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Abstract

In 2005 a global effort was initiated to conduct studies for a baseline recommen-
dation for the various components of the International Linear Collider (ILC).
Work for the damping rings was subdivided in a number of tasks. This Report
contains the contribution to this effort by the Authors as Coordinators of the
Task Force on space charge. (A slightly reduced version of this document can
also be found as part of the ‘Configuration Studies and Recommendations for the
ILC Damping Rings’, Edts. A. Wolski, et al., LBNL-Report-59449.) The studies
documented in this Report were carried out for several of the reference lattices
considered for the baseline recommendation. Space charge effects were found to
be quite noticeable in the lattices with the longest circumference. Although it
does not appear that they could prevent operation of any machine having such
lattices they do favor a choice of a ring design with shorter (< 6km) circumference
at 5 GeV.

*Work supported by Department of Energy contract DE-AC02-05CH11231



1 Introduction

Typically, space charge effects are irrelevant in lepton storage rings but they have the poten-
tial to impact the performance of the ILC (International Linear Collider) damping rings’s
(DR) because of the unusual combination of long circumference, small emittance, and the en-
ergy range where the damping rings are expected to operate. A signature of the importance
of space charge is the linear vertical tuneshift, which could be above 0.20 for the longest
proposed lattices.

While space charge is not expected to be of any consequence on injection efficiency or
dynamic aperture, as it becomes relevant to the beam dynamics only toward the end of
the damping cycle, it could cause an unacceptable degradation of the 20 nm (normalized)
vertical emittance desired at extraction.

Because the vertical is so much smaller than the horizontal emittance, vertical motion
is particularly vulnerable to the presence of any mechanism that may favor coupling with
the other degrees of freedom. There are two basic ways by which space charge could have
an adverse effect: by enlarging the width of already exiting lattice resonances through tune
depression and by driving new resonances. In the course of this study we found evidence for
both of these mechanisms.

Space charge could also affect the achievement of the target vertical equilibrium emit-
tances in the presence of radiation by affecting the horizontal /vertical linear coupling in a
linearly coupled lattice. We found indication that this effect could be noticeable but we have
not yet performed a systematic investigation.

We carried out our study by numerical tracking using the codes SAD [1] and MaryLie/Impact
(MLI) [2]. The modelling in both codes is based on a weak-strong approximation and the
space charge force is calculated as if produced by a 6D (in phase space) gaussian bunch
matched to the linear lattice. This is a reasonable approximation for the bunch distribu-
tion in damping rings close to the end of the damping cycle. We tracked particles initially
distributed according to the bunch density at equilibrium including the effect of lattice non-
linearities and with space charge force applied in the kick approximation. Radiation effects
were not included.

Because of the nature of the weak-strong approximation any detected emittance growth
is likely to be overestimated in comparison with a more self-consistent calculation. However,
the main objective here was not to quantify the emittance degradation exactly, which would
require more advanced modelling, but establish whether there would exist conditions for no
growth at all that could be indicated for safe operation of the machines.

The results obtained using SAD and MLI are reported in two separate sections, containing
further details on the specifics about the simulations. In presenting our results we placed
emphasis on exploration of the tune space and determination of offensive resonances. Some
calculations were repeated with both codes for reciprocal validation. The agreement in the
outcome between the two codes was generally good.

Overall we surveyed most of the proposed lattices including some of their variants (for
example, in addition to the original ‘C-shaped’d TESLA DR lattice we also considered an ‘S-

fThe ‘C’ is in reference is to the lattice layout.



shaped’ design with better symmetry properties; for the MCH lattice we took in consideration
multiple choices of RF voltage; and for both the MCH and TESLA DR lattices we also studied
the option of using ‘coupling bumps’). In our investigation we did not include the smallest
lattices PPA; OTW (on the assumption that space charge should have negligible effects),
and the DAS lattice (on the basis of its similarities with the other dogbone lattices)[3].

2 Space charge study using MLI

2.1 Basic features of the model

MaryLie/Impact is a hybrid combining MaryLie routines for lattice design, map calculation,
and tracking and Impact features for space charge calculations, which allow for fully self-
consistent beam dynamics simulations. However, the existing capabilities of MaryLie/Impact
are not well suited for the fast evaluation of space-charge effects needed for large machines
like the ILC damping rings and, we believe, not necessary. Instead, we developed the ad-
ditional routines needed for modelling space charge in the weak-strong approximation. In
this approximation the space charge force is calculated as if produced by an unperturbed 6D
gaussian bunch matched to the linear lattice.

The lattice elements (including the drifts) are split into a number of slices and space-
charge forces are applied in the kick approximation in their middle. Particle propagation
between space charge-kicks is carried out using symplectic tracking. In our study we did
not include radiation effects and limited our simulations of the dynamics to the end of the
damping cycle where the beam sizes are the smallest and space charge forces the largest.

A further simplification comes from exploitation of the the ultra relativistic nature of
the particle motion that causes the beam-generated electric and magnetic fields to appear
mostly transverse in the lab frame, prompting us to neglect longitudinal space-charge effects
altogether. Effectively, this amounts to assuming that a test particle at location z along
the longitudinal axis with respect to the bunch center is affected only by source particles
with the same longitudinal coordinate. In other words, we can calculate the transverse space
charge forces at z as if the bunch was infinitely long with uniform transverse density equal
to the 2D gaussian transverse density of the actual bunch at z. A major benefit of these
assumptions is the existence of a closed-form solution for the resulting 2D Poisson equation
if in addition we assume an open boundary condition - this last assumption is justified by
the small beam transverse size compared to the vacuum chamber aperture [5].

In our model we allow for the ellipses representing isodensities of the transverse charge
distribution to be tilted (see Fig. 1) with respect to the accelerator x-y plane transverse to the
beam propagation. Indicate with £ and 7 the coordinates along the principal axes of those
isodensity ellipses and with 7 and m, the canonically conjugated momenta for a particle
relative to this frame. Upon introducing the complex number notation m(s) = m¢(s) +im,(s)
the evolution of 7t for a charged particle in the in the sole presence of space charge can be
written as
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Figure 1: Beam transverse isodensity and coordinate frames.
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where S = 2(0’? —o02), ¢ and o, are the rms bunch sizes in the ¢ and 7 directions,

re the classical radius of the electron, « the relativistic factor, w(z) the error function
of complex argument, n(z) the longitudinal bunch density. For a gaussian bunch n(z) =
exp(—22/202) /\/270..

Not surprisingly Eq. (2) is almost identical to the expression widely used in weak-strong
beam-beam models for lepton colliders [4] as the set of assumptions made in the two cases are
very similar (purely transverse fields; gaussian bunches). Indeed, Eq. (2) can be recovered
from the expression of the beam-beam force simply by multiplying by 1/272. The factor
1/+?* accounts for the nearly cancellation of magnetic and electric forces experienced by a
test particle comoving with the rest of the beam. In contrast, the electric and magnetic
forces as experienced by a test particle moving against a colliding beam, add up - with the
two forces being almost equal in magnitude in the ultrarelativistic limit (factor 1/2).

For numerical evaluation of Eq. (2) we used a Padé approximant representation of the
error function of complex argument w(z) implemented in a routine based on work by R.
Talman [6]. We carried out numerical tests to check the accuracy of this approximation
against evaluation done using Mathematica [7] built-in functions - which are believed to be
accurate through machine precision. We found relative deviations of order 1075 or better at
points in the beam core and 1072 at points outside the core, where the strength of the kick,
however, is considerable smaller.

Having determined the space-charge force in the £-n plane (generally tilted by an angle 6)
it is just a matter of carrying out a rotation to recover the equations of motions dp,/ds = f,
and dp,/ds = f, in the z-y plane. We have (f,(z,y), f,(z,y)) = R(8)(Re F(&,n),Im F(§,7n))



with £ = xcosf + ysinf and n = —zsinf + ycosf, and

R(e):<cose —sm9>_ (3)

sinf cos6

In the kick approximation the space charge force is applied impulsively leaving the trans-
verse position of a particle unchanged while inducing the momentum variations Ap, = Lf,
and Ap, = ALf, where AL is the length of the lattice element slice originating the space-
charge kick (we recall that we apply the kick in the middle of each slice and long elements
may be cut into multiple slices). At each location where the space-charge kick is applied we
need knowledge of the relative position z of a particle with respect to the bunch center, the
transverse rms bunch sizes o¢, 0,, the longitudinal rms size o, and the tilt angle 0.

Finding o¢, 0y, and o, is a two-step process. We start from the 6 x 6 sigma matrix X;; =
(zizj) evaluated at s, the last point of application of the space-charge kick, as calculated in
the accelerator layout variables z; = (z, ps, y, Dy, 2, 6). By denoting with M ,_,, the transfer
matrix between s and the present location s, the sigma-matrix ¥’ at s’ is given by the
equation

=M,  ,SM" (4)
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We then extract from ¥’ the reduced 3 x 3 matrix X! _; consisting of the second moments
of the charge density, i.e.
(@%) (xy) (v2)

Yia=| ) @) (y2) |- (5)
(xz) (zy) (%)

After diagonalization, o7 og, and o; are identified as the first, second and third largest
eigenvalues of X/ _,, whereas the tilt angle € is extracted from the corresponding eigenvectors.

In this treatment we make the assumption that the lattice functions do not vary signifi-
cantly over the bunch length and can be taken as equal to the value of the lattice functions
in the center of the bunch. Because the design bunch length is small (between 6 and 9 mm),
this approximation seems justified.

2.2 Matching of Initial Distribution

Because we are interested in studying beams close to equilibrium we require that the -
matrix used in space-charge force evaluation be matched to the linear lattice. The matched
Y-matrix can be found in the following way. Consider a circular (or more generally periodic)
lattice, and let M be the one-turn transfer matrix from and back to a specific point in the
lattice. A bunch distribution is said to be linearly matched if the sigma-matrix is invariant
by propagation under M. That is

>=MIM" (6)

The solution to this equation is found by first reducing the matrix M to normal form. If
M normalizable (this is necessarily true for functioning machines) we can find a (generally



not unique) transformation matrix A such that M = AN A~ where N (the normal form)
is block diagonal with the three diagonal blocks consisting of 2 x 2 rotations.
Next, let 1 and 0 be the 2 x 2 identity and null matrix, and introduce the 6 x 6 matrices

1 00 00O 00O
I, =| 0 0 0 |, I;;=]101 0 |, I; ;=10 0 0 . (7)
000 00O 0 01
Then the desired X—matrix for a matched beam is

S=A(e I +edn+ 5IHIIH)ATa (8)

where ¢, gr7, and eyy7 are the three rms eigen-emittances. Eq. (8) can be verified to be
solution of (6) by direct substitution and using the fact that N and I; commute. In the
absence of coupling the rms eigen-emittances e;, €77, and €777, coincide with the familiar
horizontal, vertical, and longitudial rms emittances.

At any other points s’ # s along the lattice, the ¥ —matrix can be determined either by
repeating the above procedure and using the one-turn map from and to point s’, or more
efficiently by propagating the sigma matrix from s’ to s using Eq. (4).

Knowledge of the transformation matrix A is also used to generate the initial particle
gaussian distribution to be tracked. One starts with assigning a 6D gaussian particle dis-
tribution in the normalized variables Z = Az - this is easily done as all three degrees of
freedom are orthogonal - and then the transformation A~" is applied.

At least formally this procedure can also be generalized to matching to a nonlinear
lattice. In this case instead of the transfer matrix one is presented with a (symplectic)
nonlinear transfer map M = A~ !N A, its normal N' and the nonlinear transformation
A. Applying the transformation A to the particle distribution in the normalized variables
yields a distribution that is, in principle, invariant under the action of the full map M. In
practice, if the nonlinearities are significant this invariance will be only approximate. There
are two reasons for this. The transformation A is typically constructed as a power series in
the dynamical variables and unless the underlying system is integrable its convergence is not
guaranteed (and this is the typical case encountered in accelerator physics). Even if the series
did converge in any practical calculation one would have to introduce truncations. In any
case, even retaining few terms in the series for A may be sufficient to preserve some degree of
invariance of the eigen-emittances (which are exact invariant only in linear approximation).
In our tracking we almost always used an initial particle distribution matched through third
order. By doing so we found that, indeed, the eigen-emittances of the tracked distribution
(without space charge) exhibited generally better invariance.

2.3 Linear Space-Charge Tuneshift

Linear tuneshift in an important figure of merit to rank the impact space charge on the
lattice. The first-order space-charge tuneshift experienced by particles performing small



Table 1: Relevant Parameters for selected lattice designs (N = 2 x 10, ¢, = 2pm).

Latticet C o, Ex €, Vg vy Vg Av, Av,y
(Km) | (mm) | (nm) | (um)
TESLA DR 17.0 6.0 0.50 8.0 | 76.31 | 41.18 | 0.075 | -0.019 | -0.313
MCH/65MV 15.9 7.8 0.68 9.0 | 75.78 | 76.41 | 0.188 | -0.009 | -0.176
MCH/65MV w/b 15.9 7.8 0.68 9.0 | 75.78 | 76.41 | 0.188 | -0.009 | -0.038
MCH/115MV 15.9 6.9 0.68 9.0 | 75.78 | 76.41 | 0.251 | -0.010 | -0.199
MCH/115MV w/b | 15.9 6.9 0.68 9.0 | 75.78 | 76.41 | 0.251 | -0.011 | -0.041
OCS 6.1 5.8 0.56 7.8 | 50.84 | 40.80 | 0.036 | -0.002 | -0.083
PPA 2.8 6.0 0.43 7.6 | 47.81 | 47.68 | 0.027 | -0.001 | -0.021

oscillations around the beam centroid in a uncoupled lattice and for a gaussian bunch are

1 2r, (€ o
Av, =~ | d 9
8 A 293 Jo  oy(0p + 0y) ° )
1 2r ¢ AG
Avy =~ | T 10
Yy Am 293 Jo  oy(0, + 0y) * (10)

where (3, B, are the lattice functions, o,, o, the horizontal and vertical rms beam sizes.
In the absence of linear coupling 02 = ¢,8, + (6%)D?, with D being the dispersion. The
expression for the longitudinal peak density, A(s) = N/v/270,(s), is kept under the integral
because in some cases (notably MCH) the rms bunch bunch length can vary along the lattice.

The case where the lattice is linearly coupled is relevant for the dogbone lattices with
coupling bumps, which are designed to tame the effect of space charge in the vertical plane
by enlarging the vertical beam in the long straight sections. A first order-calculation for the
tuneshifts in this case yields [11]

1 C

ovr = CAr /0 ds[Fi1 A}, + 2F12 A1 Ay + Fao(A% + A3)], (11)
1 C

vir =~ /0 ds[Fin (A2, + A2) + 2F19ArsAgs + Fan A2, (12)

where Fj; are the entries of the 2 x 2 matrix

2\ cos? 0 sin? 0 cosfsinf  cosfsinf
F o 2 [ Soctay T alocton)  oeloeton) | aalocton) (13)
5273 cos@sinf cosfsinf sin? 0 cos? 6 .
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tThe TESLA DR lattice is the original design contained in the TESLA TDR [8]; ‘w/b’ indicates that the
coupling bumps are turned on; the qualification 656MV and 115MV for the MCH lattice refers to the total
RF voltage. The MAD deck as posted on the ILC DR web site specifies a 65MV voltage. The corresponding
rms bunch length, however, is 10% smaller than the 9 mm design value.

If the rms bunch length o, is not unform along the lattice (as in MCH) the number specified in the Table
refers to the largest value.

For tracking we used the longitudinal emittances as reported, which are the same as the natural emittances
(except for the MCH/65MV lattice, which has natural emittance e, = 11 pm). The tuneshifts reported for
the OCS lattice are relative to ¢, = 1 pm (not 2 pm).



In (11) and (12), A;; are the s—dependent entries of the matrix A, (in the gauge Ao =
Az, = 0) normalizing the one-turn unperturbed transfer matrix M at s.

Table 1 summarizes the tuneshift values as calculated from linear theory for selected
lattices. Those numbers were obtained for a €, = 2 pm vertical eigen-emittance and the
lattice natural horizontal emittance. These values are somewhat smaller than the 0.8 nm
horizontal emittance meeting specifications and result in correspondingly larger tuneshift
estimates.

To make comparison with tuneshift evaluations presented elsewhere we should point out
that the calculation here was done using the beam natural energy spread. This results
in appreciably smaller tuneshifts (particularly for the smaller < 6 Km rings and dogbone
lattices with coupling bumps) when compared with a calculation done with vanishing energy
spread.

Finally, we should recall that space-charge force is highly nonlinear and emphasize that
the values quoted here describe the actual tuneshift only for particles with very small am-
plitude of betatron and synchrotron oscillations. Indeed most particles experience a sensibly
smaller tuneshift: for example for MCH/65MV a particle launched with coordinates at ” one-
sigma” in all space coordinates i.e. * = 0,, y = 0y, 2 = 0., shows a FF'T spectrum of the
y-motion peaked at Ay, = —0.1 vs. Ay, = —0.176 for a particle with small amplitude of
oscillations. (In a 3D gaussian density 68% of particles fall outside the ‘one-sigma’ region).

2.4 Results from tracking

As a first check of the MLI runs we verified reproducibility the linear optics for the various
lattices as determined by MAD [12]. For the entries of the one-turn transfer matrix we
generally found agreement through at least three or four digits.

The coding of the space-charge routines was checked against linear-theory by perform-
ing FFT [13] of particle orbits very close the beam centroid. Again, we found excellent
agreement.

In Fig. 2 through 8 we show the results of tune-space exploration. In all cases the
calculation was done by tracking a distribution of 200 particles for 150 turns (400 for the
OCS lattice in Fig. 7) and monitoring the horizontal and vertical (i.e. mode I and mode II)
rms eigen-emittances €; and e7;. These eigen-emittances were calculated using the sigma
matrix X obtained from the second moments of the tracked particle distribution at the end
of each turn. Specifically, they were identified as the (absolute value of) the eigenvalues [9]
of the matrix product XJ, (J is the 6 x 6 fundamental symplectic matrix).

We report color-density plots specifying for each working point the maximum value of
the eigen-emittance achieved by the beam particles within the duration of tracking. The
tunes specifying each working point are relative to the unperturbed (e.g. vanishing space
charge) lattices. The black dots in the pictures locate the design working points.

The detuning of the lattices was done by inserting pure phase rotations at the end of
the one-turn lattice or superperiods thereof, with proper matching so as not to perturb the
value of the lattice functions. This amounts to a linear kick causing a discontinuity both in
the particle transverse position and momentum.



The first set of figures (Fig.2) is relative to the MCH lattice with 65 MV total RF voltage,
without (N = 0) and with space charge. We show results at the design current (N = 2 x 10
par./bunch) and twice that value.

Not surprisingly, the growth in horizontal eigen-emittance turns out to be unaffected by
the presence of space charge and here we only report the corresponding tune scan for the
N = 0 case. In the region we explored, we found no horizontal emittance growth outside
two well defined synchro-betatron resonances at v, + 2v, = n and v, + v, = n.
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Figure 2: Tune scans for the MCH/65MV error-free lattice.

Vertically there is no apparent growth in the absence of space-charge, whereas some
growth is apparent at N = 2 x 10'° and N = 4 x 10'Y along difference coupling resonances
and their synchotron-tune satellites. The form of the main resonance, 2, — 2v, = 2n (this
lattice has super-periodicity 2 and therefore only even 2n harmonics are allowed), suggests
that this is a fourth-order resonance induced by the space-charge nonlinearities, i.e. a term
22y in the equation of motion for vertical oscillations coming for a Taylor expansion of Eq. 2.



Indeed, one can construct a first-order simple dynamical model and verify that the strength
of this term integrated over the lattice would be sufficient to cause a significant growth within
a few turns. Notice that, as expected, the width of the resonance lies above the v, = v, +n
line because the tune depression causes particles to meet the resonant condition when the
bare tune v, > v, + n. The width of the resonance is a measure of the tuneshift and is
clearly larger for N = 4 x 10'° than N = 2 x 10! (compare the two bottom pictures of
Fig.2). The satellite resonances 2v, — 2v, £ 2mvs = 2n observed at +2v, above and below
the coupling resonance (only the m = +1 resonances are clearly noticeable) are caused
by the modulation of the space charge force resulting from synchrotron oscillations. This
modulation occurs with a 2v, frequency as the longitudinal charge density o exp(—z2/20?)
depends quadratically on the longitudinal displacement z.

In the presence of lattice errors, one may expect further degradation of vertical emittance.
In particular, lowest-order errors that favor coupling with the horizontal motion have the
potential to cause the most damage. In this study we considered the impact of randomly
distributed skew-quad like errors that may result, for example, from vertical offsets of the
chromatic sextupoles. Specifically we considered a zero-average gaussian distribution of the
offsets with a variance o,,; comparable to the one that would be required to generate a
err = 2 pm vertical eigen-emittance if radiation effects were included. For the MCH lattice
such a value is 04,y = 60 pm (see [3]).

Already without space charge these errors excite detrimental resonances. In addition to
the worsening of the difference resonances, some synchro-betatron resonances also appear.
Presence of space charge makes things worse in two ways: they broaden the resonance width
because of detuning and they favor decoherence of the large-amplitude emittance oscillations
excited by the lattice resonances. The net effect can be observed in the left top picture of
Fig 3 where in addition to the difference resonance lines already encountered in Fig 2 we
observe sizeable emittance growth at v, = v +n and v, = 2v, + n.

In the left bottom picture of Fig 3 the presence of resonances is highlighted by a 1D scan
of the tune plane where we vary the vertical tune as we keep the horizontal tune fixed to its
design value (v, = 75.783). The two curves represent the eigen-emittance maximum achieved
within 150 turns without space charge (red curve) and with N = 2 x 10° part./bunch (blue
curve). We should remark that the strong integer resonance at v, = 76 and the second-order
resonance 2v, = v, + 76 are already present in an error-free lattice without space charge.

The picture to the bottom right of Fig 3 shows the time evolution of the eigen-emittance
for two seeds used in the random generation of the lattice errors. For comparison, the result
for a run with no space charge (but with random lattice errors) is also reported (blue curve).
The working point v, = 76.413 is v, — 2v5 — 76 = 0.037 away from the 2v,-resonance. In the
absence of space charge this is sufficiently far away that there is no impact on the emittance,
but not so when space charge is included.

The use of coupling bumps at each end of the long straight sections in the doghone lattices
was proposed as a way to tame the effect of space charge [10]. The coupling bumps consisting
of a triplet of skew quadrupoles reduce the tuneshift by enlarging the vertical beam size.
Linear theory (see Table 1) shows that they may be quite effective at achieving this goal.
Unfortunately, they also appear to excite a number of resonances that reduce somewhat the
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Figure 3: Tune scans for the MCH/65MV lattice with random vertical offset of sextupoles.
In the left bottom picture: one dimensional v, tune-scan for given v,. Tracking with (blue
line) is compared to tracking without space charge. Right bottom picture: evolution of
vertical eigen-emittance at the design working point for two different seeds of random error
distribution and for no errors (blue curve).
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Figure 4: Tune scan for the MCH/65MV lattice with coupling bumps. From top to bottom:
with and without space charge for ideal lattice and with space charge with lattice errors).
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usable regions of the tune-space, see Fig. 4. One effect is to pass onto the vertical emittance
some growth at resonances that without coupling bumps only affect the horizontal emittance.
But there are also some additional (sum) resonances that were previously absent. All these
resonances are manifest already before adding space charge. In fact, from these pictures
the only visible effect of space charge is in the additional excitation of the sum resonance
vy + vy, = n, (left picture in the middle row of Fig. 4).

There are patches of tune space unaffected by resonances and which, presumably, could
accommodate bunches with a number of particles larger than N = 2 x 10'°. However, these
patches are further reduced when a distribution of random skew-quadrupoles is superposed
to the ideal lattices (left bottom picture in Fig. 4) and they do not enclose the currently
proposed working point.

max € max €
77.0
770/ =15.
MeHISMY MCH/115MV o
N=2x10 / ) N=2x10'°
76.75 76.75 ¢
//‘\/
. /’i% )
765 /w/ X765
R4
S5 ////Q// . H | 76.25 |
AT 4
7 NS VetVg=n
W
) *ﬂ/ <0.7%9nm
7601/ ’ 76.0
750 7595 755 7575 26.0 75.0 75.25 75.5 75.75 76.0
Vy Vx
max €y max €
77.0 4
77.0 ¢ >14.
MCH/1ISMY / P MCH/115MV oo
N=4x10 T N=4x10"
76.75 76.75 ¢
7~ m
A >
765 /4/ 765
Y
IS csceee |
7625 «:/?/ » : 76.25
y 3 Vgt+Ve=n
N9 X
/'w
< =<0.78nm
6ol 76.0 |
750 7525 755 75.75 76.0 75.0 75.25 75.5 75.75 76.0
Vx

Vx

Figure 5: Tune scan for the MCH/115MV lattice.

Not surprisingly, a larger RF voltage (see Fig. 5) shows the same patterns of vertical
emittance growth as for the MCH/65MV lattice. The synchotron-betatron resonances are
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shifted in accordance to a larger synchrotron tune (vs = 0.25 vs. v, = 0.19 in the 65MV case)
and their effect slightly enhanced because of the large longitudinal beam density resulting
from a smaller bunch length.

The tune-scan results for the TESLA damping ring are summarized in Fig. 6. Again, in
the absence of space charge (not shown) there is no noticeable emittance growth whereas
some growth is apparent with space charge. In the absence of lattice errors (left top picture)
the growth takes place along difference resonances. Compared with the MCH case the
width of these resonances appears thicker partly because of the proximity of the satellite
resonances v, — v, = v, = n/2 as the synchrotron tune is now smaller (v, = 0.075). Also,
the difference resonance lines are more closely spaced as the TESLA lattice does not share
the super-periodicity 2 of the MCH lattice. This is the ‘C-shaped’ lattice contained in the
original TESLA TDR proposal. An ‘S-shaped’ variant to this lattice exhibiting a higher
degree of symmetry is considered in Sec. 3 (SAD simulations) and indeed it displays better
beam dynamical properties.

The tune-scan in the presence of lattice errors is dominated by the strong v, = v +n
resonance. The random vertical displacement of the sextupoles here had a variance o4, =
6 pm, close to the 8 um value that would be responsible for the 2 pm vertical emittance in
the presence of radiation [3].

In the bottom left picture of Fig. 6 we show the result of a calculation done with a realistic
wiggler model based on a scaled-down version of the CESR-c superconducting wigglers. By
contrast, in all other calculations shown in this report the wigglers were modelled using
standard lattice 'linear’ elements (combined function dipoles, drifts). Comparison with the
top left shows virtually no difference, and would seem to indicate little impact from the
wiggler nonlinearities.

The final set of tune-scans reported is relative to the smaller circumference (6 Km) OCS
lattice. From the linear theory tuneshift one already expects a smaller impact by space
charge: indeed Fig. 7 shows no apparent effect. The tuneshift, however, is not completely
negligible; for instance, it is larger than in the dogbones with coupling bumps where some
space charge effect was still noticeable. It is likely that the good behavior of the OCS lattice
may be due, in part, to its high degree of symmetry. Inclusion of lattice errors shows some
impact on emittance growth Fig. 8 but most of the tune-space region explored remains clear.
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3 Space charge study using SAD

3.1 Beam Envelope with Space Charge

Estimation of space charge force requires calculation of the beam envelope along the beam-
line. As the beam envelope is also affected by the space charge, SAD performs iterative
calculation until convergence. The equilibrium beam envelope (X;X;), a 6 by 6 matrix, is
the matrix of second-order moments around the beam center. At the entrance of the ring it
must satisfy the equilibrium condition [14]

(XiX;) = M{X; X;)MT + 1y (14)

where M is the 6D linear transfer matrix around the ring, and r;; is a matrix representing
excitation matrix by synchrotron radiation. The matrix M consists of a symplectic part rep-
resenting the lattice (with space charge defocusing) and a non-symplectic part representing
radiation damping.

Space charge nonlinearities will be included in particle tracking, but for the envelope
calculation in Eq. (14), only the linear part of the space charge force evaluated at beam
center is used. The space charge force is applied at the entrance of each element as a thin
lens. For drift elements, which can be much longer than magnetic elements, accuracy is
improved by additionally applying the space-charge force in the center.

The equilibrium emittances are obtained as the eigenvalues of the beam envelope and
are denoted as €7, ey, e777. In the limit of vanishing coupling I, I, and III correspond to
the z,y, and 2z planes. For planar machines such as the ILC Damping Rings, the mode-II
(=nearly vertical) emittance, £77, becomes very small. To obtain a realistic value of /7, one
method is to add machine errors to some components in the ring; for example one can add
vertical offsets to the sextupoles. The envelope method can then be used to calculate the
effect of space charge on the equilibrium emittance. Figure 9 shows the vertical emittance
resulting from random vertical misalignement of the sextupoles in the TESLA damping ring,
with and without space charge. In this case, space charge increases the equilibrium vertical
emittance by approximately 50%.

As an alternative to misaligning the sextupoles, one can generate vertical emittance by
giving an artificial value to the envelope at the entrance of the ring. This is equivalent to an
artificial radiation excitation ;. The resulting beam envelope still matches the beam optics
around the ring, except for mode II, but the mismatch is small unless radiation damping is
very large. Using random sextupole misalignments to generate vertical emittance has the
drawback that the vertical emittance depends on the seed of the random errors, so for the
studies described here the vertical emittance was generated by using an artificially excited
beam envelope.

3.2 Calculation of the Space Charge Force

Particle tracking with space charge in SAD makes use of the envelopes as determined by the
method discussed in the previous section. A weak-strong model is used, with a Gaussian
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Figure 9: Equilibrium mode-II emittance with(orange)/without(blue) space charge as functions of
the vertical random offset of the sextupoles in the TESLA damping ring with the coupling bump.
12 random number seeds are used for each r.m.s. offset oa,. The space charge enhances the mode-11
emittance by about 50%. The emittance for oa, = 0 is nonzero with space charge, as the coupling
bump no longer closes due to the space charge. The particles per bunch is N = 2 x 1019,

distribution for the ‘strong’ beam. As the beam is highly ultra-relativistic, only the com-
ponent of the space-charge force perpendicular to the beam axis is relevant. Under these
assumptions the space-charge potential reads

U(z,y,z) = f(&n)exp (—;:2) : (15)

z

where f, the 2D electrostatic potential in the transverse plane, is a function of &/o¢, n/o,,
and the aspect ratio R = 0,/0¢, where { and 7 are the major and the minor axes of the
transverse beam ellipse, respectively.

To reduce computation time, SAD first calculates f(&,n) at 60x60x20 mesh points within
the range 0 < ¢/o¢ < 15,0 < £/, < 15, 107° < R < 1 using semi-analytical numerical
integration. The mesh points are equally separated in the (£,7n) plane, and logarithmically
separated in the R-direction. During tracking, the force is obtained from values on the mesh
points using cubic splines interpolation. As the cubic spline is continuous up to the second-
order derivatives, the force satisfies the symplectic condition within machine precision. If a
particle falls outside the mesh region, the original semi-analytic formulae is applied. This
interpolation technique is highly efficient: as a result, the time employed by the code to
compute space charge forces is only a fraction of the overall CPU time.

SAD tracks particles in the full 6D phase space with full account of nonlinearities (e.g.
in a drift element the nonlinearities generated by the square root of the momentum part of
the Hamiltonian), magnet fringe-fields effects, etc. Inclusion of synchrotron radiation during
tracking is an option but this option was not used in the calculations discussed in this paper.
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3.3 Diffusion due to Space Charge
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Figure 10: The emittance growth observed by the tracking simulation with space charge for the
TESLA damping ring with the coupling bump. Both the mode-I (upper) and the mode-II (lower)
emittances grow roughly linear in the number of turns. The synchrotron radiation is turned off in
the tracking. The number of tracked particles is 100. The particles per bunch is N = 2 x 101°.

A typical phenomenon encountered in our tracking simulations is a diffusion-like emit-
tance growth in phase space. Figure 10 shows such an example of diffusion of mode-I and
mode-II emittances. As shown in this figure, both mode-I and mode-II emittances show
nearly linear growth of the emittance, justifying the use of the term “diffusion”. In the
presence of such a linear growth, the equilibrium emittance can be estimated by

5_60+W(A6) , (16)

where ¢ is the equilibrium emittance without the space charge and ny the number of turns
corresponding to the radiation damping time. Since tracking with synchrotron radiation is
time consuming (indeed much more time consuming than calculating space charge), we use
Eq. (16) to estimate the equilibrium emittance while performing tune scans to study the
dependence of the emittance growth on the working point in the tune-space. No emittance
growth is observed in the absence of space charge.

In the simulations we kept the ‘strong’ beam unchanged. One could update the strong
beam during tracking to account for the growth of the transverse envelopes in the ‘weak’
beam diluting the strength of the space charge force. By not doing so we overestimate the
effect of space charge on emittance growth.

The number of particles used for tracking was typically 100. We verified that the results
did not change significantly by increasing the number of tracked particles to 400.
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3.4 Tune Scans

The tune scans were performed for various damping-ring reference lattices without lattice
errors. In each case, changes in tune were achieved by inserting quadrupoles into the lat-
tice and varying their strengths, while matching the appropriate optical functions. The
equilibrium emittances were obtained from Eq. (16), with the linear growth rate (Ac/An)
calculated by tracking up to 400 turns without radiation.

Figures 11 show the results for the TESLA ‘S-shaped’ damping ring lattice. Note that
the coupling bumps were adjusted to produce a properly round beam in the straights.

The MCH lattice was studied with two different RF voltages, 54 MV and 115 MV,
corresponding to bunch lengths of (approximately) 10 mm and 7 mm; the results are shown
in Figures 12 and 13

In general, although there are areas associated with resonance lines where significant
emittance growths are observed, there are also substantial areas of tune space where there
is minimal emittance growth. The coupling bumps do not necessarily improve the situation,
and can themselves drive new resonances (e.g. resonance lines like v, + v, £ v, = 2N)
or make exiting ones stronger (e.g. 2v, £ v, = 2N). This may be more serious for the
MCH lattice with 115 MV RF, which has a larger synchrotron tune than the other lattices,
reducing the “safe areas”. Also the MCH lattice shows stronger horizontal resonances than
the “S-shaped” TESLA lattice, with or without coupling bumps.

Results for the 6 km lattices are shown in Figures 14. The OCS looks the safest of all
the reference lattices from the point of view of space charge; however, the BRU lattice looks
worse even than the dogbone lattices. Note that the energy of the BRU lattice, 3.74 GeV is
somewhat lower than the other lattices, which are all around 5 GeV.
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Figure 11: The tune scan of the emittance growth observed by the tracking simulation with space
charge for the ‘S-shaped’ TESLA DR lattice without (upper) and with (lower) the coupling bump.
The left ones show the Mode-I (nearly horizontal) emittance and the right ones Mode-II (nearly
vertical). The particles per bunch is N = 2 x 10!, The number of tracked particles is 100.

21



Herizontal Emittance

0 T T

T T 77 —
78] ] 68 ]
108l 4 66— —
= | |
= - 4
76.41— — TE4— _
102l ] 62— _
75; 4 76— _
| i | I I | | | | | |
75 75.2 754 756 758 76 75 75.2 754 756 758 76
VK VX
L _______ l_________
i | z 3 4 5 [ 5 10 15 20
Herizontal Emittance {nm) Vertical Emittance {pm)
vx = vz= 2N vx - Vz= 2N
Horizontal Emittance Vet vy < 2N Vertical Emittance
— 7 L e e S
77 - 77 -

0 1 2 3 E) 5
Horizontal Emittance {nm)

Figure 12: The tune scan of the emittance growth observed by the tracking simulation with space
charge for the MCH/54MV lattice without (upper) and with (lower) the coupling bump. The rf
voltage is 54 MV. The left ones show the Mode-I (nearly horizontal) emittance and the right ones
Mode-II (nearly vertical). The particles per bunch is N = 2x 101%. The number of tracked particles

is 100.

22

76.8

76.6

764

76.2

76

T
6.8 _ .
6.5 _ :
a0 | 4 .
-
764 .
6.2 _
I 2vy + vz= 2N[
L & ] [
[N BRI BN R B
75 =z = TE E

Vertical Emittance

R L PRI R 1 .
75 5.2 754 5.6 758 76

5 10 15 20
Vertical Emittance {pm)

:vY-M.rZ: 2N

v Vx + Wy = vz = 2N



Horizontal Emittance Vertical Emittance

??7||||||‘|\||\||\|7 7?7\||‘ T T 1]

0 1 2 3 4 5 0 5 10 15 20
Horizontal Emittance {nm) Vertical Emittance {pm)

vx - Vz= 2N Vi = Vz= 2N

Vx + vy = 2N

Horizontal Emittance Vertical Emittance

ST T T T T T T B L H A e B
6.0} — 6.8
766 — 66
el L 4 - L
4 =
6.4 — 764
62— 5 ?25'3
L vy + vz = 2N[ .
[ 17" = vy + V2= 2N
76 — 76
-y ey ey s A
75 752 754 756 T5E 76
Vg Vg Vi + vy - vz = 2N
0 1 2 3 4 5 5 10 15 20
Horizontal Emittance {nm) Vertical Emittance {pm)

Figure 13: The tune scan of the emittance growth observed by the tracking simulation with space
charge for the MCH/115MV lattice without (upper) and with (lower) the coupling bump. The left
ones show the Mode-I (nearly horizontal) emittance and the right ones Mode-II (nearly vertical).
The rf voltage is 115 MV, which makes the sum resonance sidebands v, + v, & v, = 2N farther
from v, + v, = 2N line, reducing the safe area in the case with the coupling bump. The particles
per bunch is N = 2 x 10'. The number of tracked particles is 100.
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4 Conclusions

A summary of our conclusions is the following:

5

The 6 Km OCS lattice stands out as the safest choice among the lattice considered.
The shorter circumference is a factor accounting for the mild impact of space charge
compared to the dogbone lattices, but apparently not the only one. The BRU lattice
has similar circumference (and somewhat lower energy) but behaves poorly. The high
degree of symmetry of the OCS lattice does seem to play a decisive role in mitigating
harmful resonances.

The 16-17 Km dogbone lattices are clearly more vulnerable to space charge and at
higher risk, but, on paper, they may not be impossible to operate. There are patches
of tune space far enough from dangerous resonances whether or not errors are included.
The presence of these resonances, however, limits the flexibility in the choice of the
working point and may induce conflict with other requirements.

As a qualification of the previous point, we should add that some dogbone lattices
are preferable to others: for example the ”C-shaped” TESLA DR, mostly because of
poor symmetry, is not very good. The ”S-shaped” version of the TESLA DR is clearly
superior.

The MCH lattice has a large synchrotron tune that causes resonance lines to be more
dispersed in tune space. This may be more limiting to the choice of the working point.

In general, it appears that the coupling bumps do not offer a decisive advantage: as
they come at the price of exciting some other resonances. Their effectiveness depends
somewhat on the lattice.

For the ”S-shaped” TESLA DR the coupling bumps can restore some flexibility in the
choice of the working point as the locations of dangerous resonances with and without
bumps are quite different. One can argue that in this case coupling bumps overall
make a larger area of tunespace accessible.

For MCH it is not obvious that the coupling bumps are generally helpful as the web
of the excited resonances is more widely spread than w/o bumps. Still, if the MCH
lattice is to be chosen we may recommend that coupling bumps be installed to give
some additional flexibility.

We have not carried out a detailed study of the smaller (3km) lattices, though we
expect that space charge should not be an issue for these configurations.
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