

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT
CALCULATION COVER SHEET

1. QA: QA

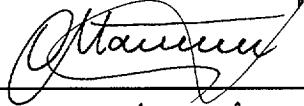
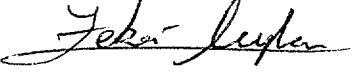
Page: 1 Of: 10

2. Calculation Title

Structural Calculation of an Emplacement Pallet Statically Loaded by a Waste Package

3. Document Identifier (including Revision Number)

CAL-WER-ME-000003 REV 00



MOL.20000202.0192

4. Total Attachments

3

5. Attachment Numbers - Number of pages in each

I-3, II-10, III-3

	Print Name	Signature	Date
6. Originator	Sreten Mastilovic		02/01/2000
7. Checker	Zekai Ceylan		2/1/00
8. Lead	Scott M. Bennett		02/02/00

9. Remarks

TBV-3982 applies to this calculation

Revision History

10. Revision No.	11. Description of Revision
00	Initial issue

CONTENTS

	Page
1. PURPOSE.....	3
2. METHOD	3
3. ASSUMPTIONS.....	3
4. USE OF COMPUTER SOFTWARE AND MODELS	5
4.1 SOFTWARE APPROVED FOR QUALITY ASSURANCE (QA) WORK.....	5
4.2 SOFTWARE ROUTINES	5
4.3 MODELS	5
5. CALCULATION	6
5.1 MASS AND GEOMETRIC DIMENSIONS OF WASTE PACKAGE	6
5.2 MATERIAL PROPERTIES	6
5.3 FINITE ELEMENT REPRESENTATION	7
6. RESULTS	8
7. ATTACHMENTS.....	9
8. REFERENCES	10

1. PURPOSE

The purpose of this calculation is to determine the structural response of the emplacement pallet (EP) subjected to static load from the mounted waste package (WP). The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This calculation is associated with the waste emplacement systems design; calculations are performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document.

2. METHOD

The finite element solutions are performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The results of these calculations are provided in terms of maximum stress intensity magnitudes.

3. ASSUMPTIONS

In the course of developing this document, the following assumptions are made regarding the EP structural calculation.

- 3.1 Some of the temperature-dependent material properties were not available for SB-575 N06022 (Alloy 22) and SA-240 S31603 (316L stainless steel [SS]). Therefore, room-temperature (20 °C) material properties are assumed for both materials. The impact of using room-temperature material properties is anticipated to be small. The basis for this assumption is that the mechanical properties of said materials do not change significantly at the temperatures experienced during handling and lifting operations. This assumption is used in Section 5.2.
- 3.2 The magnitudes of the contact stiffness between the WP and the EP is assumed to be $1 \cdot 10^8 \text{ N/m}$. The basis for this assumption is explained below:

The magnitude of the contact stiffness between surfaces is one of the parameters that affects the results. If the contact stiffness value is very large, stiffness matrix ill-conditioning and divergence occur. On the other hand, an extremely small contact stiffness value results in compatibility violations. Therefore, an optimum value for the contact stiffness is one that is in between and is arrived at iteratively. This assumption is used in Section 5.3.

- 3.3 The Poisson's ratio of 316L SS was not available in literature. Therefore, the Poisson's ratio of 316 SS is assumed for 316L SS. The impact of this assumption is anticipated to be negligible. The basis for this assumption is the similar chemical composition of these two stainless steels (see Ref. 9, Table 1). This assumption is used in Section 5.2.

4. USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QUALITY ASSURANCE (QA) WORK

The finite element analysis computer code used for this calculation is ANSYS V5.4 that is identified with the Computer Software Configuration Item (CSCI) 30040 V5.4 and was obtained from Software Configuration Management in accordance with appropriate procedures. ANSYS V5.4 is a commercially available finite element analysis code and is appropriate for structural calculations of waste packages as performed in this calculation. The calculations using the ANSYS V5.4 software were executed on the Hewlett-Packard (HP) workstation identified with Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) tag number 115288. The software qualification of the ANSYS V5.4 software is summarized in the Software Qualification Report for ANSYS V5.4 (Ref. 2). Qualification of ANSYS V5.4 on the Waste Package Operations (WPO) HP UNIX workstations is documented in Reference 7. The ANSYS evaluations performed for this design are fully within the range of the validation performed for the ANSYS V5.4 code. Access to and use of the code for the calculation were granted by Software Configuration Secretariat in accordance with the appropriate procedures.

4.2 SOFTWARE ROUTINES

Industry standard software used in this calculation is Pro/Engineer Version 20.0. This software is executed on the HP workstation. Pro/Engineer Version 20.0 is not controlled computer software, and it has not been qualified under the Office of Civilian Radioactive Waste Management (OCRWM) procedures.

Attachment II contains the input/output data obtained from Pro/Engineer Version 20.0. The mass densities given in Section 5.2 are used as inputs to Pro/Engineer Version 20.0 and corresponding masses of WP components are obtained for the use in structural evaluations. There are no user-operated equations of mathematical models, algorithms, or numerical solution techniques applicable to the software routine since Pro/Engineer Version 20.0 is an engineering drawing software package and the subject mass calculations are performed by the source code, based on the dimensions of structural components and the mass density of materials. Verification of this software is accomplished by a test case, as described in Section 5.1. The range of input parameter values is limited to the dimensions of the structural components used in those cases; all mass calculations depend on specific geometry of the subject components. No limitations are identified on software routine applications or validity.

4.3 MODELS

None used.

5. CALCULATION

5.1 MASS AND GEOMETRIC DIMENSIONS OF WASTE PACKAGE

To provide the bounding set of results for all waste packages, this calculation is performed using mass and geometric dimensions of the heaviest WP: the single-CRM (corrosion resistant material) naval SNF (spent nuclear fuel) long WP.

To provide the bounding results for possible slight design modifications, the total mass of the single-CRM naval SNF long WP emplaced on the EP, 72643 kg (page II-2), is expressed with two significant digits, i.e.:

Total mass of the loaded WP = 73000 kg

Length of WP = 6.525 m (see p. II-2)

Outer diameter of outer shell = 1.869 m (see p. II-2)

The outer shell lid of the single-CRM naval SNF long WP is selected for verification of the mass obtained from Pro/Engineer Version 20.0. The mass of this component is determined as product of the mass density (see Section 5.2) and the volume, using the dimensions provided on page II-2:

$$\text{Mass} = 8690 \cdot 0.025 \cdot 1.822^2 \pi / 4 = 566.43021\text{ kg}$$

The mass obtained by the preceding calculation is identical to the mass provided on page II-9.

5.2 MATERIAL PROPERTIES

Material properties used in the calculations are listed in this section. Some of the temperature-dependent material properties were not available for Alloy 22 and 316L SS; therefore, room-temperature material properties were used in calculations (Assumption 3.1).

SB-575 N06022 (ASTM B 575) (Alloy 22):

- Density = 8690 kg/m^3 (0.314 lb/in^3) (Ref. 6, p. 2)
- Yield strength = 310 MPa (45 ksi) (Ref. 6, Table 3)
- Tensile strength = 690 MPa (100 ksi) (Ref. 6, Table 3)
- Poisson's ratio = 0.278 (Ref. 5, p. 143; see Assumption 3.4)
- Modulus of elasticity = 206 GPa ($29.9 \cdot 10^6\text{ psi}$) (Ref. 3, p. 14)

SA-240 S31603 (316L SS):

- Density = 7980 kg/m^3 (Ref. 1, p. 7)
- Yield strength = 172 MPa (25 ksi) (Ref. 4, Table Y-1)
- Tensile strength = 483 MPa (70 ksi) (Ref. 4, Table U)
- Poisson's ratio = 0.3 (Ref. 5, p. 755, Fig. 15; see Assumption 3.3)
- Modulus of elasticity = 195 GPa ($28.3 \cdot 10^6 \text{ psi}$) (Ref. 4, Table TM-1)

5.3 FINITE ELEMENT REPRESENTATION

Three-dimensional finite element representation (FER) is developed using the dimensions provided in Attachment II and Section 5.1. A two-plane-symmetry FER is developed for the EP (see p. III-1). Furthermore, a one-eighth-symmetry FER is constructed for the WP mounted on the EP, by making use of its three-plane symmetry. Since the contact zones of the WP and EP are the only regions of interest as far as WP is concerned, its FER is reduced to a cylinder of uniform mass density. The overall mass and the geometric dimensions of WP (Section 5.1) define this density, and it is appropriately modified to take into account its one-eighth-symmetry FER. The benefit of using this approach is to reduce the computer execution time while preserving all features of the problem relevant to the structural calculation.

Contact elements are used to represent contact between the WP and the EP. The magnitude of the contact stiffness is one of the parameters that affects the results. If the stiffness value is very large, stiffness matrix ill-conditioning and divergence occur. On the other hand, an extremely small stiffness value results in compatibility violations. Thus, an optimum value for the contact stiffness that works best, $1 \cdot 10^8 \text{ N/m}$, is determined as a result of successive iterations (see Assumption 3.2).

The bottom plate (plate #1 on page II-1) of the emplacement pallet is supported by three, 12-in-wide longitudinal beams (Ref. 10). Displacement constraints are placed on the corresponding locations of the plate.

The mesh of the FER is appropriately generated, and refined in the contact region according to standard engineering practice. Thus, the accuracy and representativeness of the results of this linear calculation are deemed acceptable.

6. RESULTS

In accordance with AP-3.15Q, Revision 1, ICN 0, *Managing Technical Product Inputs*, the following statement is made: "This document and its conclusions may be affected by technical product input information that requires confirmation. Any changes to the document or its conclusions that may occur as a result of completing the confirmation activities will be reflected in subsequent revisions. The status of the input information quality may be confirmed by review of the Document Input Reference System database." Note that in accordance with AP-3.12Q, Revision 0, ICN 0, *Calculations*, calculations shall not provide any conclusions.

The results show that the maximum stress intensities among Alloy 22, and 316L SS components are 98 MPa (see Reference 8, Attachment V, line # 393), and 22 MPa (see Reference 8, Attachment V, line # 398), respectively. These stress intensity magnitudes are less than one-third of the yield strength and one-fifth of the tensile strength for the corresponding materials (see Section 5.2).

The design of the naval WP has been changed (compare p. II-2 with pp. II-3 and II-4) while this document was in check. Since the mass of naval canister and the dimensions of the outer and inner shells remained intact, while the mass of loaded WP assembly is even smaller than in the original design, the calculation results are not affected. Thus, it is not necessary to repeat the calculation.

7. ATTACHMENTS

Attachment I (3 pages): Document Input Reference Sheets

Attachment II (10 pages): Design sketches (Emplacement Pallet [SK-0144 REV 01], Single-CRM Naval SNF Long Waste Package Assembly [SK-0146 REV 00], and Naval SNF Long Waste Package Configuration for Site Recommendation [SK-0194 REV 01, two sheets]), and component masses of the WP

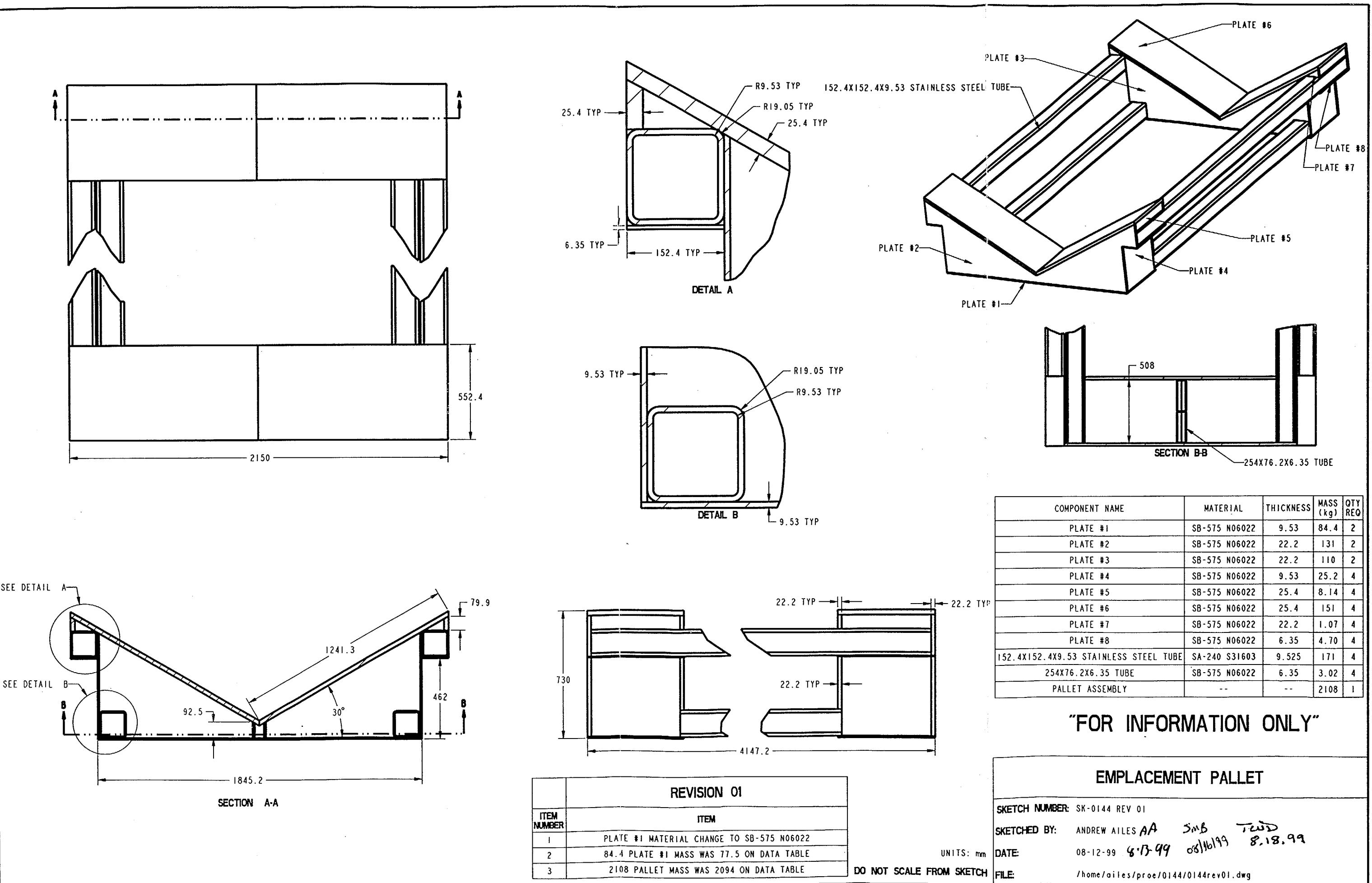
Attachment III (3 pages): Figures obtained from ANSYS V5.4

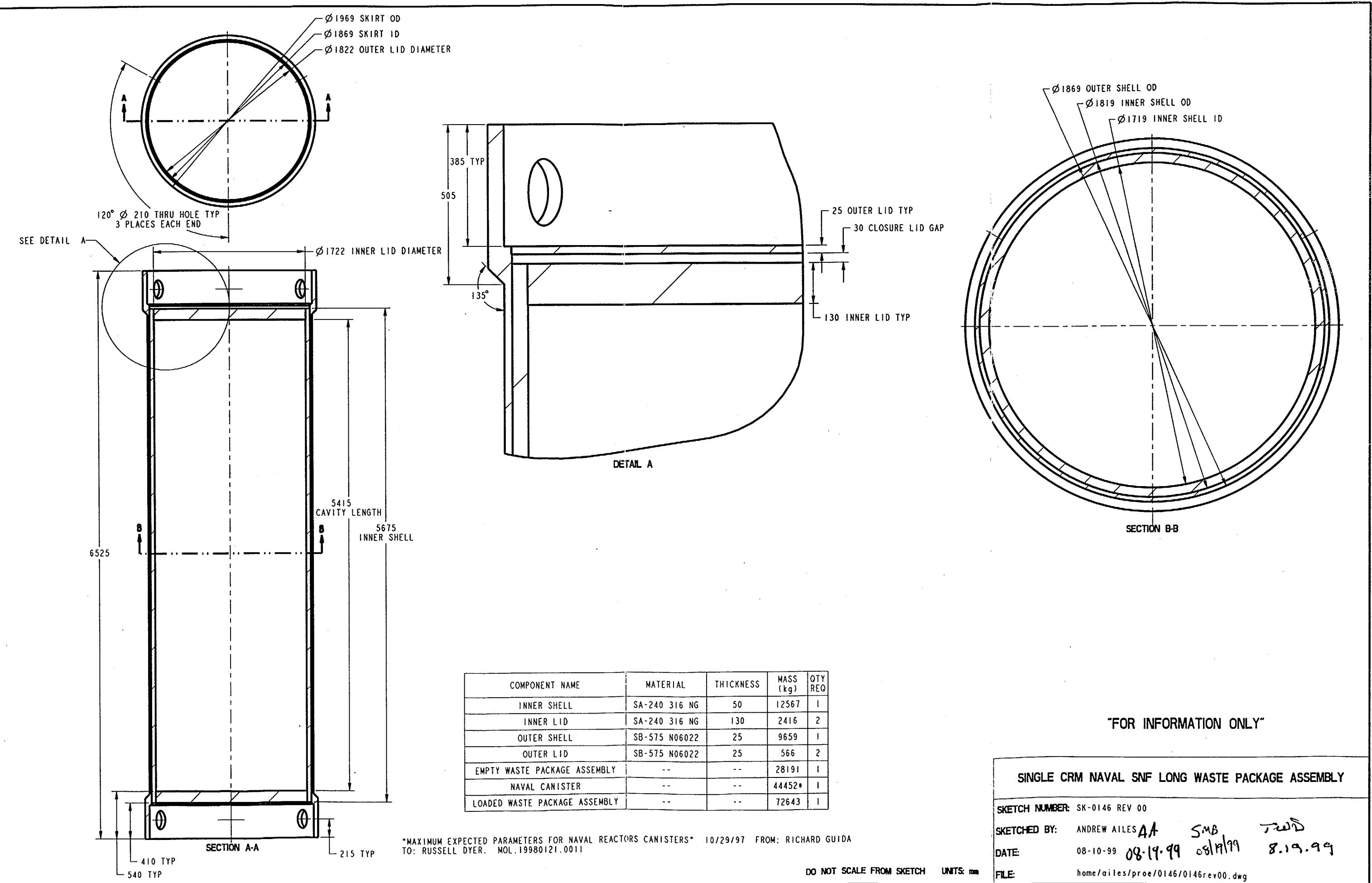
Attachments IV and V have been moved to Reference 8. The following is the list of electronic files including names, dates, times and sizes available in that reference. Note that these are no longer attachments to this document; they are listed for information only.

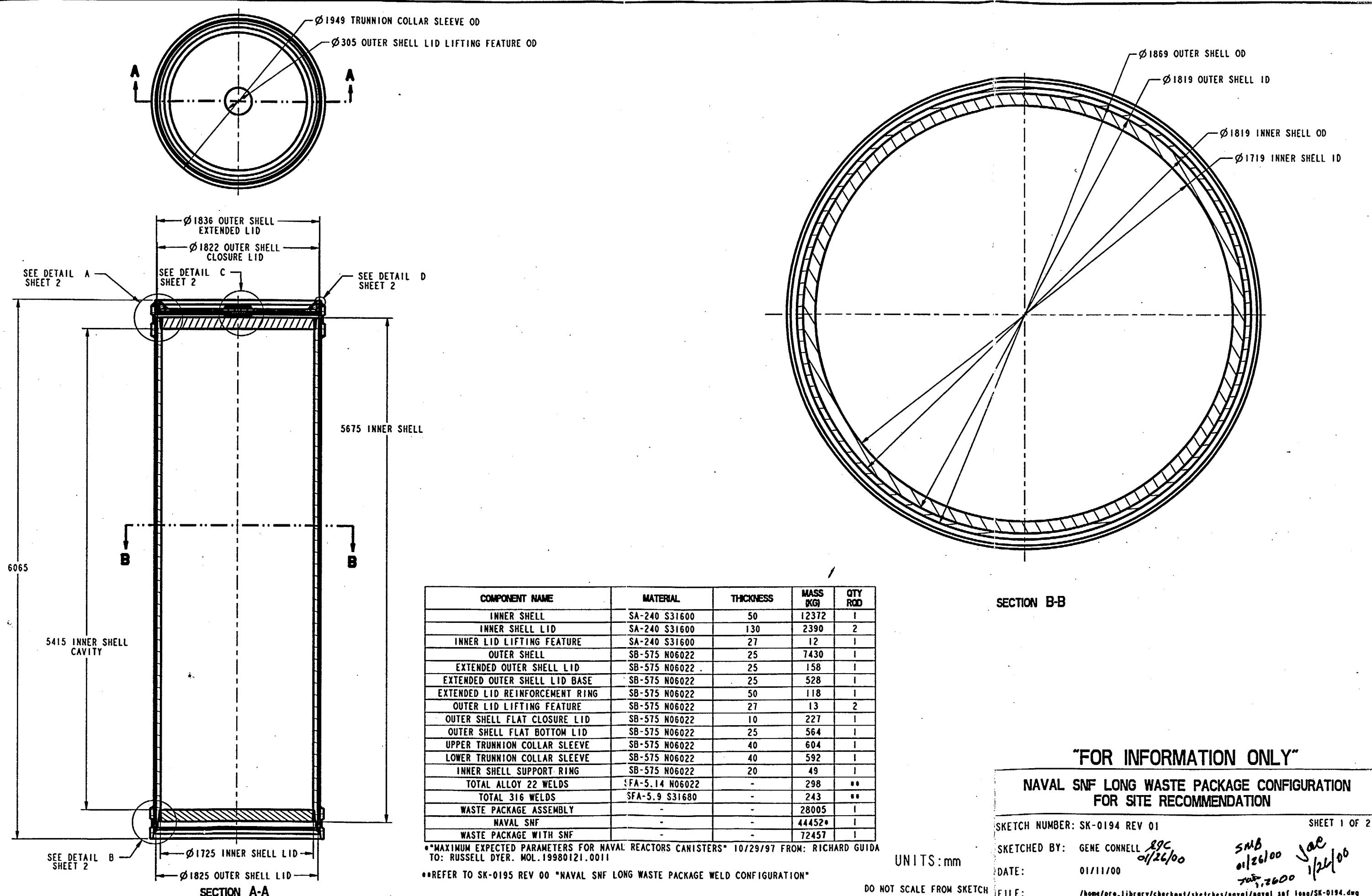
Description	Date	Time	Size
Attachment IV: pall3.at4	12/20/1999	11:26 am	348 KB
Attachment V: pall3.at5	12/20/1999	11:28 am	16 KB

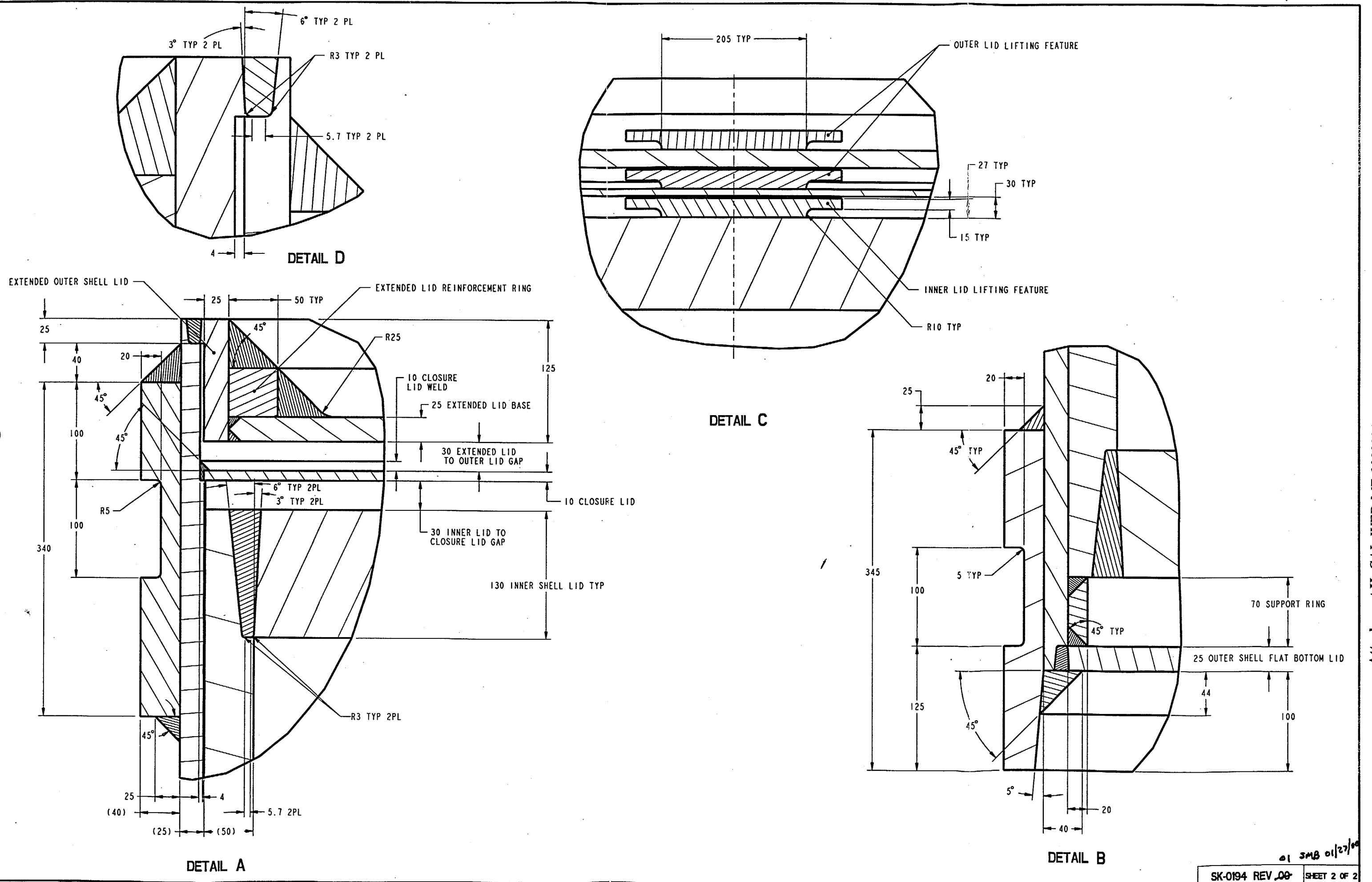
Note: the file sizes may vary with operating system.

8. REFERENCES


1. ASTM G 1-90 (Reapproved 1999). 1990. *Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens*. West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: 238771.
2. CRWMS M&O 1998. *Software Qualification Report for ANSYS V5.4, A Finite Element Code*. CSCI: 30040 V5.4. DI: 30040-2003, REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980609.0847.
3. Haynes International 1997. *Hastelloy C-22 Alloy*. Kokomo, Indiana: Haynes International. TIC: 238121.
4. ASME (American Society of Mechanical Engineers) 1995. "Materials." Section II of *1995 ASME Boiler and Pressure Vessel Code*. New York, New York: American Society of Mechanical Engineers. TIC: 245287.
5. American Society for Metals 1980. *Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Metals. Volume 3 of Metals Handbook*. 9th Edition. Metals Park, Ohio: American Society for Metals. TIC: 209801.
6. ASTM B 575-97. 1998. *Standard Specification for Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Plate, Sheet, and Strip*. West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: 241816.
7. Doering, T.W. 1998. "Qualification of ANSYS V5.4 on the WPO HP UNIX Workstations." Interoffice correspondence from T.W. Doering (CRWMS M&O) to G. Carlisle, May 22, 1998, LV.WP.SMB.05/98-100. ACC: MOL.19980730.0147.
8. CRWMS M&O 1999. *Electronic Files for Structural Calculation of an Emplacement Pallet Statically Loaded by a Waste Package*. CAL-WER-ME-000003 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19991220.0380.
9. ASTM A 240/A 240M-97a. 1997. *Standard Specification for Heat-Resisting Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels*. West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: 239431.
10. CRWMS M&O 2000. *Emplacement Pallet Support*. WP-SSR-99426.T. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000105.0145.


**OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT
DOCUMENT INPUT REFERENCE SYSTEM**


1. Document Identifier No./Rev.:		Change:	Title: STRUCTURAL CALCULATION OF AN EMPLACEMENT PALLET STATICALLY LOADED BY A WASTE PACKAGE						
Input Document			4. Input Status	5. Section Used in	6. Input Description	7. TBV/TBD Priority	8. TBV Due To		
2a.	2. Technical Product Input Source Title and Identifier(s) with Version	3. Section					Unqual.	From Uncontrolled Source	Un-Confirmed
1	ASTM G 1-90 (Reapproved 1999). 1990. <i>Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens</i> . West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: 238771.	Page 7	N/A - Accepted Data (Fact)	5.2	Density of SA-240 S31603	N/A	N/A	N/A	N/A
2	CRWMS M&O 1998. <i>Software Qualification Report for ANSYS V5.4, A Finite Element Code</i> . CSCI: 30040 V5.4. DI: 30040-2003, REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980609.0847.	Entire	N/A - Reference Only	4.1	Qualification report for ANSYS V5.4	N/A	N/A	N/A	N/A
3	Haynes International 1997. <i>Hastelloy C-22 Alloy</i> . Kokomo, Indiana: Haynes International. TIC: 238121.	Page 14	N/A - Accepted Data (AMOPE approved)	5.2	Modulus of elasticity of SB-575 N06022	N/A	N/A	N/A	N/A
4	ASME (American Society of Mechanical Engineers) 1995. "Materials." Section II of <i>1995 ASME Boiler and Pressure Vessel Code</i> . New York, New York: American Society of Mechanical Engineers. TIC: 245287.	Table TM-1	N/A - Accepted Data (Fact)	5.2	Modulus of elasticity of SA-240 S31603	N/A	N/A	N/A	N/A
		Table Y-1	N/A - Accepted Data (Fact)	5.2	Yield strength of SA-240 S31603	N/A	N/A	N/A	N/A
		Table U	N/A - Accepted Data (Fact)	5.2	Tensile strength of SA-240 S31603	N/A	N/A	N/A	N/A


		Page 143	N/A - Accepted Data (Fact)	3	Chemical composition of Alloy 625	N/A	N/A	N/A	N/A
5	American Society for Metals 1980. <i>Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Metals</i> . Volume 3 of <i>Metals Handbook</i> . 9th Edition. Metals Park, Ohio: American Society for Metals. TIC: 209801.	Page 143	N/A - Accepted Data (Fact)	5.2	Poisson's ratio of Alloy 625 to be used for SB-575 N06022	N/A	N/A	N/A	N/A
		Figure 15, page 755	N/A - Accepted Data (Fact)	5.2	Poisson's ratio of 316 stainless steel to be used for SA-240 S31603	N/A	N/A	N/A	N/A
6	ASTM B 575-97. 1998. <i>Standard Specification for Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Plate, Sheet, and Strip</i> . West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: 241816.	Page 2	N/A - Accepted Data (Fact)	5.2	Density of SB-575 N06022	N/A	N/A	N/A	N/A
		Table 1	N/A - Accepted Data (Fact)	3	Chemical composition of SB-575 N06022	N/A	N/A	N/A	N/A
		Table 3	N/A - Accepted Data (Fact)	5.2	Yield strength of SB-575 N06022	N/A	N/A	N/A	N/A
		Table 3	N/A - Accepted Data (Fact)	5.2	Tensile strength of SB-575 N06022	N/A	N/A	N/A	N/A
7	Doering, T.W. 1998. "Qualification of ANSYS V5.4 on the WPO HP UNIX Workstations." Interoffice correspondence from T.W. Doering (CRWMS M&O) to G. Carlisle, May 22, 1998, LV.WP.SMB.05/98-100. ACC: MOL.19980730.0147.	Entire	N/A - Reference Only	4.1	Qualification of ANSYS V5.4 on HP UNIX workstations	N/A	N/A	N/A	N/A
8	CRWMS M&O 1999. <i>Electronic Files for Structural Calculation of an Emplacement Pallet Statically Loaded by a Waste Package</i> . CAL-WER-ME-000003 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19991220.0380.	Entire	N/A - Reference Only	6	Stress intensity magnitudes	N/A	N/A	N/A	N/A

9	ASTM A 240/A 240M-97a. 1997. <i>Standard Specification for Heat-Resisting Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels</i> . West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: 239431.	Table 1	N/A - Accepted Data (Fact)	3	Chemical compositions of 316 and 316L stainless steels	N/A	N/A	N/A	N/A
10	CRWMS M&O 2000. <i>Emplacement Pallet Support</i> . WP-SSR-99426.T. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000105.0145.	Page 1	TBV -3982	5.3	Number and width of the longitudinal beams supporting the emplacement pallet	1	X	N/A	N/A

Mass Properties of Single-CRM Naval SNF Long Waste Package

MASS PROPERTIES OF THE PART INNER_LID

VOLUME = 3.0276072e+08 MM³
 SURFACE AREA = 5.3611341e+06 MM²
 DENSITY = 7.9800000e-06 KILOGRAM / MM³
 MASS = 2.4160305e+03 KILOGRAM

CENTER OF GRAVITY with respect to INNER_LID coordinate frame:
 X Y Z 0.0000000e+00 0.0000000e+00 6.5000000e+01 MM

INERTIA with respect to INNER_LID coordinate frame: (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	4.6145517e+08	-2.5028263e+05	0.0000000e+00
Iyx Iyy Iyz	-2.5028263e+05	4.6129253e+08	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	8.9552709e+08

INERTIA at CENTER OF GRAVITY with respect to INNER_LID coordinate frame:
 (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	4.5124744e+08	-2.5028263e+05	0.0000000e+00
Iyx Iyy Iyz	-2.5028263e+05	4.5108480e+08	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	8.9552709e+08

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM²)

I1 I2 I3 4.5090296e+08 4.5142928e+08 8.9552709e+08

ROTATION MATRIX from INNER_LID orientation to PRINCIPAL AXES:

0.58779	-0.80902	0.00000
0.80902	0.58779	0.00000
0.00000	0.00000	1.00000

ROTATION ANGLES from INNER_LID orientation to PRINCIPAL AXES (degrees):
 angles about x y z 0.000 0.000 54.000

RADIi OF GYRATION with respect to PRINCIPAL AXES:

R1 R2 R3 4.3200655e+02 4.3225861e+02 6.0881894e+02 MM

Mass Properties of Single-CRM Naval SNF Long Waste Package

MASS PROPERTIES OF THE PART INNER_SHELL

VOLUME = 1.5748262e+09 MM³
 SURFACE AREA = 6.3635567e+07 MM²
 DENSITY = 7.9800000e-06 KILOGRAM / MM³
 MASS = 1.2567113e+04 KILOGRAM

CENTER OF GRAVITY with respect to _INNER_SHELL coordinate frame:
 X Y Z 0.0000000e+00 0.0000000e+00 0.0000000e+00 MM

INERTIA with respect to _INNER_SHELL coordinate frame: (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	3.8564524e+10	-3.2507501e+06	0.0000000e+00
Iyx Iyy Iyz	-3.2507501e+06	3.8562736e+10	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	9.8403352e+09

INERTIA at CENTER OF GRAVITY with respect to _INNER_SHELL coordinate frame:
 (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	3.8564524e+10	-3.2507501e+06	0.0000000e+00
Iyx Iyy Iyz	-3.2507501e+06	3.8562736e+10	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	9.8403352e+09

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM²)
 I1 I2 I3 9.8403352e+09 3.8560259e+10 3.8567001e+10

ROTATION MATRIX from _INNER_SHELL orientation to PRINCIPAL AXES:

0.00000	0.60620	-0.79532
0.00000	0.79532	0.60620
1.00000	0.00000	0.00000

ROTATION ANGLES from _INNER_SHELL orientation to PRINCIPAL AXES (degrees):
 angles about x y z -90.000 -52.685 -90.000

RADIi OF GYRATION with respect to PRINCIPAL AXES:
 R1 R2 R3 8.8488571e+02 1.7516696e+03 1.7518228e+03 MM

Mass Properties of Single-CRM Naval SNF Long Waste Package

MASS PROPERTIES OF THE ASSEMBLY NAVAL_LONG

VOLUME = 3.4221767e+09 MM³
 SURFACE AREA = 1.6202106e+08 MM²
 AVERAGE DENSITY = 8.2376426e-06 KILOGRAM / MM³
 MASS = 2.8190669e+04 KILOGRAM

CENTER OF GRAVITY with respect to _NAVAL_LONG coordinate frame:
 X Y Z 0.0000000e+00 0.0000000e+00 5.7420570e+00 MM

INERTIA with respect to _NAVAL_LONG coordinate frame: (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	1.3243569e+11	-4.6462571e+06	0.0000000e+00
Iyx Iyy Iyz	-4.6462571e+06	1.3243451e+11	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	2.0483839e+10

INERTIA at CENTER OF GRAVITY with respect to _NAVAL_LONG coordinate frame:
 (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	1.3243476e+11	-4.6462571e+06	0.0000000e+00
Iyx Iyy Iyz	-4.6462571e+06	1.3243358e+11	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	2.0483839e+10

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM²)
 I1 I2 I3 2.0483839e+10 1.3242949e+11 1.3243885e+11

ROTATION MATRIX from _NAVAL_LONG orientation to PRINCIPAL AXES:

0.00000	0.66075	-0.75061
0.00000	0.75061	0.66075
1.00000	0.00000	0.00000

ROTATION ANGLES from _NAVAL_LONG orientation to PRINCIPAL AXES (degrees):
 angles about x y z -90.000 -48.643 -90.000

RADIi OF GYRATION with respect to PRINCIPAL AXES:
 R1 R2 R3 8.5241873e+02 2.1674029e+03 2.1674796e+03 MM

MASS PROPERTIES OF COMPONENTS OF THE ASSEMBLY
 (in assembly units and the _NAVAL_LONG coordinate frame)

	MATERIAL				
DENSITY	MASS	C.G.:	X	Y	Z
INNER_SHELL			UNKNOWN		
	7.98000e-06	1.25671e+04	3.10054e-13	3.11056e-13	-1.08519e-12
INNER_LID			UNKNOWN		
	7.98000e-06	2.41603e+03	2.51994e-14	-7.69656e-14	2.77250e+03
INNER_LID			UNKNOWN		
	7.98000e-06	2.41603e+03	-2.51994e-14	-7.69656e-14	-2.77250e+03
OUTER_SHELL			UNKNOWN		

Mass Properties of Single-CRM Naval SNF Long Waste Package

8.69000e-06	9.65863e+03	6.75243e-06	6.85904e-05	1.50000e+01
OUTER_LID		UNKNOWN		
8.69000e-06	5.66430e+02	0.00000e+00	-8.23591e-14	-2.85000e+03
OUTER_LID		UNKNOWN		
8.69000e-06	5.66430e+02	0.00000e+00	-8.23591e-14	2.88000e+03

Mass Properties of Single-CRM Naval SNF Long Waste Package

MASS PROPERTIES OF THE PART OUTER_LID

VOLUME = 6.5181843e+07 MM³
SURFACE AREA = 5.3576470e+06 MM²
DENSITY = 8.6900000e-06 KILOGRAM / MM³
MASS = 5.6643021e+02 KILOGRAM

CENTER OF GRAVITY with respect to _OUTER_LID coordinate frame:
X Y Z 0.0000000e+00 0.0000000e+00 1.2500000e+01 MM

INERTIA with respect to _OUTER_LID coordinate frame: (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	1.1764096e+08	3.8227103e+02	0.0000000e+00
Iyx Iyy Iyz	3.8227103e+02	1.1764121e+08	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	2.3504617e+08

INERTIA at CENTER OF GRAVITY with respect to _OUTER_LID coordinate frame:
(KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	1.1755246e+08	3.8227103e+02	0.0000000e+00
Iyx Iyy Iyz	3.8227103e+02	1.1755271e+08	0.0000000e+00
Izx Izy Izz	0.0000000e+00	0.0000000e+00	2.3504617e+08

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM²)

I1 I2 I3 1.1755218e+08 1.1755299e+08 2.3504617e+08

ROTATION MATRIX from _OUTER_LID orientation to PRINCIPAL AXES:

1.00000	0.00000	0.00000
0.00000	1.00000	0.00000
0.00000	0.00000	1.00000

ROTATION ANGLES from _OUTER_LID orientation to PRINCIPAL AXES (degrees):
angles about x y z 0.000 0.000 0.000

RADIi OF GYRATION with respect to PRINCIPAL AXES:

R1 R2 R3 4.5555639e+02 4.5555795e+02 6.4417428e+02 MM

Mass Properties of Single-CRM Naval SNF Long Waste Package

MASS PROPERTIES OF THE PART OUTER_SHELL

VOLUME = 1.1114654e+09 MM³
 SURFACE AREA = 7.6947936e+07 MM²
 DENSITY = 8.6900000e-06 KILOGRAM / MM³
 MASS = 9.6586344e+03 KILOGRAM

CENTER OF GRAVITY with respect to OUTER_SHELL coordinate frame:
 X Y Z 0.0000000e+00 0.0000000e+00 0.0000000e+00 MM

INERTIA with respect to _OUTER_SHELL coordinate frame: (KILOGRAM * MM²)

INERTIA TENSOR:

Ixx Ixy Ixz	8.3823571e+09	0.0000000e+00	-7.8337586e+04
Iyx Iyy Iyz	0.0000000e+00	4.6289494e+10	1.3955071e+06
Izx Izy Izz	-7.8337586e+04	1.3955071e+06	4.6290418e+10

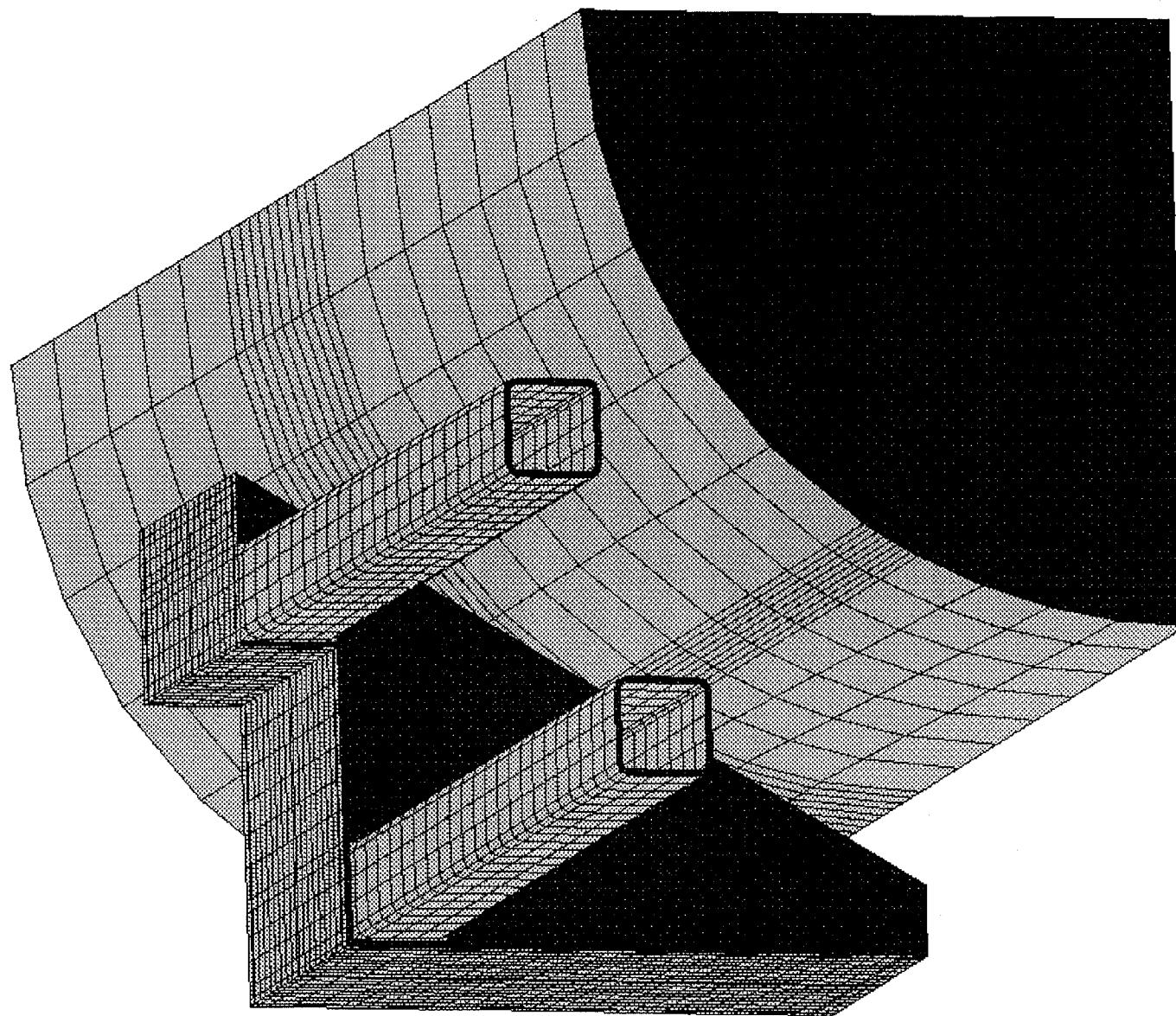
INERTIA at CENTER OF GRAVITY with respect to _OUTER_SHELL coordinate frame:
 (KILOGRAM * MM²)

INERTIA TENSOR:

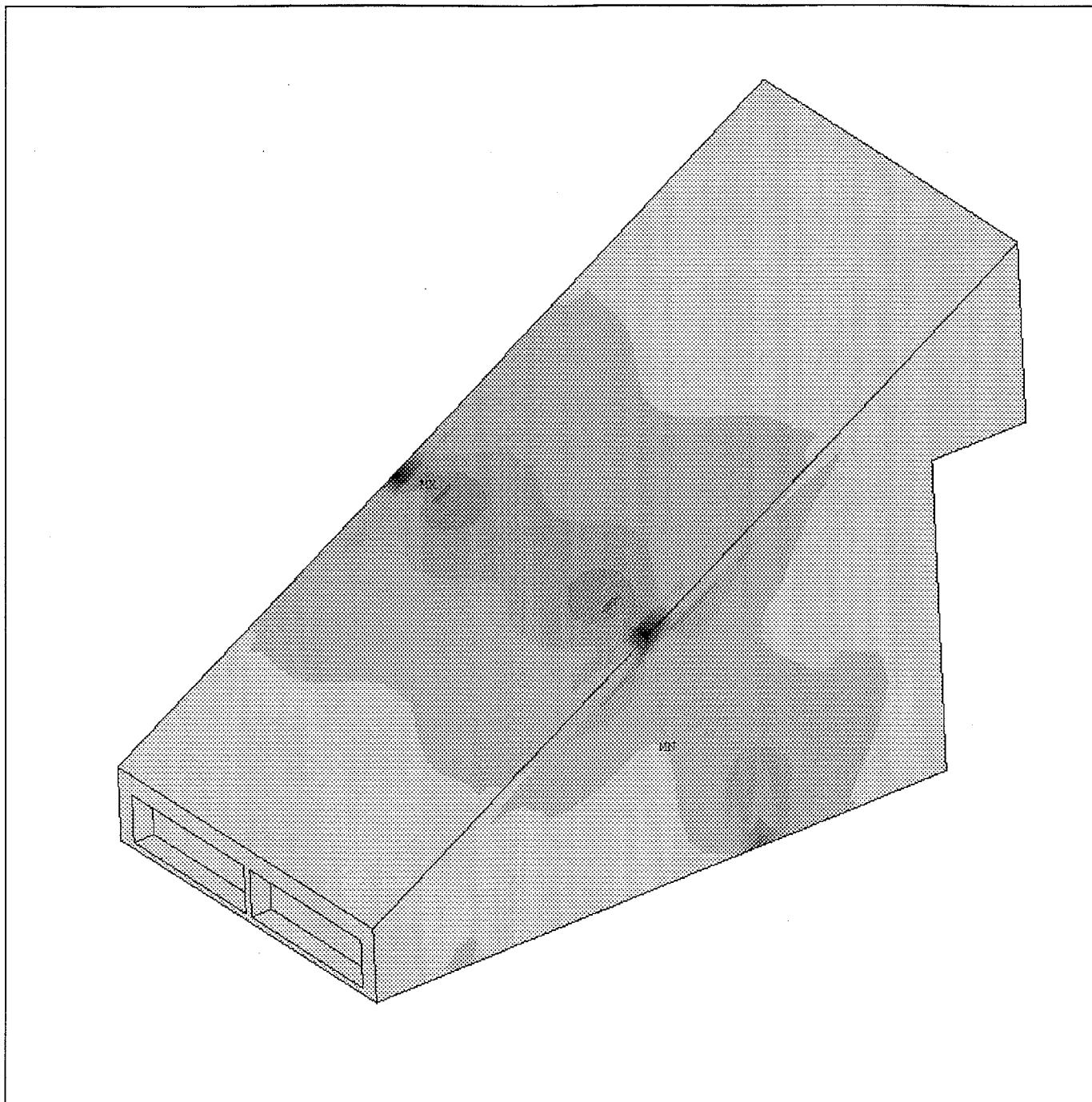
Ixx Ixy Ixz	8.3823571e+09	0.0000000e+00	-7.8337586e+04
Iyx Iyy Iyz	0.0000000e+00	4.6289494e+10	1.3955071e+06
Izx Izy Izz	-7.8337586e+04	1.3955071e+06	4.6290418e+10

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM²)
 I1 I2 I3 8.3823571e+09 4.6288486e+10 4.6291426e+10

ROTATION MATRIX from OUTER_SHELL orientation to PRINCIPAL AXES:


1.00000	0.00000	0.00000
0.00000	0.81063	0.58556
0.00000	-0.58556	0.81063

ROTATION ANGLES from OUTER_SHELL orientation to PRINCIPAL AXES (degrees):
 angles about x y z -35.843 0.000 0.000


RADIi OF GYRATION with respect to PRINCIPAL AXES:

R1 R2 R3 9.3159086e+02 2.1891656e+03 2.1892352e+03 MM

ANSYS

Figure III-1. Finite Element Representation of the Loaded Emplacement Pallet

Figure III-2. Stress Intensity Plot for the Alloy 22 Components of the Emplacement Pallet

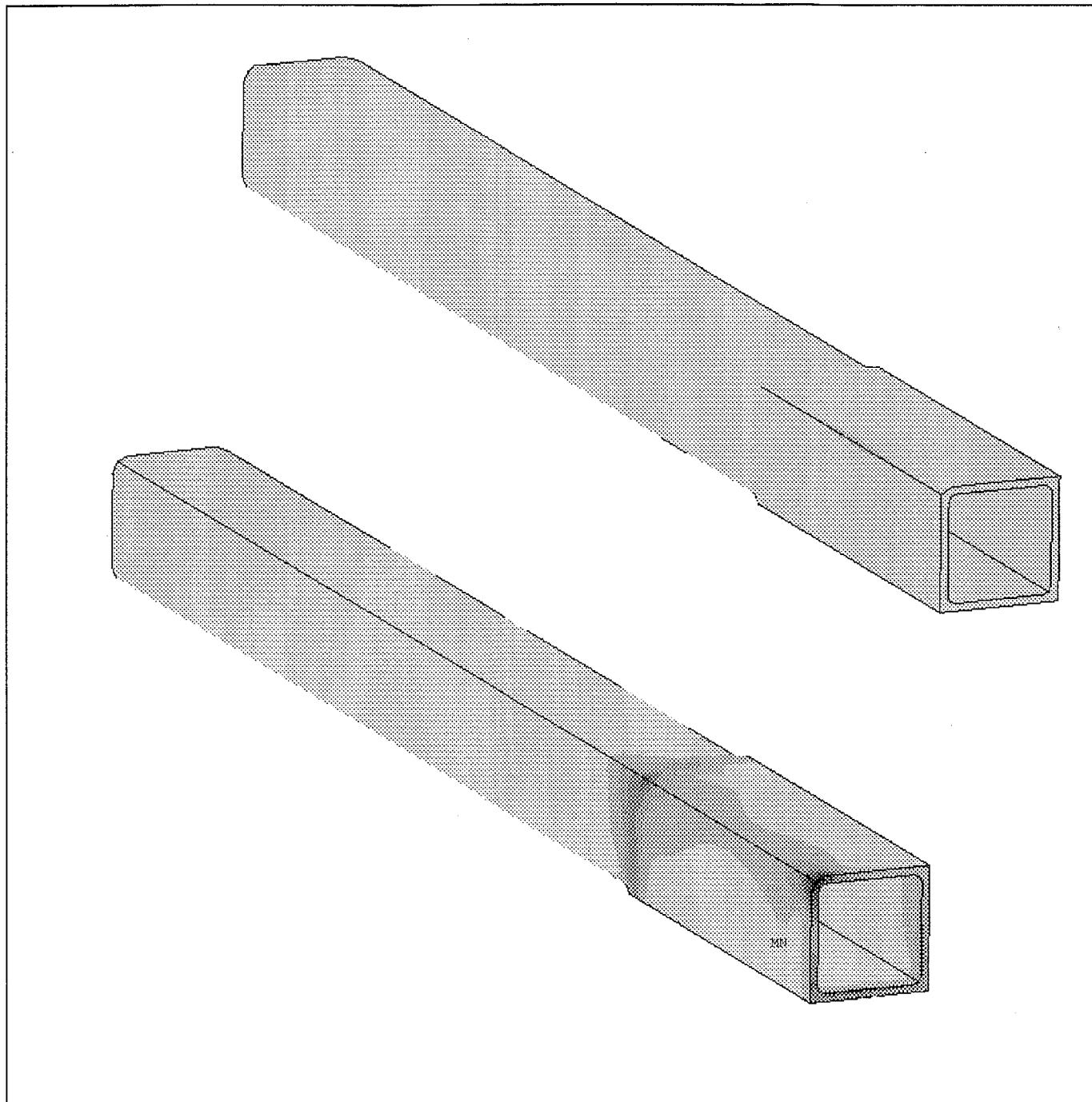


Figure III-3. Stress Intensity Plot for the 316L SS Components of the Emplacement Pallet

ANSYS 5.4

NODAL SOLUTION

SINT (Pa)

SMX = .223E+08

12813

.249E+07

.497E+07

.745E+07

.992E+07

.124E+08

.149E+08

.174E+08

.198E+08

.223E+08