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I n t r o d u c t i o n  

The K r a f l a  geothermal f i e l d  i n  n o r t h e a s t e r n  
I c e l a n d  c o n s i s t s  o f  s e v e r a l  zones, which c o n t a i n  
f l u i d s  o f  d i f f e r e n t  compos i t i on  and thermodynamic 
s t a t e  (Stefansson, 1981). I n  th i s  paper we examine 
p r o d u c t i o n  da ta  from w e l l s  which a re  completed i n  
two-phase zones. T rans ien t  changes i n  f l o w  r a t e  
and f l o w i n g  en tha lpy  a re  analyzed t o  o b t a i n  i n s i g h t  
i n t o  r e l a t i v e  ( l i q u i d  and gas phase) p e r m e a b i l i t i e s ,  
and o t h e r  r e s e r v o i r  parameters.  

Numerous s t u d i e s  have shown t h a t  p r e d i c t i o n s  
o f  geothermal r e s e r v o i r  behav io r  a re  s t r o n g l y  
dependent upon t h e  cho ice  o f  r e l a t i v e  p e r m e a b i l i t y  
f u n c t i o n s .  There i s  an e x t e n s i v e  l i t e r a t u r e  on 
g a s - o i l  and o i l - w a t e r  r e l a t i v e  p e r m e a b i l i t i e s ,  b u t  
steam-water r e l a t i v e  p e r m e a b i l i t i e s  which a re  need- 
ed f o r  geothermal r e s e r v o i r  a n a l y s i s  a re  p o o r l y  
known. 
(1978) and Couns i l  and Ramey (1979) have p rov ided  
some d a t a  which, however, seem t o  be a t  va r iance  
w i t h  r e l a t i v e  p e r m e a b i l i t y  c h a r a c t e r i s t i c s  deduced 
from f i e l d  d a t a  by Grant  (1977) and Horne and Ramey 
(1978).  The d i f f e r e n c e s  may r e f l e c t  u n c e r t a i n t i e s  
i n  t h e  a n a l y s i s  methods used, or  t hey  may r e f l e c t  
" r e a l "  d i f f e r e n c e s  i n  r e l a t i v e  p e r m e a b i l i t y  be- 
h a v i o r  o f  f r a c t u r e d  r e s e r v o i r s  from t h a t  o f  porous 
medium-type l a b o r a t o r y  cores.  Recent t h e o r e t i c a l  
work by Menzies (1982) and Gudmundsson e t  a l .  
(1983) has s u b s t a n t i a t e d  t h e  r e l a t i v e  p e r m e a b i l i t y  
c h a r a c t e r i s t i c s  ob ta ined  by Horne and Ramey (1978) 
f o r  Wairakei  we l l s .  

Labora to ry  exper iments by Chen e t  a l .  

P roduc t i on  Data 

K r a f l a  w e l l s  completed i n  two-phase zones show 
s t r o n g  t r a n s i e n t s  i n  f l o w  r a t e  and en tha lpy  when 
f i r s t  p u t  on p roduc t i on .  
o f  t h i s  behavior ,  F i g u r e  1 shows p r o d u c t i o n  da ta  
from w e l l  12. 
ma te l y  14 kg/s o f  water and 20 kg/s o f  steam from 
a r e s e r v o i r  a t  a temperature o f  approx imate ly  32OoC. 
Within a few days water p r o d u c t i o n  ceased, and 
steam p r o d u c t i o n  dropped t o  approx imate ly  10 kg/s. 
A f t e r  t h r e e  months steam p r o d u c t i o n  had d e c l i n e d  t o  
6 kg/s ,  w h i l e  en tha lpy  con t inued  t o  i nc rease  s low ly .  

As a t y p i c a l  example 

I n i t i a l l y  t h e  w e l l  produced approx i -  

The observed t r a n s i e n t s  o f  f l o w  r a t e  and en- 
t h a l p y  are i n f l u e n c e d  by many r e s e r v o i r  p r o p e r t i e s  
i n  t h e  v i c i n i t y  o f  t h e  w e l l .  I n  genera l ,  t h e  main 
parameters govern ing w e l l  behav io r  are: 
a b i l i t y ,  p o r o s i t y ,  e f f e c t i v e  w e l l b o r e  r a d i u s  ( s k i n ) ,  

perme- 

i n - p l a c e  vapor s a t u r a t i o n ,  and r e l a t i v e  p e r m e a b i l i t y  
c h a r a c t e r i s t i c s  o f  t h e  medium. Many o f  these proper-  
t i e s  may be s p a t i a l l y  v a r i a b l e ,  and a p r i o r i  
knowledge o f  t h e  r e l e v a n t  parameters i s  l i m i t e d .  

I n  F i g u r e  2 we have p l o t t e d  f l o w  r a t e  on a 
l o g a r i t h m i c  s c a l e  versus f l o w i n g  en tha lpy  f o r  
s e v e r a l  K r a f l a  w e l l s  completed i n  two-phase zones. 
When p l o t t e d  i n  t h i s  fash ion ,  most da ta  p o i n t s  f a l l  
on smooth curves, wi th some approx imate ly  l i n e a r  
s e c t i o n s  (Stefansson e t  e l . ,  1982). The s i z e a b l e  
s c a t t e r  o f  t h e  da ta  p resen t  i n  some cases f o r  w e l l s  
12 and 14 occurs because o f  v a r i a t i o n s  i n  w e l l  head 
pressure.  
d a t a  p o i n t s ,  which f o r  w e l l s  12, 13, and 15 a re  
approx imate ly  p a r a l l e l .  This i n d i c a t e s  s i m i l a r  
r e l a t i v e  p e r m e a b i l i t y  c h a r a c t e r i s t i c s  f o r  these 
w e l l s .  Wel l  14, which i s  completed i n  a d i f f e r e n t  
r e s e r v o i r  zone (Bodvarsson e t  a l . ,  1983a), i s  oper- 
a t e d  a t  a much h i g h e r  w e l l  head pressure,  and shows 
a d i f f e r e n t  c o r r e l a t i o n  between f l o w  r a t e  and 
en tha lpy .  

R e l a t i v e  P e r m e a b i l i t y  A n a l y s i s  

We have drawn smooth cu rves  th rough  t h e  

We have used t h e  smoothed f i e l d  d a t a  (see 
F i g u r e  2)  t o  s tudy t h e  r e l a t i v e  p e r m e a b i l i t y  be- 
h a v i o r  o f  w e l l s  12 th rough  15. Our method o f  
a n a l y s i s  i s  s i m i l a r  t o  t h a t  o f  Grant (1977) ,  and 
can be summarized w i t h  t h e  f o l l o w i n g  equat ions.  
The f l o w  r a t e  o f  a two-phase w e l l  i s  w r i t t e n  

Here P I  i s  t h e  p r o d u c t i v i t y  i ndex  o f  t h e  w e l l ,  
p i s  an average r e s e r v o i r  p ressu re  i n  t h e  
v i c i n i t y  o f  t h e  w e l l ,  and Pwb i s  t h e  f l o w i n g  
down-hole pressure.  
l i q u i d  phase are: r e l a t i v e  p e r m e a b i l i t y  k r Q ,  
d e n s i t y  p i ,  and v i s c o s i t y  I JQ,  with analogous 
d e f i n i t i o n s  a p p l y i n g  t o  t h e  vapor phase. The 
parameter group P I  (p-pwb) i s  i d e n t i c a l  t o  
t h e  parameter B used by Grant (1977). 

Parameters s p e c i f i c  t o  t h e  

Express ing f l o w i n g  e n t h a l p y  as: 

h =  ( 2 )  
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we have two equa t ions  r e l a t i n g  t h e  measured quan- 
t i t i e s  q and h t o  the t h r e e  unknowns k r i ,  krv, and 
8. Grant (1977) ob ta ined  t h e  needed t h i r d  equa- 
t i o n  by c o n s i d e r i n g  a w e l l  which a t  some t i m e  was 
f l o w i n g  a t  s ingle-phase l i q u i d  c o n d i t i o n s ,  i n  
which case 

PQ 

ua  
qQ = B -  ( 3 )  

To o b t a i n  B-values f o r  o the r  w e l l s ,  Grant 
s h i f t e d  t h e i r  l o g  q vs. h - p l o t s  t o  o b t a i n  t h e  
b e s t  common p l o t .  
necessary,  because a l l  w e l l s  cons ide red  here 
d i d  a c t u a l l y  reach  s ing le-phase (vapor)  f l o w  
c o n d i t i o n s ,  so t h a t  t h e  vapor form o f  equa t ion  
( 3 )  can be used d i r e c t l y .  The r e l a t i v e  perme- 
a b i l i t i e s  ob ta ined  on t h i s  b a s i s ,  assuming an 
average r e s e r v o i r  temperature o f  T = 300"C, a r e  
p l o t t e d  versus f l o w i n g  en tha lpy  i n  F i g u r e  3. 
The cu rves  f o r  d i f f e r e n t  w e l l s  a r e  r a t h e r  
d i f f e r e n t ,  w i t h  well 12 r e l a t i v e  p e r m e a b i l i t i e s  
g e n e r a l l y  cons ide rab ly  l a r g e r  than those f o r  t h e  
o t h e r  w e l l s .  

I n  our case t h i s  s t e p  i s  n o t  

The above a n a l y s i s  was based on t h e  assumption 
t h a t  B i s  a constant  parameter f o r  each w e l l ,  inde-  
pendent o f  f l o w i n g  en tha lpy .  We suggest t h a t  t h i s  
is a r a t h e r  poor approx imat ion,  because b o t h  f l ow-  
i n g  downhole pressure Pwb and average r e s e r v o i r  
pressure p near t h e  w e l l  may va ry  cons ide rab ly  with 
f l o w i n g  en tha lpy .  Using t h e  smoothed da ta  as shown 
i n  F i g u r e  2, we compute B b o t h  f o r  s ing le-phase 
l i q u i d  ( h i  = 1344 kJ/kg) and f o r  s ing le-phase 
vapor (hv = 2749 kJ/kg) .  The r e s u l t s  a re  g i v e n  
i n  Table 1. We then  re-analyze t h e  smoothed q vs. 
h data,  u s i n g  equa t ions  (1) and ( 2 )  wi th l i n e a r  
i n t e r p o l a t i o n  f o r  t h e  w e l l  i n d i c e s  between t h e i r  
l i q u i d  and vapor va lues:  

(4 )  

F i g u r e  4 shows t h a t  wi th t h i s  r e n o r m a l i z a t i o n  
t h e  r e l a t i v e  p e r m e a b i l i t i e s  f o r  w e l l s  12, 13, and 
15 p r a c t i c a l l y  c o l l a p s e  i n t o  s i n g l e  curves.  Th is  
p r o v i d e s  evidence t h a t  t h e  r e l a t i v e  p e r m e a b i l i t i e s  
f o r  these w e l l s  a re  i n  f a c t  v i r t u a l l y  i d e n t i c a l ,  
and t h a t  t h e  approx imat ion made i n  ( 4 )  i s  v a l i d .  
Wel l  14 shows a somewhat d i f f e r e n t  behav io r ,  which 
may i n d i c a t e  a t r u e  d i f f e r e n c e  i n  r e l a t i v e  perme- 
a b i l i t y  c h a r a c t e r i s t i c s  between d i f f e r e n t  r e s e r v o i r  
zones. 

I n s p e c t i o n  o f  F i g u r e  4 shows t h a t  k r i  + k r v z l  

A s i m i l a r  c o n c l u s i o n  was reached by 
t o  a good approx imat ion over t h e  e n t i r e  range 
hE<h<hv. 
Bodvarsson e t  a l .  (1983b), based on observed 
t r a n s i e n t s  i n  steam r a t e  a t  t h e  separa to rs  f o r  w e l l  
13, i n  response t o  i n j e c t i o n  i n t o  nearby w e l l  7.  
I t  i s  a l s o  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  shape o f  
t h e  r e l a t i v e  p e r m e a b i l i t y  cu rves  i s  r a t h e r  s i m i l a r  
t o  t h e  t h e o r e t i c a l  streamtube model p r e d i c t i o n s  o f  
Menzies (1982) and Gudmundsson e t  a l .  (1983). 
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I t  shou ld  be emphasized t h a t  t h e  r e l a t i v e  
p e r m e a b i l i t y  i n f o r m a t i o n  ob ta ined  from t h e  above 
a n a l y s i s  remains incomplete.  F i g u r e  4 d i s p l a y s  
r e l a t i v e  p e r m e a b i l i t i e s  as f u n c t i o n s  o f  f l o w i n g  
en tha lpy .  However, f o r  a p p l i c a t i o n s  i n  geother-  
mal  r e s e r v o i r  model ing i t  i s  necessary t o  express 
r e l a t i v e  p e r m e a b i l i t y  as a f u n c t i o n  o f  thermo- 
dynamic s t a t e  va r iab les ,  such as i n - p l a c e  vapor 
s a t u r a t i o n .  The r e l a t i o n s h i p  between S and f l o w i n g  
en tha lpy  h i s  unknown, so t h a t  t h e  r e l a t i v e  permea- 
b i l i t i e s  as g i v e n  i n  F i g u r e  4 cannot be used i n  a 
numer i ca l  model. I n  f a c t ,  any r e l a t i v e  p e r m e a b i l i t y  
f u n c t i o n s  kra(S),  krv(S) w i t h  krg + krv = 1 
and monotonic dependence upon S a r e  c o n s i s t e n t  wi th 
t h e  r e s u l t s  o f  our  a n a l y s i s .  

Model ing o f  f l o w  r a t e  and en tha lpy  t r a n s i e n t s  

The fo rego ing  r e l a t i v e  p e r m e a b i l i t y  a n a l y s i s  
employed o n l y  t h e  observed c o r r e l a t i o n  between f l o w  
r a t e s  and en tha lp ies .  The a c t u a l  tempora l  v a r i a t i o n  
o f  q and h d i d  n o t  e n t e r  i n t o  t h e  d i scuss ion .  Here 
we s h a l l  examine t h e  t r a n s i e n t s  as observed f o r  w e l l  
12 (see F i g u r e  1) t o  deduce f u r t h e r  i n f o r m a t i o n  about 
r e s e r v o i r  parameters and c o n d i t i o n s .  

We have used our numer i ca l  s i m u l a t o r s  SHAFT79 
(Pruess and Schroeder, 1980) and MULKOM (Pruess, 
1983) t o  model t h e  t i m e  dependence o f  f l o w  r a t e  
and en tha lpy .  As a f i r s t  approach we use t h e  f i e l d -  
measured f l o w  r a t e s  as i n p u t  t o  t h e  s i m u l a t o r ,  and 
a t tempt  t o  match t h e  observed en tha lpy  t r a n s i e n t s .  
Table 2 shows parameters which were k e p t  f i x e d  i n  
t h e  s i m u l a t i o n s ,  Assuming u n i f o r m  i n i t i a l  vapor 
s a t u r a t i o n ,  we made an ex tens i ve  parameter search 
f o r  p o r o s i t y ,  p e r m e a b i l i t y ,  e f f e c t i v e  fo rma t ion  
t h i c k n e s s ,  and r e l a t i v e  p e r m e a b i l i t y ,  u s i n g  b o t h  
porous and f r a c t u r e d  porous medium models. Th is  
p a r t i c u l a r  e f f o r t  f a i l e d  t o  produce a n y t h i n g  resem- 
b l i n g  t h e  observed en tha lpy  t r a n s i e n t .  The main 
shor tcoming o f  a l l  models w i th  u n i f o r m  vapor satura-  
t i o n  i s  t h a t  t hey  p r e d i c t  a much more r a p i d  r i s e  i n  
e n t h a l p y  t h a n  i s  observed i n  t h e  a c t u a l  t e s t .  Th is  
d iscrepancy suggests t h a t  vapor s a t u r a t i o n  a t  t h e  
t i m e  when w e l l  12 was opened f o r  d i scha rge  was i n  
f a c t  nonuni form, w i t h  sma l le r  va lues near t h e  w e l l .  

A p o s s i b l e  e x p l a n a t i o n  f o r  a nonuni form satu-  
r a t i o n  d i s t r i b u t i o n  may be found i n  t h e  d r i l l i n g  
and comp le t i on  p r a c t i c e .  Dur ing  d r i l l i n g  t h e  
r e s e r v o i r  r e g i o n  around t h e  bore i s  coo led  by c i r -  
c u l a t i n g  d r i l l i n g  f l u i d ,  which may cause some 
steam condensat ion i n  t h e  fo rma t ion .  Furthermore, 
a t  t h e  end o f  t h e  d r i l l i n g  process c o l d  water i s  
c o n t i n u o u s l y  i n j e c t e d  f o r  a few days d u r i n g  w e l l  
l o g g i n g ,  t e s t i n g ,  and s t i m u l a t i o n .  The average 
t o t a l  mass o f  i n j e c t e d  water has been es t ima ted  
as 3000-5000 tonnes (Benediktsson, pe rsona l  com- 
mun ica t i on ,  1982).  Subsequently t h e  w e l l  hea ts  
up f o r  s e v e r a l  weeks b e f o r e  be ing  p laced  on pro- 
d u c t i o n .  I f  steam condensate and i n j e c t e d  water 
remain i n  t h e  v i c i n i t y  o f  t h e  bo re  r a t h e r  than  
b e i n g  d i spe rsed  over a l a r g e r  r e s e r v o i r  reg ion ,  
t h i s  would p r o v i d e  an e x p l a n a t i o n  f o r  a non- 
u n i f o r m  i n i t i a l  vapor s a t u r a t i o n .  
N2/H2 r a t i o  o f  produced waters  show t h a t  indeed 
f o r  s e v e r a l  days a f t e r  p l a c i n g  a w e l l  on p r o d u c t i o n  
a m i x t u r e  o f  i n j e c t e d  and r e s e r v o i r  waters i s  pro-  
duced (G is lason  e t  a l . ,  1978). 

Changes i n  t h e  



Based on these c o n s i d e r a t i o n s  a conceptual  
model was developed i n  which t h e  b u l k  o f  t h e  reser- 
v o i r  has a "background" vapor s a t u r a t i o n  Sb, w h i l e  
near  t h e  w e l l  t h e  i n i t i a l  vapor s a t u r a t i o n  1s  sn<sb. 
The "excess mass" present  near t h e  w e l l  due t o  steam 
condensat ion and c o l d  water i n j e c t i o n  i s  

( 5 )  

where Vn i s  t h e  volume o f  t h e  zone wi th  S=Sn. 
Because o f  t h i s  excess mass en tha lpy  t r a n s i e n t s  
would be slower,  as i n d i c a t e d  by t h e  f i e l d  data.  
The r a d i u s  o f  t h e  "near-zone" Vn, which c o n t a i n s  
t h e  excess mass and i s  i n  h i g h - p e r m e a b i l i t y  con- 
t a c t  w i t h  t h e  w e l l ,  was r a t h e r  a r b i t r a r i l y  f i x e d  
a t  Rn = 10 m ( co r respond ing  t o  a nega t i ve  s k i n  
va lue  o f  s -4.5). By v a r y i n g  r e l a t i v e  permea- 
b i l i t y  f u n c t i o n s  and p o r o s i t y  i n  t h e  near-zone, 
s e v e r a l  e x c e l l e n t  matches t o  t h e  en tha lpy  t r a n -  
s i e n t s  were obta ined.  Examples are shown i n  
F i g u r e  5, w h i l e  Table 3 g i v e s  t h e  key parameters 
f o r  d i f f e r e n t  cases. 

I t  i s  apparent t h a t  t h e  d a t a  can be matched 
e q u a l l y  w e l l  wi th d i f f e r e n t  va lues  f o r  i r r e d u c i b l e  
water s a t u r a t i o n  and i n i t i a l  vapor s a t u r a t i o n .  The 
d i f f e r e n t  cases a l l  agree c l o s e l y  i n  t h e  excess 
mass p resen t  near t h e  w e l l ,  which a l s o  agrees w e l l  
w i t h  t h e  t o t a l  amount o f  water i n j e c t e d .  Th is  
t o g e t h e r  wi th the  good q u a l i t y  o f  t h e  en tha lpy  
match g i v e s  s t r o n g  suppor t  f o r  t h e  conceptual  model 
employed i n  t h e  s i m u l a t i o n s .  

Desp i te  t h e  success o f  t h e  model i n  match ing 
f i e l d  da ta  i t  p rov ides  o n l y  r a t h e r  l i m i t e d  i n s i g h t  
i n t o  r e s e r v o i r  p a r m e t e r s .  I t does show c l e a r l y  
t h a t  t h e  i n j e c t e d  water remains near t h e  w e l l  f o r  
a p e r i o d  o f  weeks. Furthermore, t h e  water i s  i n  
h i g h - p e r m e a b i l i t y  c o n t a c t  w i t h  t h e  we l l bo re .  How- 
ever ,  none o f  t h e  impor tan t  r e s e r v o i r  parmeters,  
such as p o r o s i t y ,  volume o f  t h e  near-zone, i n i t i a l  
vapor s a t u r a t i o n  i n  t h e  near zone, f u n c t i o n a l  form 
o f  r e l a t i v e  p e r m e a b i l i t i e s ,  and i r r e d u c i b l e  sa tu ra -  
t i o n s ,  a re  un ique ly  de f i ned .  

D e l i v e r a b i l i t y  Model 

The model d iscussed i n  t h e  p rev ious  s e c t i o n  
employs p s r t  o f  t h e  t e s t  d a t a  ( t ime-dependent f l o w  
r a t e s )  t o  p r e d i c t  t h e  en tha lpy  t r a n s i e n t s .  
t h i s  has y i e l d e d  a good match and a c o n s i s t e n t  
d e s c r i p t i o n ,  i t  i s  d e s i r a b l e  t o  develop a more 
comprehensive model i n  which a l l  t e s t  da ta  a re  
matched w i t h  c a l c u l a t e d  va lues r a t h e r  than pre- 
s c r i b i n g  some as i n p u t .  

Whi le 

Here we p resen t  r e s u l t s  from a " d e l i v e r a b i l i t y  

Thus 

E v a l u a t i n g  equa t ion  

model", i n  which p r o d u c t i o n  r a t e  depends upon 
r e s e r v o i r  p ressu re  accord ing t o  equa t ion  (I). 
t h e  time-dependence o f  b o t h  f l o w  r a t e  and en tha lpy  
i s  p r e d i c t e d  by t h e  s imu la to r .  
(1) f o r  s ingle-phase vapor f low,  u s i n g  qv = 10 kg/s, 
p h  = 2.0 MPa, p = 10.7 MPa, we o b t a i n  P I  = 3.8 x 

m3. The pe rmeab i l i t y . t h i ckness  p roduc t  
was f i x e d  a t  t h e  va lue  1.20 dm ob ta ined  from i n j e c -  
t i o n  t e s t s  (Bodvarsson e t  a l . ,  1983a). Using d i f -  
f e r e n t  r e l a t i v e  p e r m e a b i l i t y  f u n c t i o n s ,  and d i f f e r -  
e n t  va lues  f o r  vapor s a t u r a t i o n ,  r e s e r v o i r  p o r o s i t y ,  
and r a d i u s  Rn o f  t h e  near zone w i t h  excess l i q u i d  

(see Table 4 ) ,  we have been a b l e  t o  o b t a i n  a number 
o f  e x c e l l e n t  matches t o  b o t h  f l o w  r a t e  and en tha lpy  
(see F igu res  6 and 7 ) .  

I t  t u r n s  o u t  t h a t  t h e  match i s  ve ry  s e n s i t i v e  
t o  t h e  cho ice  o f  p o r o s i t y  and o f  Sn. 
cho ices  o f  Rn can be compensated f o r  by making 
a p p r o p r i a t e  ad justments i n  0, such t h a t  I$ Rn2 
remains cons tan t .  The va lue  o f  sb must co r re -  
spond t o  immobi le or n e a r l y  immobi le  l i q u i d ,  and 
i s  determined t o  w i t h i n  5-10?;. The excess mass 
p resen t  near t h e  w e l l  due t o  condensat ion and in- 
j e c t i o n  i s  es t ima ted  as approx imate ly  4.5 x I O 6  kg 
i n  most cases, which agrees ve ry  w e l l  wi th the  
i n j e c t e d  mass. For Corey r e l a t i v e  p e r m e a b i l i t y  
f u n c t i o n s  a s i g n i f i c a n t l y  l a r g e r  Me, i s  ob ta ined  
t h a n  f o r  l i n e a r  f u n c t i o n s .  The q u a l i t y  o f  t h e  f i t  
f o r  [ q ( t ) ,  h ( t ) ]  i s  good i n  a l l  cases, i n d i c a t i n g  
t h a t  t h e  t r a n s i e n t s  a re  ve ry  s e n s i t i v e  t o  t h e  
excess mass, b u t  n o t  s e n s i t i v e  t o  t h e  f u n c t i o n a l  
form o f  krk(S) and krv ( S ) .  

Conclus ions 

D i f f e r e n t  

Our a n a l y s i s  o f  f l o w  r a t e  and en tha lpy  da ta  
f rom s e v e r a l  w e l l s  completed i n  t h e  same two-phase 
zone o f  K r a f l a  geothermal r e s e r v o i r  has y i e l d e d  
c o n s i s t e n t  r e l a t i v e  p e r m e a b i l i t y  parameters. We 
f i n d  t h a t  k,. + krv = 1 over t h e  e n t i r e  range o f  
two-phase f l o w  c o n d i t i o n s  f rom immobi le  l i q u i d  t o  
immobi le  vapor. The a v a i l a b l e  da ta  p r o v i d e  r e l a -  
t i v e  p e r m e a b i l i t y  parameters as a f u n c t i o n  o f  f low-  
i n g  en tha lpy  only .  The r e l a t i o n s h i p  between f l o w i n g  
en tha lpy  and i n - p l a c e  vapor s a t u r a t i o n  remains un- 
known, so t h a t  t h e  r e l a t i v e  p e r m e a b i l i t y  i n f o r m a t i o n  
ob ta ined  i s  o f  l i m i t e d  va lue  f o r  q u a n t i t a t i v e  model- 
i n g  o f  geothermal r e s e r v o i r  performance. 

Numer ica l  s i m u l a t i o n  o f  f l o w  r a t e  and en tha lpy  
t r a n s i e n t s  has y i e l d e d  e x c e l l e n t  matches t o  produc- 
t i o n  da ta  from w e l l  12. However, t h e r e  i s  l i t t l e  
i n f o r m a t i o n  about t h e  r e s e r v o i r  which can be deduced 
i n  an unambiguous way, because t h e  f i e l d  da ta  c o u l d  
be matched wi th a v a r i e t y  o f  r a t h e r  d i f f e r e n t  para- 
meter choices.  
ma t ion  ob ta ined  i s  t h a t  t h e  water i n j e c t e d  i n t o  t h e  
well d u r i n g  d r i l l i n g  and comp le t i on  remains i n  t h e  
v i c i n i t y  o f  t h e  w e l l b o r e  d u r i n g  s e v e r a l  weeks o f  
warmup. 
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Table 1. Wel l  i n d i c e s .  

Wel l  Index B 
( 10-6 P a.m3 ) 

L i q u i d  Vapor 

Wel l  

12 8.3 4.1 

13 3.1 2.5 

14 4.4 5.7 

15 1.7 1.6 

Table 2. KG-12 S i m u l a t i o n s  - F i x e d  Parameters 

Parameter Value 

produced f l o w r a t e  

r e s e r v o i r  temperature 
r e s e r v o i r  pressure 

r o c k  d e n s i t y  
r o c k  s p e c i f i c  heat 
r o c k  heat  c o n d u c t i v i t y  

s k i n  

i r r e d u c i b l e  vapor 
s a t u r a t i o n  

as observed i n  t h e  
f i e l d  ( t ime-dependent)  

320°C 
112.89 b a r s  ( = s a t u r a t i o n  
p ressu re  a t  T=320"C) 

2650 kg/m3 
1000 J/ kg "C  
2.0 W/m"C 

-4.5 

0 

Table 3. S imu la t i ons  w i t h  p r e s c r i b e d  
(observed) f l o w  r a t e .  

parameter Case 1 Case 2 Case 3 
~~ 

kH (Dm) 2.0 

r e l a t i v e  
p e r m e a b i l i t y  l i n e a r  
f u n c t i o n  

.30 

sSr+ . 00 

s # 
PV 

1 .oo 

.70 

.45 

Q .08 

6 
Mex(10 kg) 3.78 

1.2 

Corey 

.30 

.oo 

1 .oo 

.50 

.30 

.I1 

4.16 

1.2 

m o o t  hed 
l i n e a r  

.40 

.05 

0.65 

.65 

.38 

.08 

4.09 

+ .  i r r e d u c i b l e  l i q u i d  s a t u r a t i o n  
+ i r r e d u c i b l e  vapor s a t u r a t i o n  
{ / p e r f e c t l y  mob i l e  vapor s a t u r a t i o n  
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Table 4 .  

Parameter Case 1 Case 2 Case 3 Case 4 

Simulat ions using a d e l i v e r a b i l i t y  model. 

r e l a t i v e  perme- 
a b i l i t y  func t ion  

m o o t  hed 
l i n e a r  

.40 

.05 

.65 

.24 

.015 

20 

smoothed 
l i n e a r  

.50 

.05 

.55 

. I6  

.06 

10 

Corey smoothed 
l i n e a r  

.30 .40 

.o .05 

.50 .65 

.06 .24 

.06 .06 

10 10 

4.66 4.43 5.00 4.66 
6 Mex(10 kg) 

DKnahr IS78 -, e79 

D L  .,7-,*,* 

1. Product ion d a t a  f o r  w e l l  12. 

Flowing enthalpy (MJlkg) 

D L  .ll* ** 

I 
loo0 1 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0  

Flowing enthalpy ( kllkg) 
UL "11 7.w 

2 .  Observed c o r r e l a t i o n  between flow rate  and 
flowing enthalpy.  

3 .  

- 3 4 9 -  

Relative p e r m e a b i l i t i e s  assuming cons t an t  
well i n d i c e s .  



T i m  ldnvll 

2.1 

2.0 

1 .  
- O ~ ~ g Q o O -  

- 

,.I- 

1.0- 

0.9 

2 0.8- .- - 5 0.7 
0)  

0 
0.6- 

0.5-  
> .- 
i;j 0.4 - 

0 . 3 -  

0.2 

0.1 

B 

- 

- 

- 

- 

~ 

8 

i 

19 6 
l I 1  / , I , i  

1 

3 0 Well 12 
0 Well 13 

v o Well 14 
(0 Well 15 

f 0 

0 

- r a a  
O h 1  
A h 2  

0 h 3  

= ! 

4l 1 o l  ' 0.2 " 0.4 " 06 ' 0 1  ------k- 1.0 

XmL .)1Mm 
T i m  1106s) 

T i m  1d.Vr) 

l . I . I . I " ' " I J  0 8  10 12 
0 0  0 2  0 4  0 6  

T i m  1106 I) ..L (21OIm 

6 .  Comparison between calculated and observed 7 .  Comparison between calculated and observed 
flow rates  for well 12 (de l iverabi l i ty  model). enthalpies for well 1 2  (de l iverabi l i ty  model). 
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