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FISSURE-BLOCK MODEL FOR TRANSIENT 
PRESSURE ANALYSIS IN GEOTHERMAL 

STEAM RESERVOIRS 

R. Denl inger ,  USGS, Denver, CO 
A.F. Moench, USGS, Menlo Park, CA 

I n t r o d u c t i o n  

The f i ssure-b lock  model considered i n  t h i s  paper i s  sometimes 
c a l l e d  a d u a l - p o r o s i t y  model o r  a n a t u r a l l y  f r a c t u r e d  r e s e r v o i r  
model. Ground water  and petroleum l i t e r a t u r e  c o m o n l y  r e f e r  t o  
t h e  p ioneer ing  a n a l y t i c a l  work on t h i s  sub jec t  by Barenb la t t  and 
o the rs  (1960) and Warren and Root (1963). 
cons ider  flow from pr imary  p o r o s i t y  b locks t o  secondary p o r o s i t y  
f i s s u r e s  b u t  they  do n o t  descr ibe  t h e  f l o w  w i th in  these b locks.  
Kazemi (1969) presents a f i n i  t e - d i f f e r e n c e  s o l u t i o n  fo r  s i n g l e -  
phase f l o w  which does account f o r  f l o w  w i t h i n  the  b locks and 
Bou l ton  and S t r e l t s o v a  (1977) g i v e  exac t  s o l u t i o n s  f o r  t h i s  
problem. 

nonisothermal , r a d i a l  f low,  f i ssure-bl  ock, f i n i  t e - d i  f ference 
model f o r  geothermal steam r e s e r v o i r s  which was l a t e r  used t o  
s imu la te  pressure b u i l d u p  da ta  f o r  a steam w e l l  i n  La rde re l l o ,  
I t a l y  (Moench and Ner i ,  1979). The model assumed the  b locks t o  
be impermeable bu t  capable o f  conduct ing heat  t o  t h e  f i s s u r e s  
which had been cooled by vapor i za t i on .  I n  t h e  present  paper the  
model i s  r e v i s e d  t o  account f o r  steam t r a n s p o r t  and v a p o r i z a t i o n  
w i t h i n  t h e  b locks.  
accouht f o r  t he  l o n g e v i t y  o f  p roduc t ion  w e l l s  i n  The Geysers. 
The b locks,  which may be i n i t i a l l y  sa tu ra ted  w i t h  l i q u i d  water, 
a r e  assumed t o  have low i n t r i n s i c  p e r m e a b i l i t y  and low p o r o s i t y  
r e l a t i v e  t o  t h e  f i s s u r e s .  

These e a r l y  papers 

A t  an e a r l i e r  S tan ford  workshop, Moench (1978) presented a 

This  i s  a necessary cons ide ra t i on  i n  o rder  t o  

Resu l ts  computed w i t h  t h i s  f i n i  t e - d i  f ference model a re  
compared, f o r  i so thermal  cond i t ions  , w i t h  t h e  s o l u t i o n s  o f  
Boul t on  and S t r e l  tsova (1977) .' Under these c o n d i t i o n s  t h e  model 
i s  s i m i l a r  t o  t h a t  o f  Kazemi (1969). 
t h e  b locks from a smal l  amount o f  u n i f o r m l y - d i s t r i b u t e d  l i q u i d  
water i t  i s  a l s o  poss ib le  t o  app ly  Bou l ton  and S t r e l t s o v a ' s  
so lu t i ons .  
b i l i t y  o f  t h e  two-phase f l u i d  m i x t u r e  i n  the  block.  
w i th  Boul t on  and S t r e l  t sova 's  s o l u t i o n s  under two-phase 
c o n d i t i o n s  i s  g iven  i n  o rde r  t o  v e r i f y  t h e  f i n i t e - d i f f e r e n c e  code. 

bu i l dup  f o l l o w i n g  produc t ion  w i t h  t h e  b locks i n i t i a l l y  n e a r l y  
sa tura ted  w i t h  l i q u i d  water. 
boundary cond i t i ons ,  b lock  s i zes  and produc t ion  t imes on pressure 
b u i l d u p  curves a re  examined. 

When v a p o r i z a t i o n  occurs i n  

This  i s  done by a l l o w i n g  f o r  t h e  apparent compressi- 
Comparison 

Numerical r e s u l t s  a re  a l s o  presented showing pressure  

E f f e c t s  o f  d i f f e r e n t  thermal 
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A f te r  f u r t h e r  re f inements t h e  model w i l l  be c a l i b r a t e d ,  us ing  
a v a i l a b l e  pressure bu i l dup  da ta  f rom rep resen ta t i ve  w e l l s  i n  
The Geysers, and used t o  p rov ide  a means f o r  es t ima t ing  pore 
pressure and temperature grad ien ts  w i t h i n  r e s e r v o i r  b locks.  Th is  
i n fo rma t ion  w i l l  be used t o  c a l c u l a t e  changes i n  e f f e c t i v e  s t r e s s  
i n  t h e  v i c i n i t y  o f  a b o i l i n g  f r o n t :  a mechanism proposed t o  
account f o r  earthquake a c t i v i t y  i n  t h e  v i c i n i t y  o f  The Geysers 
(Denl inger  and Moench, 1979). 

Approach 

The conceptual model i l l u s t r a t e d  i n  f i gu re  l a  i s  i d e a l i z e d  
as shown i n  f i g u r e  l b .  A l t e r n a t i n g  l aye rs  o f  f i ssu res  and b locks 
o f  cons tan t  th ickness  a r e  assumed t o  extend r a d i a l l y  t o  i n f i n i t y .  
The th ickness  o f  t h e  f i s s u r e  and b lock  i s  assumed t o  represent  
t h e  average th ickness o f  t he  f i s s u r e s  and b locks i n  t h e  r e s e r v o i r .  
I n  t h e  model r a d i a l  f l o w  i n  the  f i s s u r e  i s  coupled w i t h  one-dimen- 
s iona l  p lana r  f low i n  the  b locks perpendicu lar  t o  t h e  f i ssures .  
Wi th  t h e  onset  o f  w e l l  d ischarge, pressure reduc t ions  i n  t h e  
f i s s u r e  induce vapor i za t i on  o f  l i q u i d  water i n  t h e  b locks.  
L i q u i d  i n  t h e  f i s s u r e s  and b locks i s  assumed t o  be immobile. Th is  
assumption i s  j u s t i f i e d  f o r  t he  b locks by t h e i r  low pocos i t y  and 
f o r  t he  f i s s u r e s  by t h e i r  low l i q u i d  sa tu ra t i on .  Large c a p i l l a r y  
forces brought about by these cond i t i ons  are assumed t o  ho ld  t h e  
l i q u i d  i n  place. Satura t ions ,  there fore ,  change o n l y  i n  response 
t o  vapor i za t i on  o r  condensation. The r e l a t i v e  p e r m e a b i l i t y  t o  
steam i s  assumed t o  change w i t h  l i q u i d  s a t u r a t i o n  i n  accordance 
w i t h  the  Corey (1954) r e l a t i o n s h i p .  

Equations f o r  t he  r a d i a l  f l o w  o f  steam through porous 
r e s e r v o i r s  i n  t h e  presence o f  immobile vapor i z ing  o r  condensing 
l i q u i d  water a re  g iven by Moench and Atk inson (1978). I t  was 
assumed i n  t h a t  s tudy  t h a t  the  o n l y  temperature changes t h a t  take  
p lace  i n  t h e  r e s e r v o i r  a re  those due t o  phase change: conduct ion,  
convect ion,  and pressure-work a re  considered n e g l i g i b l e  by 
comparison. I n  t h i s  paper heat  i s  conducted from t h e  f i s s u r e  i n t o  
t h e  b lock  o r  v i c e  versa. 
i n  response t o  both phase change and heat conduct ion.  The 
e x t e r i o r  (Z=H) thermal boundary o f  the  b lock  i s  assumed t o  be 
e i t h e r  cons tan t  temperature o r  i n s u l a t i n g .  The e x t e r i o r  f low 
boundary o f  t h e  b lock  i s  assumed t o  be no flow. 

Temperature changes i n  t h e  b lock  occur  

A f i n i t e - d i f f e r e n c e  code i s  used t o  compute pressure,  
temperature, and s a t u r a t i o n  changes a t  each node i n  t h e  f i s s u r e  
and block.  
descr ibed by Moench and Atk inson (1978) w i t h  t h e  added dimension 
t h a t  p lanar  f l o w  i n  the  b lock  i s  computed fo r  as many v e r t i c a l  
a r rays  as the re  a re  nodes i n  t h e  f i ssu re .  F issure  nodes serve as 
boundaries f o r  t he  b lock  arrays.  The d i s tance  between t h e  nodes 
i n  t h e  b lock  i s  increased l o g a r i t h m i c a l l y  w i t h  d i s tance  from the  
f i ssu re  i n  t h e  same way as t h e  nodes i n  t h e  f i s s u r e  become more 
w ide ly  separated w i t h  d is tance from t h e  w e l l .  

These computations are c a r r i e d  o u t  i n  t h e  manner 
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Model Veri f i ca t i  on 

Exact solut ions for single-phase flow i n  a fissure-block 
system by Boulton and Strel tsova (1977) a r e  used i n  this study t o  
Val ida te  the r e su l t s  of t he  f ini  te-di fference model. 
solut ions a r e  presented i n  the form of semi-infinite in tegra ls  
which a re  quite d i f f i c u l t  t o  solve numerically. 
Laplace transformed space the solutions appear i n  a simpler form 
and can be inverted numerically by the method of Stehfest  (1970). 
The results so obtained will be referred t o  as  the analyt ical  
solut ions.  

Their 

However i n  the 

The Laplace transform solution for pressure drawdown i n  the 
f i  ssure appears as fo l l  ows : 

Symbols a re  defined i n  Table 1. 

block appears as fol lows:  
The Laplace transform solution for pressure drawdown i n  the  

Z H 2 where A = cosh(or-) - t a n h ( n 7 )  sinh(n-)  
W W rW 

Figure 2 shows a comparison of the analyt ical  and numerical 
r e su l t s  for dimensionless pressure drawdown ( PD vs log t D )  a t  the  
well bottom and a t  a specified p o i n t  within t h e  block for  s ingle-  
phase steam. Parameters required for the comparison are  given i n  
Table 1. The deviation i n  the resu l t s  which i s  most apparent at. 
an ear ly  time can be a t t r ibu ted  primarily t o  spa t ia l  descre t i -  
zation a t  the block-fissure contact.  Care was taken i n  the  
numerical model t o  reduce nonl inear i t ies  by avoiding large 
pressure changes. 

t o  val idate  the f in i te -d i f fe rence  model for  vaporization i n  the  
reservoir  block. 
throughout the block, the liquid-steam combination i n  the  block 
can be considered t o  have an enhanced compressibil i ty.  
by which the compressibil i ty i s  enhanced can be calculated as 
shown i n  the  appendix using the equations of e i t h e r  Grant and 
Sorey (1979) or Moench and Atkinson (1978) .  

The model of  Boulton and Strel tsova (1977) can a l so  be used 

W i t h  immobile l i q u i d  water d i s t r fbuted  uniformly 

The amount 
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F igure  3 shows t h e  r e s u l t s  obta ined when a smal l  amount o f  
l i l q u i d  water (Si=O.Ol) i s  in t roduced i n  the  block.  
t h e  increased compress ib i l i t y ,  the r a t i o  o f  d i f f u s i v i t i e s  between 
the  f i ssu re  and b lock  i s  increased over t h a t  which a p p l i e s  t o  t h e  
r e s u l t s  i n  f i gu re  2 by a f a c t o r  o f  430 (see appendix). Th is  
causes t h e  pressure response shown i n  f i g u r e  3 t o  be s h i f t e d  
toward l a r g e r  values o f  dimensionless times. 
between t h e  f i n i t e - d i f f e r e n c e  and the  a n a l y t i c a l  r e s u l t s  can aga in  
be a t t r i b u t e d  t o  d i s c r e t i z a t i o n  a t  t h e  b l o c k - f i s s u r e  contact .  I n  
f i g u r e  3 however t h e r e  i s ,  i n  add i t i on ,  a l a c k  o f  pressure 
suppor t  i n  t h e  f i n i t e - d i f f e r e n c e  model which r e s u l t s  from t h e  
fac t  t h a t  no vapor i za t i on  occurs a t  t he  " f i s s u r e "  node o f  the 
b lock array;  hence the  computed pressure drawdown i s  g rea te r  than 
i n d i c a t e d  by the  a n a l y t i c a l  so lu t i on .  I n  view o f  the  magnitude 
o f  t he  change i n  pressure response over  t h a t  shown i n  f i g u r e  2, 
brought about s imply  by i n t roduc ing  l i q u i d  i n  the  block,  t h e  
authors feel  t h a t  t he  agreement w i t h  t h e  a n a l y t i c a l  s o l u t i o n  i s  
adequate and t h a t  t h e  model has been va l i da ted  by these r e s u l t s .  

Resul ts  

us ing  d i f f e r e n t  parameters. 
t he  v a r i a t i o n s  i n  pressure bu i l dup  t h a t  can be expected when 
thermal boundary cond i t i ons  , block s ize,  o r  p roduc t ion  t ime  a r e  
changed. I n  a l l  cases the  b lock  was assumed t o  have very  low 
p o r o s i t y  and pe rmeab i l i t y  r e l a t i v e  t o  the f i s s u r e  and an i n i t i a l  
l i qu id -wa te r  conten t  c l o s e  t o  sa tu ra t i on .  
steam i s  considered the  more mobi le  phase even under these 
cond i t i ons  because l i q u i d  water, as the  we t t i ng  phase, can be 
assumed t o  be he ld  i n  p lace by c a p i l l a r y  forces.  
i s  supported i n  p a r t  by the  work o f  Chen and o thers  (1978) who 
found by exper imentat ion t h a t  a core w i t h  p o r o s i t y  o f  34 percent  
and a pe rmeab i l i t y  o f  36 md appeared t o  have a p r a c t i c a l  
i r r e d u c i b l e  l i qu id -wa te r  s a t u r a t i o n  i n  excess o f  60 percent. 
Parameters used i n  the  s imu la t ions  a r e  g iven i n  Table 2. 

F igure  4 shows the  pressure bu i l dup  a t  t h e  we l l  bottom a f t e r  
1666 h (69 days) o f  p roduc t ion  f o r  a case i n  which the  e x t e r i o r  
boundary o f  t he  b lock  (Z=H) i s  maintained a t  t h e  i n i t i a l  r e s e r v o i r  
temperature. The b lock i t s e l f  i s  cooled by vapor i za t i on  d u r i n g  
product ion b u t  i s  reheated by conduction. 
t ime has elapsed du r ing  produc t ion  f o r  temperatures i n  t h e  b lock  
and f i s s u r e  t o  have very  n e a r l y  recovered t o  the  i n i t i a l  r e s e r v o i r  
temperature. The e a r l y  t ime pressure bu i l dup  i s  due t o  t h e  f l o w  
of superheated steam. A f t e r  about one hour the  pressure has 
recovered c l o s e  t o  the  i n i t i a l  r e s e r v o i r  pressure a f t e r  which 
condensation commences. 

Because o f  

The displacement 

Computer runs were made t o  s imu la te  hypothe t ica l  cond i t i ons  
Resul ts  a r e  presented t h a t  i l l u s t r a t e  

H y d r a u l i c a l l y  connected 

This  assumption 

I n  f i g u r e  4 s u f f i c i e n t  

F igure  5 shows pressure bu i l dup  for t h ree  d i f f e r e n t  produc- 
t i o n  times us ing  t h e  same Parameters as shown i n  f i g u r e  4 b u t  
w i t h  t h e  i nne r  boundary o f  the  b lock  the rma l l y  i nsu la ted .  
considered a more r e a l  i s t i c  p o s s i b i l i t y  i n  a f i ssu red  r e s e r v o i r .  
The f i g u r e  shows a systemat ic downward progress ion o f  the  

This  i s  
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pressure b u i l d u p  curves as p r o d u c t i o n  t i m e  increases.  
4015 h (167 days) o f  p r o d u c t i o n  a l l  t h e  l i q u i d  i n  t h e  b l o c k  near  
t h e  w e l l  has vapor ized  and the b l o c k  and f i s s u r e  have coo led  t o  
t h e  p o i n t  where steam a t  t h e  w e l l  bot tom i s  o n l y  s l i g h t l y  
superheated. 
condensat ion occurs i n  t h e  f i s s u r e .  
curve  a f t e r  t h a t  i s  t h e  r e s u l t  of  condensat ion i n  bo th  t h e  
f i s s u r e  and b l o c k  and t h e  d i s s i p a t i o n  o f  l a t e n t  heat  by conduct ion.  
When t h e  same w e l l  i s  produced f o r  s h o r t e r  t imes n o t  as much 
c o o l i n g  occurs i n  t h e  b l o c k  and f i s s u r e  and consequent ly  
condensat ion occurs a t  h i g h e r  pressures.  When t h e  w e l l  i s  
produced f o r  o n l y  78 hours t h e  f i s s u r e  s t i l l  r e t a i n s  much o f  t h e  
h e a t  i t  had i n i t i a l l y  because i t  has n o t  ha& t i m e  t o  coo l  by 
conduct ion  i n t o  t h e  b lock .  
t h e  pressure  b u i l d u p  curve  e x h i b i t s  e f f e c t s  o f  superheat ing.  

A f t e r  

Consequently, a lmost  immediate ly  a f t e r  s h u t  in ,  
The shape o f  t h e  b u i l d u p  

As a consequence t h e  e a r l y  p o r t i o n  o f  

F i  u r e  6 shows pressure b u i l d u p  a f t e r  a p r o d u c t i o n  t i m e  o f  
1130 h 9 47 days) u s i n g  t h e  same c o n d i t i o n s  as i n  f i g u r e  5 except  
t h a t  t h e  t h i c k n e s s  o f  t h e  b l o c k  i s  increased and t h e  p r o d u c t i o n  
r a t e  i s  doubled. 
a f t e r  s h u t  i n  i s  due t o  t h e  f low of  superheated steam. 

The pressure  b u i l d u p  i n  t h e  f i r s t  30 minutes 

F igures  4-6 show t h e  v a r i a b l l i t y  t h a t  can be expected i n  t h e  
shape o f  pressure b u i l d u p  curves when model parameters a r e  v a r i e d .  
I t  can be i n f e r r e d  from these r e s u l t s  t h a t  t h e  degree t o  which 
v a p o r i z a t i o n  has dep le ted  t h e  l i q u i d  i n  the  b l o c k  has an i m p o r t a n t  
b e a r i n g  upon t h e  shape o f  t h e  curves. These f a c t o r s  should be 
considered when i n t e r p r e t i n g  pressure b u i l d u p  t e s t s  i n  steam 
r e s e r v o i r s .  
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Nomencl a ture 

t C 

c D  
HC 

KO 

H 
h 

K 

k 
k 
L 
M 

S 

V 

W 

pD 

Pi 
P 

9 
r 
r 
D 
W 

steam compress i b i  1 i t y  
we1 1 bore storage 
reservoir  heat capacity 
blbck ha1 f thickness 
f i s su re  ha1 f thickness 
modified Bessel function, 

2nd k i n d  , zero order 
thermal conductivity 
permeabil i t y  
ski n permea bi 1 i t y  
l a t e n t  heat of vaporization 
molecular weight of water 

k h M  
( P i 2  - P 2 )  

i n i t i a l  pressure 
pressure 
production r a t e  

well radius 
r/rw 

r 

ArS 

'i 

tD 

'i 

R 

S 

t 

Z 

a 

B 

l-lV 

PV 
4 

radial  dimension 
skin thickness 
gas constant 
i n i t i a l  l iqu id  saturat ion 
Lap1 ace transform variable 

k, t 
@ p V c  trwz 
time 
i n i t i a l  compressibil i ty 

planar dimension i n  block 
f lu id  di f fusivi  t y  
steam thermal expansivity 
steam viscosi ty  
steam densi ty  
porosity 

fac tor  

subscr ipts  
1 fissure 
2 block 
D d+merisionless 
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Appendix 

F o l l o w i n g  t h e  d i s c u s s i o n  g i v e n  b y  Moench and Atk inson (1978) t h e  
d i f f u s i v i t y  o f  t h e  steam i n  t h e  f i s s u r e  i s  g iven  by: 

k, 

and t h e  d i f f u s i v i t y  o f  t h e  s t e a m - l i q u i d  combinat ion i n  t h e  b l o c k  
i s  g i v e n  by:  

- k2 
"2 - $ 2 ~ V c t ( l + A )  (A21 

Hc dT 1 - -  B E  
c dP where A = - - 

L V  dP 42PvCt t 

Y I f  t h e r e  i s  no l i q u i d  i n  t h e  b l o c k  A=O. N e g l e c t i n g  t h e  r e l a t i v e 1  
smal l  e f f e c t s  o f  steam c o m p r e s s i b i l i t y ,  s p e c i f i c  heat,  and therma 
e x p a n s i v i t y  t h e  combinat ion o f  terms c ( l+A)  become e q u i v a l e n t  

Sorey  (1979).  They g i v e  a u s e f u l  express ion  f o r  $ B t  which i s  a 
f u n c t i o n  o f  pressure and r e s e r v o i r  heat  c a p a c i t y :  

t o  t h e  approximate t o t a l  c o m p r e s s i b i l i  E y, B t ,  g iven  by Grant  and 

where P i s  i n  bars  and Hq i s  i n  J/m3"C. 

thus appears as:  
The r a t i o  o f  d i f f u s i v i t y  i n  t h e  f i s s u r e  t o  t h a t  i n  t h e  b l o c k  

When o n l y  steam i s  p r e s e n t  B t  = c t  and f o r  t h e  parameters o f  
f i g u r e  2 t h e  r a t i o  a l / a 2  = l o 3 .  
a t  30 bars  i n i t i a l  pressure,  9pt=O. l72 b a r - 1  and t h e  r a t i o  
a1/a2 = 430X103. 

When l i q u i d  and steam c o e x i s t  
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Table 1 

Parameters used f o r  comparison of model w i t h  analyt ical  solutions* 

Hcl  
Hc2 
H 

h 

K 

kl 
k2 

'i 

0.55 cal/"C cm3 9 2.77 g / s  
0.61 cal/"C cm3 
75 cm 
10 cm 
0.0 cal/("C cm sec)  T 234°C 

16 cm 
0.0 
Q.0, 0.1 

0.1 
0.01 

rK 

'i 1 
'i 2 

10-8 cm2 91 
92 10- 12cm2 

30 bars 

Table 2 

Parameters used f o r  the pressure buildup simulations* 

c D  
Hc 1 
Hc2 
H 

h 

K 

kl 
k2 

k3 

166 
0.55 cal/"C cm3 
0.62 cal/"C cm3 
104 cm, 374 cm 
10 cm 
0.006 cal/(cm sec " C )  
10'8 cm2 
10'13 cm2 

10-7 cm2 

pi 
9 

rW 

'i 1 
'i 2 

Ar 
S 

T 

$1 

92 

30 bars 
27.7 g/s, 55.4 g/s 
16 cm 
16 cm 
0.0 

0.8 
234°C 
0.1 

0.01 

*parameters not l i s t e d  a r e  known propert ies  of water a t  
prevail i n g  temperature and  pressure. 
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Figure l a  
Conceptual model 
w i t h  porous 
blocks and fissures 

Figure l b  

Idealized fissure- 
block reservoi r 
used i n  the 
anal ys i s 

6 Figure 2 
Comparison o f  
analytical and 
numerical resu l t s  
for si ngl  e phase 

pD steam i n  block 
and f issure .  

4 

2 

0 

pD 

Figure 3 
Comparison of 
analytical and 
numerical resul ts  
w i t h  l i q u i d  and 
steam i n  the block 
and single-phase 
steam i n  f issure.  
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Figure 4 

Pressure buildup 
a t  well bottom 
u s i n g  constant 
tempera t u  r e bound- 
ary i n  the block. 

Figure 5 
Pressure buildup 
a t  well bottom 
u s i n g  thermally 
insulated boundary 
i n  the  block. 

Figure 6 
Pressure buildup 
a t  well bottom 
u s i n g  thermally 
insu la ted  boundary 
i n  the  block. 




