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ROCK FAILURE I N  COMPRESSION 

S.Nemat-Nasser and H.Horii 

Department o f  C i v i l  Engineer ing 
The Technological  I n s t i t u t e  

Northwestern Un ive r s i ty  
Evanston, I l l i n o i s  60201 

ABSTRACT 

Mechanisms o f  rock f a i l u r e  i n  compression -- 
a x i a l  s p l i t t i n g  and shea r  f a i l u r e  -- are  s t u -  
d i e d ,  based on a microscopic  c o n s i d e r a t i o n .  
A n a l y t i c a l  models a r e  cons t ruc t ed  and model 
experiments on p l a t e s  of a b r i t t l e  polymer are 
performed. It is shown t h a t  u n s t a b l e  growth 
of t e n s i o n  c r a c k s  which propagate  from t h e  
t i p s  of p r e - e x i s t i n g  c racks  and curve towards 
t h e  maximum compressive d i r e c t i o n .  is  t h e  fun-  
damental  mechanism t h a t  produces a x i a l  s p l i t -  
t i n g  of a u n i a x i a l l y  compressed rock specimen. 
whereas s h e a r  f a i l u r e  o f  a t r i a x i a l l y  
compressed specimen i s  a r e s u l t  o f  sudden 
growth of t e n s i o n  c racks  a t  t i p s  o f  a s u i t a b l y  
arranged i n t e r a c t i n g  se t  o f  microcracks.  The 
s imultaneous out-of-plane u n s t a b l e  growth o f  a 
s u i t a b l y  o r i e n t e d  row o f  c racks  is analyzed 
and. on t h e  b a s i s  of t h i s  model. t h e  v a r i a -  
t i o n s  o f  t h e  "u l t ima te  s t r e n g t h "  and t h e  
o r i e n t a t i o n  o f  t h e  o v e r a l l  f a u l t  p l ane  wi th  
t h e  conf in ing  p r e s s u r e  are e s t ima ted .  The 
b r i t t l e - d u c t i l e  t r a n s i t  ion i s  d i scussed  wi th  
t h e  a i d  of a model which inc ludes  bo th  t e n s i o n  
c rack  ex tens ion  and p l a s t i c  zone development 
from t h e  p r e - e x i s t i n g  c racks .  

1 I "  

B r i t t l e  s o l i d s  such as rock and c o n c r e t e  by  
t h e i r  n a t u r e  c o n t a i n  numerous microcracks and 
inhomogeneities.  Materials of t h i s  k ind  f a i l  
under u n i a x i a l  compression by a x i a l  s p l i t -  
t i n g ,  where t h e  f r a c t u r e  s u r f a c e  i s  p a r a l l e l  
t o  t h e  a x i a l  c o r ? r e s s i o n  d i r e c t i o n .  Shear 
f a i l u r e .  on t h e  o t h e r  hand. i s  observed under 
t r i a x i a l  compression; Peng and Johnson (1972).  
The u l t i m a t e  s t r e n g t h  and t h e  o r i e n t a t i o n  of 
t h e  macroscopic f a i l u r e  p l ane  depend on t h e  
conf in ing  p r e s s u r e  i n  s complex manner. Gen- 
e r a l l y  speaking. t b e  s t r e n g t h  v e r s u s  conf in ing  
p r e s s u r e  curve is non-l inear  under low conf in -  
ing  p r e s s u r e s  and i s  almost l i n e a r  under 
moderate conf in ing  p res su res ;  Mogi (1966).  
The i n c l i n a t i o n  of t h e  o v e r a l l  f a i l u r e  p l ane  
r e l a t i v e  t o  t h e  compression a x i s  i n c r e a s e s  
wi th  inc reas ing  conf in ing  p res su re .  almost 
a t t a i n i n g  t h e  cons t an t  va lue  o f  30' under 
moderate conf in ing  p res su res .  I n  t h e  
b r i t  t l e - d u c t  i l e  t r a n s i t  ion s t a g e s  p l a s t  i c  f low 
t a k e s  p l a c e  along t h e  f a i l u r e  plane;  Griggs 
and Handin (1960) .  

Based on t h e  idea  t h a t  f r i c t i o n a l  s l i d i n g  on 
p r e - e x i s t i n g  c racks  r e s u l t s  i n  t h e  formation 
o f  t e n s i o n  c r a c k s  a t  t h e i r  t i p s .  models f o r  
microcracking under compression have been pro- 
posed; e.g.. Brace and Bombolakis (1963) and 
McClintock and Walsh (1963).  Nemat-Nasser and 
H o r i i  (1982) p r e s e n t  an a n a l y t i c a l  s o l u t i o n  of 
compression-induced. out-of-plane c rack  exten-  
s ion .  and s tudy  t h e  mechanism o f  t h e  a x i a l  
s p l i t t i n g ;  see a l s o  H o r i i  and Nemat-Nasser 
(1983a.h) and Nemat-Nasser (1983).  T h e i r  
r e s u l t s  a r e  summarized i n  Sec t ion  2. 

Photographic  s t u d i e s  of Hal lbauer .  Wagner and 
Cook (1973) show t h a t  under t r i a x i a l  compres- 
s i o n  t h e  microcrack d i s t r i b u t i o n  is almost 
uniform u n t i l  t h e  app l i ed  s t r e s s  r eaches  t h e  
u l t i m a t e  s t r e n g t h ,  and a t  t h e  u l t i m a t e  
s t r e n g t h  a r eg ion  of h igh  c rack -dens i ty  ( t e n -  
s i o n  c racks )  emerges along a p l ane  which even- 
t u a l l y  becomes a macroscopic shea r  f a i l u r e  
p l ane .  To r e v e a l  t h e  mechanism o f  shea r  
f a i l u r e .  H o r i i  and Nemat-Nasser (1983b) con- 
s i d e r  a row of s u i t a b l y  o r i e n t e d  c r a c k s ,  and 
examine t h e i r  s imultaneous out-of -plane 
u n s t a b l e  growth which may lead t o  p o s s i b l e  
macroscopic f a u l t i n g .  They e s t i m a t e  t h e  v a r i -  
a t i o n s  of t h e  "u l t ima te  s t r e n g t h "  and t h e  
o r i e n t a t i o n  o f  t h e  o v e r a l l  f a i l u r e  p l ane  with 
conf in ing  p res su re .  u s ing  t h i s  model. These 
r e s u l t s  a r e  p re sen ted  i n  S e c t i o n  3. 

AS t h e  conf in ing  p r e s s u r e  i n c r e a s e s ,  t h e  t r a n -  
s i t i o n  from b r i t t l e  t o  d u c t i l e  behavior  i s  
observed,  where p l a s t i c  f low occur s  a long t h e  
f a i l u r e  plane;  Griggs and Handin (1960).  
Edmond and Pa te r son  (1972) r e p o r t  t h a t  d i l a -  
t ancy  p e r s i s t s  w e l l  i n  t h i s  range.  Following 
t h i s  o b s e r v a t i o n  and t h e  r e s u l t s  o f  o u r  model 
experiments.  a model f o r  t h e  mechanism dom- 
i n a n t  i n  t h e  b r i t t l e - d u c t i l e  t r a n s i t i o n  ranges 
which inc ludes  b o t h  t h e  t e n s i o n  c rack  exten-  
s i o n  and t h e  p l a s t i c  zone development from t h e  
prez-exis t ing c racks .  i s  proposed i n  Sec t ion  4 .  

2 B x I B L s p L I T m  

Under a x i a l  compression, a p r e - e x i s t i n g  c rack  
undergoes f r i c t i o n a l  s l i d i n g  which leads t o  
t h e  formation of t e n s i o n  c r a c k s  a t  i t s  t i p s .  
The t e n s i o n  c racks  grow a t  sha rp  ang le s  rela- 
t i v e  t o  t h e  o r i e n t a t i o n  o f  t h e  p r e - e x i s t i n g  
c rack  and curve i n t o  a d i r e c t i o n  p a r a l l e l  t o  
t h e  maximum compressive d i r e c t i o n .  This  is 
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i l l u s t r a t e d  i n  F ig .  1 which shows kinked- 
curved c r a c k s  a t  t h e  t i p s  of a p r e - e x i s t i n g  
c rack  i n  an a x i a l l y  compressed p l a t e  of Colum- 
b i a  Resin CR36. This i s  considered t o  be t h e  
mechanism of microcracking under compression; 
Brace and Bombolakis (1963). Hoek and 
Bieniawski (1965). and Nemat-Nasser and H o r i i  
(1982). 

$. 

Fig  .I Kinked-curved crack  ex tens ion  from t h e  
t i p s  of a p r e - e x i s t  ing c rack .  

An a n a l y t i c  s o l u t i o n  f o r  t h e  problem of o u t -  
o f -p lane  curved crack  growth. i l l u s t r a t e d  i n  
F i g .  2. is obta ined  by Nemat-Nasser and H o r i i  
(1982);  s e e  a l s o  Nemat-Nasser (1983) and H o r i i  
and Nemat-Nasser (1983a.b). 

A 
\p;z (-1 

t Y  I 

v 
Fig.2 P r e - e x i s t i n g  c rack  P P I  and i t s  exten-  
s i o n s  PQ and P I Q 1 .  

The c a l c u l a t e d  crack p r o f i l e s  a r e  compared 
wi th  those  observed on model experiments;  F ig .  
3 .  The most s i g n i f i c a n t  r e s u l t  i s  t h e  v a r i a -  
t i o n  of t h e  a x i a l  load versus  c rack  ex tens ion  
length  curve wi th  t h e  l a t e r a l  s t r e s s ;  see Fig.  
4. Under a x i a l  compression wi th  l a t e r a l  
compression. c rack  growth is  s t a b l e  and s t o p s  

a t  a c e r t a i n  f i n i t e  length .  I n  t h e  presence 
of small l a t e r a l  t ens ion .  on t h e  o t h e r  hand, 
c rack  growth becomes u n s t a b l e  a f t e r  a c e r t a i n  
c rack  ex tens ion  length  i s  a t t a i n e d .  This  
u n s t a b l e  c rack  growth i s  considered t o  be t h e  
fundamental  mechanism which produces a x i a l  
s p l i t t i n g  of a u n i a x i a l l y  compressed rock 
specimen. Peng and Johnson (1972) r e p o r t  t h e  
presence of l a t e r a l  t e n s i o n  i n  t h e  u n i a x i a l l y  
compressed specimen because of t h e  end- 
boundary c o n d i t i o n s .  D i f f e r e n t  i n s e r t s  a f f e c t  
t h e  u l t i m a t e  s t r e n g t h ;  t h e  normalized s t r e n g t h  
becomes 9.5 f o r  t h e  s t e e l  i n s e r t .  7.3 f o r  t h e  
t e f l o n  i n s e r t .  and 5.9 f o r  t h e  neoprene 
i n s e r t .  They a l s o  r e p o r t  a r a d i a l  t e n s i l e  
s t r e s s  of 6-8% of appl ied  compression f o r  t h e  
neoprene i n s e r t ,  and 4-6% f o r  t h e  t e f l o n  
i n s e r t .  These experimental  d a t a  seem t o  sup- 
p o r t  our  a n a l y t i c a l  r e s u l t s .  

1 

I 
calculated 

Fig.3 Calcu la ted  and observed crack  p r o f i l e s ;  
H o r i i  and Nemat-Nasser (1983b). 

P v -  .3 
.6 --- 

0 2 4 6 8 
1 /C 

Fig.4 Normalized a x i a l  compression requi red  t o  
a t t a i n  t h e  a s s o c i a t e d  c rack  ex tens ion  length;  
H o r i i  and Nemat-Nasser (1983b). 
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3SE1E;BEFAXLURE 

A rock specimen c o n t a i n s  microcracks of v a r i -  
ous s i z e s .  Smaller  c r acks  are g r e a t e r  i n  
number and c l o s e r  i n  spacing.  Under a x i a l  
compression, l a r g e r  c racks  become a c t i v a t e d  
f i r s t .  Without l a t e r a l  confinement,  t hey  con- 
t i n u e  t o  grows leading t o  a x i a l  s p l i t t i n g ;  
F ig .  5 .  I n  t h e  presence o f  l a t e r a l  compres- 
s i o n ,  on t h e  o t h e r  hand, t h e i r  growth i s  soon 
a r r e s t e d  and, a t  a c e r t a i n  stress l e v e l ,  s u i t -  
ab ly  o r i e n t e d  smaller c racks  become a c t i v a t e d  
because of t h e i r  i n t e r a c t i o n .  Then a narrow 
zone con ta in ing  many microcracks is formed. 
which e v e n t u a l l y  becomes a macroscopic f a i l u r e  
plane;  F ig .  6 .  

Based on obse rva t ions  by Hal lbauer  d. 
(1973) and ou r  model experiments ,  it appears  

+ f 

4 4 
Fig.5 The a x i a l  s p l i t t i n g  of t h e  specimen 
under u n i a x i a l  compression; H o r i i  and Nemat- 
Nasser (1983b). 

$. 

4 t 
Fig.6 Unstable  growth of t e n s i o n  c racks  a t  
t i p s  o f  a row o f  i n t e r a c t i n g  p r e - e x i s t i n g  
c racks  under t r i a x i a l  compression; H o r i i  and 
Nemat-Nasser (1983b).  

t h a t  s h e a r  f a i l u r e  may be considered t o  be t h e  
r e s u l t  of u n s t a b l e  growth of a s u i t a b l y  
o r  i e n  t ed se t o f  i n t e r a c t  ing  p r e  -ex is t ing  
c racks .  To c a p t u r e  t h i s  f e a t u r e ,  H o r i i  and 
Nemat-Nasser (1983b) cons ide r  a row of e q u a l l y  
spaced c racks  o f  equa l  i n i t i a l  s i z e  and of 
common o r i e n t a t i o n ;  see F i g .  7 .  The r equ i r ed  
a x i a l  compression is c a l c u l a t e d  a s  a f u n c t i o n  
of t h e  c rack  ex tens ion  l eng th  f o r  cons t an t  
conf in ing  p res su re .  Typ ica l  r e s u l t s  a r e  shown 
i n  F ig .  8. 

For small va lues  of 0 of F ig .  7. t h e  a x i a l  
compression f i r s t  i n c r e a s e s  wi th  inc reas ing  
c rack  ex tens ion  length.  a t t a i n s  a peak va lue ,  

Fig.7 An 
e x i s t i n g  
s i ons .  

IU,ld3T 
K C  

-___ 

6 

4 

2 

0 

i n f i n i t e  p l a t e  w i th  a row of pre-  
c r acks  and t h e i r  out-of-plane ex ten -  

I 2 
I I C  

Fig.8 Ax ia l  s t r e s s  ve r sus  c rack  ex tens ion  
l eng th :  y = .24n and t h e  c o e f f i c i e n t  of f r i c -  
t i o n  p = .4; H o r i i  and Nemat-Nasser (1983b).  
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decreases .  and then  begins  t o  r i s e  aga in .  
This  sugges ts  an u n s t a b l e ' g r o w t h  of op t imal ly  
o r i e n t e d  c racks  a t  a c r i t i c a l  v a l u e  of t h e  
a x i a l  s t r e s s .  which i s  considered t o  
correspond t o  t h e  formation of a f a u l t  zone. 
It i s  seen  from Fig.  8 t h a t  t h e  peak va lues  of 
t h e  a x i a l  s t r e s s  f o r  t h e  v a l u e s  of g from 
0.1611 t o  0.2n f a l l  i n  a very  narrow range. 
i.e. lAullf i /Kc - 0.3. This  impl ies  t h a t  t h e  

o v e r a l l  f a i l u r e  angle  i s  s e n s i t i v e  t o  imper- 
f e c t i o n  and o t h e r  e f f e c t s .  Indeed. t h e  o r i e n -  
t a t i o n  of t h e  f r a c t u r e  p lane  observed i n  
experiments  o f t e n  s c a t t e r s  over  a wide range.  
The range of t h e  o v e r a l l  f a i l u r e  angle .  how- 
e v e r ,  may be l i m i t e d  s i n c e  t h e  peak va lue  of 
t h e  a x i a l  s t r e s s  i n c r e a s e s  s h a r p l y  a s  g 
decreases .  We can s p e c i f y  t h e  p o s s i b l e  range 
of t h e  o v e r a l l  o r i e n t a t i o n  angle  g by 
p r e s c r i b i n g  t h e  " s t r e s s  b a r r i e r "  IAul I G / K c  
which can be overcome. The va lue  of y of F ig .  
7 i s  chosen such t h a t  t h e  requi red  a x i a l  
compression f o r  t h e  i n s t a b i l i t y  i s  minimized. 

81 
I 

/ 

0 Darley Dale sandstone 

Murrell (1965) 

0 

.2 

c 
IT 

0 .4 .e I. 2 

( b )  
Fig.9 V a r i a t i o n s  of ( a )  t h e  u l t i m a t e  s t r e n g t h .  
( b )  o v e r a l l  f a i l u r e  angle  wi th  t h e  c o n f i n i n g  
pressure ;  H o r i i  and Nemat-Nasser (1983b). 

Now w e  can c a l c u l a t e  t h e  c r i t i c a l  a x i a l  load,  
lal147iF/Kc. and t h e  p o s s i b l e  range of t h e  

o v e r a l l  f a i l u r e  angle .  0 ,  f o r  a given conf in-  
ing p r e s s u r e  and crack  spacing d /c .  I n  t h e  
a c t u a l  rock specimen. t h e r e  a r e  many cracks  of 
v a r i o u s  s i z e s .  It i s  reasonable  t o  expect  
t h a t  s m a l l e r  c racks  a r e  g r e a t e r  i n  number and 
c l o s e r  i n  spac ing .  Thus. one may assume t h a t  
t h e  spac ing  of t h e  "opt imal ly  o r i e n t e d "  c racks  
is an i n c r e a s i n g  f u n c t i o n  of t h e  c r a c k  s i z e .  
We. t h e r e f o r e ,  in t roduce  t h e  s imple r e l a t i o n .  

where cm and d denote  t h e  minimum c r a c k  s i z e  

and t h e  corresponding crack  spacing.  and a and 
b a r e  c o n s t a n t s .  With t h i s  r e l a t i o n  we can 
c a l c u l a t e  t h e  u l t i m a t e  s t r e n g t h  which is  t h e  
minimum of t h e  a x i a l  c r i t i c a l  load and t h e  
p o s s i b l e  range of t h e  o v e r a l l  f a i l u r e  angle  as 
f u n c t i o n s  of t h e  conf in ing  p r e s s u r e .  Typica l  
r e s u l t s  a r e  shown i n  F i g s .  9a.b wi th  dm/cm 

3.0. a = 0.18. and Kc/*-, = 8x103 p s i .  The 

corresponding experimental  d a t a  on Darley Dale 
sandstone repor ted  by Murre l l  (1965) a r e  a l s o  
shown i n  t h e s e  f i g u r e s .  

4 B R I T T L E - I ) U C T I L E T R A "  

The model of b r i t t l e  f r a c t u r e  d iscussed  i n  
Sec t ion  3 a n t i c i p a t e s  t h a t  t h e  c r i t i c a l  load 
f o r  i n s t a b i l i t y  i n c r e a s e s  wi th  i n c r e a s i n g  con- 
f i n i n g  p r e s s u r e .  This  is shown i n  F ig .  10. 
where t h e  r e l a t i o n  between t h e  a x i a l  load and 
t h e  c rack  e x t e n s i o n  length  is p l o t t e d  f o r  d i f -  
f e r e n t  v a l u e s  of t h e  c o n f i n i n g  p r e s s u r e .  
Whereas a t  lower conf in ing  p r e s s u r e s  t h e  
curves  have d i s t i n c t  peaks.  a t  h igher  p r e s -  
s u r e s  t h e  peaks d isappear .  This  sugges ts  t h a t  
t h e  b r i t t l e  f r a c t u r e  model d i scussed  i n  Sec- 
t i o n  3 i s  no longer  a p p l i c a b l e  a t  high conf in-  
ing p r e s s u r e s .  

m 

2 0  

R I r n  
K c  

15 

IO 

5 

0 
l/C 

I 

Fig.10 The a x i a l  load v e r s u s  c rack  ex tens ion  
length  curve f o r  i n d i c a t e d  va lues  of t h e  con- 
f i n i n g  p r e s s u r e .  

-384- 

SGP-TR-74-51



I n  t h e  b r i t t l e - d u c t i l e  t r a n s i t i o n  s t a g e ,  p l a s -  
t i c  f l ow occurs  a long t h e  f a i l u r e  p l ane ;  
Griggs and Handin (1960).  However. Edmond and 
Pa te r son  (1972) r e p o r t  t h a t  d i l a t a n c y  p e r s i s t s  
w e l l  i n  t h i s  range.  Since d i l a t a n c y  r e s u l t s  
from microcracking.  it may be concluded t h a t  
bo th  microcracking and p l a s t i c  f low occur  i n  
t h e  b r i t t  le-duct  i l e  t r ans i t  ion s t a g e .  

The p h o t o e l a s t i c  p i c t u r e  o f  F ig .  11 shows t h e  
r e s i d u a l  s t r a i n s  i n  t h e  unloaded specimen 
(shown i n  Fig.6) .  It i l l u s t r a t e s  t h e  develop- 
ment of p l a s t i c  zones a f t e r  b i a x i a l  compres- 
s i o n  o f  t h e  p l a t e  which c o n t a i n s  p re -ex i s t ing  
c racks .  
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I n  t h e  b r i t t l e - d u c t i l e  t r a n s i t i o n  s t age .  t h e  
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