
w .
. . . .. .

Modelling the Behaviour of an Earthquake Base-Isolated Building

!.

VA Coveney and S Jamil
University of the West of England Bristol

DE Johnson
Thompson-Marconi Sonar Systems, Templecombe

RF Kulak and RA Uras
Argonne National Laboratory

SYNOPSIS

USA

Protecting a structure against earthquake excitation by supporting it on laminated elastomeric
bearings has become a widely accepted practice. The abiIity to perform accurate simulation of
the system, including FEA of the bearings, would be desirabIe - especially for key installations.

In this paper ahempts to model the behaviour of elastomeric earthquake bearings are outlined.
Attention is focused on modelling highly-filled, low-modulus, high-damping elastomeric isolator
systems; comparisons are made between standard triboelastic soIid model predictions .a.ndtest
results.

1 INTRODUCTION

,,

Seismic base isolation systems function by supporting a building on bearings which effectively

decouple the buiIding horn the sirong horizontal ground accelerations occurring in earthquakes.

To be effective the fimdamental natural frequency of the building/ bearing system must be well

below the main frequencies of the earthquake. Derham & Thomas (1980), Kelly (1986), Coveney

et al (1988), Coveney & Thomas (1991) and Coveney (1991). Base isolation is gaining attention

worldwide for use in a wide spectrum of structures and critical facilities, including bridges, office

buildings, hospitals, computing and telecommunication centres, as well as nucle~- facilities,
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Today there are over 125 structures around the world which are isolated against earthquakes and

the numbers have been increasing steadily in the past few years.

An international cooperation programme was initiated in September, 1988 by Argonne National

Laboratory (ANL) of the USA and Shimuzu Corporation of Japan to study the response of

isoIated structures to real seismic events. Within the programme agreement, Shimuzu provided

their test facility at Sendai and earthquake data collection while AIIL supplied the isolation

bearings to be installed at the test facility and performed most of the analytical simulations

utilising the ANL-developed 3-D computer program, SISEC @eismic @elation ~ystem

@luation Qode) (Wang et al, 1991).

Two separate sets of high-damping elastomer bearings were installed in the Sendai building

designed for isolation. The first set, installed in April 1989, comprised high shape factor, high

shear modulus rubber bearings primarily designed for medium and large earthquakes. From

April 1989 to July 1990,37 earthquakes were recorded. Detailed responses of the test facility

were ana.lysed and reported (Wang & Gvildys 1991, Uras 1993). The second set of bearings -

comprising medium shape factor, low shear modulus bearings designed for a wide range of

seismic events, including small tremors - were installed in October 1990 (Wang et al 1991,

Coveney et al 1993). The current paper concerns the low shear modulus bearing system. From

November 1990 to March 1991 seven seismic events were obsemed at the test facility. Complete

records of a representative earthquake, #44, were used in the current study.

,,

2 ISOLATION BEARINGS

The bearings were cylindrical -371 mm in diameter and 206 mm in height (Fig 1). Each bearing

consisted of 12 10 .munthick layers of elastomer alternating with 3 mm thick 350 mm diameter

steel inter-plates. The steel endplates were 28 mm thick. The elastomeric material used in the

bearings was an experimental highly-filled but lightly-crosslinked natural rubber formulation

(Ckweney 1987). Such highly-filled elastomeric materials exhibit significant nonlinearity both at

2



. ..

large and at smaH strains (Coveney 1988, Coveney & Ahrnadi 1989, Ackerman et al 1997,

Coveney et al 1997) as shown in Figure 2 (1990 data).

The nonlinear characteristics of the soft bearings are indicated in Figure 3. The stifhess (k~Ot)

was calculated as the ratio of the amplitude of the overall force (FO)to the displacement

amplitude (x3. The approximate darnping ratio (<,PP)was calculated from the area of the force-

deformation loop (A)

c.,,=Zn:x.
Oa

(1)

In spite of the relatively high level of damping of the elastomer, the creep rates were acceptably

low: - 10% increase in deformation per 10-fold increase in time both for testpieces in simple

shear and for whole bearings in compression. In contrast, the creep rate predicted from the

damping using linear viscoelastic theory was much higher: - 33% (Coveney et al 1993), The

discrepancy in the predicted and measured creep rates highlighted the limitations of viscoelastic

theory for describing the behaviour of heavily-illed elastomers. The triboelastic fhrnily of

models offers a possible approach to describing earthquake base isolation bearings both in terms

of their overalI behaviour and in terms of Finite Element Analysis of them (Turner 1988,

Coveney et al 1995, Ackerman et al 1997); others have adopted a n-de-based method (Ahmadi

and Muhr 1996).

,3

3 THE TEST BUILDINGS

Two test buildings, one conventionally designed and the other base-isolated, have been

constructed side by side at Tohuko University in Sendai, northern Japan. The test buildings

were fill-size, three-story, reinforced concrete, rigid frame structures. The dimensions and

construction details of the superstructure were exactly the same for both buildings. The

buildings were constructed as rigid frame structures with outer walls made of lighveight
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concrete panels. Each building was 6m by l“Om(in plan) by 9m high (9.9m including a roof

parapet) with an above-ground mass of 234 tonnes.

One building had a normal foundation at basement level. The second building, designed for base

isolation, had a space around its-entire sub-structa@o allow unrestricted movement of the.
building during earthquakes and was supported by 6 isolation bearings. One bearing was

situated under each corner of the building and one under each of the long sides. The test

buildings were completed in May 1986. Each test building was heavily instrumented with 23

horizontal and 14 vertical accelerometers, 2 horizontal displacement transducers and a

thermometer.

The soil under the buildings was hard loam soil that had a shear wave velocityof310 rnls. A site

predominant frequency of 4 Hz was obtained from micro-tremor observations. Examples of

ground acceleration records are shown in Figure 4 and a summary of the performances of the

isolated and non-isolated buildings is shown in Figure 5 (Coveney et al, 1993).

4 MODELLING THE BEHAVIOUR OF THE BUILDINGS SUBJECTED TO

EARTHQUAKE BASE EXCITATION

Base isolation using high damping (highly filled) rubber (HDR) bearings has become a widely

accepted method for earthquake protection of key buildings. However, because HDR bearings

are much stiffer when subjected to small deformations than when subjected to large, performance

during relatively small (but frequent) tremors can be problematic; there is a risk that base

“isolation” systems may actually”increase the response of the buiMing to such seismic events. As

has been previously reported, peak accelerations experienced-by the Sendai building isolated by

t~e soft HDR bearings were - 1/4 of the levels experienced by the, otherwise identical, non-

isolated structure during small tremors (Wang et al 1993) as shown in Figure 5. Mathematical

modelling of the behaviour of the non-isolated and isolated buildings has also been previously

described - for which the bearings were modelled by means of a bilinear force-displacement
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relationship; an acceptable degree of agreement was obtained between model and experiment

(Wang et al 1993). A bilinear model, rather than a viscoelastic model for example, was used in

order to represent, in a simple way, the relatively rate independent damped behaviour of

elastomeric materials such & HDR. The current work is directed towards examining the

possibility of using a triboelastic model to represent the bearings to improve mathematical

modelling fhrther (Turner 1988, Coveney et al 1995, Ackerman et al 1997). As a first step a

small testpiece of soft HDR has been subjected to deformation histories representative of those

experienced in small earthquakes and the force responses compared with those predicted by a

triboelastic model.

In order to obtain representative earthquake defom.ation histories, a structure was considered

with the same mass (m) as the Sendai building (234.5 x 103kg) supported on a (Kelvin model)

linear viscous isolation system with a combined (horizontal) stiffhess (k) of 2.31 x 10sN/m and

damping coei%cient (c)of 147x 103Ns/m, giving a natural frequency (fO)of 0.5 Hz and a

damping ratio (<) of 0.1. Measured ground acceleration histories (Fig 4) were integrated twice

with respect to time and the resulting displacement history applied to the base of the idealised

single-degree-of-fi-eedom system; the corresponding deformations experienced by the idealised

isolation system were then calculated.

5 MODELLING OF THE ELASTOMER

The standard triboelastic solid (STS) was used to model the behaviour of the soft high d,uping

natural rubber (HDR) vulcanisate (Turner 1988, Coveney et al 1995, Ackermanetal(1997) and

Fig 6). For a double shear testpiece of area 103mm2 and thickness 6 mm, the STS constant ~ was

set to a high value (1Ox 10cN/m) and the other model constants were fitted to (normalised)

dynamic stiffness (weighting of 2) and loss angle (weighting of 1) data (of 1990) for strain

amplitude (y) of 0.05, 0.1, 0.2, 0.3 and 0.5 (Fig 2); the following values were obtained:

kl = 60.2 x 103N/m, CT= 1.69x 106N*/m.
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6 RESULTS AND DISCUSSION

A double shear testpiece (25.4 mm diameter and 6 mm thickness) of the soft HDR vulcanisate

was subjected to (scaled versions of) the deformation histories described in 4. The (3 parameter)

first-order triboelastic model (STS) was subjected to the same deformation histories.

Experimental results and model predictions ar’ecompared in Figures 7-1O;it can be seen that the

model produced force histories which were similar in overall pattern to those obtained

experimentally. The experimental force values were, however, higher by -1 50/o;the dynmic

moduli (G*) of the HDR vulcanisate were then remeasured; values -1 5V0higher than the 1990

data were obtained, accounting for the discrepancy .(Fig 11). It should be emphasised, however,

..&at.the range of shear strains studied was limited. Furthermore the 3 parameter STS model is

unlikely to be suitable for modelling behaviour at shear strains significantly higher than 100Yo.

7 CONCLUSIONS

A, previously reported, study involving two near-identical buildings - one with a conventional

foundation the other supported on elastomeric earthquake isolation bearings - has clearly

demonstrated the advantage of earthquake isolation during earth tremors. Work to simulate the

behaviour of buildings during earthquakes using FEA has been referred to. Work to simulate the

behaviour of an experimental soft high damping natural rubber (HDR, used in earthquake

isolation bearings) by means of a standard triboelastic solid (STS) model has proved suc~essful

over the range of shear strains studied. It appears that the properties of the HDR vulcanisate may

have changed a little over the co~se of 7 years. It is anticipated that accurate modelling at shear

strains significantly higher than 100°/0would require modifications to the STS model, but that

mch modifications would be relatively straightforward.
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