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ABSTRACT 

The relationship between production rates of large diame- 
ter geothermal production wells, and slimholes, is studied. 
The analysis is based on wells completed in liquid-domi- 
nated geothermal fields, where flashing occurs either in 
the wellbore or at the surface. Effects of drawdown in the 
reservoir, and pressure drop in the wellbore, are included; 
heat losses from the wellbore to the formation are not 
presently included in our analysis. The study concentrates 
on the influence of well diameter on production rate. For 
situations where the pressure drop is dominated by the 
reservoir, it is found that the mass flowrate varies with 
diameter according to W - Da, where the exponent a is a 
function of reservoir outer radius, well diameter and skin 
factor. Similarly, when pressure drop in the wellbore is 
dominant, the scaling exponent was found to be a function 
of well diameter and pipe roughness factor. Although 
these scaling laws were derived for single-phase flow, 
numerical simulations showed them to be reasonably 
accurate even for cases where flashing occurs in the 
wellbore. 

INTRODUCTION 

Drilling of slimholes instead of large diameter production- 
sized wells may be economically beneficial during the 
exploration phase of a geothermal prospect or during ex- 
ploration of an undeveloped part of a producing reservoir. 
It has been reported that slimholes with diameters less 
than or equal to 4" could reduce the cost and time of 
drilling significantly (see for example, Entingh and Petty, 
1992). Slimholes can also provide continuous cores which 
would help identify geological features more clearly. This 
report concentrates on the effect of wellbore diameter on 
production characteristics. Cost analysis, drilling practices 
and other relevant topics concerning slimholes are not dis- 
cussed. 

As fluid flows from the reservoir to the surface through 
the wellbore, pressure drawdown occurs both in the reser- 
voir and in the wellbore. As pointed out by Pritchett 

(1993), it would be helpful to have a scaling law that al- 
lows the flowrate of a slimhole to be predicted from the 
flowrate of a normal-diameter hole under the same condi- 
tions. Following Pritchett, we will attempt to develop 
power-law scaling relationships to describe the effect of 
wellbore diameter on well output. We first carry out an 
analysis for single-phase flow, for which it is possible to 
derive some analytical expressions. We then discuss the 
case where flashing occurs at some point in the wellbore. 

PRESSURE DRAWDOWN IN THE RESERVOIR 
Fluid flow from the reservoir into the wellbore has been 
studied by many investigators over the last half century or 
so, including processes such as the nature and direction of 
flow, transient or steady-state, single or two-phase, lami- 
nar or turbulent flow, and permeability reduction (well 
damage) or enhancement due to drilling and produc- 
tiodinjection activities. 

In these studies, reasonable simplifications have been sug- 
gested. For instance, the flow from the reservoir into the 
wellbore is sometimes assumed to be steady or quasi- 
steady, because flow equilibrates faster near the wellbore 
than in the reservoir as a whole (Pritchett and Garg, 1980). 
One could consider the direction of flow into the wellbore 
as spherical. However, with time it is assumed to approach 
horizontal radial flow. Other assumptions can also be 
made based on estimates of the amount and type of fluid, 
and the near-well reservoir behavior. 

Consider the pressure drop that occurs in the reservoir as 
the fluid flows toward the wellbore. Imagine a bounded, 
circular reservoir, whose outer boundary r = ro is main- 
tained at some pressure po (see Fig. 1). If the wellbore has 
radius rw, and the downhole wellbore pressure is main- 
tained at Pwb, the steady-state flowrate under Darcy-flow 
conditions will be given by (Matthews and Russell, 1967, 
p. 21) 

2npkh (Po-Pwb) 
p ln(ro/rw) +s W =  

4 

-2.53- 



where p is the fluid density, kh is the reservoir permeabil- 
ity-thickness product, p is the fluid viscosity, and s is the 
well skin factor. This relation between pressure drop and 
flowrate will also hold during the transient process of pro- 
duction from a reservoir that is initially at uniform pres- 
sure, except at extremely small times that are of little 
practical relevance (see de Marsily, 1986, pp. 161-167). 
Hence, this relation is sufficiently general that it can be 
used as the basis of our scaling-law analysis. Equation (1) 
is often written in terms of the productivity index as 

where PI is the productivity index, which can be expressed 
as 

2nkh 
ln(ro/rw)+s PI = (3) 

If we compare two wells of different diameters that are 
producing under otherwise identical conditions, equations 
(1)  and (3) predict that their flowrates will be in the ratio 

W 

4 

(4) 

Fig. 1. Schematic diagram of the problem considered. 

This ratio depends on the wellbore diameters, and also on 
the outer radius of the reservoir. In order to simplify the 
analysis that follows, we will assume that the skin factor 
does not depend on diameter, Le., s i  = s2. However, if 
there was some knowledge of the variation of s with D, the 
method described tgelow could be modified to account for 
this. For simplicity, and because power-law equations 
(representing different effects) can easily be combined, we 

~ 
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will approximate equation (4) with a power-law. If 
(PIiPI2) = (DI/D~)P. then the exponent P would be given 
by 

dlnPI D dPI 
P=dlnD =PI=' ( 5 )  

In order to fit equation (4) to a power-law equation, we 
take its logarithmic derivative as in equation (3, and eval- 
uate it at some reference diameter D2. Specifically, we 
treat the parameters with subscript 1 as variables, and hold 
those with subscript 2 constant, and then set D1= D2 when 
evaluating the derivative, to arrive at 

Hence the ratios of the productivity indices and flowrates, 
between two otherwise identical boreholes, each having 
the same pressure drawdown in the reservoir, will be 

(7) 

To estimate the ratio of mass flowrates, the outer radius ro 
and the skin factor s have to be determined. The skin fac- 
tor may be obtained from well test analyses. For reservoir 
modeling exercises ro is the distance to the nodal point of 
the wellblock, the value of which depends on the type of 
computational grid selected. Hadgu et al. (1993) recently 
presented a method for determining the distance from the 
well to the nodal point of the wellblock. Similar studies 
have also been reported by Aziz and Settari (1979) and 
Pritchett and Garg (1980), among others. 

If non-Darcy flow effects are important, equation (2)  be- 
comes inadequate; an analysis of this situation is given by 
Hadgu et al. (1993), Kjaran and Eliasson (1983), Hadgu 
(1989), Iglesias and Moya (1990) and Gunn and Freeston 
(1991), among others. 

PRESSURE DROP IN THE WELLBORE 

The pressure drop in the wellbore is a sum of frictional, 
gravitational and accelerational components. For conve- 
nience, the following analysis ignores the accelerational 
pressure drop. For a comparison of output of large and 
small diameter wells, the parameters of interest will be 
friction factor a, mass flowrate W, and the inside pipe di- 
ameter D. 

First, consider the flow in the wellbore, temporarily ignor- 
ing the pressure drop in the reservoir itself. Under the as- 
sumption that the dynamic properties and pressure drop 
are the same for two wells with diameters D1 and D2, 
Pritchett (1993) proposed the following scaling law based 
on the ratios of the cross-sectional areas: 



A more accurate scaling equation in the form of a power- 
law can be formulated by considering the equations that 
govern wellbore flow, including the effect of frictional 
losses. The frictional and gravitational components of the 
pressure gradient can be expressed as 

(9) 

where h is the Darcy friction factor and v is the mean fluid 
velocity, which is equal to W/(7tD2/4). If we are compar- 
ing flows in two wellbores that occur under the same pres- 
sure drop, and assuming equivalent fluid properties, then 
equation (9) reduces to 

hv2 2 * _ -  - [dz - pg] = constant = c 

The friction factor depends on the Reynolds number, 
which is defined by 

Re = pvD/p (1 1) 

as well as on the relative roughness of the wellbore casing, 
E/D. One correlation that has been widely used to relate 
these parameters is the Colebrook equation (White, 1974, 
p. 498): 

- 1 = 1.74-4.6051nC 2~ E+--] 18.7 
fi Re& 

In order to find a relationship between flowrate and di- 
ameter, we first use equations (1 1) and (12) to eliminate 
explicit reference to Re and h, to find 

v = (CD)0.5[ 1.74 - 4.605 In[ 5 2E + *8.7p I1 
p* DI.5 

E (CD)03 f(D) (13) 

The first part of the right-hand side of the expression is al- 
ready in the form of a power-law equation. The bracketed 
term f(D) is not of that form, but can be approximated by a 
power-law. If we assume 

f(D) = const.Da (14) 

the parameter a would be given by 

dlnf D df 
a=---- dlnD- f dD 

We can calculate the derivative df/dD, and then evaluate 
expression (15) at some reference value D = D2, to arrive 

at a value for the scaling exponent a. Carrying out this dif- 
ferentiation, and then expressing the results in terms of Re 
and h, we eventually find 

a=4.605@( 6 2~ + L)/('"+"")] 18 7(1 5) 
R e 2 G  D2 R e 2 G  

Equation (16) has a very weak dependence on Re, since 
the bracketed term varies only from 1, at high Reynolds 
numbers, to 1.5, at low Reynolds numbers. Hence, in order 
to arrive at a value of a that depends on as few parameters 
as possible, we now evaluate equation (16) in the limit of 
high Reynolds numbers. In this case, the bracketed term in 
equation (16) goes to 1.0, and for realistic values of ED, 
equation (12) can be approximated by 

Equation (1 6) then simplifies to 

2E - I  

D2 
a = - [~n(-)] 

which depends only on the relative roughness of the cas- 
ing. If we now combine equations (12, 13 and 14), we 
find 

V l  0.5- [ln(2E/D2)]-' 

v2 

Finally, we note that the flowrate is given by the product 
of the mean velocity and the cross-sectional area, so that 

If we assume typical values for the relative roughness in 
the range of 10-3 - 10-6, we find that the exponent in 
equation (20) depends weakly on roughness, and equals 
about 2.62 f 0.05. For example, a relative roughness &/D2 
= 10-6 leads to an exponent of 2.58, whereas a value of 
E/D2 = 10-3 gives an exponent of 2.66. This variation is 
probably less than the error introduced by fitting equation 
(13) with a power-law equation. Hence, taking into ac- 
count the approximate nature of this analysis, one arrives 
at the following scaling law, which does not contain any 
reference to the roughness parameter: 

The exponent 2.62 is close to the value of 2.56 that 
Pritchett (1993) found by fitting a power-law curve to nu- 
merically-computed values of W and D, assuming a well- 
head pressure of 1 bar. 
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TOTAL PRESSURE DRAWDOWN 
Assuming that the reservoir pressure (pr) and the depth of 
the well (z) are known (Fig. l),  for a selected wellhead 
pressure (pwh), the sum of pressure drops in the reservoir 
and in the wellbore, as fluid flows to the surface, can be 
written as 

! 

Pr - Pwh = APres + APwell (22) 

reservoir pressure 
Pr (bar) 
reservoir temp. 
Tr ("C) 
wellhead pressure 

outer radius 
Pwh (bar) 

Using the deliverability equation (2), and assuming a lin- 
ear drawdown relationship in the reservoir: 

Example 1 Example 2 

100 90 

160 24 1 

7 7 

Pressure drop in the wellbore is subdivided into its com- 
ponents of friction, gravity and acceleration. For single- 
phase isothermal flow the acceleration term may be ig- 
nored. Thus, 

'0 (m) 

where Apffic and APgrav are the frictional and gravitational 
pressure drops in the wellbore, respectively. These com- 
ponents are further defined by: 

88 88 

APgrav = -Pgz (26) 

Equation (25) can be written in terms of mass flowrate 
instead of velocity, using the relationship 

reference diameter 
D2 (m) 

Thus: 

87.hw2 
n2pD5 APfric= - 

Substituting for the individual parameters, equation (22) 
can be written as: 

Equation (29) indicates that the parameters which mainly 
affect pressure drop between the reservoir and the well- 
head are discharge rate, productivity index, well depth and 
diameter, friction factor and fluid properties. If we assume 
isothermal flow both in the reservoir and in the wellbore, 
fluid properties will be approximately constant. For a 
comparison of output of large and small diameter casings, 
well depth can also be assumed to be constant. Thus, the 
parameters involved in the comparison of large and small 
diameter casings will be discharge rate, productivity in- 
dex, friction factor and well diameter. 

Equation (29) can now be rewritten in terms of W and D, 
with the help of equations for PI and h. Note that h is in 
fact a function of W, as implicitly shown in equation (12), 
which implies that equation (29) is not simply a quadratic 
for W. However, we have found that for high Re, h can be 
approximated by equation (17), with little loss of 
accuracy. With this approximation, we can rearrange 
equation (29) as: 

with h given by equation (17). Equation (30) is a quadratic 
equation for W which is easily solved. The positive root in 
the solution for W must be taken, since W is by definition 
a positive quantity. The following is an example to study 
the relationship between mass flowrate and diameter for 
single-phase isothermal flow. 

Example 1 :  A well completed in a liquid dominated 
geothermal reservoir, where the boundary conditions are 
chosen so that flashing occurs at the surface. If heat ex- 
change with the rock formation is ignored, this is essen- 
tially a case of isothermal liquid flow. The reservoir and 
wellbore parameters are given in Table 1. 

Equation (30) was then used to solve for W in terms of D 
and kh. Fig. 2 shows the calculated values plotted as a ra- 
tio of mass flowrates vs. the ratio of diameters at different 
values of permeability-thickness product, using D2 = 0.1 
m as the reference diameter. The curve for kh = 100 D-m 
in Fig. 2, for example, contains straight line sections at 
low and high values of D l Q .  For small values of D, ,  the 
pressure drop is dominated by the wellbore, and the curve 
follows equation (21). For larger values of D,, there is less 
frictional pressure drop in the wellbore, and the pressure 
drop in the reservoir becomes relatively more important. 
In this region the curves approach asymptotes where 
slopes are given by equation (7). In the present example, s 
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= 0, D2 = 0.1 m, and r, = 88 m, so that the exponent in the 
equation is 0.134. 

100 , 

- 

D =0.1 rn - 

3" 10 

2 

kh=1000 D-m 
kh=100 D-m 1: kh=lO kh=lD-m D-m 1 ,,,/ 

/ . L , -  

1 
f r n 2  

10 

Fig. 2. Ratio of mass flowrate against diameter ratio, for 
different kh values, for single-phase isothermal 
flow (see Example 1). 

TWO-PHASE FLOW IN THE WELLBORE 
If the heat exchange between the wellbore and the sur- 
rounding rock formation is important, or two-phase flow 
exists in the reservoir or wellbore, changes in fluid prop- 
erties become important. Thus, for non-isothermal single- 
phase or two-phase flow, fluid properties in the wellbore 
are not constant, and they have to be integrated over the 
length of the wellbore. In this case, equation (29) has to be 
written in the following form: 

where Pr and pr are the density and viscosity at reservoir 
conditions, 6 is a variable representing depth increment, 
and the integral is taken from 6 = 0 to 6 = z. Following is 
an example for two-phase flow. 

ExamDle 2: A well is open to a liquid-dominated geother- 
mal reservoir, and flashing occurs in the wellbore. For this 
example heat exchange with the rock formation is ignored. 
The reservoir and wellbore parameters assumed are given 
in Table 1. 

The wellbore simulator WFSA (Hadgu and Freeston, 
1990) was used to solve for W in equation (31) in terms of 
D and kh. An iterative scheme was needed to equate the 
flow in the reservoir to that in the wellbore. Fig. 3 shows 
the calculated ratio of mass flowrates vs. the ratio of di- 

ameters at different values of kh. In this case the effect of 
fluid properties is evident, as fluid flashes at greater 
depths, longer columns of two-phase flow result. In Fig. 3, 
the plots for the higher kh values (i.e. 100, 10 and 1 D-m) 
show straight line portions for low D,Q values. This is 
similar to that of single phase flow where wellbore flow 
dominates. 

1000 

100 

3" 10 
B 

1 

0.1 
10 

Fig. 3. Ratio of mass flowrate against diameter ratio for 
different kh values, with flashing occurring in the 
wellbore (see Example 2). 

In this example the wellhead pressure is 7 bars, the undis- 
turbed reservoir pressure is 90 bars, and the saturation 
pressure at the reservoir temperature of 241°C is 34 bars. 
Hence flashing will occur at some point between the 
reservoir far-field and the wellhead. As the wellbore di- 
ameter increases, the flow resistance in the wellbore de- 
creases, and flashing occurs deeper. At some critical di- 
ameter D* flashing occurs at the bottom of the wellbore, 
when the bottomhole pressure equals the saturation pres- 
sure at the reservoir temperature. If the bottomhole pres- 
sure is reduced below the saturation temperature, flashing 
would occur in the reservoir. Our analysis does not include 
such cases since equation (31) assumes that fluid proper- 
ties are constant in the reservoir. For flashing occurring 
both in the reservoir and in the wellbore a coupled numer- 
ical simulation of the flow processes in the reservoir and 
in the wellbore will be required. Hence our analysis, using 
equation (3 l ) ,  cannot be used to find the production curve 
when D is greater than D*. 

Density changes also affect the pressure gradients, and the 
gravitational pressure gradient, which was constant in the 
single phase case, becomes important. At low flows and 
large wellbore diameters, the effect of frictional pressure 
gradient decreases, and the total pressure drop becomes 
dominated by gravity and reservoir drawdown. 

-257- 



The above analysis was made using the total pressure 
drawdown. The same parameters were also used to com- 
pare the pressure drop in the wellbore (i.e., no reservoir 
drawdown) with that of single-pLase flow, by using equa- 
tion (31) without the reservoir term. In order to evaluate 
the integral appearing in equation (31), we need to know 
how the density varies as a function of depth. To find the 
density profile, we use the wellbore simulator WFSA, 
which in effect performs the required integrations. The 
production rate, shown in Fig. 3 as the curve labeled k = 
infinity, is then compared with that produced by equation 
(20), which was developed for single-phase flow. The re- 
sults are shown in Fig. 3, where it is seen that these two 
curves are quite close to each other, suggesting that equa- 
tion (20) may also be used for some cases where flashing 
occurs in the wellbore. 

For reservoir management purposes, it is useful to have 
plots of mass flowrate as a function of wellhead pressure, 
for given wellbore diameter values. Such production 
curves are shown in Fig. 4, for the case described in Ex- 
ample 2. In this case the wellhead pressure was not held 
constant. Equation (31) was used to compute values of W 
and Pwh at constant diameter and kh. Fig. 4 shows the 
characteristic curves obtained for different diameters at a 
constant kh of 100 D-m. Note that the curves are identi- 
cally shaped, but are displaced vertically on a semi-log 
plot; this can be explained as follows. For the parameters 
used in this example, kh is relatively high, and most of the 
flow resistance occurs in the wellbore. Hence, we see from 
equations (IO) and (21) that 

W(D) = f(Pwh (Dm2)2'62 (32) 

so that 

Hence each curve should have the same shape, given by 
the function F(pwh), but with a vertical offset equal to 
2.6210g(D/D2). As an example, consider the curve for D = 
0.2 m, for which D/D2 = 0.2/0.1 = 2. The calculated offset 
of 2.621og(2) = 0.79 is shown as a vertical line in Fig. 4, 
where it is seen to be very nearly equal to the actual verti- 
cal offset between the D = 0.2 m and D = 0.1 m curves. 
Note that the maximum discharge pressure is almost 
constant (about 22 bars in this example). This is consistent 
with the findings reported by Grant et al. (1982, pp. 138- 
139) and others, to the effect that the maximum discharge 
pressure depends only on the reservoir pressure and 
discharge enthalpy. Both of these parameters are constant 
in our analysis. For reservoirs with a lower permeability, 
the pressure drop in the reservoir becomes important, and 
a scaling law of the form given in equations (32) and (33) 
does not hold. For these cases, the production curves could 
be generated by solving equation (30) numerically for 
different values of Pwh. 

loo0 1 

m, I , ,  , , , , , , , , , I  
__ D=.l m 

5 10 15 20 25 

wellhead pressure p,, (bar) 

Fig. 4. Comparison of production of different diameter 
wells as a function of wellhead pressure. The 
curves are displaced vertically by an amount 
equal to 2.62108 (D/D2). 

APPLICATION TO FIELD DATA 
In this example we use field measurements to test the scal- 
ing law analyses. Production well PW3-3 and slimhole 
TH#1 are located in the Steamboat Hills geothermal field, 
Nevada, and are about 15 m apart. They have been drilled 
to similar total depths, and hence probably extend through 
similar geological structure. Data for both wells (from 
Goranson, 1993) are shown in Table 2. 

Since both wells are located in a highly permeable reser- 
voir, the production rates should be controlled by the 
wellbore. Thus, it seems appropriate to use the scaling law 
given by equation (20). To use the scaling law, the pro- 
duction data for both wells have to be similar, except for 
diameters and mass flowrates. However, in this case the 
wellhead pressures for the two wells are not equal. In or- 
der to apply the scaling laws to these data, we proceed as 
follows. Since static and flowing pressure and temperature 
profiles are available for TH#1, we first calculated the 
productivity index. Using equation (2) and the data in 
Table 2, the calculated value was PI = 8.339 x 10-1 m3. 
Then using the calculated productivity index the, wellbore 
simulator WFSA (Hadgu and Freeston, 1990) was used to 
predict mass flowrate for well TH#l  at a wellhead 
pressure of 3.97 bars. Additional input data for wellbore 
simulation were obtained from Table 2, and a roughness 
value of E = 4.5 x 10-5 m was selected. The computed 
values using the wellbore simulator were W = 2.07 kg/s 
and Pwb = 22.78 bars. To predict the mass flowrate of the 
production well PW3-3, we used the scaling law given by 
equation (20): 
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2.5- [ln(2~ID2)]-~ 
w1 =w2 [ 21 (34) 

For E = 4.5 x m, D1 = 0.318 m, D2 = 0.076 m and W2 
= 2.07 kgls, equation (34) gives W1 = 91.6 kgls. The mea- 
sured flowrate to well PW3-3 was about 84.2 kgls, which 
is 8.8% less than the value predicted by the scaling law. 
Although this is not a direct verification of the utility of 
the scaling law, this agreement is encouraging, 
considering the assumptions made in the analysis, and the 
unavoidable inaccuracies in the measured data. 

Table 2: Data on wells PW3-3 and TH#1, Steamboat 
Hills (from Goranson, 1993). 

CONCLUSIONS 
Analytical and numerical approaches to the characteriza- 
tion of output of different diameter geothermal wells have 
been presented. It is shown that flow processes in the 
reservoir and wellbore can be characterized by using 
scaling laws. The wellbore simulator WFSA (Hadgu and 
Freeston, 1990) was also used to provide numerical results 
to study flow processes when pressure drop in both the 
reservoir and wellbore are important. Future analysis 
should also include a study of the effect of wellbore heat 
losses to the formation. These studies need to be 
augmented with field data on slimholes and production 
size wells. Also, other topics concerning slimholes, such 
as well testing methodology, need to be studied to provide 
the basis for more effective use of slimholes. 
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