

**Proceedings of the
GEOTHERMAL PROGRAM REVIEW VII**

“DOE Research and Development

for the

Geothermal Marketplace”

CONF-890352--

DE89 015627

**March 21-23, 1989
San Francisco, CA**

Coordinated by:

**Meridian Corporation
Alexandria, VA 22302**

Sponsored by:

MASTER

**U.S. Department of Energy
Assistant Secretary, Conservation and Renewable Energy
Geothermal Technology Division
Washington, D.C. 20585**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NEAR-TERM DEVELOPMENTS IN GEOTHERMAL DRILLING

James C. Dunn
Sandia National Laboratories
Albuquerque, New Mexico

ABSTRACT

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar, insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

HARD ROCK PENETRATION RESEARCH

- Lost Circulation Control
- Rock Penetration Mechanics
- Instrumentation
- Geothermal Drilling Organization

LOST CIRCULATION TECHNOLOGY DEVELOPMENT PROGRAM

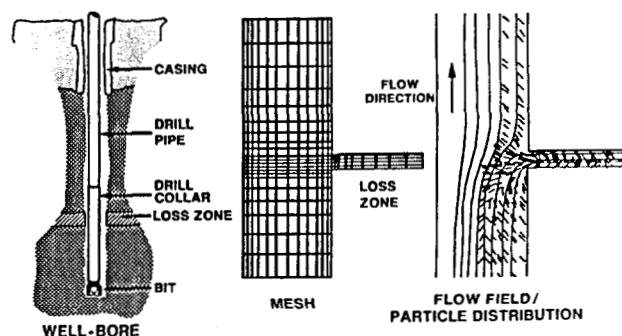
Motivation

- Lost circulation is the most costly problem routinely encountered in geothermal drilling.
- Lost circulation can cause poor casing cement jobs and result in the loss of the well.
- Lost circulation can result in contamination of fresh-water aquifers.

ACTIVITIES

- I. Development of high-temperature LCMs for matrix and minor-fracture fluid loss control
- II. Development of techniques for major-fracture fluid loss control
- III. Development of loss zone characterization techniques

ACTIVITY I DEVELOPMENT OF HIGH-TEMPERATURE LOST CIRCULATION MATERIALS (LCMs)


Motivation:

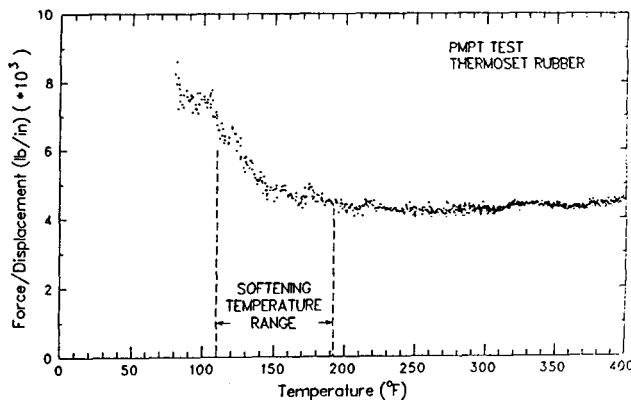
- Fractures smaller than the nozzle diameter can be plugged with solid drilling mud additives (LCMs)
- LCMs used in oil and gas drilling do not survive the high-temperature, high-pressure geothermal environment.

Approach:

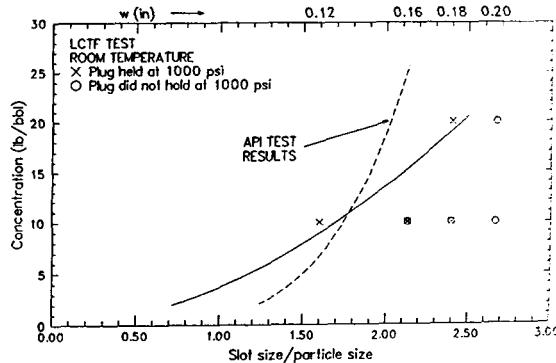
- Develop analytical models of fracture plugging mechanisms to quantify material property requirements
- Conduct laboratory tests of potential LCMs to evaluate fracture-plugging capabilities
- Conduct field tests and transfer technology

NUMERICAL MODELING OF PARTICLE-LADEN MUD FLOW

LABORATORY LCM TESTING EQUIPMENT



Particle Material Properties Tester


Modified API Tester

Lost Circulation Test Facility

TYPICAL SOFTENING TEMPERATURE RESULTS FOR A PARTICULATE LCM

PLUGGING PERFORMANCE PLOT FOR COMPOSITE THERMOSET RUBBER GRANULES AND THERMOSET PLASTIC FLAKES

ACTIVITY II DEVELOPMENT OF TECHNIQUES FOR MAJOR-FRACTURE FLUID LOSS CONTROL

Motivation:

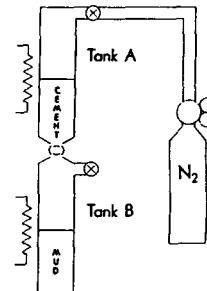
- Large fractures, vugs, and caverns are common in geothermal formations
- Pumpable solids are not capable of plugging such loss zones
- Cement is the standard treatment but is costly due to large volume requirements and long waiting period

Approach:

- Conduct laboratory tests of alternative time-and temperature-setting fluids
- Develop emplacement techniques and procedures for such fluids
- Conduct field tests and transfer technology

CURRENT ACTIVITY II PROJECTS

- Polyurethane foam tool testing
- Cementitious mud development (joint project with Brookhaven National Laboratory)
- Evaluation of porous packer concept


DEVELOPMENT OF CEMENTITIOUS MUDS

- Joint development with Brookhaven National Laboratory
- Rapid-setting, temperature-activated cement can be made by mixing:
 - bentonite
 - ammonium polyphosphate
 - borax
 - magnesium oxide
- Current study is focusing on encapsulation of the MgO accelerator with a shear-sensitive material that would be removed by fluid action at the bit nozzle

HIGH-DIFFERENTIAL-PRESSURE CEMENT TESTER

- Designed to duplicate cement nozzle velocities encountered in typical field applications

- Tank A represents the drill-pipe; Tank B represents the loss-zone
 - Max. Tank A temperature = 100°C
 - Max. Tank B temperature = 300°C
 - MAWP = 2500 psi
 - Max. ΔP = 1200 psi
- Cement exotherm temperature measured to determine setting time
- 2-hr compressive strength tests conducted on cement samples
- Tester undergoing design and construction by Sandia for use by Brookhaven

ACTIVITY III DEVELOPMENT OF LOSS ZONE CHARACTERIZATION TECHNIQUES

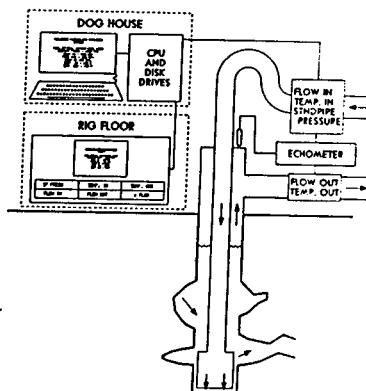
Motivation:

- Techniques are needed for assessing loss zones in order to optimize treatments for specific cases
- Prompt evaluation of treatment effectiveness is needed to help minimize treatment costs

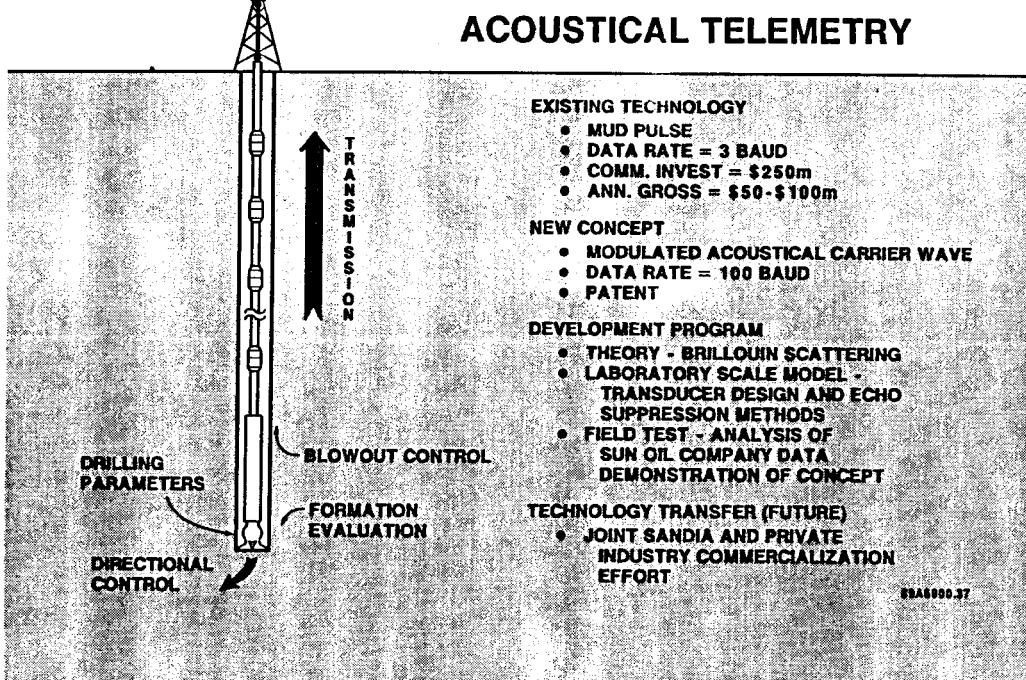
Approach:

- Develop wellbore hydraulics models for evaluating drilling fluid losses
- Develop hardware/software necessary to acquire and analyze onsite drilling data
- Correlate hydraulics model predictions with physical attributes derived from borehole televIEWER logs of actual loss zones
- Conduct field tests and transfer technology

WELLBORE HYDRAULICS ANALYSIS HARDWARE

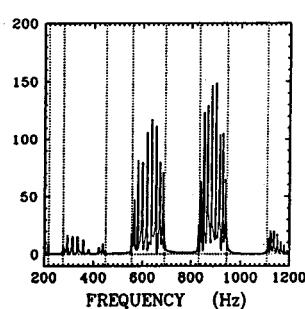

- Rugged, stand-alone system for acquiring and analyzing wellbore hydraulics data

- Transducers measure :

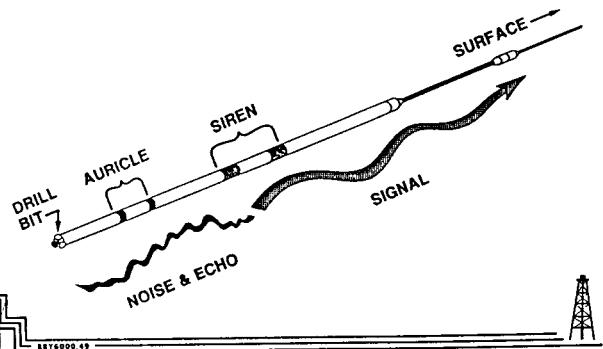

- flow rate in
- flow rate out
- standpipe pressure
- temperature in
- temperature out
- annulus fluid level

- Central Processing Unit :

- logs and interprets drilling hydraulics data
- displays data summary on rig floor
- alerts driller of fluid loss
- directs drilling fluid flow tests
- displays loss zone characteristics
- recommends type of treatment



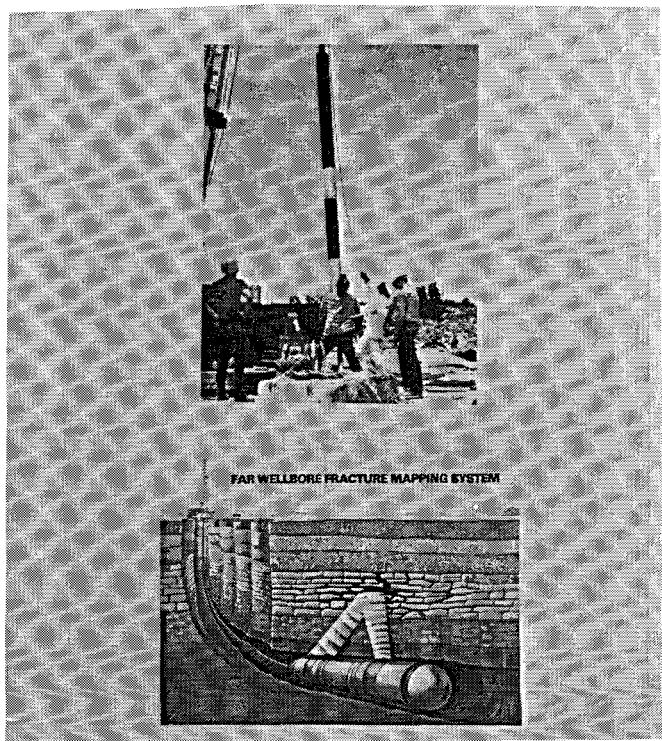
ACOUSTICAL TELEMETRY



TYPICAL SPECTRAL DENSITY OF AN ACOUSTIC TRANSMISSION

- Tool joints \Rightarrow blank bands.
- Echos \Rightarrow spikes.
- Area \Rightarrow power.
- Amplitude \Rightarrow detection.
- Tone burst \Rightarrow diffused power.
- Pure Tone \Rightarrow concentrated power.

THE DOWNHOLE LINEAR HORN

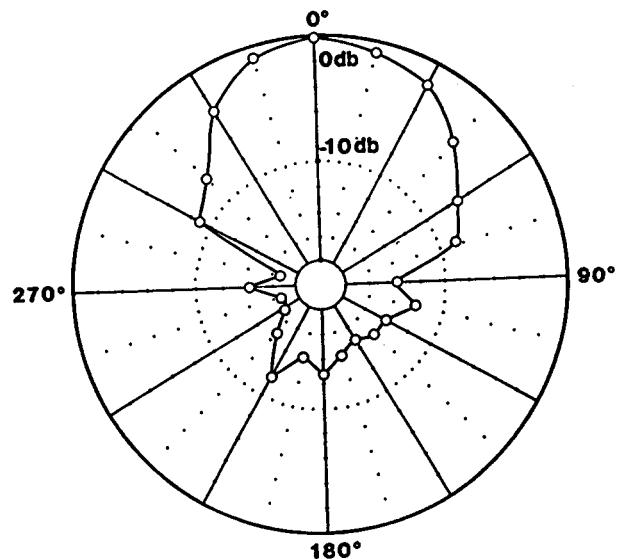


PROGRAM ACCOMPLISHMENTS

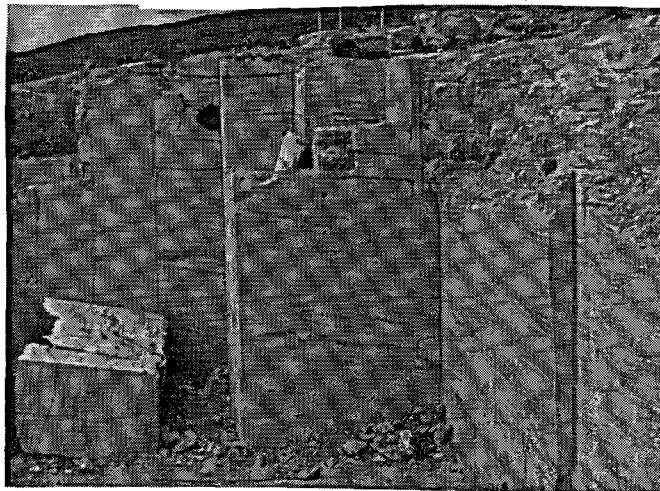
□ THIS YEAR

■ PREVIOUS YEAR

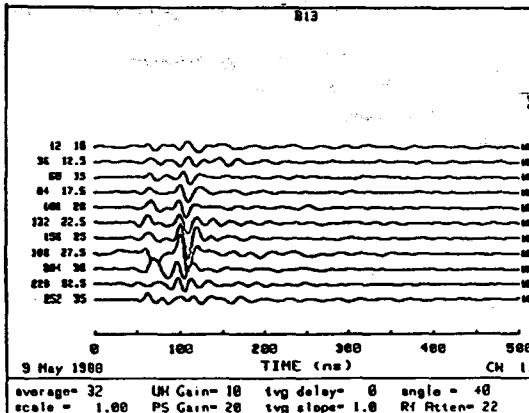
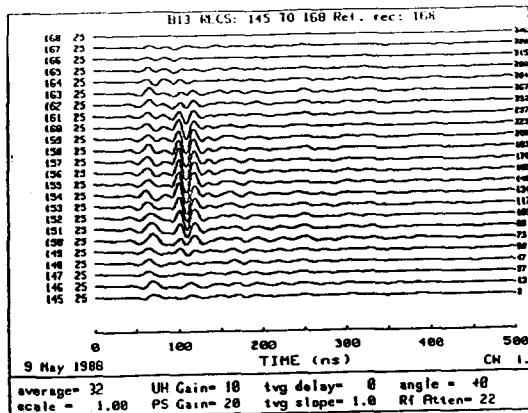
- TRANSMISSION CHARACTERISTICS ■
 - THEORY ■
 - LABORATORY ■
 - FIELD ■
- LINEAR HORN □
 - MODEL □
 - ANALYSIS □
 - FABRICATION □
 - TESTING □
 - FULL SCALE □
 - MECHANICAL DESIGN □
 - CONTRACT □
 - ELECTRONICS □
- TERMINATION TRANSDUCER
 - ANALYSIS ■
 - CONTRACT, U OF T ■
 - FABRICATION OF MODEL □
 - TESTING OF MODEL □
- PATENT APPLICATION FILED □
- TECHNOLOGY TRANSFER □
 - J. ACoust. SOC. PUBLICATION □
 - ACoust. SOC. CONF. PAPER □
 - SPECIAL PRESENTATIONS □
 - ARCO □
 - EXXON □
 - GEARHART □


UNIQUE FEATURES OF THE RADAR PROBE

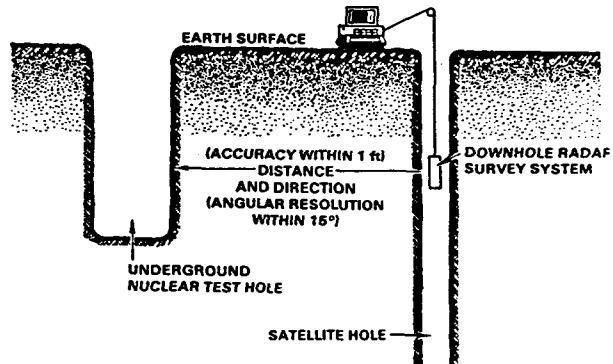
- HIGH RESOLUTION - 1 FOOT ACCURACY
- DIRECTIONAL CAPABILITY
- 50 KW PEAK POWER
- DOWNHOLE SAMPLING - COMPLETE RECOVERY OF RF SIGNALS
- - 100 dBm CAPABILITY - DETECT AS LOW AS 2 MICROVOLTS


RADAR ANTENNA PATTERN
MEASURED IN WATER

FUTURE



- LINEAR HORN
 - COMPLETE MODEL TESTS
 - PURCHASE FULL-SCALE PROTOTYPES
 - BUILD ELECTRONICS
 - COMPONENT TESTING IN WELLS
 - SCOPE SIGNAL-TO-NOISE RATIO
- TERMINATION TRANSDUCERS
 - COMPLETE TESTING AND EVALUATION OF MODEL
- PATENT
- TECHNOLOGY TRANSFER
 - TECHNICAL PAPERS
 - LINEAR HORN
 - TERMINATION TRANSDUCER
- INDUSTRY CONTACT

ROCK QUARRY TEST SITE



REFLECTION DATA SHOWING CLIFF FACE

DOWNHOLE RADAR SURVEY SYSTEM

- PROVIDE CORTEX
- A METHOD TO OBTAIN DISTANCE AND DIRECTION OF THE NUCLEAR TEST SITE FROM A SATELLITE HOLE

SECOND GENERATION RADAR PROTOTYPE

MECHANICAL UPGRADE

- Reduce OD from 7.5" to 5.5"
- Modular housing to facilitate assembly and disassembly
- Variable antenna separation

ELECTRICAL UPGRADE

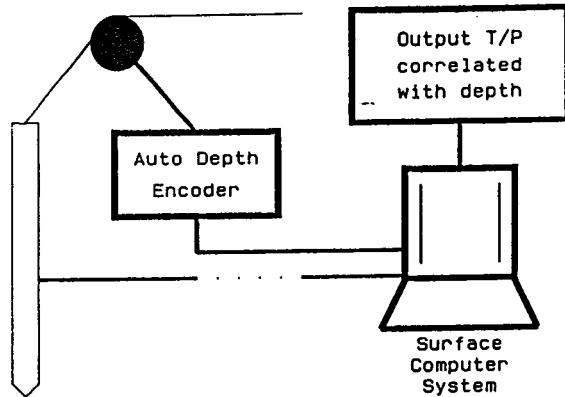
- Multilayer boards to reduce size
- Improved shielding and ground plane to reduce crosstalk
- Improved sampling circuit
- Improved pulse generator

SCHEDULE

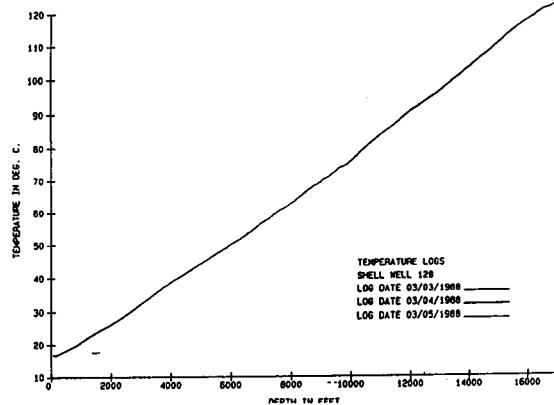
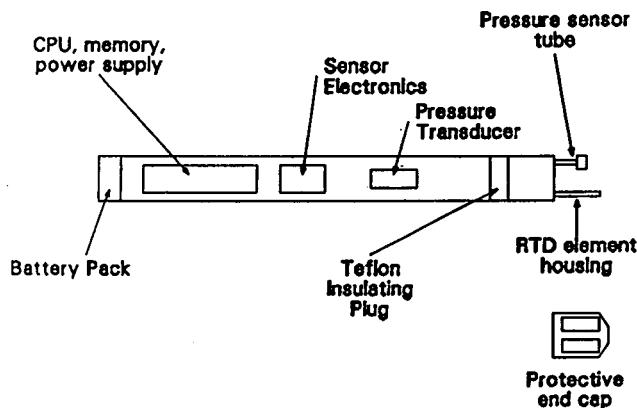
• Complete and test 2nd prototype	FY90
• Apply tool to field applications	FY91
• Transfer to industry	FY92

DOWNHOLE MEMORY TOOLS

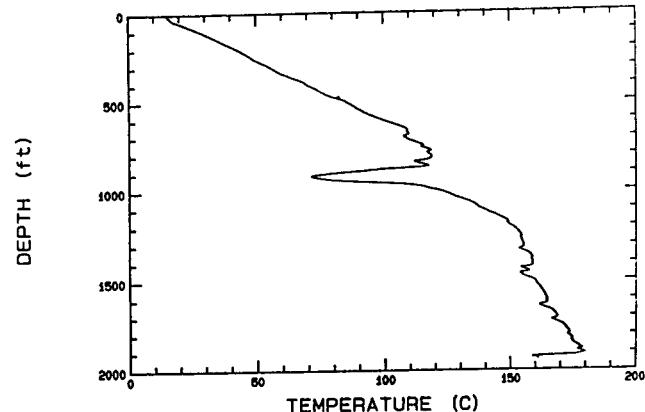
CHARACTERISTICS OF A DOWNHOLE MEMORY TOOL


- Self-contained tool - requires no wireline cable for communication to the surface
- Electronic tool with digital data storage - no mechanical timer or data inscription system
- Use of a heat shield allows the use of standard electronic components at high temperatures (>300°C)

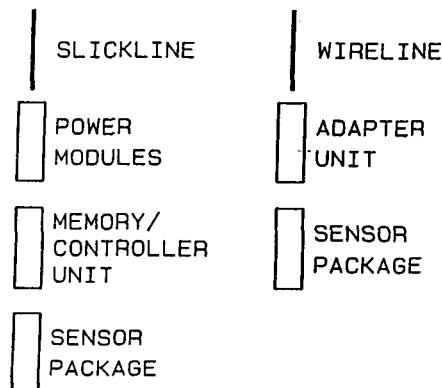
FEATURES OF DIGITAL T/P TOOL



- 3.5-inch diameter, 5 ft long, 100 lbs.
- Dewatered to operate for 10 hrs at 400°C
- Programmable time steps
- 1000 T/P data points
- Interfaces with a surface PC
- Temperature - Pt RTD; 0-600°C; .5°C accuracy
- Pressure - quartz crystal; 0-15,000 psi; 3 psi accuracy

TEMPERATURE LOG OF DEEP SHELL WELL


DIGITAL T/P TOOL

DIGITAL T/P TOOL

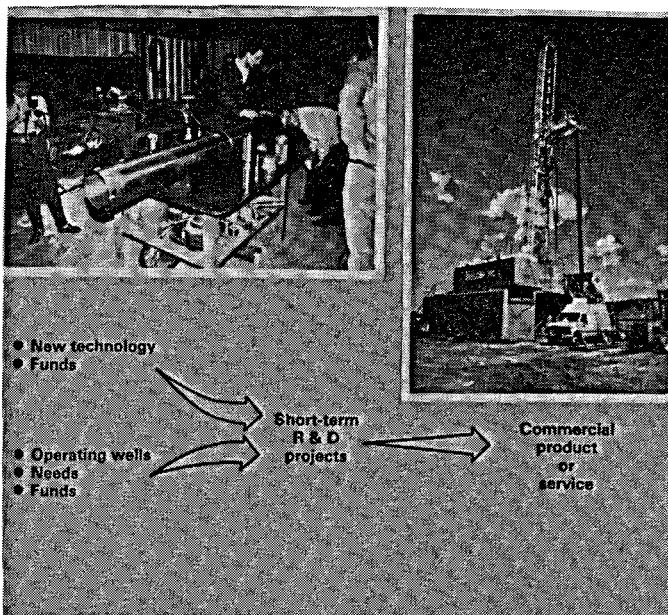

VC-2B TEMPERATURE DATA
(August 30, 1988)

SPECIFICATIONS OF HEAT-SHIELDED GRC TOOL

- Maximum use temperature: 400°C
- External and internal temps. measured
- Outside diameter of tool: 2 in.
- Electronic memory for 10,000 readings
- Able to be used with wireline cable
- Rapid response time of temp. sensor

MODULAR MEMORY/CONTROLLER

HIGH TEMPERATURE MODULAR SYSTEM


FEATURES

- State-of-the-art microprocessor
- Large memory capacity
- 2 or 3 data channels
- Small diameter

PROBLEMS

- Size of heat shield
- Seals on heat shield
- Power requirements
- Sensor/Controller interconnection

GEOTHERMAL DRILLING ORGANIZATION

GDO PROJECTS STATUS

1. Borehole Televiwer	Active
2. Air Turbine	Active
3. Foam Lost Circulation Tool	Complete
4. Drill Pipe Protectors	Active
5. Rotating Head Seals	Active

HIGH TEMPERATURE BOREHOLE TELEVIEWER

Total Project Cost \$948K

Industry Contribution (cash) \$474K

Participating Members

- Unocal
- Geo Operator

Status

- Contractor Squire Whitehouse declared bankruptcy
- Sandia completed hardware assembly and testing of prototype
- Sandia completing commercial version
- Full system field test - Spring 89
- Follow on contractor will complete field logging phase

DESIGN CHANGES (3rd PROTOTYPE)

- 4-stage turbine motor
- 10,000 rpm output
- Gearbox operated in liquid oil (no spray lubrication)
- 4-stage gearbox 168:1 (drilling)
- 3-stage gearbox 46:1 (course correction)

PNEUMATIC TURBINE

Total Project Funding \$418K

Industry Contribution (in kind) \$294K

Participating Members

- Rift Engineering
- Geo Operator
- Geysers Geothermal
- Unocal
- Eastman Christensen
- Grace Drilling
- H & H Tool

Status

- First prototype turbine drilled 400 feet of sand and shale sequences at penetration rates up to 180 ft/hr
- Four field tests at the Geysers during 1988
- Several modifications completed
- Third prototype being designed
- Project nearing completion

GEYSERS FIELD TESTING

- Three Unocal wells, one GEO well
- Weakness in gearbox assembly (torque)
- Insufficient lubrication of upper bearings in gearbox
- Turbine motor and thrust assemblies -- no problems
- Fourth field test very successful

FOAM FOR LOST CIRCULATION

Total Project Cost \$400K

Industry Contribution (in kind) \$250K

Participating Members

- NL Industries
- Geo Operator
- Unocal
- Grace Drilling
- H & H Tool

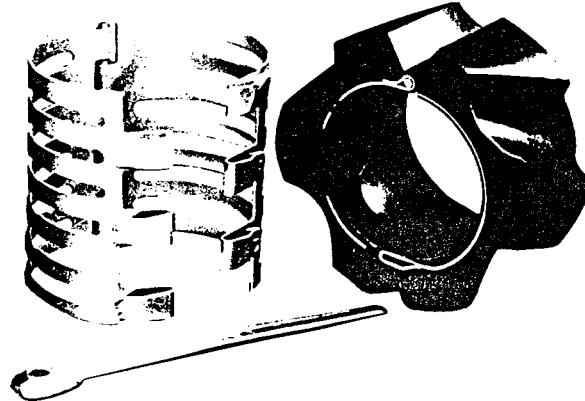
Status

- Project complete
- Three downhole tools were built and successfully tested
- Training of field personnel completed at H&H facility
- Field test at Geysers resulted in proper tool operation but insufficient foam expansion
- Extensive laboratory testing of all chemical combinations could not produce expected expansion at elevated T and P
- GDO member interest remains but effective chemical system is needed

HIGH TEMPERATURE DRILL PIPE PROTECTORS

Total Funding \$80K

Industry Contribution (cash) \$40K


Participating Members

- Geo Operator
- Unocal

Advisor: Larry Kukacka (BNL)

Status

- Thirty-five materials have been screened
- Laboratory testing is complete
- Full scale protectors have been manufactured and successfully tested in air to 550°F
- Problems with elastomer to metal bond at T and P in brine and steam
- Additional testing underway with different base metal

HIGH TEMPERATURE ROTARY HEAD SEAL

Total Funding 440K

Industry Contribution (in-kind + cash) 220K

Participating Members

- Unocal
- Geo Operator

Advisor: Larry Kukacka (BNL)

Status

- Contract placed with Drilex Systems
- Planning complete
- Lab testing continues
- Field test fixture approved and in final design stage

This work was supported by the U. S. Department of Energy at Sandia National Laboratories under Contract DE-AC04-76DP00789.