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GAS CHEMISTRY I N  GEOTYERMAL SYSTEMS 

StefLn Arn6rsson, Sc ience  I n s t i t u t e ,  Un ive r s i ty  of 
I c e l a n d ,  Reykjavik,  I c e l a n d  

E ina r  Gunnlaugsson, Reykjavik Municipal District 
Heat ing  S e r v i c e ,  Reykjavik,  I c e l a n d  

A8STRACT 

F ive  new g a s  qeothermometers a r e  in t roduced .  
They a r e  u s e f u l  f o r  p r e d i c t i n g  subsu r face  
tempera tures  i n  water  dominated qeothermal 
systems. The geothermometers u s e  d a t a  on C O z ,  
H2S and H2 c o n c e n t r a t i o n s  i n  fumarole steam a s  
well a s  CO2/H2 and H2S/H2 r a t i o s .  It  is 
demonstrated t h a t  t h e  g a s  composition of 
fumarole steam may be used with or  without 
d r i l l h o l e  d a t a  t o  e v a l u a t e  steam condensa t ion  
i n  t h e  upflow zones of qeothermal systems. 
Unce r t a in ty  e x i s t s ,  however, i n  d i s t i n g u i s h i n g  
between t h e  e f f e c t s  of steam condensa t ion  and 
phase s e p a r a t i o n  a t  e l e v a t e d  p r e s s u r e s .  The 
g a s  c o n t e n t  i n  steam from d i scha rg ing  wells and 
t h e  s o l u t e  c o n t e n t  of t h e  water  phase can  be 
used t o  e v a l u a t e  which b o i l i n g  processes  lead  
t o  "excess steam" i n  t h e  d i scha rge  and a t  which 
tempera ture  t h i s  "excess steam" is added t o  t h e  
f l u i d  moving through t h e  a q u i f e r  and i n t o  t h e  
well. Examples, u s i n g  f i e l d  d a t a ,  a r e  g iven  t o  
demonstrate a l l  t h e  mentioned a p p l i c a t i o n s  of  
geothermal chemis t ry .  

IWTRODUCTION 

Var ious  a s p e c t s  of t h e  u s e  of g a s  chemis t ry  f o r  
t h e  e x p l o r a t i o n  f o r  geothermal r e sources  and 
t h e i r  development a r e  summarized i n  t h i s  
c o n t r i b u t i o n .  T h e y  a r e  r e l e v a n t  for water 
dominated r e s e r v o i r s .  The a s p e c t s  i n c l u d e  
p r e d i c t i o n  of subsu r face  t empera tu res  from t h e  
g a s  c o n t e n t  of fumarole s team, e s t i m a t i o n  of 
steam condensa t ion  i n  upflow zones and evalua- 
t i o n  of b o i l i n g  mechanisms i p  a q u i f e r s  around 
producing wells. Emphasis i s  l a i d  on t h e  
p r i n c i p l e s  of  t h e  d i f f e r e n t  a p p l i c a t i o n s  but  
t h e y  a r e  e l u c i d a t e d  wi th  examples of f i e l d  
d a t a .  

THE GAS CONTENT OF WATER I N  GEOTHERMAL 
RESERVOIRS 

Geochemical s t u d i e s  d u r i n g  t h e  l a s t  few y e a r s  
have demonstrated t h a t  g a s  concen t r a t ions  and 
g a s  r a t i o s  i n  d r i l l h o l e  d i scha rges  c o r r e l a t e  
wi th  t h e  undis turbed  tempera ture  of t h e  
producing a q u i f e r s  (Giggenbach, 1980; D'Amore 
and P a n i c h i ,  1980; Nehring and D'Amore, 1981; 
Arn6rsson et a l . ,  1983).  It  has  f u r t h e r  been 
demonstrated t h a t  t h e  f u g a c i t i e s  of C02, H2S 
and H2 are bu f fe red  by hydrothermal minera l  

assemblages (4rn6rsson  and Gunnlaugsson, 1953) .  
Arn6rsson e t  a l .  (1993) proposed tempera ture  
f u n c t i o n s  f o r  C02 and ti2S which a r e  v a l i d  up t o  
250OC. Gigqenbach (1980) and Arn6rsson (1963) 
have expressed  tempera ture  f u n c t i o n s  i n  terms 
of g a s  p r e s s u r e s  f o r  CU2 and C O z ,  U2s and H2 
r e s p e c t i v e l y  i n  geothermal waters .  Table  1 
g i v e s  tempera ture  f u n c t i o n s  f o r  C02, H2S and H2 
concen t r a t ions  i n  geothermal wa te r s  which a r e  
v a l i d  up t o  350OC a s  i n d i c a t e d .  

A l t e r a t i o n  p rocesses  i n  geothermal systems 
invo lve  d i s s o l u t i o n  of t h e  primary rock  
c o n s t i t u e n t s  and p r e c i p i t a t i o n  of new ones  v i a  
t r a n s f e r  of m a t t e r  th rough t h e  aqueous phase. 
Which new mine ra l s  a r e  p r e c i p i t a t e d  depends on 
t h e  tempera ture  of t h e  water ,  k i n e t i c  f a c t o r s  
and t h e  composition of t h e  rock,  or b e t t e r  t h e  
composition o f  t h e  geothermal system. I t  is a 
well known problem i n  metamorphic geology t h a t  
d i f f e r e n t  mine ra l s  o r  minera l  assemblages have 
s i m i l a r  s o l u b i l i t i e s .  T h i s  i m p l i e s  t h a t  
d i f f e r e n t  mine ra l s  w i l l  o f t e n  produce s i m i l a r  
aqueous s o l u t e  concen t r a t ions  f o r  compat ib le  
components a t  e q u i l i b r i u m .  Compatible compo- 
n e n t s  a r e  t h o s e  inco rpora t ed  i n  minera l  phases .  
T h i s  is well demonstrated by t h e  r e s u l t s  of 

Bi rd  and Norton (1981) on t h e  S a l t o n  Sea 
geothermal system. A minera l  zonat ion  is  
observed with depth  i n  t h a t  system and each 
zone is  c h a r a c t e r i s e d  by a p a r t i c u l a r  minera l  
assemblage. Chemical thermodynamic c a l c u l a -  
t i o n s  show t h a t  any of these assemblages g i v e  
about t h e  same f l u i d  composition ( t h e  observed 
composition) a t  equ i l ib r ium fo r  t h e  compat ib le  
components. Yet, i n  s t r ic t  terms, it is very  
impor tan t  t o  r e a l i s e  t h a t  t h e  tempera ture  
f u n c t i o n s  g iven  i n  Table  1 a r e  v a l i d  on ly  f o r  
c e r t a i n  mine ra l  assemblages,  assemblages which 
form when vo lcan ic  r o c k s  o f  b a s i c  t o  a c i d i c  
composition a r e  a l t e r e d  because t h e y  have been 
de r ived  from d a t a  from geothermal systems 
l o c a t e d  i n  such  rocks.  These tempera ture  
f u n c t i o n s  may n o t  be v a l i d  f o r  geothermal 
sys tems l o c a t e d  i n  o t h e r  rock t y p e s ,  p a r t i c u -  
l a r l y  i f  t h e i r  composition d i f f e r s  much from 
t h e  mentioned rock  types .  A l t e r a t i o n  may l e a d  
t o  t h e  format ion  of d i f f e r e n t  mine ra l  assem- 
b l ages  t h a t  would b u f f e r  g a s  f u g a c i t i e s  a t  a 
s i g n i f i c a n t l y  d i f f e r e n t  l e v e l  a t  any tempera- 
t u r e .  

For H2S and HZ two f u n c t i o n s  a r e  p re sen ted  i n  
Table  1 ,  each v a l i d  over  a f i x e d  r anqe  of water  
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Table  1.  Temperature f u n c t i o n s  f o r  gas  concen t r a t ions  ( a s  l o g  moles) i n  geothermal r e s e r v o i r  
waters .  

Gas Temperature f u n c t i o n  ( O K )  

co2 -1.09 -3594.55/T +2.532*logT 

Semarks 

A11 waters  

+S -11.!34 -!J.i?hC)35*T -176Yl.O?/T +27.163*logT A l l  wa te r s  above 39OoC and waters i n  t h e  
'42 -3.134 -10763.54/T +7.0O?.lOgT ranqe  200-3000C i f  C1>500ppm 

-1.24 -4631.94/T +2.630-loqT A l l  waters  below 200°C and waters  i n  t h e  
+11.96 +0.05439.T +8254.09/T -27.587-logT range  290-300°C i f  C1<500ppm 

H2S 
!i2 

s a l i n i t y  and tempera ture .  Water s a l i n i t y  may 
t o  some e x t e n t  r e f l e c t  rock t y p e .  D i f f e r e n t  
rock  t y p e s  have d i f f e r e n t  concen t r a t ions  of t h e  
incompat ib le  component c h l o r i d e  and it  is  t h e  
a v a i l a b i l i t y  of t h i s  component which governs 
water  s a l i n i t y .  

It has  not  been e s t a b l i s h e d  which mine ra l s  
c o n t r o l  C02, tl2S and h2 f u g a c i t i e s  a s  descr ibed  
by t h e  f u n c t i o n s  i n  Table  1 below some 200- 
250OC. A t  h igher  tempera tures  t h e  assemblage 
ep idote-  p r e h n i t e -  c a l c i t e -  q u a r t  z seems t o  
c o n t r o l  C02 l e v e l s .  For water  con ta in ing  less 
t h a n  500 ppm c h l o r i d e  and below 300OC p y r i t e ,  
p y r r h o t i t e ,  e p i d o t e  and p r e h n i t e  appear  t o  
b u f f e r  H2S and H2 f u q a c i t i e s  bu t  p y r i t e ,  
e p i d o t e ,  p r e h n i t e  and magnet i te  or c h l o r i t e  
seem t o  be involved  i n  t h e  c a s e  of waters  
con ta in ing  over  500 ppm c h l o r i d e .  

GEOTHERMOMETRY 

The d r i l l h o l e  d a t a  on which t h e  f u n c t i o n s  i n  
Table  1 a r e  based have been used t o  c a l i b r a t e  
s e v e r a l  g a s  geothermometers. The a p p l i c a t i o n  
of  t h e s e  g a s  geothermometers i nvo lves  t h e  
sampling and a n a l y s i s  of fumarole steam and 
d e r i v a t i o n  of subsu r face  t empera tu res  with t h e  
a i d  of t h e  f u n c t i o n s  i n  Table  2 .  These 
f u n c t i o n s  refer t o  g a s  concen t r a t ions  i n  steam 
a t  atmospheric p re s su re  and assume a d i a b a t i c  
b o i l i n g  of t h e  p a r e n t  water  and equ i l ib r ium 
degass ing  (Arn6rsson and Gunnlaugsson, 1983) .  
Conde s a t i o n  of steam i n  t h e  upflow and phase  
s e p a r a t i o n  a t  p re s su res  above a tmospher ic  cause  
h igh  tempera ture  estimates f o r  t h e  C02, H2S and 
H2 geothermometers a s  t h e y  a r e  based on 
concen t r a t ion  i n  steam. On t h e  o t h e r  hand t h e  
geothermometers which use  gas  r a t i o s  (C02/H2 
and H2S/H2) a r e  not  s i g n i f i c a n t l y  a f f e c t e d  by 
t h e s e  p rocesses  a s  t h e  d i s so lved  g a s e s  are 
p r a c t i c a l l y  q u a n t i t a t i v e l y  t r a n s f e r r e d  t o  t h e  
steam phase a l r e a d y  a t  t h e  e a r l y  s t a g e s  of 
b o i l i n g .  The geothermometers which u s e  g a s  
concen t r a t ions  a r e  advantageous over  t h e  g a s  
r a t i o  geothermometers when steam condensa t ion  
or phase s e p a r a t i o n  produces less d e v i a t i o n  
from t h e  a d i a b a t i c  b o i l i n g  model adopted t h a n  
g a s  r e a c t i o n s  i n  t h e  upflow. Arn6rsson and 
Gunnlaugsson (1983) have demonst ra ted ,  by 
comparing measured tempera tures  i n  wells and 
d a t a  from fumaroles,  t h a t  t h e  p red ic t ed  

geothermometry tempera tures  compare g e n e r a l l y  
well with t h e  tempera tures  a c t u a l l y  encountered  
i n  d r i l l h o l e s  a t  d e p t h s  as g r e a t  a s  1000 m or  
more. T h e i r  work shows t h a t  H2S and' t o  a 
lesser e x t e n t  H2 t e n d  t o  be removed from t h e  
steam i n  t h e  upflow presumably a s  a r e s u l t  of 
r e a c t i o n s  with a l t e r a t i o n  mine ra l s  i n  t h e  w a l l  
rock  or o x i d a t i o n .  The re fo re  CO2/H2 r a t i o s  may 
be regarded  t o  y i e l d  conse rva t ive  estimates o f  
subsu r face  tempera tures  a s  t h i s  r a t i o  i n c r e a s e s  
wi th  dec reas ing  tempera tures  a s  may be seen  t h e  
r e s p e c t i v e  t empera tu re  f u n c t i o n s  i n  Table  2 .  
C02 tempera tures  can  be expected t o  be on t h e  
h iqh  s i d e  a s  t h i s  g a s  does not  seem t o  be l o s t  
from t h e  steam i n  t h e  upflow. H2S and H2 
tempera tures  a r e  o f t e n  in t e rmed ia t e  between t h e  
C02/H2 and t h e  C02 tempera tures  a s  t h e  e f f e c t  
of condensa t ion  is counterba lanced  t o  a g r e a t e r  
o r  lesser e x t e n t  by t h e  removal of t h e s e  g a s e s  
from t h e  steam i n  t h e  upflow. H2S/H2 tempera- 
t u r e s  y i e l d  high v a l u e s  when H2S h a s  been 
removed p r e f e r r e n t i a l l y  t o  H2 i n  t h e  upflow. 

Data from fumaroles  i n  Hveragerdi a r e  used h e r e  
a s  an example t o  i l l u s t r a t e  g a s  geothermometry 
r e s u l t s  (F ig .1) .  Many wells have been sunk i n  
t h i s  a r e a  which forms t h e  southernmost p a r t  of 
t h e  H e n g i l l  geothermal f i e l d  i n  southwest 
I c e l a n d .  Xi-Xiang (1990) h a s  r e c e n t l y  summar- 
i z e d  t h e  tempera ture  d i s t r i b u t i o n  i n  t h e  
Hveragerdi r e s e r v o i r  from measurements i n  
wells. I n  g e n e r a l  t empera ture  i n c r e a s e s  
northwards from about  1500C i n  t h e  v i l l a g e  of 
Hveragerdi t o  23OoC i n  t h e  f a r  n o r t h  i n  well 1 
(F ig .  1 ) .  A t empera ture  maximum is observed i n  
most wells which has  been i n t e r p r e t e d  by 
l a t e r a l  f low from t h e  centr,al p a r t  of t h e  
Heng i l l  geothermal f i e l d  (Arnason e t  a l . ,  
1968).  

For convenience f o r  d i scuss ing  and comparing 
measured t empera tu res  i n  wells and q a s  geo- 
thermometry tempera tures  t h e  Hveragerdi f i e l d  
is d iv ided  i n t o  two a r e a s ,  one around wells 2 ,  
4 and 5 and t h e  o t h e r  a t  t h e  head of t h e  v a l l e y  
running nor th  from Hveragerdi where wells, 1 ,  
3 ,  6,  7 and 8 a r e  l o c a t e d .  Here fumaroles a r e  
concen t r a t ed  on high ground on t h e  no r the rn  
v a l l e y  s l o p e s ,  and i n  s m a l l e r  V-valleys 
d i s s e c t i n g  t h e s e  s l o p e s .  
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Ta,ile 7 .  Temperature f u n c t i o n s  f o r  a a s  qeothermometers. (:as concen t r a t ions  a r e  i n  mqoles p e r  kg 
03 s t e a q .  

Geothermometer Temperature func t ion  Mean Standard  
dev.oC dev.OC 

i'2S +240.7 +44.910 
.'2 t277 .2  +20.990 

+/  i2 +304.1 - 3 9 . 4 3  
CO2 /E2 +341.7 -2s  .579 

-12s +173.2 +05.043 

c02 1 9  +311.7 -66.720 
~ '2 +212.2 +35.533 

14  9 
s 6 

14  9 
11 S 

1 5  1 3  
19 14  
2 s  73 

!? emar k s  

411 wa te r s  

A 1 1  wa te r s  above 39r)OC 
and wa te r s  i n  t h e  range  
209-300OC i f  c h l o r i d e  
>5Yl ppm. 

411 waters  below 23OoC 
and wa te r s  i n  t h e  range  
200-3000C i f  c h l o r i d e  
<50n ppm. 

d e s i q n a t e s  t h e  loga r i th im of t h e  r e s p e c t i b e  q a s  concen t r a t ion  o r  t h e  g a s  r a t i o .  
arista p o i n t s  ~ i t h  a q u i f e r  tempera tures  below 15:)OC were omi t ted .  

c02/il2 tempera tures  f o r  fumaroles around wells 
2 ,  4 and 5 a r e  i n  t h e  range  117-172OC b u t  C02 
tempera tures  range  from 2370 t o  2550C. These 
tempera tures  a r e  t o  be compared with t h e  ranqe  
131-19S0C measured i n  t h e  nearby wells. 
According t o  e a r l i e r  s ta tement  t h e  h i q h e s t  
C02/H2 tempera tures  should be regarded  a s  a 
conse rva t ive  v a l u e  f o r  subsu r face  tempera tures  
and C02 tempera tures  a r e  poss ib ly  t o o  high.  For 
t h e  upper a r e a  maximum C02/H2 tempera ture  1s 
233OC but  t h e  h i g h e s t  recorded  downhole 
tempera ture  i s  230OC i n  well 1 .  C02 tempera- 
t u r e s  range  from 257O t o  27YOC. 

Inspec t ion  of Fig.  1 r e v e a l s  t h a t  H2 tempera- 
t u r e s  t e n a  t o  l i e  inbetween t h e  C02 and C02/H2 
tempera tures .  C02 concen t r a t ions  do not  change 
a s  r a p i d l y  wi th  tempera ture  a s  do H2 concent ra -  
t i o n s  accord ing  t o  t h e  g a s  geothermometry 
f u n c t i o n s .  The re fo re  t h e  d iscrepancy  between 
t h e  C02, H2 and CO2/H2 qeothermometry r e s u l t s  
can be expla ined  by steam condensa t ion /phase  
s e p a r a t i o n  et  e l e v a t e d  p res su re  or removal of 
H2 from t h e  steam i n  t h e  upflow or  a combina- 
t i o n  of t h e s e  processes .  

ti2S t empera tu res  compare well w i t h  H2 tempera- 
t u r e s  i n  t h e  lower a r e a .  However, i n  t h e  upper 
a r e a  t h e y  t e n d  t o  be lower and a l s o  lower t h a n  
t h e  CO2/H2 tempera tures .  I n  t h e  upper a r e a  t h e  
fumaroles  a r e  mostly l o c a t e d  on high ground and 
well above t h e  water  t a b l e .  According t o  
Arn6rsson and Gunnlaugsson (1963) H2S 1s 
p a r t i c u l a r l y  prone  t o  be removed from t h e  steam 
under c o n d i t i o n s  of  low water t a b l e .  

E V A L U A T I O N  OF CONDENSATION 

The d iscrepancy  between t h e  CO2/H2 geothermo- 
metry r e s u l t s  on one hand and t h e  C02 or  H2 
r e s u l t s  on t h e  o t h e r  hand may be used t o  
e v a l u a t e  steam condensa t ion  i n  upflow zones of 
geothermal systems. The eva lua t ion  invo lves  
c a l c u l a t i o n  of C02 o r  H2 concen t r a t ions  from 

t h e  C02/H2 t empera tu re  and t h e  r e s p e c t i v e  
f u n c t i o n s  i n  Table  2 .  The r a t i o  of t h e  
c a l c u l a t e d  C02 (o r  H2) concen t r a t ion  d iv ided  by 
t h e  analysed concen t r a t ion  e q u a l s  t h e  f r a c t i o n  
of s team, Y ,  which has  not  condensed and (I-Y),  
i s  t h e r e f o r e  t h e  condensed f r a c t i o n .  S ince  H2 
t e n d s  t o  be removed i n  t h e  upflow, C02/H2 
tempera tures  t e n d  t o  be low q i v i n g  high v a l u e s  
f o r  (I-Y). For t h e  Hveragerdi fumaroles ( F i q .  
1 )  t h i s  method i n d i c a t e s  t h a t  59-95% of t h e  
steam has  condensed i n  t h e  upflow and 77% on 
average. 

Another method t o  e s t i m a t e  condensa t ion  
i n v o l v e s  comparison between t h e  g a s  c o n t e n t  i n  
fumaroles and i n  steam discharged  from wells a t  
a tmospher ic  p r e s s u r e .  Usinq C02 d a t a  from 
wells 2 and 4 ( a q u i f e r  tempera tures  192O and 
Idl°C) condensa t ion  i s  ind ica t ed  which amounts 
on average  t o  73% i n  t h e  lower a r e a ,  t h e  range  
being 65-79.. T h e  same approach f o r  t h e  upper 
a r e a  u s i n g  w e l l  7 ,  w i t h  a q u i f e r  tempera ture  of 
22boC, g i v e  a range  of 68-34%, t h e  average  
being 77%. 

Although numerous b o i l i n g  hot  s p r i n g s  occur  i n  
t h e  Hveragerdi a r e a ,  i t  may be t h a t  t h e  
d i screpancy  between t h e  g a s  concen t r a t ions  i n  
fumarole steam and i n  steam from wells a f t e r  
t h e  d i scha rge  h a s  f l a s h e d  t o  a tmospher ic  
p re s su re  is not  due t o  condensa t ion  but  t o  
s e p a r a t i o n  of  t h e  steam from t h e  water  i n  t h e  
upflow a t  p r e s s u r e s  above atmospheric.  Study 
of fumarole chemis t ry  i n  s e v e r a l  geothermal 
f i e l d s  i n  I c e l a n d  by Arn6rsson and Gunnlaugsson 
(1983)  shows t h a t  t h e r e  is some r e l a t i o n  
between t h e  d iscrepancy  between C02 (and H2) 
tempera tures  on one  hand and CO2/H2 tempera- 
t u r e s  on t h e  o t h e r  and t h e  age  of t h e  rocks.  
The d i f f e r e n c e  t e n d s  t o  be l a r g e s t  i n  t h e  
o l d e s t  rocks. I t  i s  gene ra l ly  accepted  t h a t  
t h e  pe rmeab i l i t y  of t h e  vo lcan ic  r o c k s  i n  
I c e l a n d  dec reases  wi th  time due t o  compaction 
and hydrothermal a l t e r a t i o n .  I t  is  t o  be 
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Fiq .  1 .  Gas geothermometry r e s u l t s  fo r  t h e  
Hveraaerdi a r e a ,  southwest Ice land .  

expec ted  t h a t  low pe rmeab i l i t y  i n  upflow zones 
where b o i l i n g  occur s  w i l l  f avour  phase separa-  
t i o n .  It  i s  concluded t h a t  fumarole  chemis t ry  
can be a f f e c t e d  by both steam condensa t ion  and 
phase  s e p a r a t i o n  but  f u r t h e r  s t u d y  is r e q u i r e d  
t o  e v a l u a t e  t h e  r e l a t i v e  magnitude of t h e s e  
p rocesses  i n  d i f f e r e n t  f i e l d s .  The r e s u l t s  may 
c o n t r i b u t e  t o  e a r l y  eva lua t ion  of pe rmeab i l i t y  
i n  geothermal systems but  a l s o  t o  e s t ima t ion  of 
n a t u r a l  hea t  loss. 

EVALUATION OF BOILING P90CESSES 

I t  i s  o f t e n  observed t h a t  t h e  en tha lpy  of  
wet-steam w e l l  d i s cha rges  v a r i e s  w i th  wellhead 
p res su re  b u t  a l s o  wi th  time, g e n e r a l l y  towards 
i n c r e a s i n g  steam t o  water  r a t i o s .  4s f a r  a s  
t h e  p r e s e n t  a u t h o r s  know d i scha rge  en tha lpy  
changes a r e  conf ined  t o  wells f e d  by a two 
phase  mixture  of water  and steam. Changes i n  
t h e  f l u i d  chemis t ry  (o r  l a c k  of changes) which 
accompany d i scha rge  en tha lpy  changes can be 
u s e f u l  i n  e v a l u a t i n g  t h e  p rocesses  which are 
involved. R e s u l t s  p e r t i n e n t  t o  t h i s  a s p e c t  of 
a p p l i e d  geochemistry have been desc r ibed  by 
Arn6rsson ( I r S l ) ,  Glover e t  a l .  (1981) and 
Grant  and Glover (1983). 

Steam is e x c e s s  of t h a t  formed by a d i a b a t i c  
b o i l i n g  of water  of a p a r t i c u l a r  a q u i f e r  
tempera ture  i s  h e r e  termed "excess steam". 

It  is v i s u a l i z e d  t h a t  "excess steam" i n  

wet-steam well d i scha rges  may be t h e  outcome of 
e i t h e r  of two processes ,  o r  a combination of 
them. One of t h e s e  processes  invo lves  phase 
s e p a r a t i o n  i n  t h e  a q u i f e r  and p r e f e r r e n t  i a l  
movement of  t h e  steam i n t o  t h e  well. The o t h e r  
p rocess  i n v o l v e s  evapora t ion  of po re  water  a s  a 
r e s u l t  of h e a t  t r a n s f e r  from t h e  rock  t o  t h e  
f l u i d .  P r e s s u r e  drop  caused i n  t h e  a q u i f e r  
around a producing well w i l l  cool t h e  f l u i d  by 
b o i l i n g  and i n i t i a t e  h e a t  t r a n s f e r  from t h e  
rock. 

I n  t h e  p r e s e n t  c o n t r i b u t i o n  i t  is demonstrated 
how f l u i d  chemis t ry  may be used t o  e v a l u a t e  t h e  
r e l a t i v e  magnitude of  t h e s e  two p rocesses  f o r  
i n d i v i d u a l  wells. The eva lua t ion  makes u s e  of 
both g a s  composition and s o l u t e s  i n  t h e  aqueous 
phase. Data from N e s j a v e l l i r ,  I c e l a n d  and 
O l k a r i a ,  Kenya, a r e  used t o  e l u c i d a t e  t h i s  
a p p l i c a t i o n  of chemis t ry .  

I f  r e l a t i v e  pe rmeab i l i t y  is  t h e  cause  of h igh  
d i scha rge  e n t h a l p y ,  i .e.  "excess steam", it i s  
t o  be expected t h a t  t h e  concen t r a t ions  of g a s e s  
i n  t h e  steam phase  a t  a p a r t i c u l a r  p re s su re  
remain c o n s t a n t  d e s p i t e  changes i n  t h e  d i s -  
charge  en tha lpy .  I f ,  on t h e  o t h e r  hand, 
evapora t ion  of po re  water  was r e s p o n s i b l e ,  it 
is t o  be expec ted  t h a t  g a s  c o n c e n t r a t i o n s  i n  
t h e  t o t a l  d i scha rge  would remain c o n s t a n t  and 
t h e  g a s  c o n t e n t  of t h e  steam phase would t h u s  
dec rease  i n  p ropor t ion  t o  t h e  amount added of 
pore  water  de r ived  steam. It  i s  l o g i c a l  t o  
assume t h a t  t h e  po re  water  would become 
degassed du r ing  t h e  e a r l y  s t a g e s  of b o i l i n g  and 
f u r t h e r  evapora t ion  would y i e l d  p r a c t i c a l l y  g a s  
free steam. 

The d a t a  on CO2 from well 6 a t  N e s j a v e l l i r ,  
I ce l and  (F ig .  2 )  i n d i c a t e s  t h a t  t h e  r e l a t i v e  
pe rmeab i l i t y  e f f e c t  is f o r  a l l  p r a c t i c a l  
purposes  t h e  so l e  cause  of t h e  inc reased  
d i scha rge  en tha lpy  from 1290 t o  2140 3 / g  t h a t  
occur red  du r ing  one week a f t e r  t h e  well was 
d ischarged  f o r  t h e  f i r s t  time ( s e e  S t e f h s s o n  
e t  a l . ,  1983) .  

The tempera ture ,  or more a c c u r a t e l y  t h e  
e n t h a l p y ,  of t h e  "excess steam" added may 
a f f e c t  evapora t ion  of t h e  water f r a c t i o n  i n  
well d i s c h a r g e s .  I f  t h e  steam is added a t  a 
p r e s s u r e  close t o  t h e  sampling p r e s s u r e ,  i.e. 
close t o  t h e  w e l l ,  t h e  a d d i t i o n  w i l l  n o t  a f f e c t  
t h e  aqueous s o l u t e  concen t r a t ions .  I f ,  on t h e  
o t h e r  hand, t h e  steam is added a t  a s i g n i f i -  
c a n t l y  d i f f e r e n t  p re s su re  so t h a t  i ts  en tha lpy  
d i f f e r s  markedly from t h a t  of steam a t  t h e  
sampling p r e s s u r e ,  i ts presence  and r e l a t i v e  
amount w i l l  a f f e c t  t h e  evapora t ion  of t h e  
d ischarged  water.  

F ig .  3 shows v a r i a t i o n  i n  s i l i c a  and sodium 
concen t r a t ions  i n  t h e  water  d i scharged  from 
well 6 a t  N e s j a v e l l i r  with d i scha rge  en tha lpy  
du r ing  t h e  f i rs t  week of flow. The h o r i z o n t a l  
l i n e s  r e p r e s e n t s  expected r e l a t i v e  concentra- 
t i o n s  i f  t h e  "excess  steam" was added a t  a 
p r e s s u r e  e q u a l  t o  t h e  sampling p res su re  but  t h e  
cu rves  r e p r e s e n t  c a l c u l a t e d  r e l a t i v e  s o l u t e  
concen t r a t ion  v a r i a t i o n s  i f  t h e  steam was added 
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F i g .  2 .  C02 concen t r a t ions  i n  well 6 a t  
t l e s j a v e l l i r  durinrl t h e  f i r s t  week of d i scha rge  
i n  DecernDer, 1992. F i l l e d  symbols des igna te  
concen t r a t ions  i n  t h e  t o t a l  d i scha rqe  and open 
svmbols concen t r a t ions  i n  t h e  steam a t  atmos- 
p h e r i c  p r e s s u r e .  

a t  29OoC, i . e .  t h e  undis turbed  tempera ture  of 
t h e  dominant f e e d e r .  The r e s u l t s  fo r  sodium 
favour  t h a t  t h e  "excess  steam'' was added a t  
230OC b u t  s i l i c a  concen t r a t ions  do not .  I t  is 
p o s s i b l e  t h a t  t h e  s i l i c a  concen t r a t ions  do n o t  
g i v e  a r e l i a b l e  p i c t u r e  of t h e  s i t u a t i o n .  They 
a r e  s e n s i t i v e  t o  tempera ture  v a r i a t i o n s  i n  t h e  
formation. I n i t i a l  s i l i c a  c o n c e n t r a t i o n s  a r e  
low but  l a t e r  t h e y  cor respond well with t h e  
a q u i f e r  tempera ture  o f  290OC assuming e q u i l i b -  
rium with q u a r t z .  

Data on t h e  composition of water  and s team from 
wet-steam wells may not  be s u f f i c i e n t l y  
complete t o  permi t  c o r r e l a t i o n  of p o s s i b l e  
chemical changes wi th  changes i n  d i scha rge  
en tha lpy .  A s i n g l e  a n a l y s i s  of t h e  steam 
f r a c t i o n  and measurement of t h e  d i scha rge  
en tha lpy  may be t e n t a t i v e l y  used t o  e v a l u a t e  
t h e  r e l a t i v e  magnitude of t h e  two b o i l i n g  
processes i n  t h e  a q u i f e r  w i t h  t h e  a i d  of t h e  
equa t ions  i n  Tab le  1 .  If evapora t ion  of pore 
water  o n l y  was r e spons ib l e  fo r  t h e  "excess 
steam" i n  a well d i s c h a r g e ,  t h e  g a s  c o n t e n t  of 
t h e  t o t a l  d i scha rge  should be equal  t o  t h a t  
descr ibed  by t h e  r e s p e c t i v e  f u n c t i o n s  i n  Table  
1 a t  a s p e c i f i e d  a q u i f e r  tempera ture .  If t h e  
r e l a t i v e  pe rmeab i l i t y  effect was t h e  cause  of 
"excess  steam", t h e  g a s  c o n t e n t  i n  t h e  steam 
phase of t h e  d i scha rge  m u l t i p l i e d  by c a l c u l a t e d  
steam f r a c t i o n  equal  t o  t h a t  ob ta ined  by 
a d i a b a t i c  b o i l i n g  should conform wi th  t h e  
f u n c t i o n s  i n  Table  1.  

F ig .  4 shows d a t a  on t h e  g a s  c o n t e n t  i n  steam 
from s e l e c t e d  wells a t  O lka r i a  i n  Kenya. The 
spread  of d a t a  p o i n t s  i n d i c a t e s  t h a t  wells wi th  
t h e  lowest Na-K geothermometry t empera tu res  owe 
t h e i r  "excess steam" dominantly t o  phase 
s e p a r a t i o n  but  fo r  wells wi th  Na-K tempera tures  
s i g n i f i c a n t l y  over  24OOC pore  water  evapora t ion  
appears  t o  dominate. A steam zone of 24OoC 
caps  a b o i l i n g  water  r e s e r v o i r  a t  O lka r i a  
(Svanbjornsson e t  a l . ,  1963) .  The wells which 

have Na-K t empera tu res  s i g n i f i c a n t l y  h i g h e r  
t h a n  24OoC a r e  dominated by f e e d e r s  i n  t h e  
b o i l i n g  water  r e s e r v o i r  bu t  wells wi th  Na-K 
tempera tures  of 24OoC of somewhat less appear  
t o  be dominantly f e d  from t h e  steam zone. 
It  can  be noted from Fig.  4 t h a t  t h e  g a s  
c o n t e n t  of a l l  t h e  wells a r e  ve ry  s i m i l a r  and 
correspond r a t h e r  c l o s e l y  wi th  g a s  geothermo- 
metry tempera tures  of 24OoC. It  is a p l a u s i b l e  
exp lana t ion ,  a l though cons idered  u n l i k e l y  i n  
view of flow c h a r a c t e r i s t i c s  of wells ( s e e  
Svanbjornsson e t  a l . ,  1933) ,  t h a t  t h e  steam i n  
t h e  well d i scha rges  is dominantly de r ived  from 
t h e  steam zone and Na-K t empera tu res  r e f l e c t  
some water inf low from v a r i a b l e  dep ths  w i t h i n  
t h e  b o i l i n g  water r e s e r v o i r .  

QUALITY OF STEA, I 

The g a s  c o n t e n t  of  steam a t  a p a r t i c u l a r  
s e p a r a t i o n  p res su re  may be p r e d i c t e d  i n  t h e  
c a s e  of C02,  H2S and H2 wi th  t h e  u s e  of t h e  
equa t ions  i n  Table  1 .  Usual ly  t h e s e  g a s e s  
c o n s t i t u t e  f a r  t h e  l a r g e r  p a r t  of t h e  t o t a l  g a s  
i n  geothermal f l u i d s  a l though CH4 and N2 may 
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Fig .  3 .  R e l a t i v e  changes wi th  d i scha rge  
en tha lpy  i n  t h e  s i l i c a  and sodium concentra- 
t i o n s  i n  water  ( a t  atmospheric p r e s s u r e )  from 
well 6 a t  N e s j a v e l l i r .  S t r a i g h t  l i n e s  corre- 
spond wi th  c o n c e n t r a t i o n s ,  i f  t h e  "excess 
steam" was added a t  a p re s su re  e q u a l  t o  t h e  
sampling p res su re  but  curves  i f  steam a t  29OOC 
( t h e  a q u i f e r  tempera ture  fo r  t h e  w e l l )  was 
added. 
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F i g .  4. 1702, r izS and U2 c o n c e n t r a t i o n s  i n  f l u i d  d i scha rqed  f ro :n w e l l s  a t  3 l k a r i a .  Open symbols 
rep resen t  a c t u a l  co r i cen t ra t i ons  i n  t h e  t o t a l  d i scha rge  and correspond t h e r e f o r e  w i t h  t h e  "excess 
s temi "  be i r lq  d e r i v e d  f rox  evapora t i on  o f  deqassed pore water.  F i l l e d  symhols show c a l c u l a t e d  
c o n c e n t r a t i o n s  i n  t h e  r e s e r v o i r  water on t h e  assumption t h a t  t h e  "excess steam" i n  t h e  d i scha rges  
was cause0 by phase s e p a r a t i o n  i n  t h e  a q u i f e r  and p r e f e r r e n t i a l  move-nent o f  t h e  steam i n t o  t h e  
w e l l s .  The ciJrves des igna te  gas c o n c e n t r a t i o n s  i n  e q u i l i b r a t e d  qeothermal r e s e r v o i r  waters  
acco rd ing  t o  Tanle 1 .  The da ta  a re  froin :&.ma (1952) .  

soiiietimes c o n t r i b u t e  s i g n i f i c a n t l y .  The steam 
f r a c t i o n ,  X ,  formed by a d i a b a t i c  b o i l i n g  o f  
water  equals  (h-hp)  /Lp where h and hp r e -  
present  t h e  e n t h a l p i e s  o f  steam s a t u r a t e d  water 
a t  a s p e c i f i e d  a q u i f e r  temperature and t h e  
en tha lpy  o f  water  a t  steam p ressu re  respec t -  
i v e l y .  Lp i s  t h e  l a t e n t  heat  o f  v a p o r i z a t i o n  
a t  t h a t  pressure.  By d i v i d i n g  X i n t o  a 
c a l c u l a t e d  gas c o n c e n t r a t i o n  d e r i v e d  f rom t h e  
equa t ions  i n  Table 1 t h e  gas c o n c e n t r a t i o n s  i n  
t h e  steam a re  obta ined.  T h i s  i s  t h e  maximum 
a n t i c i p a t e d  c o n c e n t r a t i o n  i n  t h e  steam phase. 
I f  increased w e l l  d i scha rge  en tha lpy  was caused 
by phase s e p a r a t i o n  i n  t h e  a q u i f e r ,  t h e  qas 
con ten t  i n  t h e  steam would n o t  change and 
t h e r e f o r e  s t a y  a t  t h e  t h e o r e t i c a l  maximum 
l e v e l .  Pore water evapora t i on ,  as a cause o f  
i nc reased  d i scha rge  en tha lpy ,  would on t h e  
o t h e r  hand lower  gas c o n c e n t r a t i o n s  f rom t h i s  
maximum. As an example i t  can be ment ioned 
t h a t  gas (COz+H2S+H2) i n  steam a t  6 ba rs  abs. 
c a l c u l a t e s  t o  be 0.35 and 1.1% by volume a t  
maximum f o r  a q u i f e r  temperatures o f  250° and 
300OC r e s p e c t i v e l y .  Fo r  a d i scha rge  en tha lpy  o f  
2200 3 / g  and pore water e v a p o r a t i o n  t h e  
corresponding f i g u r e s  a r e  0.10% and 0.48% 
r e s p e c t i v e l y ,  I t  i s  considered t o  be u s e f u l  t o  
p r e d i c t  t h e  q u a l i t y  o f  geothermal steam w i t h  
respec t  t o  gas c o n t e n t  a l ready  a t  t h e  geo- 
chemical  survey phase i n  geothermal exp lo ra -  
t i o n .  T h i s  can be done by making use o f  
es t ima ted  subsur face temperatures u s i n g  
geothermometry. 
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