inclusions: (in press) 14th Annual Stanford Geothermal Reservoir Engineering Workshop. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89059-JP, DOE/ID/12489-84.

30-89. Moore, J. N., Hulen, J. B., Lemieux, M. M., Sternfeld, J. N. and Walters, M. A., 1989, Petrographic and fluid inclusion evidence for past boiling, brecciation and associated hydrothermal alteration above the NW Gysers steam field, California: Geothermal Resources Council, Transactions, 13, 467-472. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89039-JP, DOE/ID/12489-67.

31-89. Moore, J. N., Nielson, D. L., and Wright, P. M., 1989, Recent developments in geology, geochemistry, and geophysics applied to hydrothermal reservoir mapping and monitoring: in Proceedings of the Geothermal Program Review VII, DOE, San Francisco, CA, 21-23, March 1989, 31-34. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89017-TR, DOE/ID/12489-52.

32-89. Musgrave, J.A., and Hulen, J.B., 1989, Vein, vug, and fracture mineralization and paragenesis in the rocks penetrated by Continental Scientific Drilling Program coreholes VC-2A and VC-2B, Valles Caldera, New Mexico: EOS, 70, p. 1414.

33-89. Nielson, D. L., 1989, Stress in geothermal systems: Geothermal Resources Council Transactions, 13, 271-276. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89037-JP, DOE/ID/12489-65.

34-89. Nielson, D. L., 1989, Competitive economics of geothermal energy — the exploration and development perspective: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89057-JP, DOE/ID/12489-82. Presentation at the World Bank.

35-89. Nielson, D. L. and Stiger S., 1989, Geothermal exploration of Ascension Island, South Atlantic: Geothermal Resources Council Transactions, 13, 187-191. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89036-JP, DOE/ID/12489-64.

36-89. Nielson, D. L., Hulen, J. B., and Gardner, J. N., 1989, New evidence for a concealed pre-bandalier age caldera in the Western Valles caldera complex, New Mexico: International Association of Volcan. and Chem. of the Earth's Interior, general assembly, Sante Fe, New Mexico, June 25 - July 1, 1989: New Mexico Bur. of Mines and Minrl. Resources, Bull. 181, p. 202. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89009-ABS, DOE/ER13936-2.

37-89. A. Razo M., Geraldo H. Garcia E., J. F. Arellano G., J. L. Guerrero G., H. Lira H., Ross, H. P. and Wright, P. M. , 1989, Alevantamiento aeromagnético del campo geotérmico de Los Azufres, Mich. Vuelo Bajo: in Proceedings of the Symposium in the Field of Geothermal Energy, San Diego, CA, 63-72.

38-89. A. Razo M., R. Huitron E., Moore, J. N., Tripp, A. C., and Lemieux, M. M., 1988, Stratigraphy of the Los Azufres geothermal reservoir: in Proceedings of the Symposium in the Field of Geothermal Energy, San Diego, CA, 17-28. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-89016-TR, DOE/ID/12489-15, 11 p.

39-89. Ross, H. P., 1989, Preliminary aeromagnetic interpretation, Glen Mountain area, OK (PROPRIETARY), Prepared for Freeport-McMoran Gold Co., Tucson AZ, March. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89026-TR.

40-89. Ross, H. P., 1989, State Cooperative Reservoir Analysis Program, Quarterly Report, Sept. 30 - Dec. 31, 1988: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89007-PR, DOE/ID/12489-40, 14 p.

41-89. Ross, H. P., 1989, State Cooperative Reservoir Analysis Program, Quarterly Report, January 1 - March 31, 1989: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89030-PR, DOE/ID/12489-59, 14 p.

42-89. Ross, H. P., 1989, State Cooperative Reservoir Analysis Program, Quarterly Report, April 1 - June 30, 1989: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89046-PR, DOE/ID/12489-74.

43-89. Ross, H. P., 1989, State Cooperative Reservoir Analysis Program, Quarterly Report, July 1 - Sept. 30, 1989: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89055-PR, DOE/ID/12489-80, 14 p.

44-89. Ross, H. P., Wright, P. M. and Mackleprang, C., 1989, Dipole-dipole electrical resistivity surveys at waste disposal study sites at Hill Air Force Base, Utah: Utah Geological Association Pub. 17 in Geology and Hydrology of Hazardous Waste, Mining-Waste, Waste-Water and Repository sites in Utah, 69-79. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89033-JP, DOE/ID 12489-61.

45-89. Ross, H. P., Wright, P. M., A. Razo M., G. H. Garcia E., J. F. Arellano G., J. Jesus Arredondo F. and J. L. Guerrero G., 1989, Aeromagnetic studies, Los Azufres geothermal area, Michoacan: in Proceedings of the Symposium in the Field of Geothermal Energy, San Diego, CA, 55-61. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-89019-TR, DOE/ID/12489-54, 8p.

46-89. Tripp, A. C., Adams, M. C., Moore, J. N. and Wright, P. M., 1989, Estimation of tracer test impulse responses: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89031-PR, DOE/ID/12489-60.

47-89. Tripp, A. C., Hohmann, G. W. and Spies, B. R., 1989, A preliminary feasibility study of the applicability of electromagnetic reservoir description and monitoring: Expanded Abstracts of the 59th Annual International Society of Exploration Geophysicists meeting, Oct. 29-Nov. 21, 1989, II, 75-77. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89027-ABS.

48-89. Tripp, A. C., Hohmann, G. W., Wright, P. M., Stodt, J. A., and Ross, H. P., 1989, Model studies on the resolution of electromagnetic cross-borehole and surface-to-borehole delineation and monitoring of geothermal reservoir: (in press) 14th Annual Stanford Geothermal Reservoir Engineering Workshop. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89051-JP, DOE/ID/12489-77.

49-89. Tripp, A. C., Lemieux, M. M. and Moore, J. N., 1989, Complex resistivity measurements of selected core from BHP-Utah's property in Bluff AK prepared for BHP-Utah (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89029-TR.

50-89. Tripp, A. C., Ross, H. P., Stodt, J. A. and Wright, P. M., 1989, Surface-to-borehole electromagnetic experiment at Roosevelt Hot Springs—A feasibility study: Geothermal Resources Council, Transactions, 13, 289-293. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89041-JP, DOE/ID/12489-69.

51-89. Wannamaker, P. E., 1989, PW2DIS—Finite element program for solution of magnetotelluric responses and sensitivities of 2-D earth resistivity structure: User Documentation, University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89049-TR, DOE/ID/12489-76.

52-89. Wannamaker, P. E., and fifteen coauthors, Magnetotelluric observations across the Juan de Fuca subduction system in the EMSLAB project: Journal of Geophysical Research, 94, 14, 111-14, 126, 1989. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88007-JP.

53-89. Wannamaker, P. E., Booker, J. R., Jones, A. G., Chave, A. D., Filloux, J. H., Waff, H. S., and Law, L. K., Resistivity cross-section through the Juan de Fuca subduction system and its tectonic implications: Journal of Geophysical Research, 94, 14, 127-14, 144. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88030-JP.

54-89. Wannamaker, P. E., Wright, P. M., Zhou, Z.-X., Li, X.-B., and Zhao, J.-X., 1990, Magnetotelluric transect of Long Valley caldera: Resistivity cross section, structural implications, and the limits of a two-dimensional analysis: Geophysics, submitted. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89053-JP, DOE/ID/12489-78.

55-89. Wright, P. M., 1989, Final Report for DOE The Geothermal Technical Session at the Conference entitled "Renewable Energy in the Americas" sponsored by US/ECRE, Miami, FL, May 30-June 3, 1989. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89044-TR, DOE/ID/124898-72.

56-89. Wright, P. M., (ed), 1989, Annual Report for FY88 - Geothermal Research: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89005-TR, DOE/ID/12489-44, 42 p.

57-89. Wright, P. M., Lira E., H. and Ramsey, D. R., 1989, Interpretation of Landsat Thematic Mapper satellite imagery at Los Azufres geothermal field, Michoacan, Mexico: *in* Proceedings of the Symposium in the Field of Geothermal Energy, San Diego, CA, 73-76. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89021-TR, DOE/ID/12489-56.

58-89. Wright, P. M., Ruth, K. A., Langton, D. R. and Bullett, M. J., 1989, Publications and Geothermal Sample Library facilities of the Earth Science Laboratory, University of Utah Research Institute, Revision 1.0: University of Utah Research Institute.

59-89. Wright, P.M., Developments in geothermal resources, 1989, The American Association of Petroleum Geologists Bulletin, 73, 366-374.

1990

- 01-90. Adams, M. C. and Davis, J., 1990, Tracer Studies I-Thermal decay kinetics of fluorescein. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89038-TR, DOE/ID/12489-66.
- 02-90. Adams, M. C., Fabry, L. and Moore, J. N., 1990, Comparative study of high performance liquid chromatographic parameters used for the analysis of carboxylic and sulfonic acid geothermal tracers: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89013-TR, DOE/ID/12489-48, in press.
- 03-90. Adams, M. C., Mink, L. L., Moore, J. N., White, L. D. and A. Caicedo A., 1990, Geochemistry and hydrology of the Zunil geothermal system, Guatemala: submitted to Geothermal Resources Council, Transactions. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90011-JP, DOE/ID/12489-91.
- 04-90. Adams, M. C., Moore, J. N., Fabry, L. and Ahn, A. H., (in preparation), Stability and use of organic compounds as geothermal tracers. University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89014-TR, DOE/ID/12489-49.
- 05-90. Beasley, C. W., Tripp, A. C., LaBrecque, D. J., Stodt, J. A., Ward, S. H. and Wright, P. M., 1990, Application of the cross-borehole direct-current resistivity technique for EOR process monitoring -- A feasibility study: *in* Borehole Geophysics: Petroleum, Hydrogeology, Mining and Engineering Applications, International Symposium at The University of Arizona Laboratory for Advanced Subsurface Imaging (LASI), February 1-3, 1990, Tucson, Arizona. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89034-JP, DOE/ID/12489-62 (rewritten as ESL-89058-JP, DOE/ID/12489-83).
- 06-90. Cook, A. W., Tripp, A. C., Wright, P. M., and Stodt, J. A., 1990, Numerical Evaluation of the Attenuation of Time-Varying Magnetic Fields by Conducting, Magnetically Permeable Well Casing, in preparation: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90001-JP, DOE/ED/12489-85.
- 07-90. D. Foley, S. J. Lutz, J. N. Moore, H. P. Ross, A. C. Tripp, Tobias, Palma, 1990, Geology & Geophysics of the Zunil Geothermal System: submitted to Geothermal Resources Council, Transactions. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90007-JP, DOE/ID/12489-87.
- 08-90. Hulen, J. B. and Nielson, D. L., 1990, Possible volcanotectonic controls on high-temperature thermal fluid upflow in the Valles caldera, New Mexico: submitted to Geothermal Resources Council, Transactions. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-900015-JP, DOE/ID/12489-94.
- 09-90. Hulen, J.B., Bereskin, S.R., and Bortz, L.C., 1990, High-temperature, natural hydraulic fracturing as a reservoir control in the Blackburn oil field, Nevada: AAPG, in press.
- 10-90. Lemieuex, M. M. and Moore, J. N., 1990, Fluid inclusion systematics of the Zunil geothermal system, Guatemala: prepared for Morrison Knudsen Engineering, Boise Idaho (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90005-TR.

11-90. Lutz, S. J., 1990, Hydrothermal alteration and stratigraphy of the Zunil I geothermal area, Guatemala: prepared for Morrison Knudsen Engineering, Boise Idaho (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90004-TR.

12-90. Moore, J. N. and Adams, M. C., 1990, Geochemistry of the Zunil geothermal fluids, Guatemala: prepared for Morrison Knudsen Engineering, Boise Idaho (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90002-TR.

13-90. J. N. Moore, Adams, M. C., Bishop-Gollan, B., Coop, J. F. and Hirtz, P., 1990, Geochemical structure of the COSO geothermal system, California: submitted to American Association of Petroleum Geologists, Guidebook. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90009-JP, DOE/ID/12489-87.

14-90. J. N. Moore, M. M. Lemieux, and M. C. Adams, 1990, The occurrence of CO₂-enriched fluids in active geothermal systems: Data from fluid inclusions, submitted to Pan American Conference on Research in Fluid Inclusions, (Abs.) (PACROFI III), 1 p. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-90008-ABS and DOE/ID/12489-87.

15-90. Nielson, D. L. and Brown, D., 1990, Thoughts on stress around The Geysers geothermal field: submitted to Geothermal Resources Council, Transactions. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90012-JP, DOE/ID/12489-92.

16-90. Nielson, D. L., Allison, M. L., Adams, M. C., Stiger, S. G., Plum, M. M. and Berglund, G. R., in press, Final Report — Ascension Island Geothermal Project (PROPRIETARY): University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88047-PR, DOE/ID/12489-39.

17-90. Nielson, D. L., Hulen, J. B., and Copp, J., 1990, Structural and alteration controls on thermal fluid flow at the Coso geothermal field, California: (abs.) AAPG, in press. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89060-ABS.

18-90. Nielson, D. L., Linpei, C., and Ward, S. H., in press, Gamma ray spectrometry and radon emanometry in environmental geophysics: *in* Environmental Geophysics, Society of Exploration Geophysicists. Also University of Utah Research Institute, Earth Science Laboratory Rept. ESL-88042-JP.

19-90. Ross, H. P., 1990, Zunil electrical resistivity studies, Zunil Geothermal Area, Guatemala: prepared for Morrison Knudsen Engineering, Boise Idaho (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89050-TR.

20-90. Ross, H. P., Blackett, R. E., Shubat, M. A. and Mackelprang, C.E., 1990, Delineation of fluid upflow & outflow plume with electrical resistivity & self-potential data - Newcastle geothermal area, UT: submitted to Geothermal Resources Council, Transactions. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90010-JP, DOE/ID/12489-88

21-90. Tripp, A. C., Moore, J. N., 1990, Interpretation of Schlumberger data in the vicinity of Zunil I, Guatemala: prepared for Morrison Knudsen Engineering, Boise Idaho (PROPRIETARY). Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90001-TR.

22-90. Wang, T., Stodt, J. A., and Stierman, D. J., 1990, Mapping hydraulic fractures using a borehole-to-surface electrical resistivity method: *in* Borehole Geophysics: Petroleum, Hydrogeology, Mining and Engineering Applications, International Symposium at The University of Arizona Laboratory for Advanced Subsurface Imaging (LASI), February 1-3, 1990, Tucson, Arizona. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89054-JP, DOE/ID/12489-79.

23-90. Wannamaker, P. E., 1990, On thin-layer telluric modeling of magnetotelluric responses: Geophysics, Short Note, accepted for publication. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89006-JP, DOE/ID/12489-45.

24-90. Wannamaker, P. E., 1990, Modeling 3-D magnetotelluric responses using integral equations: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89035-JP, DOE/ID/12489-63.

25-90. Wright, P. M., 1989, Borehole electrical geophysics applied to geothermal development: *in* Borehole Geophysics: Petroleum, Hydrogeology, Mining and Engineering Applications, International Symposium at The University of Arizona Laboratory for Advanced Subsurface Imaging (LASI), February 1-3, 1990, Tucson, Arizona. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-89056-JP, DOE/ID/12489-81.

26-90. Wright, P. M., Nielson, D. L., Ross, H. P., Moore, J. N., Adams, M. C. and Ward, S. H., 1988, Regional exploration for convective-hydrothermal resources: Geothermal Science and Technology, in press. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-88039-JP.

27-90. Wright, P. M., Lira E., H. and Ramsey, D. R., 1990, Interpretation of Landsat Thematic Mapper satellite imagery at Los Azufres geothermal field, Michoacan, Mexico: submitted Geothermal Resources Council, Transaction. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-900016-JP, DOE/ID/12489-95.

28-90. Wright, P. M., 1990, Developing advocacy for geothermal energy in the United States: submitted Geothermal Resources Council, Transaction. Also University of Utah Research Institute, Earth Science Laboratory Rept., ESL-900013-JP.

29-90. Wright, P. M., Ruth, K. A., Langton, D. R. and Bullett, M. J., 1990, Publications and Geothermal Sample Library facilities of the Earth Science Laboratory, University of Utah Research Institute, Revision 2.0: University of Utah Research Institute.

30-90. Wright, P. M., (ed), 1990, Annual Report for FY89 - Geothermal Research: University of Utah Research Institute, Earth Science Laboratory Rept., ESL-90018-PR, DOE/ID/12489-98.

Location Map of Drill Hole Samples in Sample Library

(MARCH, 1990)

March 1990

Area/Hole Name	Location	Footage	Driller
CALIFORNIA			
COSO			
CGEH-1-E		Chips 111-640	
CGEH-1	Inyo Co. Sec. 6 T22S R39E	Chips 0-4845	DOE
CGEH-1	Inyo Co. Sec. 6 T22S R39E	Core 1704-1707 2219-2229 2295-3006 4058-4062	DOE
CGEH-1-A	Split of Chips from CGEH-1	Chips 50-4780	DOE
CGEH-1-B	Split of Chips from CGEH-1	Chips 50-4830	DOE
CGEH-1-C	Split of Chips from CGEH-1	Chips 50-5060	DOE
CGEH-1-D	Split of Chips from CGEH-1	Chips 50-510	DOE
Grad Hole #1	Inyo Co. Sec. 6 T22S R39E	Chips 0-293	DOE
Grad Hole #2		0-278	
Grad Hole #3		0-300	
Grad Hole #4		0-246	
Grad Hole #5		0-296	
Grad Hole #6		0-343	

March 1990

Area/Hole Name	Location	Footage	Driller	
CALIFORNIA cont.				
COSO				
Grad Hole #7		0-309		
Grad Hole #10		0-354		
Grad Hole #11		0-225		
Grad Hole #12		0-438		
Grad Hole #13		0-304		
Grad Hole #14		0-301		
Grad Hole #15		0-325		
Grad Hole #17		0-313		
BDSH-1	Inyo Co.	Sec. 6 T22S R39E	Core 11-1342	DOE
CGC 18-27	Inyo Co.		Core 306-2898	Cal Energy
CGC 74-2	Inyo Co.		Core 303-2990	Cal Energy
TCH 87-25	Inyo Co.		Core 315-2970	Cal Energy
TCH 86-30	Inyo Co.		Core 302-2786	Cal Energy
87-17	Inyo Co.		Core 304-2892	Cal Energy
TCH 57-18	Inyo Co.		Core 306-2825	Cal Energy

March 1990

Area/Hole Name	Location	Footage	Driller
CALIFORNIA cont.			
COSO			
6416	Inyo Co.	Core 315-2020	Cal Energy
G-7A	Inyo Co.	Chips 0-500	Grace Geothermal
G-37	Inyo Co.	Chips 0-500	Grace Geothermal
G-42	Inyo Co.	Chips 0-500	Grace Geothermal
15-17	Inyo Co.	Chips 0-8220	
63-18RD	Inyo Co.	Chips 0-4820	
16-A-8	Inyo Co.	Chips 0-3400	
73-19	Inyo Co.	Chips 760-6097	
41-8	Inyo Co.	Chips 0-3050	
24-20	Inyo Co.	Chips 460-3300	
63A-7	Inyo Co.	Chips 500-3250	
72-19	Inyo Co.	Chips 610-6550	
24C-20	Inyo Co.	Chips 500-6813	
24-8	Inyo Co.	Chips 480-2670	
23-19	Inyo Co.	Chips 500-6987	

March 1990

Area/Hole Name	Location	Footage	Driller
CALIFORNIA cont.			
COSO			
68A-20	Inyo Co.	Chips 490-7900	Cal Energy
71B-7	Inyo Co.	Chips 468-5560	Cal Energy
64-16	Inyo Co.	Chips 480-10,450	Cal Energy
41A-8	Inyo Co.	Chips 50-6500	Cal Energy
31-8	Inyo Co.	Chips 3653-6180	Cal Energy
34-9	Inyo Co.	Chips 473-7360	Cal Energy
78-7	Inyo Co.	Chips 475-6070	Cal Energy
72-19	Inyo Co.	Chips 0-6550 (not continuous)	Cal Energy
16A-8RD-1	Inyo Co.	Chips 1130-2880 (not continuous)	Cal Energy
24-20	Inyo Co.	Chips 460-5070	
EAST MESA			
83-7		Chips 3377-5694	
RIG		Chips 2500-5750	

March 1990

Area/Hole Name

Location

Footage

Driller

CALIFORNIA cont.

GEYSERS, THE

#1 RD1

Chips 3527-7148 Aminoil

#1 B&R Unit #1 RD

Chips 6180-9200 Aminoil

45-A-12 (Ottoboni)

Chips 60-4300 Unocal

52-32 (Fransdden #2)

Chips 0-3600 Unocal

68A-21

Lake Co. Sec. 21 T11N R8W Chips 820-5000 Occidental

B3(11-1A)RD2

Chips 3020-7016 Shell

B3 OH

150-3000 Shell

CA-94 9M-14/72-1

Lake Co. Sec. 3 T10N R8W Chips 160-3000 Shell

CA-1862/57-27-2

Lake Co. Sec. 27 T11N R8W Chips 0-5468 Aminoil

CA-5637/74-211

Lake Co. Sec. 21 T11N R8W Chips 300-5300 Occidental

D-7 24A-2

Sonoma Co. Sec. 2 T10N R8W Chips 2010-5000 Shell

DX-19

Chips 40-9420 Unocal

DX-24

Chips 70-6800 Unocal

E-9/38-1

Lake Co. Sec. 1 T10N R8W Chips 0-3400 Shell

F-8/43-3

Sonoma Co. Sec. 3 T10W R8W Chips 30-3000 Shell

March 1990

Area/Hole Name	Location		Footage	Driller
CALIFORNIA cont.				
GEYSERS, THE				
G-11 33-4	Sonoma Co.	Sec. 4 T10N R8W	Chips 86-3000	Shell
Q-13/CA-949/53-2	Lake Co.	Sec. 2 T10N R8W	Chips 100-3000	Shell
Barrows #1			Chips 85-7480	Aminoil
Bianchi #2			Chips 90-10,005	
Livermore 1	Lake Co.	Sec. 1 T10N R6W	Chips 0-8760	AMAX
Geothermal Two-2	Lake Co.	Sec. 3 T10N R8W	Chips 100-3000	Shell
Geothermal 1-2	Lake Co.	Sec. 1 T10N R8W	Chips 0-5300	Shell
McKinley #1			Chips 118-3840	Aminoil
#1 RD1			Chips 118-8001	Aminoil
Ottoboni Federal 73-12			Chips 50-3500	
Prati State #1			Chips 2900-8200 (2120-8900)	
MEDICINE LAKE				
#18-34	Siskiyou Co.	Sec. 34 T43N R3E	Core 519-3500	Geysers Geothermal
#27-27	Siskiyou Co.	Sec. 27 T43N R4E	Core 466-3000	Geysers Geothermal
#62-21	Siskiyou Co.	Sec. 21 T43N R3E	Core 487-2139	Geysers Geothermal

March 1990

Area/Hole Name	Location		Footage	Driller
CALIFORNIA cont.				
MEDICINE LAKE				
#86-23	Siskiyou Co.	Sec. 23 T43N R2E	Core 417-2939	Geysers Geothermal
36-28	Siskiyou Co.	Sec. 28 T44N R3E	Core 353-2146	Geysers Geothermal
57-13	Siskiyou Co.	Sec. 13 T44N R3E	Core 409-2994.5	Geysers Geothermal
68-16	Siskiyou Co.	Sec. 16 T44N R3E	Core 417-2939	Geysers Geothermal
52-4	Siskiyou Co.	Sec. 4 T42N R3E	Core 367-4000	Geysers Geothermal
88-12	Siskiyou Co.	Sec. 12 T42N R1W	Core 290-3940	Geysers Geothermal
SALTON SEA				
WELL A	Imperial County	Sec. 5 T12S R12E	Chips 100-5400	UNOCAL
WELL B	Imperial County	Sec. 5 T12S R12E	Chips 100-4240	UNOCAL
WELL C	Imperial County	Sec. 5 T12S R12E	Chips 130-3900	UNOCAL
RRGP#5	Cassia Co.	Sec. 22 T15S R26E	Core Variable	DOE
RRGI#6	Cassia Co.	Sec. 25 T15S R26E	Core Variable	DOE
RRGI#7	Cassia Co.	Sec. 25 T16S R26E	Core Variable	DOE
WENDEL				
WEN-W-1	Lassen Co	Sec 13 T29N R15W	Chips 0-5788'	GEO Prod

March 1990

Area/Hole Name	Location	Footage	Driller	
CALIFORNIA cont.				
WENDEL				
WEN-2	Lassen Co	Chips 327-4660'	GEO Prod	
WEN-3	Lassen Co	Chips 275-6430'	GEO Prod	
COLORADO				
ALAMOSA				
#1	Alamosa Co	Chips 0-7125'	Energy Services	
PAGOSA SPRINGS				
PS-3	Archuleta Co	Chips 0-240'	Chaffee Geothermal	
PS-4	Archuleta Co	Chips 0-300'	Chaffee Geothermal	
PS-5	Archuleta Co	Chips 0-200'	Chaffee Geothermal	
IDAHO				
RAFT RIVER				
MCG #1	Madison Co	Sec 31 T6N R40E	Chips 200-3140'	Energy Services
INEL	Butte Co	Sec 1 T3N R29E	Chips 0-10,324'	DOE
INEL	Butte Co	Sec 1 T3N R29E	Core Variable	DOE
RRGE#1	Cassia Co	Sec 23 T15S R26E	Core Variable	DOE

March 1990

Area/Hole Name	Location	Footage	Driller
----------------	----------	---------	---------

IDAHO cont.

RAFT RIVER

RRGE#2	Cassia Co	Sec 23 T15S R26E	Core	Variable	DOE
RRGE#3	Cassia Co	Sec 25 T15S R26E	Core	Variable	DOE
RRGE#3C	Cassia Co	Sec 25 T15S R26E	Core	Variable	DOE
RRGP#4(Leg B)	Cassia Co	Sec 25 T15S R26E	Core	Variable	DOE
RRGP#5	Cassia Co	Sec 22 T15S R26E	Core	Variable	DOE
RRGI#6	Cassia Co	Sec 25 T15S R26E	Core	Variable	DOE
RRGI#7	Cassia Co	Sec 25 T16S R26E	Core	Variable	DOE

NEVADA

BALTAZOR

1500-1	Humboldt Co.	Sec. 13 T46N R28E	Chips	0-1581	Earth Power
1500-7	Humboldt Co.	Sec. 14 T46N R28E	Chips	0-1487	Earth Power
2	Humboldt Co.	Sec. 3 T46N R28E	Chips	0-170	Earth Power
Howard #189	Humboldt Co.	Sec. 24 T44N R31E	Chips	0-200	Earth Power
117	Humboldt Co.	Sec. 16 T46N R28E	Chips	0-220	Earth Power

March 1990

Area/Hole Name	Location	Footage	Driller	
NEVADA cont.				
BALTAZOR				
122	Humboldt Co.	Sec. 25 T46N R28E	Chips 0-280	Earth Power
143-A	Humboldt Co.	Sec. 10 T45N R27E	Chips 0-200	Earth Power
189	Humboldt Co.	Sec. 24 T44N R31E	Chips 0-200	Earth Power
213	Humboldt Co.	Sec. 1 T46N R28E	Chips 0-260	Earth Power
215	Humboldt Co.	Sec. 14 T46N R28E	Chips 0-100	Earth Power
101-5	Humboldt Co.	Sec. 7 T47N R30E	Chips 0-100	Earth Power
101-6	Humboldt Co.	Sec. 36 T42N R29E	Chips 0-280	Earth Power
101-7	Humboldt Co.	Sec. 34 T46N R28E	Chips 0-300	Earth Power
101-12	Humboldt Co.	Sec. 5 T47N R30E	Chips 0-270	Earth Power
101-99	Humboldt Co.	Sec. 16 T47N R30E	Chips 0-300	Earth Power
45-14	Humboldt Co.		Chips 20-2345	Earth Power
BEOWAWE				
B-2-79	Eureka Co.	Sec. 5 T31N R48E	Chips 0-500	Chevron
B-7-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-500	Chevron
B-9-79	Eureka Co.	Sec. 9 T31N R48E	Chips 0-500	Chevron

March 1990

Area/Hole Name	Location		Footage	Driller
NEVADA cont.				
BEOWAWE				
B-11-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-500	Chevron
B-14-79	Lander Co.	Sec. 13 T31N R47E	Chips 0-500	Chevron
B-19-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-500	Chevron
B-20-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-340	Chevron
B-22-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-500	Chevron
B-24-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-450	Chevron
B-25-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-430	Chevron
B-27-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-240	Chevron
B-29-79	Eureka Co.	Sec. 13 T31N R47E	Chips 0-460	Chevron
B-31-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-450	Chevron
B-32-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-500	Chevron
B-33-17	Humboldt Co.		Chips 60-870	
B-33-79	Eureka Co.	Sec. 12 T31N R48E	Chips 0-200	Chevron
B-35-79	Eureka Co.	Sec. 16 T31N R48E	Chips 0-500	Chevron
B-37-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-290	Chevron

March 1990

Area/Hole Name	Location		Footage	Driller
NEVADA cont.				
BEOWAWE				
B-38-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-500	Chevron
B-39-79	Eureka Co.	Sec. 17 T31N R48E	Chips 0-420	Chevron
B-46-79	Eureka Co.	Sec. 13 T31N R48E	Chips 0-160	Chevron
B-47-79	Eureka Co.	Sec. 20 T31N R48E	Chips 0-390	Chevron
B-48-79	Eureka Co.	Sec. 21 T31N R48E	Chips 0-490	Chevron
B-49-79	Eureka Co.	Sec. 24 T31N R48E	Chips 0-500	Chevron
B-50-79	Lander Co.	Sec. 18 T31N R48E	Chips 0-330	Chevron
B-51-79	Lander Co.	Sec. 19 T31N R48E	Chips 0-430	Chevron
B-51-79	Lander Co.	Sec. 19 T31N R48E	Chips 0-140	Chevron
B-54-79	Eureka Co.	Sec. 24 T31N R48E	Chips 0-450	Chevron
Ginn 1-13	Lander Co.	Sec. 13 T31N R47E	Chips 0-6350	Chevron
Rossi 21-9	Lander Co.	Sec. 19 T31N R48E	Chips 0-5686	Chevron
USL-GBP #2	Lander Co.	Sec. 17 T31N R48E	Chips 0-500	Getty Oil
USL-GBP #3	Lander Co.	T31N R48E	Chips 0-500	Getty Oil
USL-GBP #5	Lander Co.	Sec. 16 T31N R48E	Chips 0-500	Getty Oil

March 1990

Area/Hole Name	Location		Footage	Driller
NEVADA cont.				
BEOWAWE				
USL-GBP #6	Lander Co.	Sec. 20 T31N R48E	Chips 0-500	Getty Oil
USL-GBP #7	Lander Co.	Sec. 22 T31N R48E	Chips 0-500	Getty Oil
B-39-79	Eureka Co.	Sec. 17 T31N R48E	Chips 0-420	Chevron
USL-GBP #9	Lander Co.	Sec. 22 T31N R48E	Chips 0-480	Getty Oil
USL-GBP #15	Lander Co.	Sec. 20 T31N R48E	Chips 0-500	Getty Oil
USL-GBP #17	Lander Co.	Sec. 16 T31N R48E	Chips 0-500	Getty Oil
Collins 76-17	Eureka Co.	Sec. 17 T13N R48E	Chips 1200-9000	Getty Oil
GBP #10	Eureka Co.	Sec. 22 T31N R48E	Chips 0-500	Getty Oil
GBP #12	Eureka Co.	Sec. 14 T31N R48E	Chips 0-440	Getty Oil
GBP #13	Eureka Co.	Sec. 14 T31N R48E	Chips 0-460	Getty Oil
GBP #14	Eureka Co.	Sec. 11 T31N R48E	Chips 0-300	Getty Oil
GBP #16	Eureka Co.	Sec. 20 T31N R48E	Chips 0-440	Getty Oil
#85-18	Lander Co.	Sec. 18 T31N R43E	Chips 0-5400	Getty Oil
COLADO				
8-34	Pershing Co.	Sec. 34 T28N R32E	Chips 0-500	Getty Oil

March 1990

Area/Hole Name

Location

Footage

Driller

COLADO

NEVADA cont.

1-12	Pershing Co.	Sec. 12 T27N R32E	Chips 0-500	Getty Oil
9-34	Pershing Co.	Sec. 34 T28N R32E	Chips 0-500	Getty Oil
3-10	Pershing Co.	Sec. 10 T27N R32E	Chips 0-500	Getty Oil
4-16	Pershing Co.	Sec. 16 T27N R32E	Chips 0-500	Getty Oil
12-26	Pershing Co.	Sec. 26 T28N R32E	Chips 0-300	Getty Oil
2-2	Pershing Co.	Sec. 2 T27N R32E	Chips 0-500	Getty Oil
15-21	Pershing Co.	Sec. 21 T28N R32E	Chips 0-500	Getty Oil
10-34	Pershing Co.	Sec. 34 T28N R32E	Chips 0-500	Getty Oil
6-6	Pershing Co.	Sec. 6 T27N R32E	Chips 0-500	Getty Oil
16-22	Pershing Co.	Sec. 22 T28N R31E	Chips 0-500	Getty Oil
5-8	Pershing Co.	Sec. 8 T27W R32E	Chips 0-500	Getty Oil
17-24	Pershing Co.	Sec. 24 T28N R32E	Chips 0-500	Getty Oil
7-4	Pershing Co.	Sec. 4 T27N R32E	Chips 0-500	Getty Oil
18-24	Pershing Co.	Sec. 24 T28N R32E	Chips 0-500	Getty Oil
13-26	Pershing Co.	Sec. 26 T28N R32E	Chips 0-500	Getty Oil

March 1990

Area/Hole Name	Location	Footage	Driller	
NEVADA cont.				
COLADO				
14-22	Pershing Co.	Sec. 22 T28N R32E	Chips 0-500	Getty Oil
11-36	Pershing Co.	Sec. 36 T28N R32E	Chips 0-500	Getty Oil
1GH-1	Pershing Co.	Sec. 26 T28N R32E	Chips 0-1500	Getty Oil
1GH-2	Pershing Co.	Sec. 10 T27N R32E	Chips 0-1160	Getty Oil
USL 44X-10	Pershing Co.	Sec. 10 T27N R32E	Chips 1215-7950	Getty Oil
Campbell "E" #2	Pershing Co.	Sec. 15 T31N R33E	Chips 0-8061	Phillips
DESERT PEAK				
No 8-23-1	Churchill Co	Sec 23 T22N R27E	Chips 0-9615	Phillips
DIXIE FEDERAL				
45-14 RD	Churchill Co	Sec 14 T23N R35E	Chips 3640-4550	Chevron
45-14	Churchill Co	Sec 14 T23N R35E	Chips 0-9020	Thermal Power
66-21	Churchill Co	Sec 21 T22N R36E	Chips 0-9780	Thermal Power
DIXIE VALLEY				
CORRAL	Pershing/Churchill Co		Chips 0-500	
DD-9	Pershing/Churchill Co		Chips 20-1440	
H-1	Pershing/Churchill Co		Chips 0-1500	

March 1990

Area/Hole Name	Location	Footage	Driller	
NEVADA cont.				
DIXIE VALLEY				
H-2	Pershing/Churchill Co	Chips 0-1490		
SR-2	Pershing/Churchill Co	Chips 0-490		
SR1-A/2A	Pershing/Churchill Co	Chips 0-1420		
SR-4	Churchill Co	Sec 22 T23NR38E	Chips 0-1500	Southland Royalty
SR-3	Churchill Co	Sec 32 T25NR37E	Chips 0-1500	Southland Royalty
FISH LAKE				
88-11A	Nye Co	Chips 0-8580		
88-11	Nye Co	Chips 0-8120	AMAX	
HOLLAND RANCH				
#1-15-G	Pershing Co	Chips 120-5750	SUNEDCO	
1-2-FR	Washoe Co	Chips 0-5210	SUNEDCO	
1-2-FR	Washoe Co	Chips 0-4400	SUNEDCO	
USA 11-36	Pershing Co	Chips 90-7000	SUNEDCO	
LEACH HOT SPRING				
SUNEDCO 11-36	Pershing Co.	Chips 0-8565	AMINOIL	

March 1990

Area/Hole Name	Location		Footage	Driller
NEVADA cont.				
MCCOY				
66-8	Churchill Co.	Sec. 8 T22N R40E	Chips 0-2500	AMAX
14-7	Churchill Co.	Sec. 7 T23N R40E	Chips 0-940	AMAX
26-8	Churchill Co.		Chips 0-2094	AMAX
26-8	Churchill Co.		Core 1001-2094	AMAX
864-25-9	Churchill Co.	Sec. 9 T22N R40E	Chips 0-2000	AMAX
864-38-9	Churchill Co.	Sec. 9 T23N R40E	Chips 0-2000	AMAX
864	Churchill/Lander Co.			AMAX
MCGEE				
2	Humboldt Co.	Sec. 26 T45N R27E	Chips 0-1680	Earth Power
101-9	Humboldt Co.	Sec. 2 T44N R27E	Chips 0-300	Earth Power
145	Humboldt Co.	Sec. 1 T45N R27E	Chips 0-240	Earth Power
150	Humboldt Co.	Sec. 27 T45N R27E	Chips 0-290	Earth Power
155	Humboldt Co.	Sec. 29 T45N R27E	Chips 0-280	Earth Power
PIROUETTE MOUNTAINS				
66-16	Churchill Co.	Sec. 16 T19N R34E	Chips 0-6700	Rosewood

March 1990

Area/Hole Name	Location		Footage	Driller
NEVADA cont.				
PIROUETTE MOUNTAINS				
72-23	Churchill Co.	Sec. 23 T18N R33E	Chips 1000-7460	Rosewood
Fed 52-14	Churchill Co.	Sec. 14 T18N R33E	Chips 500-8246	Rosewood
SAN EMIDIO				
Kosmos 1-8			Chips 0-4013	Chevron
Kosmos 1-9	Washoe Co.	Sec. 9 T29N R23E	Chips 0-5356	Chevron
44-5	Churchill Co.	Sec. 5 T19N R28E	Chips 0-5069	Chevron
1-29	Churchill Co.	Sec. 29 T20N R28E	Chips 0-4306	Chevron
DeBraga #2	Churchill Co.	Sec. 6 T19N R31E	Chips 0-6700	UNOCAL
SODA LAKE				
11-33	Churchill Co.	Sec. 33 T20N R28E	Chips 0-2000	Chevron
63-33	Churchill Co.	Sec. 33 T20N R28E	Chips 0-2000	Chevron
STEAMBOAT				
5B-23-5	Washoe Co.		Chips 2200-2400	
5B-1RD-1	Washoe Co.		Chips 0-2806 (Not continous)	
5B-83-A6	Washoe Co.		Chips 0-2681 (Not continous)	

March 1990

Area/Hole Name

Location

Footage

Driller

NEVADA cont.

STILLWATER

Weishaft 1

Churchill Co.

Sec. 1 T19N R30E

Chips 0-10,000

UNOCAL

TUSCARORA

AMAX 51-9

Elko Co.

Sec. 5 T41NR52E

Chips 0-3120

AMAX

57-8

Elko Co.

Core 209-1709

AMAX

66-5

Elko Co.

Sec. 5 T41NR52E

Chips 0-4350

AMAX

860-33

Elko Co.

Sec. 3 T41NR52E

Chips 0-770

AMAX

860-41

Elko Co.

Sec. 10 T41NR52E

Chips 0-1000

AMAX

860-42

Elko Co.

Sec. 5 T41NR52E

Chips 0-1740

AMAX

860-68-8

Elko Co.

Chips 0-2020

AMAX

860-81-7

Elko Co.

Chips 0-2010

AMAX

57-8A

Elko Co.

Chips 0-80

AMAX

AMAX 52-9

Elko Co.

Sec. 5 T41NR52E

Chips 0-3120

AMAX

860-32

Elko Co.

Sec. 6 T41NR52E

Chips 0-1020

AMAX

860-34

Elko Co.

Sec. 14 T41NR52E

Chips 0-1040

AMAX

860-36

Elko Co.

Sec. 29 T42NR52E

Chips 0-300

AMAX

March 1990

Area/Hole Name	Location	Footage	Driller	
NEVADA cont.				
TUSCARORA				
860-43	Elko Co.	Sec. 35 T41N R52E	Chips 0-1040	AMAX
57-8A	Elko Co.		Core 0-211	AMAX
NEW MEXICO				
BACA				
5A	Sandoval Co.	Sec. 14 T19N R3E	Chips 100-5500	UNOCAL
5	Sandoval Co.	Sec. 13 T19N R3E	Chips 100-2800	UNOCAL
17RD 1	Sandoval Co.	Sec. 12 T19N R3E	Chips 3240-6254	UNOCAL
19	Sandoval Co.	Sec. 11 T19N R3E	Chips 60-5600	UNOCAL
20	Sandoval Co.	Sec. 12 T19N R3E	Chips 87-6860	UNOCAL
20RD 1	Sandoval Co.	Sec. 12 T19N R3E	Chips 2580-6374	UNOCAL
21	Sandoval Co.	Sec. 12 T19N R3E	Chips 40-2842	UNOCAL
21	Sandoval Co.	Sec. 12 T19N R3E	Chips 90-5980	UNOCAL
22RD 1	Sandoval Co.	Sec. 12 T19N R3E	Chips 2840-6485	UNOCAL
22RD 2	Sandoval Co.	Sec. 12 T19N R3E	Chips 2760-6000	UNOCAL
22RD 3	Sandoval Co.	Sec. 12 T19N R3E	Chips 2660-8800	UNOCAL

March 1990

Area/Hole Name	Location	Footage	Driller	
NEW MEXICO cont.				
BACA				
23	Sandoval Co.	Sec. 12 T19N R3E	Chips 40-5780	UNOCAL
OREGON				
N. CENTRAL CASCADES				
CTGH-1	Clackamas Co.	Sec. 28 T8S R8E	Chips 0-527	Thermal Power
CTGH-1	Clackamas Co.	Sec. 28 T8S R8E	Core 527-4800	Thermal Power
1	Linn Co.	Sec. 32 T13S R7E	Chips 0-1837	Southland Royalty
2	Linn Co.	Sec. 9 T12S R7E	Chips 0-1965	Southland Royalty
3	Clackamas Co.	Sec. 5 T7S R8E	Chips 0-960	Southland Royalty
4	Clackamas Co.	Sec. 10 T7S R8E	Chips 0-1160	Southland Royalty
5	Clackamas Co.	Sec. 6 T8S R8E	Chips 0-730	Southland Royalty
6	Clackamas Co.	Sec. 6 T8S R8E	Chips 0-1510	Southland Royalty
NEWBERRY				
N-1	Deshutes Co.	Sec. 25 T22S R12E	Core 487-4000	Geo Newberry
N-3	Deshutes Co.	Sec. 24 T20S R12E	Core 453-4002	Geo Newberry

March 1990

Area/Hole Name	Location		Footage	Driller
OREGON cont.				
OLD MAID FLAT				
Fenix & Scission 7A	Clackamas Co.	Sec. 15 T2S R8E	Chips 0-6018	Fenix & Scission
Fenix Scission 7A-B	Clackamas Co.		Chips 140-6018	Fenix & Scission
ORE-IDA				
1	Malheur Co.	Sec. 3 T18S R47E	Chips 0-10,054	Ore-Ida Foods
1	Malheur Co.	Sec. 3 T18S R47E	Core Variable	Ore-Ida Foods
#1 SET 1B	Malheur Co.	Sec. 3 T18S R47E	Chips 0-10,054	Ore-Ida Foods
#1 SET #2	Malheur Co.	Sec. 3 T18S R47E	Chips 30-10,054	Ore-Ida Foods
TEXAS				
LACKLAND AFB				
Lackland-1	Bexer Co.		Chips 0-4130	UURI
UTAH				
COVE FORT				
Black Rock		Sec. 18 T24S R11W	Core 19.0-204.7	
5-79/2204	Beaver Co.	Sec. 6 T30S R9W	Chips 0-500	Hunt Energy
5-27/2208	Beaver Co.	Sec. 3 T30S R9W	Chips 0-500	Hunt Energy

March 1990

Area/Hole Name	Location		Footage	Driller
UTAH cont.				
COVE FORT				
5-79/2210	Beaver Co.	Sec. 7 T30S R9W	Chips 0-500	Hunt Energy
5-79/2214	Beaver Co.	Sec. 14 T30S R9W	Chips 0-500	Hunt Energy
5-79/2218	Beaver Co.	Sec. 19 T30S R9W	Chips 0-490	Hunt Energy
5-79/2219	Beaver Co.	Sec. 21 T30S R9W	Chips 0-500	Hunt Energy
14-80/2230	Beaver Co.	Sec. 14 T30S R9W	Chips 0-500	Hunt Energy
14-80/2231	Beaver Co.	Sec. 23 T30S R9W	Chips 0-500	Hunt Energy
14-80/2233	Beaver Co.	Sec. 27 T30S R9W	Chips 0-500	Hunt Energy
14-80/2235	Beaver Co.	Sec. 34 T30S R9W	Chips 0-500	Hunt Energy
14-80/2237	Beaver Co.	Sec. 33 T30S R9W	Chips 0-500	Hunt Energy
14-80/224	Beaver Co.	Sec. 32 T30S R9W	Chips 0-500	Hunt Energy
14-80/2243	Beaver Co.	Sec. 29 T30S R9W	Chips 0-260	Hunt Energy
14-80/2243A	Beaver Co.		Chips 510-1200	Hunt Energy
CFSU 14-29	Millard Co.	Sec. 29 T25S R6W	Chips 0-2620	UNOCAL
CFSU 31-33	Millard Co.	Sec. 33 T25S R6W	Chips 0-5220	UNOCAL
Union 42-7	Beaver Co.	Sec. 7 T26S R6W	Chips 0-7730	UNOCAL

March 1990

Area/Hole Name	Location	Footage	Driller	
COVE FORT				
Forminco #1	Millard Co.	Sec. 29 T25S R6W	Chips 0-1051	UNOCAL
Forminco A	Millard Co.		Chips 0-300	UNOCAL
Forminco B	Millard Co.		Chips 0-110	UNOCAL
Forminco C	Millard Co.		Chips 0-300	UNOCAL
Forminco D	Millard Co.		Chips 0-90	UNOCAL
Forminco E	Millard Co.		Chips 0-300	UNOCAL
Forminco F	Millard Co.		Chips 150-255	UNOCAL
Forminco G	Millard Co.		Chips 0-300	UNOCAL
Forminco H	Millard Co.		Chips 0-300	UNOCAL
Forminco I	Millard Co.		Chips 0-245	UNOCAL
Forminco J	Millard Co.		Chips 0-300	UNOCAL
Forminco K	Millard Co.		Chips 0-250	UNOCAL
Forminco L	Millard Co.		Chips 0-250	UNOCAL
Forminco M	Millard Co.		Chips 0-250	UNOCAL
Forminco N	Millard Co.		Chips 0-120	UNOCAL

March 1990

Area/Hole Name	Location	Footage	Driller	
UTAH cont.				
COVE FORT				
Forminco O	Millard Co.	Chips 0-250	UNOCAL	
Forminco #1	Millard Co.	Chips 0-250	UNOCAL	
Forminco #2	Millard Co.	Chips 0-250	UNOCAL	
Forminco #3	Millard Co.	Chips 0-230	UNOCAL	
Forminco #4	Millard Co.	Chips 0-250	UNOCAL	
Forminco #5	Millard Co.	Chips 0-180	UNOCAL	
Indian Crk #8		Core 105-491.5		
CRYSTAL SPRINGS				
A-W	Box Elder Co.	Chips 70-230		
CMGH-A	Box Elder Co.	Sec. 29 T11N R2W	Chips 0-275	UGMS
CW	Box Elder Co.		Chips 150-280	UGMS
E	Box Elder Co.		Chips 40-200	UGMS
D-Davis#1			Chips 0-235	UGMS
F	Box Elder Co.		Chips 0-150	UGMS
GSLM/GH-A	Box Elder Co.	Sec. 6 T6N R3W	Chips 0-280	UGMS

March 1990

Area/Hole Name	Location	Footage	Driller	
UTAH cont.				
CRYSTAL SPRINGS				
UT/GH-B	Box Elder Co.	Sec. 14 T7N R23W	Chips 0-90	UGMS
UDY/GH-A	Box Elder Co.	Sec. 23 T13NR3W	Chips 0-130	UGMS
UDY/GH-B	Box Elder Co.	Sec. 23 T13NR3W	Chips 0-290	UGMS
HILL AIR FORCE BASE				
1	Davis Co.	Chips 0-1220	Univ of Utah	
2	Davis Co.	Chips 0-3260	Univ of Utah	
MONROE HOT SPRINGS				
Monroe	Sevier Co.	Core 41.0-203.0		
Monroe 2	Sevier Co.	Core 22.0-205.3		
Monroe 3	Sevier Co.	Core 50-252.0		
Monroe M4	Sevier Co.	Core 20-260		
Monroe 6	Sevier Co.	Core 15-250.3		
ROOSEVELT				
GPC-6	Beaver Co.	Sec. 25 T27S R10W	Chips 0-300	Geoth Power
GPC-7	Beaver Co.	Sec. 13 T27S R9W	Chips 0-300	Geoth Power

March 1990

Area/Hole Name	Location	Footage	Driller	
UTAH cont.				
ROOSEVELT				
GPC-8	Beaver Co.	Sec. 25 T26S R9W	Chips 0-360	Geoth Power
GPC-9	Beaver Co.	Sec. 12 T26S R8W	Chips 0-290	Geoth Power
GPC-10	Beaver Co.	Sec. 6 T26S R8W	Chips 0-196	Geoth Power
GPC-11	Beaver Co.	Sec. 17 T26S R8W	Chips 0-110	Geoth Power
GPC-12	Beaver Co.	T26S R7W	Chips 0-260	Geoth Power
Getty 52-21	Beaver Co.	Sec. 21 T27S R9W	Chips 0-7500	Getty Oil
Getty 52-21	Beaver Co.	Sec. 21 T27S R9W	Core Variable	Getty Oil
TPC 72-16	Beaver Co.	Sec. 16 T27S R9W	Chips 0-1244	Thermal Power
TPC-72-16A	Beaver Co.		Chips 85-1245	Thermal Power
GPC-1	Beaver Co.	Sec. 1 T27S R10W	Chips 0-400	Geoth Power
GPC-2	Beaver Co.	Sec. 6 T27S R9W	Chips 0-300	Geoth Power
GPC-3	Beaver Co.	Sec. 4 T27S R9W	Chips 0-300	Geoth Power
GPC-4	Beaver Co.	Sec. 33 T27S R9W	Chips 0-300	Geoth Power
GPC-5	Beaver Co.	Sec. 34 T27S R9W	Chips 0-180	Geoth Power
GPC-13	Beaver Co.	Sec. 22 T27S	Chips 0-240	Geoth Power

March 1990

Area/Hole Name	Location		Footage	Driller
ROOSEVELT				
UTAH cont.				
GPC-14	Beaver Co.	Sec. 18 T27S R9W	Chips 0-540	Geoth Power
GPC-15	Beaver Co.	Sec. 18 T27S R9W	Chips 0-1870	Geoth Power
GPC-18	Beaver Co.	T27S R7W	Chips 0-90	Geoth Power
TPC-14-2	Beaver Co.	Sec. 2 T26S R9W	Chips 0-6100	Thermal Power
Cactus 520-1	Beaver Co.	Sec. 3 T27S R13W	Core 0-2975	AMAX
Cactus 520-2	Beaver Co.	Sec. 10 T27S R13W	Core 0-2454	AMAX
Cactus 520-3	Beaver Co.	Sec. 3 T27S R13W	Core 0-2777	AMAX
Cactus 520-4	Beaver Co.	Sec. 4 T27S R13W	Core 0-875	AMAX
Diamond #1		Sec. 34 T26S R9W	Core 10.8-201.8	
Diamond #1A		Sec. 3 T27S R9W	Core 20-217	
Diamond #1B		Sec. 4 T27S R9W	Core 133-231	
Ryan Springs		Sec. 4 T27S R8W	Core 215-331	
UT State 24-36	Beaver Co.		Chips 0-5600	Thermal Power
KGRA 9-1	Beaver Co.	Sec. 9 T27S R9W	Chips 0-6883	Phillips
HF1	Beaver Co.	Sec. 8 T27S R8W	Core 101.7-503.9	

March 1990

Area/Hole Name	Location	Footage	Driller
UTAH cont.			
ROOSEVELT			
HF3	Beaver Co.	Sec. 25 T26S R9W	Core 29.0-489.3
HF3b	Beaver Co.	Sec. 2 T24S R9W	Core 17.4-498.3
TG 0	Beaver Co.	Sec. 16 T26S R9W	Chips 15-245 Univ of Utah
TG 1	Beaver Co.	Sec. 15 T26S R9W	Chips 25-205 Univ of Utah
TG 2	Beaver Co.	Sec. 5 T26S R9W	Chips 0-232 Univ of Utah
TG 3	Beaver Co.	Sec. 19 T26S R9W	Chips 10-325 Univ of Utah
TG 5	Beaver Co.	Sec. 14 T26S R9W	Chips 15-170 & Core Univ of Utah
TG 6	Beaver Co.	Sec. 7 T26S R9W	Core 35-315 Univ of Utah
Opal Dome	Beaver Co.	Sec. 2 T29S R9W	Core 4.7-55.2 Univ of Utah
OTHER GRADIENT WELLS			
Beaver Dam	Washington Co.	Sec. 23 T42S R19W	Chips 0-205
BLM #5 Pine Valley Area	Washington Co.		Core 315-323
Dry Creek #9 #1			Core 150-171
Loa UT	Wayne Co.	Sec. 10 T27S R2E	Core 8.5-209.8

March 1990

Area/Hole Name	Location	Footage	Driller
UTAH cont.			
OTHER GRADIENT WELLS			
EM1 Mussentuchit Flat		Sec. 16 T24S R7E	Core 20.0-209.8
Grass Valley	Washington Co.	Sec. 1 T39S R15W	Chips 0-300
Panguitch Lake	Garfield Co.	Sec. 27 T35S R7W	Core 0-295
Shauntie Hill	Beaver Co.	Sec. 9 T29S R12W	Core 14.0-207.0
Thermo 1a	Black Mts	Sec. 18 T31S R11W	Core 7-359.3
UINTAH BASIN			
Research Tech	Uintah Co.	Sec. 21 T5S R23E	Chips 140-1300
PetrovestJensen #1	Uintah Co.	Sec. 21 T5S R23E	Chips 0-2615
Petrodyne	Uintah Co.	Sec. 21 T5S R23E	Chips 0-1300
PetrodyneJensen #3	Uintah Co.	Sec. 21 T5S R23E	Chips 0-2545
UTAH ROSES			
2	Salt Lake	Chips 0-4910	Utah Roses
Savage Well	Salt Lake	Sec. 22 T2S R2W	Chips 0-990
WARM SPRINGS FAULT			
WSF/GH-A	Salt Lake	Sec. 14 T1N R1W	Chips 0-250
			UGMS

March 1990

Area/Hole Name	Location		Footage	Driller
UTAH cont.				
UINTAH BASIN				
WSF/GH-B	Salt Lake	Sec. 14 T1N R1W	Chips 0-90	UGMS
WSF/GH-B	Salt Lake	Sec. 14 T1N R1W	Chips 0-250	UGMS
WSF/GH-D	Salt Lake	Sec. 24 T1N R1W	Chips 5-250	UGMS
WSF/GH-E	Salt Lake	Sec. 25 T1N R1W	Chips 25-250	UGMS
WASHINGTON				
GLACIER PEAK				

103 holes with a total of 51698 feet of core

March 1990

Area/Hole Name	Location	Meters	Driller
ASCENSION ISLAND SOUTH ATLANTIC			
Ascension #1	Ascension Island South Atlantic Ocean	Chips 20-10050	UURI
GH-1	Ascension Island South Atlantic Ocean	Core 0-583	UURI
GH-2	Ascension Island South Atlantic Ocean	Core 0-583	UURI
GH-3	Ascension Island South Atlantic Ocean	Core 0-206	UURI
GH-4	Ascension Island South Atlantic Ocean	Core 0-723	UURI
GH-5	Ascension Island South Atlantic Ocean	Core 0-892	UURI
GH-6	Ascension Island South Atlantic Ocean	Core 0-1294	UURI
LDTGH	Ascension Island South Atlantic Ocean	Core 0-1115	UURI
CANADA			
MEAGER CREEK			
MCG-1		Chips 30-3040	BC Hydro
MCG-2		Chips 15-3500	BC Hydro
MCG-3		Chips 185-3500	BC Hydro
M-1		Core Variable	BC Hydro
M-2		Core Variable	BC Hydro

March 1990

Area/Hole Name	Location	Meters	Driller
CANADA cont.			
MEAGER CREEK			
M-3		Core Variable	BC Hydro
M-7		Core 40-360	BC Hydro
M-7		Chips 40-360	BC Hydro
M-8		Core 20-490	BC Hydro
M-8		Chips 20-490	BC Hydro
M-9		Core 130-1130	BC Hydro
M-9		Chips 130-1130	BC Hydro
M10-80D		Core 0-106	BC Hydro
M10-80D		Chips 0-106	BC Hydro
M13-81-D		Core 40-580	BC Hydro
M13-81-D		Chips 40-580	BC Hydro

GUATEMALA, CENTRAL AMERICA

Zunil

ZCQ-1

ZCQ-6

Chips 0-1310

Chips 0-1035

March 1990

Area/Hole Name

Location

Meters

Driller

ZUNIL

ZCQ-5

ZCQ-3

GUATEMALA, CENTRAL AMERICA cont.

LOS AZUFRES

AZ-47

AZ-52

AZ-41

AZ-51

AZ-3

AZ-29

AZ-28

AZ-48

AZ-31

MEXICO

Chips 0-1070

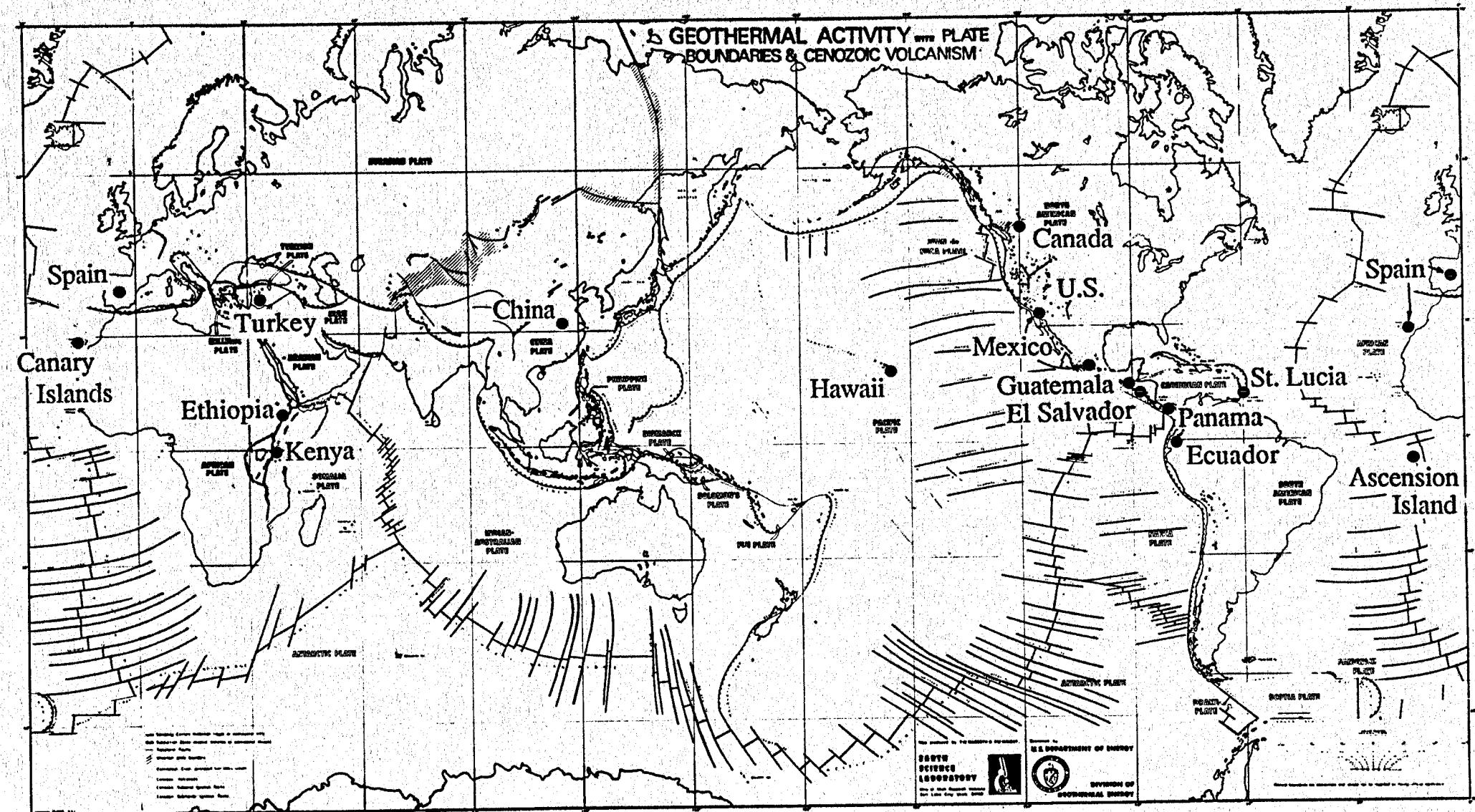
Chips 0-1020

Chips 12-2958

Chips 18-1932

Chips 0-672

Chips 0-1842


Chips 0-2328

Chips 0-2742

Chips 0-1680

Chips 12-2676

Chips 18-1290

UURI Geothermal Studies - Worldwide

EARTH SCIENCE LABORATORY
391 CHIPETA WAY, SUITE C
SALT LAKE CITY, UTAH 84108
(801) 524-3422