
Principal Investigator:	Debra A. Feakes, Associate Professor
Title:	Conference: Support of the Ninth Boron in the Americas Workshop
Grant Number:	DE-FG02-04ER63818
Project ID:	0010008
Award Register:	ER63818
Program Manager:	Prem C. Srivastava, Ph. D., Division: SC-73
Grant Amount:	\$8,750

FINAL REPORT

The Ninth Boron in the Americas Workshop was held at Texas State University – San Marcos, formerly known as Southwest Texas State University, between May 19th and May 22nd, 2004. The conference was attended by 73 researchers (see attached list of registrants), representing both academic and industrial institutions throughout the United States of America and also institutions in Canada, Mexico, England, India, Japan, and Singapore. A total of 33 oral presentations and 31 poster presentations were given.

The bulk of the support for the conference was provided through registration fees and industrial support (see attached list of industrial and other donors); however, the contributions were not sufficient to provide student travel stipends and student awards. As a result, the singular goal of the proposal which was submitted to, and funded by, the United States Department of Energy was to request funds for student travel stipends and presentation awards for the students. As a result, a significant increase in the number of student participants at the conference, compared to prior years, was realized. A total of 34 undergraduate, graduate, and post-doctoral researchers attended the conference.

Each student participant received a travel stipend, ranging in value from \$90 to \$400 depending on their distance and expense of travel. The lower end stipends covered the cost of the student registration while the higher end stipends covered the cost of the student registration as well as a portion of the additional travel expenses associated with transportation and hotel accommodations. A list of the students which received stipends, their home institution, and the amount of the stipend received is attached. The travel stipends were dispersed directly to the students, in the form of a check, at the registration desk at the beginning of the meeting. The total amount of the travel stipends was \$8,450.

A committee of three outstanding scientists, composed of Dr. Donald S. Matteson (Washington State University), Dr. R. Bruce King (University of Georgia), and Dr. Lawrence Barton (University of Missouri – St. Louis), were selected to evaluate the presentations. Awards were given in the following categories: best undergraduate presentation, best graduate oral presentation, best graduate poster presentation, best post-doctoral researcher oral presentation, and best post-doctoral researcher poster presentation.

The committee reviewed the presentations, both oral and poster, and met prior to the final banquet. At the closing ceremonies, five awards, in the amount of \$100.00, were announced. Each student award was processed through the university administrative procedure and sent as a check to the individual students at their permanent address. The total amount for the awards was \$500. A portion of the travel awards, \$200, was allotted from the conference funds in order to cover the total expense (\$8,950 as opposed to the award of \$8,750). As a result, there is no remaining balance in the grant account.

The abstract book for the conference has been sent under separate cover to Dr. Srivastava.

LIST OF REGISTRANTS

1. Prof. Lawrence Barton, University of Missouri-St. Louis
2. Dr. Narayan Bhat, The University of Texas-Pan American
3. Prof. Mark Bradley, Widener University
4. Prof. Vladimir Bregadze, A.N.Nesmeyanov Institute of Organoelement Compounds
5. Mr. Robert Butterick III, University of Pennsylvania
6. Mr. Jude Clapper, University of Pennsylvania
7. Prof. Rosalinda Contreras, Centro de Investigaciones y de Estudios Avanzados
8. Mr. Gang Dong, University of Tennessee
9. Mr. Jemmis Eluvathingal, University of Hyderabad
10. Dr. Ludvig Eriksson, University of Colorado, Boulder
11. Miss Adriana Esparza Ruiz, Centro de Investigaciones y de Estudios Avanzados
12. Dr. Debra A. Feakes, Texas State University - San Marcos
13. Prof. Thomas P. Fehlner, University of Notre Dame
14. Mr. Matthew Fete, University of Colorado
15. Mr. Matthew Fischer, Saint Louis University
16. Prof. Angelina Flores-Parra, Centro de Investigacion y de Estudios Avanzados
17. Dr. Sundargopal Ghosh, University of Notre Dame
18. Dr. Ewan Hamilton, The Ohio State University at Lima
19. Dr. Bruce Hodson, Baylor University
20. Prof. Narayan Hosmane, Northern Illinois University
21. Dr. Paul A. Jelliss, Saint Louis University
22. Dr. Gary Jialanella, Dow Automotive
23. Dr. Kanth Josyula, Aldrich Chemicals Inc.
24. Prof. George Kabalka, University of Tennessee
25. Prof. Steve Kahl, University of California, San Francisco
26. Prof. R. Bruce King, University of Georgia
27. Ms. Arienne King, McMaster University
28. Dr. Goji Kodama, University of Utah
29. Mr. Upal Kusari, University of Pennsylvania
30. Dr. Magdalena Kvicalova, University of Colorado at Boulder
31. Prof. Clint Lane, Northern Arizona University
32. Mr. Mark Lee, University of California – Los Angeles
33. Dr. Peng Lei, Baylor University
34. Ms. Yuqi Li, University of Pennsylvania
35. Dr. Xulian Lu, Baylor University
36. Dr. Ling Ma, University of California – Los Angeles
37. Dr. Ramon Macias-Maza, University of Notre Dame
38. Prof. John Maguire, Southern Methodist University
39. Mrs. Maria Liliana Marin, CINVESTAV
40. Dr. Karl Matos, BASF Corporation
41. Prof. Donald Matteson, Washington State University
42. Dr. Tom McGrath, Baylor University
43. Mr. W. Jeff McVey, Texas State University - San Marcos

44. Mrs. Michelle Motley, Texas State University - San Marcos
45. Dr. Suresh Murugesan, Texas State University – San Marcos
46. Mr. Abhijit Naravane, University of Tennessee
47. Mr. Brian Newell, Texas State University - San Marcos
48. Mr. Justin Orlando, Saint Louis Department of Chemistry
49. Prof. Robert Paine, Department of Chemistry
50. Mr. Matt Parrot, McMaster University
51. Prof. Robert Parry, University of Utah
52. Prof. P.V. Ramachandran, Purdue University
53. Dr. Angel Ramos-Organillo, Cinvestav-IPN and University of Colima Mexico
54. Mr. Peter Schreiber, Department of Chemistry & Biochemistry
55. Dr. David Schubert, U.S. Borax Inc.
56. Prof. Don Seo, Arizona State University
57. Professor Sheldon Shore, The Ohio State University
58. Ms. Jacqueline Smits, Texas State University – San Marcos
59. Prof. John Soderquist, University of Puerto Rico
60. Mr. Bola Sogbein, McMaster University
61. Dr. Bernard Spielvogel, BoroScience Canada
62. Prof. Gordon Stone, Baylor University
63. Prof. Takagaki, Aino College Hospital
64. Dr. Ken Sukcharoenphon, Baylor University
65. Prof. Lee Todd, Gosport Scientific
66. Ms. Brandy Underwood, University of Tennessee at Knoxville, Chemistry
67. Dr. John Valliant, McMaster University
68. Dr. Reddy Venumbaka, Texas State University-San Marcos
69. Ms. Mandana Visi, U.S. Borax
70. Dr. Kamesh Vyakaranam, University of Colorado at Boulder
71. Prof. Alan Welch, Heriot-Watt University
72. Dr. Andrew Weller, University of Bath
73. Dr. Ying Huai Zhu, Institute of Chemical and Engineering Sciences Ltd.

LIST OF INDUSTRIAL AND OTHER DONORS

U.S. Borax, Inc.

BASF

Texas State University – San Marcos, Department of Chemistry and Biochemistry

Texas State University – San Marcos, Office of Sponsored Programs

Aldrich Chemical Company

Central Texas Local Section of the American Chemical Society

Texas State University – San Marcos, College of Science

Dow Automotive

Voltaix, Inc.

SB Boron

McGraw-Hill Publishing Company

e-Instruction

Texas State University – San Marcos, Institute of Environmental and Industrial Studies

BoroScience Canada

ChemGlass Scientific Apparatus

STUDENT STIPENDS

<i>Name</i>	<i>Home Institution</i>	<i>Amount</i>
Robert Butterick III	University of Pennsylvania	\$300.00
Jude Clapper	University of Pennsylvania	\$300.00
Gang Dong	University of Tennessee at Knoxville	\$300.00
Ludvig Eriksson	University of Colorado at Boulder	\$250.00
Adriana Esparza-Ruiz	Centro de Investigaciones y de Estudios Avanzados	\$400.00
Matthew G. Fete	University of Colorado at Boulder	\$250.00
Sundargopal Ghosh	University of Notre Dame	\$300.00
Brude E. Hodson	Baylor University	\$150.00
Arienne King	McMaster University	\$350.00
Upal Kusari	University of Pennsylvania	\$300.00
Magdalena Kvicalova	University of Colorado at Boulder	\$250.00
Mark W. Lee	University of California at Los Angeles	\$275.00
Peng Lei	Baylor University	\$150.00
Yuqi Li	University of Pennsylvania	\$300.00
Xiu Lian Lu	Baylor University	\$150.00
Ling Ma	University of California at Los Angeles	\$275.00
Ramon Macias-Maza	University of Notre Dame	\$300.00
Maria Liliana Marin	Centro de Investigaciones y de Estudios Avanzados	\$400.00
Thomas McGrath	Baylor University	\$150.00
William Jefferson McVey	Texas State University at San Marcos	\$90.00
Denise Michelle Motley	Texas State University at San Marcos	\$90.00
Suresh Murugesan	Texas State University at San Marcos	\$90.00
Abhijit Naravane	University of Tennessee at Knoxville	\$300.00
Brian Newell	Texas State University at San Marcos	\$90.00
Justin Orlando	University of Missouri at St. Louis	\$250.00
Matthew C. Parrott	McMaster University	\$350.00
Angel Ramos-Organillo	Centro de Investigaciones y de Estudios Avanzados	\$400.00
Peter Schreiber	University of Colorado at Boulder	\$250.00
Jacqueline Smits	Texas State University at San Marcos	\$90.00
Bola O. Sogbein	McMaster University	\$350.00
Kengkaj Sukcharoenphon	Baylor University	\$150.00
Kamesh Vyakaranam	University of Colorado at Boulder	\$250.00
Brandy Underwood	University of Tennessee at Knoxville	\$300.00
Matthew Fischer	University of Missouri at St. Louis	\$250.00
	TOTAL	\$8,450.00

PRESENTATION AWARDS

<i>Name</i>	<i>Home Institution</i>	<i>Amount</i>
Matthew G. Fete	University of Colorado at Boulder	\$100.00
Ling Ma	University of California at Los Angeles	\$100.00
Brian Newell	Texas State University at San Marcos	\$100.00
Bola O. Sogbein	McMaster University	\$100.00
Kengkaj Sukcharoenphon	Baylor University	\$100.00
	TOTAL	\$500.00
	TOTAL OF BOTH STIPENDS AND AWARDS	\$8,950.00

Program and Abstracts

Boron in the Americas IX Workshop
May 19-22, 2004
Texas State University – San Marcos
San Marcos, TX

Table of Contents

Acknowledgement of Financial Support	2
Advisory and Local Organizing Committees	3
Past Conferences.....	4
Program Schedule.....	5
Oral Program	8
Poster Program.....	14
Abstracts of Oral Presentations	18
Abstracts of Poster Presentations.....	51
Participant Contact Information	83
Author Index.....	91

Acknowledgement of Financial Support

Generous financial support for the workshop and student travel stipends has been provided by the following companies or groups.
We are extremely grateful for their contributions.

Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-04ER63818

U. S. Borax Inc.

BASF

Texas State University, Department of Chemistry and Biochemistry

Texas State University, Office of Sponsored Program

Aldrich Chemical Company

Central Texas Local Section of the American Chemical Society

Texas State University – College of Science

Dow Automotive

Voltaix, Inc.

SB Boron

McGraw-Hill Publishing Company

e-Instruction

Texas State University, Institute of Environmental and Industrial Studies

BoroScience Canada

ChemGlass Scientific Apparatus

Boron in the Americas National Advisory Committee

Chairman – Prof. Sheldon Shore

Dr. Edwin Austin
Prof. Lawrence Barton
Prof. *emeritus* Herbert C. Brown
Prof. Rosalinda Contreras
Beth Dryden
Prof. Thomas Fehlner
Prof. *emeritus* Donald Gaines
Prof. Russell Grimes
Prof. M. Frederick Hawthorne
Prof. Narayan Hosmane
Prof. George Kabalka
Prof. R. Bruce King
Prof. *emeritus* Goji Kodama
Dr. Clint Lane
Prof. *emeritus* William Lipscomb
Prof. Donald Matteson
Prof. Robert Paine
Prof. *emeritus* Robert Parry
Dr. David Schubert
Prof. Larry Sneddon
Prof. *emeritus* Albert Soloway
Prof. James Spencer
Dr. Bernard Spielvogel
Prof. F. Gordon A. Stone
Prof. *emeritus* Lee Todd
Prof. *emeritus* Robert Williams

Ohio State University

Aldrich Chemical Company
University of Missouri – St. Louis
Purdue University
CINVESTAV-IPN, Mexico
BASF
University of Notre Dame
University of Wisconsin – Madison
University of Virginia – Charlottesville
University of California – Los Angeles
Northern Illinois University
University of Tennessee – Knoxville
University of Georgia – Athens
University of Utah
retired, Aldrich Chemical Company
Harvard University
Washington State University
University of New Mexico
University of Utah
U.S. Borax, Inc.
University of Pennsylvania
Ohio State University
Syracuse University
BoroScience Canada
Baylor University
University of Indiana
Loker Hydrocarbon Research Institute of the
University of Southern California

Boron in the Americas IX Local Organizing Committee

Dr. Debra A. Feakes
Mr. Alejandro Martinez
Mr. W. Jeff McVey
Mrs. Georgia Teague
Ms. Valerie Creveling
Mr. John Powell

Past Conferences

Boron USA I	Dallas, Texas – 1988 <i>Host:</i> Prof. Narayan Hosmane
Boron USA II	Raleigh-Durham, North Carolina – 1990 <i>Host:</i> Dr. Bernard Spielvogel
Boron USA III	Pullman, Washington – 1992 <i>Host:</i> Prof. Donald Matteson
Boron USA IV	Syracuse, New York – 1994 <i>Host:</i> Prof. James Spencer
Boron USA V (BUSA-MEXV)	Guanajuato, Mexico – 1996 <i>Host:</i> Prof. Rosalinda Contreras
Boron USA VI	Athens, Georgia – 1998 <i>Host:</i> Prof. R. Bruce King
Boron USA VII	Pittsburgh, Pennsylvania – 2000 <i>Host:</i> Dr. Joseph M. Barendt
Boron in the Americas VIII	Furnace Creek, California – 2002 <i>Host:</i> Dr. David Schubert

The advisory committee voted to change the name from Boron USA to Boron in the Americas at the conference held in Pittsburgh in June, 2000.

Boron in the Americas IX Program Schedule

Wednesday, May 19, 2004

All Day	Participants are picked up either at Austin or San Antonio
1:00 – 6:00 pm	Registration/Check-In Hampton Inn Conference Room
6:30 – 8:30 pm	Mixer at Aquarena Springs (participants will be picked up at the hotels, beginning at 6:00 pm, buses will run continuously from 6:00 pm until 9:00 pm)

Thursday, May 20, 2004

7:30 am	Participants will be picked up at the hotel and transported to the conference site
8:00 – 8:30 am	Registration and Continental Breakfast Foyer outside of Centennial Hall 157
8:30 – 9:00 am	Opening Remarks
9:00 – 10:00 am	Oral Presentations (O1-O2)
10:00 – 10:30 am	Morning Break
10:30 am – 12:00 pm	Oral Presentations (O3-O5)
12:00 – 1:30 pm	Lunch The Den
1:30 – 3:00 pm	Oral Presentations (O6-O8)
3:00 – 3:30 pm	Afternoon Break
3:30 – 5:00 pm	Oral Presentations (O9-O11)
6:00 – 9:00 pm	Poster Session and Dinner LBJ Student Center Ballroom (Buses will provide transportation to the hotels starting at 7:30 pm and ending at 10:00 pm)

Friday, May 21, 2004

7:30 am	Participants will be picked up at the hotel and transported to the conference site
8:00 – 8:30 am	Continental Breakfast Foyer outside of Centennial Hall 157
8:30 – 10:00 am	Oral Presentations (O12-O14)
10:00 – 10:30 am	Morning Break
10:30 am – 12:00 pm	Oral Presentations (O15-O17)
12:00 – 1:30 pm	Lunch The Den
1:30 – 3:30 pm	Oral Presentations (O18-O21)
3:30 – 10:00 pm	Group Activity, Texas Flagship (buses will pick up participants outside of Centennial Hall)

Saturday, May 22, 2004

7:30 am	Participants will be picked up at the hotel and transported to the conference site
8:00 – 8:30 am	Continental Breakfast Foyer outside of Centennial Hall 157
8:30 – 10:00 am	Oral Presentations (O22-O24)
10:00 – 10:30 am	Morning Break
10:30 am – 12:00 pm	Oral Presentations (O25-O27)
12:00 – 1:30 pm	Lunch The Den
1:30 – 3:00 pm	Oral Presentations (O28-O30)
3:00 – 3:30 pm	Afternoon Break
3:30 – 5:00 pm	Oral Presentations (O31-O33)

6:00 – 9:00 pm

Closing Banquet

J.C. Kellum Building, 11th Floor (Buses will take the participants to the hotel and back after the close of the meeting)

Sunday, May 23, 2004

All Day

Participants are taken to Austin or San Antonio for departure

Boron in the Americas IX Oral Program

Thursday Morning, May 20, 2004

8:00 – 8:30 am *Registration and Continental Breakfast*

8:30 – 9:00 am *Opening Remarks*

Chairpersons: Dra. Rosalinda Contreras and Dr. David Schubert

9:00 – 9:30 am O1 **Mark W. Lee** and M. F. Hawthorne
“Boron-Rich Oligomeric Phosphate Diesters With Applications in BNCT and Drug Delivery”

Abstract on Page 19

9:30 – 10:00 am O2 **Jude Clapper** and Larry G. Sneddon
“Syntheses and Structural Studies of 10-Vertex Siladicarbaboranes and the First Silamonocarbaboranes”

Abstract on Page 20

10:00 – 10:30 am *Morning Break*

10:30 – 11:00 am O3 Michael Ingleson, Nathan Patmore, and **Andrew Weller**
“Catching “Greasy Balls”: Transition Metal Chemistry of Highly Methylated Carborane Anions”

Abstract on Page 21

11:00 – 11:30 am O4 **Eluvathingal D. Jemmis**
“Hückel, Wade’s, and Jemmis Rules”

Abstract on Page 22

11:30 am – 12:00 pm O5 **A. S. King**, T. Brenstru, J. F. Britten, G. Ferguson, A. Capretta, and J. F. Valliant
“The Synthesis of Sterically Hindered and Robust Carboranyl-Pnictogen Ligands for Coordination Chemistry and Catalysis”

Abstract on Page 23

Thursday Afternoon, May 20, 2004

Chairpersons: Dr. Thomas Fehlner and Dr. Goji Kodama

1:30 – 2:00 pm	O6	Ewan J. M. Hamilton , Roman G. Kultyshev, Bin Du, Edward A. Meyers, Shengming Liu, and Sheldon G. Shore “A π -Stacking Interaction in the n -B ₁₈ H ₂₂ -Benzene System” Abstract on Page 24
2:00 – 2:30 pm	O7	Masao Takagaki , Narayan S. Hosmane, Takeo Tsuruta, and Yoshori Yamamoto “Preliminary Study on Gadolinium Neutron Capture Therapy” Abstract on Page 25
2:30 – 3:00 pm	O8	Vladimir I. Bregadze , Irina P. Beletskaya, Sergey N. Osipov, Pavel V. Petrovskii, Zoya A. Starikova, and Sergey V. Timofeev “New α -Amino Acid Derivatives with Carboranyl Fragments in α - and β -Positions” Abstract on Page 26
3:00 – 3:30 pm		<i>Afternoon Break</i>
3:30 – 4:00 pm	O9	David M. Schubert “Chemistry of Crystalline Hydrated Zinc Borates” Abstract on Page 27
4:00 – 4:30 pm	O10	Upal Kusari , Yuqi Li, Mark G. Bradley, and Larry G. Sneddon “Polyborane Reactions in Ionic Liquids. Facile Syntheses of Functionalized Decaboranes and <i>ortho</i> -Carboranes” Abstract on Page 28
4:30 – 5:00 pm	O11	Dong-Kyun Seo , Li-Ming Wu, Nora Iancu, and Qiangbin Wang “New Synthetic Methodologies for Bulk/Nanostructured Metal Chalcogenides: Utilization of New Boron Chalcogenide Chemistry” Abstract on Page 29

Friday Morning, May 21, 2004

8:00 – 8:30 am		<i>Continental Breakfast</i>
<i>Chairpersons: Dr. Clint Lane and Dr. John Soderquist</i>		
8:30 – 9:00 am	O12	P. Veeraraghavan Ramachandran “Synthesis of Amino Acids via Organoboranes” Abstract on Page 30
9:00 – 9:30 am	O13	Zhu Yinghuai , Narayan S. Hosmane, and John A. Maguire “An Effective Asymmetric Alkylation System of Aldimines with Diethylzinc: Mixed Ionic Liquids of [N-Pentylpyridium][1-Methoxymethyl- <i>clos</i> -CB ₁₁ H ₁₁] and 1-Butyl-3-methylimidazolium Hexafluorophosphate” Abstract on Page 31
9:30 – 10:00 am	O14	Ling Ma and M. F. Hawthorne “Camouflaged Carborane Amphiphiles: Synthesis and Self-Assembly” Abstract on Page 32
10:00 – 10:30 am		<i>Morning Break</i>
10:30 – 11:00 am	O15	Eda Canales, Eliud Hernandez, and John A. Soderquist “Asymmetric Allylboration with 10-Substituted 9-BBDs: Homoallylic Amines from <i>N</i> -TMS Aryl Aldimines and, for the First Time, Aryl and Alkyl <i>N</i> -TMS-Ketimines” Abstract on Page 33
11:00 – 11:30 am	O16	Tomoko Ozawa, Raquel A. Santos, Myoung-Seo Koo, Stephen B. Kahl , and Dennis F. Deen “Convection Enhanced Delivery of a Boronated Porphyrin to Intracerebral Human Glioblastoma Xenografts in Athymic Rats” Abstract on Page 34
11:30 am – 12:00 pm	O17	G. W. Kabalka and A. R. Mereddy “Facile Syntheses of Organic Halides Using Organotrifluoroborates” Abstract on Page 35

Friday Afternoon, May 21, 2004

Chairpersons: Dr. Lawrence Barton and Dr. George W. Kabalka

- | | | |
|----------------|-----|---|
| 1:30 – 2:00 pm | O18 | Shaowu Du, Bruce Hodson, Jason Kautz, Xiu Lian Lu, Thomas McGrath , and F. Gordon A. Stone
“Building Butterflies on a Rhenium-Monocarborene Substrate”
Abstract on Page 36 |
| 2:00 – 2:30 pm | O19 | Brian Newell and Debra A. Feakes
“An Investigation of Nucleophilic Attack on the $[n\text{-B}_{20}\text{H}_{18}]^{2-}$ Anion”
Abstract on Page 37 |
| 2:30 – 3:00 pm | O20 | J. F. Valliant , O. O. Sogbein, P. Merdy, K. A. Stephenson, and A. Green
“The Synthesis of Tc(I) and Re(I) Carborene Complexes and the Development of Organometallic Radiopharmaceuticals”
Abstract on Page 38 |
| 3:00 – 3:30 pm | O21 | Kamesh Vyakaranam , Stefanie Koebe, Hana Divisová, and Josef Michl
“The Possible Role of the Carbonium Ylide $\text{C}(+)\text{B}_{11}\text{Me}_{11}(-)$ as a Reaction Intermediate”
Abstract on Page 39 |

Saturday Morning, May 22, 2004

8:00 – 8:30 am *Continental Breakfast*

Chairpersons: Dr. Bernard Spielvogel and Dr. Andrew Weller

- 8:30 – 9:00 am O22 **Ludvig Eriksson** and Josef Michl
“The Synthesis of Permethylated 1-Vinyl and 1-Ethynyl CB_{11}^- Anions”
Abstract on Page 40
- 9:00 – 9:30 am O23 **Ling Ma** and M. F. Hawthorne
“Closomers of High Boron Content: Synthesis, Characterization, and Potential Application as Unimolecular Nanoparticle Delivery Vehicles for BNCT”
Abstract on Page 41
- 9:30 – 10:00 am O24 **Ramón Macías**, Thomas P. Fehlner, and Alicia M. Beatty
“Chemistry of [1-Cp*-1-H-*arachno*-1-IrB₄H₉]: Reactions with Lewis Bases, Bromine, and [η^6 -(1,2-(CH₃)₂-C₆H₄)Mo(CO)₃]”
Abstract on Page 42
- 10:00 – 10:30 am *Morning Break*
- 10:30 – 11:00 am O25 **Matthew G. Fete** and Josef Michl
“1-H-2,3,4,5,6-F₅(CF₃)₆CB₁₁(-) and 1-H-(CF₃)₁₁CB₁₁(-): New Trifluoromethylated Carborane Anions”
Abstract on Page 43
- 11:00 – 11:30 am O26 Ruaraidh McIntosh, David Ellis, Georgina M. Rosair, and **Alan J. Welch**
“Unanticipated Expansion of a 12-Vertex Molybdacarborane”
Abstract on Page 44
- 11:30 am – 12:00 pm O27 Matthew Fischer, **Paul A. Jellis**, Justin L. Mason, Jamie M. Nazzoli, Justin H. Orlando, and Lisa M. Phifer
“Electrochemical and Spectroscopic Study of Ruthena- and Rhenacarborane Complexes”
Abstract on Page 45

Saturday Afternoon, May 22, 2004

Chairpersons: Dr. Stephen Kahl and Dr. Thomas McGrath

1:30 – 2:00 pm	O28	R. Bruce King “Cyclopentadienylmetal Vertices in Polyhedral Boranes: Geometry and Chemical Bonding” Abstract on Page 46
2:00 – 2:30 pm	O29	Rhodri L. Thomas, Mitsuhiro Hata, Nigam P. Rath, Grainne Biddlecombe, and Lawrence Barton “Formation Group 4 Transition Metal Derivatives of Small Boranes and Novel Borane Coupling Reactions” Abstract on Page 47
2:30 – 3:00 pm	O30	Donald S. Matteson “Conversion of Alkylboronic Esters Alkyldichloroboranes” Abstract on Page 48
3:00 – 3:30 pm		<i>Afternoon Break</i>
3:30 – 4:00 pm	O31	Sundargopal Ghosh , Bruce C. Noll, and Thomas P. Fehlner “Metal-Carbonyl Promoted Direct Synthesis of Novel Decametallaborane System: <i>Exo-Nido</i> -(η^5 -C ₅ Me ₅ Ru) ₂ B ₁₀ H ₁₆ and <i>Nido</i> -(η^5 -C ₅ Me ₅ Ru) ₂ B ₁₀ H ₁₆ ” Abstract on Page 49
4:00 – 4:30 pm	O32	Angel Ramos-Organillo , Angelina Flores-Parra, and Rosalinda Contreras “NMR Study and In Solid State of Coordinating Behaviour of 2-Substituted Benzimidazole Compounds” Abstract on Page 50

Boron in the Americas IX Poster Program

Thursday Evening, May 20, 2004
LBJ Student Center Ballroom, 6:00 – 9:00 pm

- P1 **Peng Lei**, Thomas D. McGrath, and F. Gordon A. Stone
“Synthesis and Structure of the Novel and Zero-Valent Di-Molybdenum-Carborane Trianion $[1,3,6-\{\text{Mo}(\text{CO})_3\}-3,6-(\mu-\text{H})_2-1,1,1-(\text{CO}_3)_2-\text{Ph}-\text{closo}-1,2-\text{MoCB}_9\text{H}_7]^{3-}$ and its Reactivity by Substitution and Oxidation”
Abstract on Page 52
- P2 Matthew Fischer, Paul A. Jelliss, Justin L. Mason, **Justin H. Orlando**, and Keith Wampler
“Preliminary Investigations Into the Photophysics and Electrochemistry of $[3,3-(\text{CO})_2-3-\text{NO}-\text{closo}-3,1,2-\text{ReC}_2\text{B}_9\text{H}_{11}]$ ”
Abstract on Page 53
- P3 **Adriana Esparza-Ruiz**, Julio Hernández-Díaz, Fabiola Téllez, Angelina Flores-Parra, and Rosalinda Contreras
“New Boron Heterocycles Derived from Benzimidazole, Benzotriazole, and Benzothiazole”
Abstract on Page 54
- P4 **Magdalena Kvícalová**, Brook McConnell, Hana Divisová, and Josef Michl
“Preparation of C-Functionalized Derivatives of $\text{CB}_{11}\text{H}_{12}^-$ ”
Abstract on Page 55
- P5 M. -L. Yao, **A. Naravane**, and G. W. Kabalka
“Synthesis of 1-Amino-3-[(Dihydroxyboryl)Ethyl]-Cyclobutanecarboxylic Acid as a Potential Boron Neutron Capture Therapy Agent”
Abstract on Page 56
- P6 Nicolas Merle, Christopher G. Frost, Michael C. Willis, and **Andrew S. Weller**
“Transition Metal Complexes of Chelating Phosphine Boranes”
Abstract on Page 57
- P7 **Kanth V. B. Josyula**, Peng Gao, and Chris Hewitt
“Dichloroborane-Dioxane: An Exceptional Reagent for the Preparation of Alkenyl- and Alkylboronic Acids”
Abstract on Page 58

- P8 **Kengkaj Sukcharoenphon**, Thomas D. McGrath, and F. Gordon A. Stone
“Synthesis and Derivatization of Charge-Compensated Triruthenamonocarborane Complexes Containing Thioethers $[\text{Ru}_3(\text{CO})_8(\mu^3\text{-}\eta^5\text{-7-L-CB}_{10}\text{H}_{10})]$ (L = SMe₂, SC₄H₈)”
Abstract on Page 59
- P9 **Matt Fischer**, Paul A. Jellis, and Lisa Phifer
“Synthesis of Bimetallic Metallocarboranes with Chromophoric Chelating Ligands and the Study of their Spectroscopic Properties”
Abstract on Page 60
- P10 **María Liliana Marín** and Rosalinda Contreras
“Boron-Phosphorus and Boron-Nitrogen Adducts BX₃ER₃ (E = P, N; R = Cl, F or H) Derived from *o*-Methoxyphenylphosphines and *o*-Methoxyphenylamine”
Abstract on Page 61
- P11 **Yuqi Li**, Mark G. Bradley, Patrick J. Carroll, and Larry G. Sneddon
“Polyborane Reactions in Ionic Liquids. A New Efficient Route to *o*-Carboranes”
Abstract on Page 62
- P12 **G. Dong**, B. Venkataiah, and G. W. Kabalka
“Syntheses of 4-(1-Alkynyl)-2(5H)-Furanones and Coumarins via the Palladium-Catalyzed Cross-Coupling Reactions of Potassium Alkynyltrifluoroborates”
Abstract on Page 63
- P13 G. L. Wood, J. F. Janik, **R. T. Paine**, D. M. Schubert, and M. Z. Visi
“Borates as Solid State Materials Precursors”
Abstract on Page 64
- P14 **Bruce E. Hodson**, Thomas D. McGrath, and F. Gordon A. Stone
“Supraicosahedral Nichelacarbaboranes Bearing Exopolyhedral Metal Fragments”
Abstract on Page 65
- P15 Xiaolan Wei, Patrick J. Carroll, and Larry G. Sneddon
“Ruthenium Carbene Catalyzed Cross Metathesis (CM) and Ring Closing Metathesis (RCM) of Decaborane and *o*-Carborane Based Olefines”
Abstract on Page 66

- P16 **Suresh Murugesan**, Chano Morin, and Sreenivasalu R. Venumbaka
“Boron Oxide Filled Polycarbonate for Fire Resistant Applications”
Abstract on Page 67
- P17 **O. O. Sogbein**, P. Merdy, A. Green, B. D. Healy, R. Schibli, and J. F. Valliant
“The Synthesis, Bioconjugation and Preliminary Biodistribution Studies of Tc-Metallocarboranes”
Abstract on Page 68
- P18 **Jaroslav Kvicala**, Magdalena Kvicalova, and Josef Michl
“Reaction of $\text{HCB}_{11}\text{Me}_{11}^{\bullet}$ and $\text{CB}_{11}\text{Me}_{12}^{\bullet}$ Radicals with Disilanes”
Abstract on Page 69
- P19 Jungsu Park, Errun King, Xeunian Chen, Fabrice Lacroix, Fiu-Chen Liu, Shengming Liu, Xianlong Ge, William Starnes, Jr., and **Sheldon Shore**
“Metalla-Organohydroborates as Potential Precursors for the Catalysis of Olefin Polymerization”
Abstract on Page 70
- P20 **Upal Kusari** and Larry G. Sneddon
“Template-Directed Synthesis of Nanoporous Boron Carbide and Boron Nitride Ceramics”
Abstract on Page 71
- P21 **Mandana Z. Visi**, David M. Schubert, and Carolyn B. Knobler
“Borate Derivatives of Diamines”
Abstract on Page 72
- P22 **A. L. Smith**, M. Akula, and G. W. Kabalka
“Radiolabeled Anabaseine Derivatives for Use in the Early Detection of Lung Cancer”
Abstract on Page 73
- P23 **Bernard F. Spielvogel** and David Badger
“A Tribute To The Life of Roy M. Adams”
Abstract on Page 74
- P24 **B. Underwood** and G. W. Kabalka
“Boronated Analogues of Cox II Inhibitors as Potential BNCT Agents”

Abstract on Page 75

- P25 **Narayan G. Bhat** and Vanessa L. Perez
“A Facie Reaction of α -Bromo-(Z)-1-Alkenylboronate Esters with Trimethylgermyllithium. New Access to Alkyl Trimethylgermyl Ketones”
Abstract on Page 76
- P26 **Jacqueline Smits**, Colby C. Tate, and Debra A. Feakes
“Preparation of Carborane-Containing Cholesterol Derivatives for Potential Application in BNCT”
Abstract on Page 77
- P27 **Robert Butterick III**, Ayman Nafady, William E. Geiger, Patrick J. Carroll, and Larry G. Sneddon
“Syntheses and Properties of Half-Sandwich Metallatricarbaboranyl Complexes”
Abstract on Page 78
- P28 Mitsuhiro Hata, Jason A. Kautz, **Xiu Lian Lu**, Thomas D. McGrath, and F. Gordon A. Stone
“Reactivity of $[\text{PPN}][3,3,3-(\text{CO})_3-1,2-\text{Me}_2-\text{closo-}3,1,2-\text{MnC}_2\text{B}_9\text{H}_9]$ and its Derivatives with Electrophiles”
Abstract on Page 79
- P29 **Peter Schreiber** and Josef Michl
“Synthesis of a Polyalkene Carrying Multiple 2,2,2-Trifluoroethylated Icosahedral Carborate Anions”
Abstract on Page 80
- P30 **D. Michelle Motley**, W. Jefferson McVey, and Debra A. Feakes
“Evaluation of the Binding of Polyhedral Borane Anions with Albumins and Simple Amino Acids”
Abstract on Page 81
- P31 **M. C. Parrott**, J. F. Valliant, and A. Adronov
“Carborane Containing Dendrimers for Drug Delivery”
Abstract on Page 82

Abstracts of

ORAL

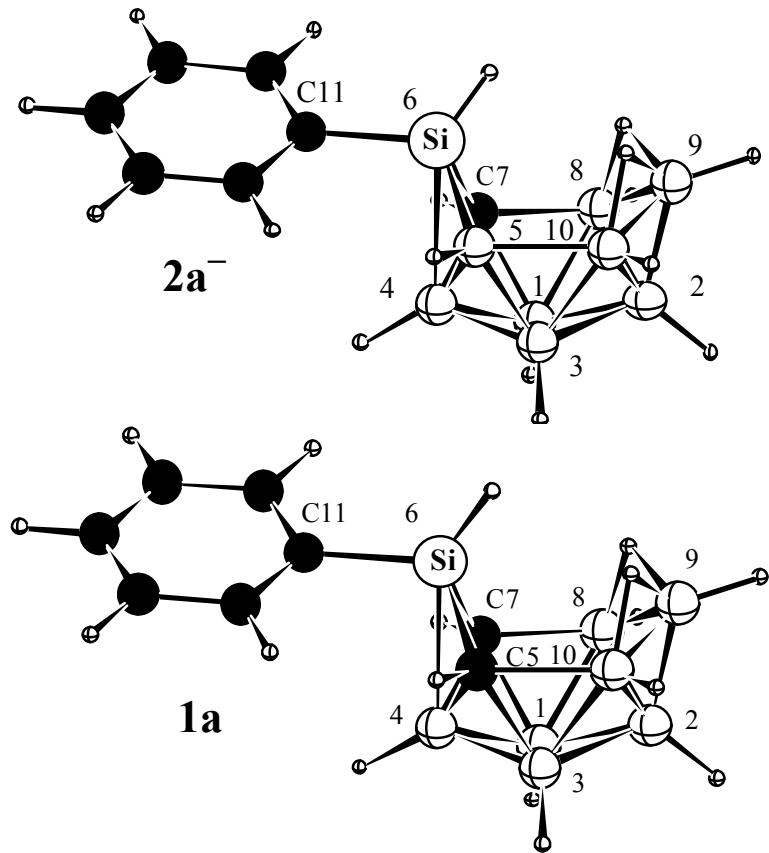
Presentations

**BORON-RICH OLIGOMERIC PHOSPHATE DIESTERS WITH APPLICATIONS
IN BNCT AND DRUG DELIVERY**

Mark W Lee*, M.F. Hawthorne

Department of Chemistry and Biochemistry, University of California, Los Angeles
Los Angeles, California, 90095

Boron-rich oligomeric phosphate diesters (OPDs) are potential agents for use in boron neutron capture therapy. Furthermore, recent in vitro studies have suggested that OPDs might find application in the delivery of drugs whose site of action lies within the cell nucleus. Here we describe the large scale, solution phase synthesis of OPDs as well as the results of in vitro tumor uptake studies.


**SYNTHESES AND STRUCTURAL STUDIES OF 10-VERTEX
SILADICARBABORANES AND THE FIRST SILAMONOCARBABORANES**

Jude Clapper* and Larry G. Sneddon

Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323

judeclap@sas.upenn.edu, lsneddon@sas.upenn.edu

The first 10-vertex siladicarbaboranes, 6-R-*arachno*-6,5,7-SiC₂B₇H₁₂ (R = Ph, **1a** or Me, **1b**) and silamonocarbaboranes, PSH⁺(6-R-*arachno*-6,7-SiCB₈H₁₂⁻) (R = Ph, **2a**⁻ or Me, **2b**⁻) have been synthesized via the proton sponge initiated *in situ* dehydrohalogenation reactions of *arachno*-4,6-C₂B₇H₁₃ and *arachno*-4-CB₈H₁₄ carbaboranes with RSiHCl₂ (R = Ph or Me). DFT/GIAO computations have confirmed that **1** and **2** have *arachno* cage frameworks based on an icosahedron missing two adjacent vertices. In both compounds the silicon and carbon atoms are located in adjacent positions on the open six-membered face.

DFT optimized geometries for *exo*-6-Ph-*arachno*-5,6,7-SiC₂B₇H₁₂ (**1a**) and *exo*-6-Ph-*arachno*-6,7-PCB₈H₁₂⁻ (**2a**⁻) at the B3LYP/6-311G* level.

HÜCKEL, WADE'S AND JEMMIS RULES

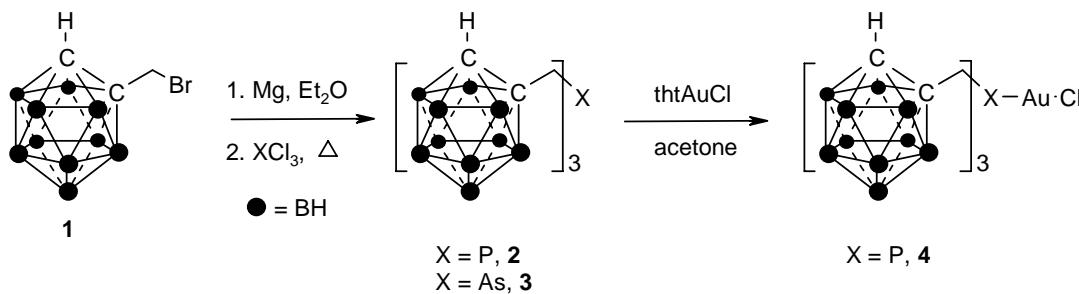
Eluvathingal D. Jemmis

School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
Email: jemmis@uohyd.ernet.in URL: <http://202.41.85.161/~jemmis/>

Electron Counting Rules have played a central role in the development of modern chemistry. The first benefits of Quantum Mechanics in Organic Chemistry came in the form of Hückel $4n+2$ \square electron Rule applicable to cyclic planar conjugated systems. The Hückel Rule provided a structural link between benzenoid aromatics and graphite. Pyramidal carbocations and polyhedral boranes provided the initial connection between 2- and 3- Dimensional Aromaticity. Based on many observations in polyhedral borane chemistry, Wade established the $n+1$ skeletal electron pair rule for polyhedral boranes. Unlike benzenoid aromatics where the condensation is usually by edge-sharing, there are several ways of condensing polyhedral boranes. These include edge-sharing, triangular face sharing, four atom sharing, and single atom sharing. A new electron counting rule,^{1,2} that is applicable for any type of condensation of polyhedral boranes, will be presented. According to this, condensed structures with $m+n+o$ skeletal electron pairs are more stable (m = # of polyhedra, n = # of vertices, and o = # of single-atom bridges). Using the *closo*-, *nido*-, and *arachno*- descriptions familiar in the chemistry of boranes, this electron counting rule can be applied to metallocenes, metallaboranes and any of their combinations.³ When restricted to 2-dimensional edge-sharing, the mno Rule reduces to the Hückel $4n+2$ Rule. A connection between polyhedral boranes and elemental boron, analogous to the benzene–graphite relation, evolves out of this rule.^{1b} Application of these ideas^{3,3} to boranes, metallaboranes, elemental boron and boron-rich solids will be presented. This also provides a relation between boron and fullerenes.⁴

[1] a. M. M. Balakrishnarajan and E. D. Jemmis, *J. Am. Chem. Soc.*, 122, 4516-4517 (2000); b. *idem, ibid*, 123, 4324-4330 (2001). [2] E. D. Jemmis, M. M. Balakrishnarajan and P. D. Pancharatna, *J. Am. Chem. Soc.*, 123, 4313-4323 (2001). [3] *Idem*, *Chem. Rev.*, 102, 93-144 (2002)., [4] E. D. Jemmis and E. G. Jayasree, *Acc. Chem. Res.* 2003, 36, 816.

THE SYNTHESIS OF STERICALLY HINDERED AND ROBUST CARBORANYL-PNICTOGEN LIGANDS FOR COORDINATION CHEMISTRY AND CATALYSIS


A.S. King,*¹ T. Brenstrum,¹ J. F. Britten,¹ G. Ferguson,² A. Capretta¹ and J.F. Valliant¹

¹Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1

²Department of Chemistry, University of Guelph, Guelph, ON, Canada N1G 2W1

Electron-rich hindered pnictogen ligands such as tri(*t*-butyl)phosphine and tri(*o*-tolyl)phosphine are routinely used to isolate unique coordination complexes and as co-ligands in palladium-catalyzed cross-coupling reactions. The effectiveness of such ligands is impaired by their rapid oxidation upon exposure to air and moisture.

Using carboranes (dicarba-*clos*-dodecaboranes), we have prepared and characterized a series of tertiary pnictogen ligands which are both sterically-hindered and resistant to oxidation in air. The synthesis of these ligands, as well as their use in coordination chemistry and palladium-catalyzed cross-coupling reactions, will be presented.

PRELIMINARY STUDY ON GADOLINIUM NEUTRON CAPTURE THERAPY

* Masao Takagaki^{1,2}, Narayan S. Hosmane², Takao Tsuruta³ and Yoshinori Yamamoto⁴

¹Dept Neurosurg, Aino University Hospital, Osaka Japan (bnct@rri.kyoto-u.ac.jp), ²Dept Chem Biochem, Northern Illinois University, ³Atomic Energy Research Institute, Kinki University, ⁴Dept Chem, Graduate School of Science, Tohoku University

Since 1990 boron neutron capture therapy (BNCT) for malignant brain tumors has been investigated at Kyoto University Brain Tumor Group. However boron targeting technique is still premature and the investigation of the more efficacious boron carriers has been addressed in this area. ¹⁵⁷Gd is an fascinating atom for this therapy, since it has a large thermal neutron cross section of 255,000 barn which is 65 times as that of ¹⁰B and releases Auger electrons, internal conversion electrons, γ rays and X rays by a single thermal neutron capture reaction sharing among them the total kinetic energy of 7.7 MeV that is more than 2 times as that of ¹⁰B(n, α)⁷Li reaction. In the boron-based NCT, high LET particles of α and its recoil ⁷Li particle release 3.3 MeV only within their total trajectory of less than 14 μ m. Such limited energy transfer within short trajectory in tissue can save serious radiation injury onto the normal brain surrounding the tumor. On the other hand, however, dose distribution in the tumor is sharply dependent on the microdistribution of ¹⁰B in tumor that revealed to be heterogeneous carried non-uniform dose distribution in the tumor even aside from a variety of proliferation condition of the tumor cells. Very important point of this therapy is selective destroy of the tumor cells invading peri-tumoral parenchyma shown as abnormal high density area in the T₂-weighted MRI image since 80-90% recurrence occur in this area even after multimodal treatment of the tumor. Dose distribution of Gd-based NCT is more uniform than that of boron-based NCT and might be suitable for pathological heterogeneity of malignant tumors and even on the tumor cells invading into this abnormal high density area in the T₂-weighted MRI image.

In this preliminary study, GdNCT effect on experimental brain tumors was investigated using meglumine gadopentate (GdDTPA) and the theoretical dose distribution is presented. And clinical applicability of a Gd-B complex was assessed on malignant brain tumors.

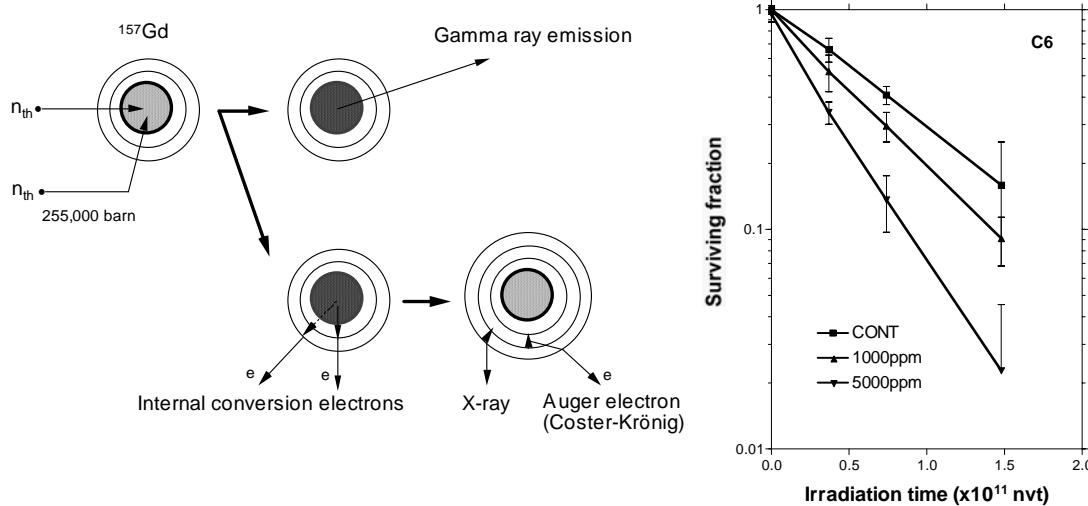
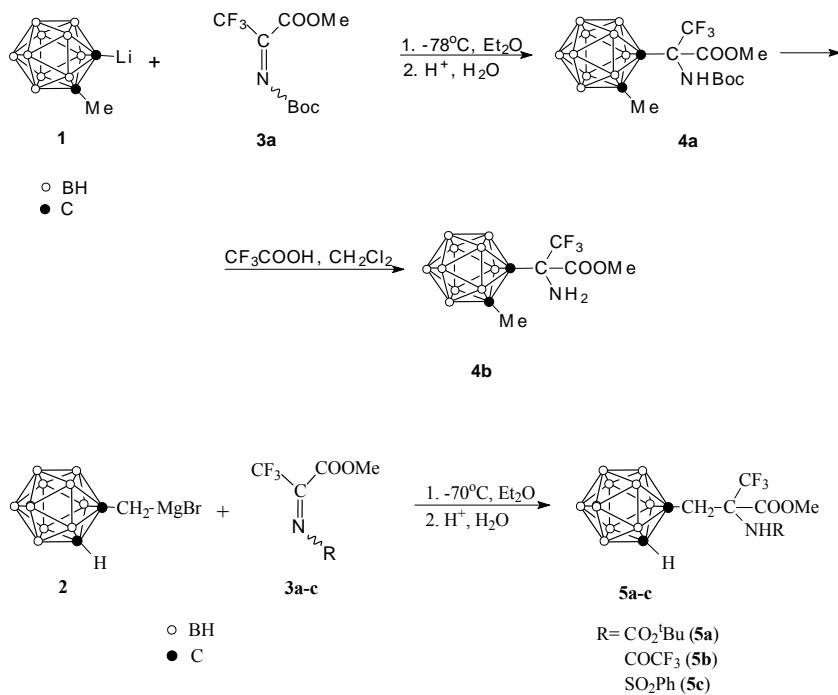


Figure left: Thermal neutron capture reaction of ¹⁵⁷Gd(n, γ)¹⁵⁸Gd, right: Surviving fraction of C6 tumor cell line on ¹⁵⁷Gd(n, γ)¹⁵⁸Gd reaction at the concentration of 1000 and 5000ppm ⁿGd. The surviving fraction are almost equivalent to that of 20ppm ¹⁰B-BSH.


NEW α -AMINO ACID DERIVATIVES WITH CARBORANYL FRAGMENTS IN α - AND β -POSITIONS

Vladimir I. Bregadze^{a,*}, Irina P. Beletskaya^b, Sergey N. Osipov^a, Pavel V. Petrovskii^a, Zoya A. Starikova^a, Sergey V. Timofeev^a

^a*A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119991 Russia*

^b*Department of Chemistry, M.V.Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 Russia*

A simple and effective method of synthesis of the derivatives of α -carboranyl- α -trifluoromethyl- α -aminoacid (**4**) and β -carboranyl- α -trifluoromethyl- α -aminoacid (**5**) by interaction of correspondingly methyl- α -carboranylolithium (**1**) with *tert*-butoxycarbonylimine methyltrifluoropyruvate (**3a**) and *o*-carboranyl methylmagnesium bromide (**2**) with imines ($\text{CF}_3(\text{CO}_2\text{Me})\text{C=NR}$ [$\text{R}=\text{CO}_2^t\text{Bu}$ (**3a**), COCF_3 (**3b**), SO_2Ph (**3c**)] is presented.

The structures of esters of β -carboranyl- α -trifluoromethyl- α -aminoacids with different protected amino groups were determined by ^1H , ^{19}F NMR and single crystal X-ray analysis.

Acknowledgement

We thank the Russian Foundation for Basic Research (grant 02-03-32680) for financial support.

CHEMISTRY OF CRYSTALLINE HYDRATED ZINC BORATES

David M. Schubert

U.S. Borax Inc., 26877 Tourney Rd, Valencia, CA, 91355, USA

Boron-oxygen compounds have by far the greatest industrial importance of any class of boron compounds. Within this class, metal borates find numerous technological uses. Although alkali and alkaline earth metal borates dominate in terms of tonnage, other synthetic metal borates are also utilized extensively, particularly as additives for polymers and advanced construction products. A good example is found in the zinc borates. Represented by a dozen unique crystalline species, zinc borates are structurally diverse and illustrate many chemical principles general to the industrially important metal borates. These compounds contain BO_3 and BO_4 groups that may occur as isolated oxoanions or linked together by oxygen-sharing to form rings, chains, sheets and networks. So-called hydrated borates, which account for most mineral and synthetic borates used by industry, contain B-OH or OH^- groups, and optionally interstitial H_2O . Hydrogen-bonding also plays a pronounced role in the structures of these materials. Aside from several anhydrous zinc borates, good evidence exists for at least eight unique crystalline hydrated zinc borates. Despite the extensive industrial applications for some of these, only half have been structurally characterized and most of these only in the past few years. This paper summarizes recent developments in the field of zinc borate chemistry and highlights some of the mysteries that still remain.

**NEW SYNTHETIC METHODOLOGIES FOR BULK/NANOSTRUCTURED
METAL CHALCOGENIDES: UTILIZATION OF NEW BORON
CHALCOGENIDE CHEMISTRY**

Dong-Kyun Seo*, Li-Ming Wu, Nora Iancu and Qiangbin Wang

Department of Chemistry and Biochemistry, Arizona State University
Tempe, AZ 85287-1604

Boron chalcogenides are volatile and corrosive compounds which have been utilized rather sparingly. We have recently found that they can serve as a convenient source of chalcogens for preparations of various metal chalcogenides.¹ In solid/gas reactions at the temperatures from 350 to 800 °C, boron chalcogenides are prepared *in situ* and react within 24 hours with metal source compounds to provide pure products of targeted chalcogenides such as TiS₂, TiS₃, VS₄, FeS₂, NiS₂, NbS₃, MoS₂, RuS₂, WS₂, Y₂S₃ and RS₂ (R = Ce, Nd, Sm, Eu, Tb and Er).² The co-products such as boron oxide or halides can be removed easily and can be recycled if necessary. Preparation of ternary chalcogenides is also viable through the same reaction procedure. In addition, the relatively low temperature condition prevents a significant growth of particles during the reactions, so that the new preparative method allows a simple one-step conversion of metal-oxide nanoparticles into the corresponding chalcogenide nanoparticles.³ We also have developed a new size-controllable synthetic route for the II-VI quantum dots, which utilizes the good solubility of the chalcogenides in amines.⁴ Advantages of the new method will be discussed.

1. Seo, D.-K.; Iancu, N. Wu, L.-M. PCT Patent Pending, **2004**
2. Wu, L.-M.; Seo, D.-K. *J. Am. Chem. Soc.* **2004**, in press.
3. Wu, L.-M.; Sharma, R.; Seo, D.-K. *Inorg. Chem.* **2003**, *42*, 5798.
4. Iancu, N.; Seo, D.-K. *Inorg. Chem.* submitted for publication.

SYNTHESIS OF AMINO ACIDS VIA ORGANOBORANES

P. Veeraraghavan Ramachandran

Herbert C. Brown Center for Borane Research

*Department of Chemistry, Purdue University
560 Oval Drive, West Lafayette, IN 47907-2084*

Synthesis of unnatural amino acids is an area of prime importance. During the past decades, our group has developed novel organoborane-mediated methods for the stereoselective synthesis of several classes of organic molecules. Currently, we have been involved in the synthesis of natural and unnatural amino acids, including fluorinated amino acids via organoboranes. The most recent developments from our laboratories will be discussed.

**AN EFFECTIVE ASYMMETRIC ALKYLATION SYSTEM OF ALDIMINES WITH
DIETHYLNZINC: MIXED IONIC LIQUIDS OF [N-PENTYL PYRIDIUM][1-
MENTHOXYMETHYL-C₂₀O₅]-CB₁₁H₁₁] AND 1-
BUTYL-3-METHYLMIDAZOLIUM HEXAFLUOROPHOSPHATE**

Zhu Yinghuai^{a,*}, Narayan S. Hosmane^b, John A. Maguire^c

a Institute of Chemical and Engineering Sciences, Block 28, #02-08, Ayer Rajah
Crescent, Singapore 139959

b Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL
60115, USA.

c Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA.

Ionic liquids have drawn considerable attention in recent years as promising organic reaction media. [1] However, there are only a few reports regarding the preparation and use of chiral anion based ionic liquids. [2] We have been interested in the use of ionic liquids, [3] and have synthesized the first chiral carborane anion based on the ionic liquid [N-pentylpyridium][1-menthoxymethyl-*clos*o-CB₁₁H₁₁], which has been characterized by NMR, IR and elemental analysis.

Enantioselective alkylation of imines is one of the significant challenges in asymmetric synthesis. Therefore, the enantioselective additions of diethylzinc (Et₂Zn) to aldimines were examined in the ionic liquid, [N-pentylpyridium][1-menthoxymethyl-CB₁₁H₁₁] with the commercially available ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF₆], as a co-solvent. Secondary amines have been obtained from this new method in yields of up to 95%

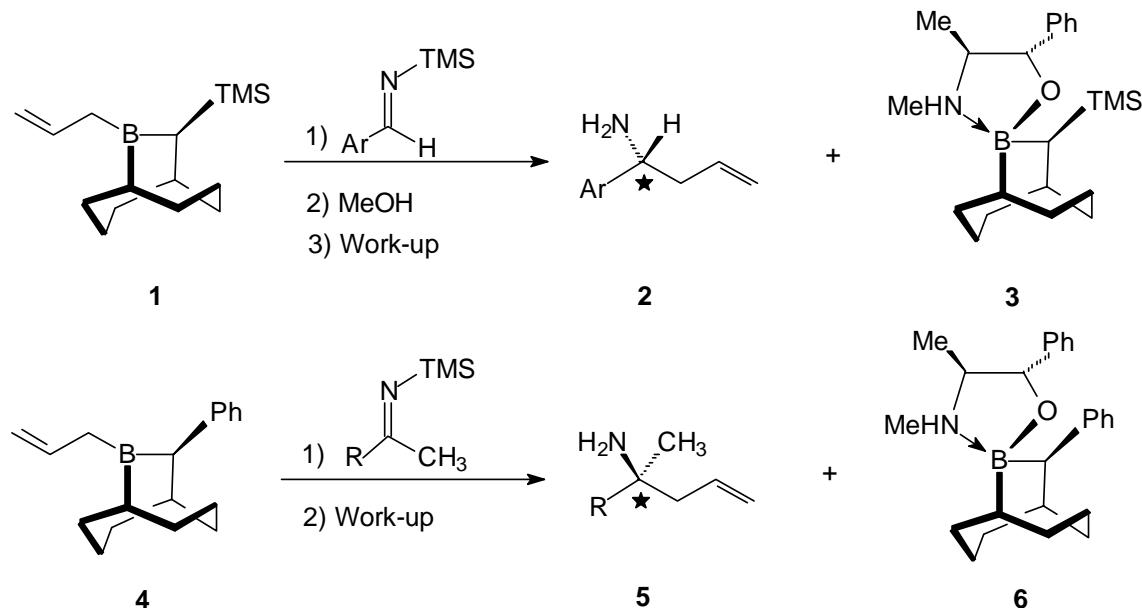
References:

- [1] Wasserscheid, P.; Keim, W. *Angew. Chem., Int. Ed. Engl.* **2000**, *39*, 3772-3789.
- [2] Earle, M.J., McCormac, P.B. and Seddon, K.R.; *Green Chem.* 1999, *1*, 23-25.
- [3] (a) Zhu Y., Carpenter, K., Chi Bun, C., Bahnmueller, S., Pek Ke, C., Srid, V.S., Weng Kee, L. and Hawthorne, M.F.; *Angew. Chem. Int. Ed.*, **2003**, *42*, 3792-3795. (b) Zhu Y., Chi Bun, C., Carpenter, K., Rong, X., Selvaratnam, S., Hosmane, N.S., Maguire, J.A.; *Appl. Organometal. Chem.*, **2003**, *17*, 346-350.

CAMOUFLAGED CARBORANE AMPHIPHILES: SYNTHESIS AND SELF-ASSEMBLY

Ling Ma* and M. Frederick Hawthorne

Department of Chemistry & Biochemistry, University of California Los Angeles, 607
Charles E. Young Dr., Los Angeles, CA 90095-1569


Abstract

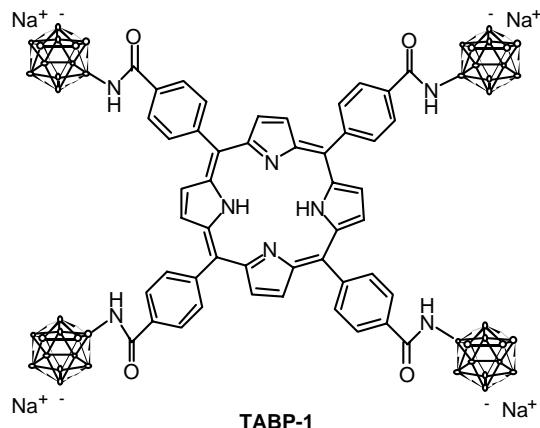
A series of amphiphilic ammonium salts containing B-polymethylated (camouflaged) carborane groups have been designed and synthesized. Combined hydrophobic and hydrophilic properties of these single-chained amphiphiles allow their spontaneous self-assembly to form rods under a variety of conditions, such as concentration, carborane cage structure, chain-length, counterions, solvents, methods of preparation, the number of attached chains, and the ionic charge. The rods have been studied by TEM, optical microscopy, XRD, TG/DTA and FTIR. These polymethylated carborane derivatives are predisposed to self-assemble, and the hydrophobic interaction played an important role. This work demonstrated the first use of B-polymethylated carborane-containing structures in the self-assembly of supramolecular structures.

**ASYMMETRIC ALLYLBORATION WITH 10-SUBSTITUTED 9-BBDS:
HOMOALLYLIC AMINES FROM N-TMS ARYL ALDIMINES AND, FOR THE
FIRST TIME, ARYL AND ALKYL N-TMS KETIMINES**

Eda Canales, Eliud Hernandez and John A. Soderquist *, Department of Chemistry,
University of Puerto Rico, San Juan, PR 00931-3346
jas@janice.uprr.pr

The asymmetric allylboration of *N*-TMS aryl aldimines with *B*-allyl-10-TMS-9-borabicyclo[3.3.2]decane **1** gives 2°-alkyl homoallylic amines **2** in good optical purities (76-89% ee) and chemical yields (60-90%), comparable to those obtained with AllB(Ipc)₂. Analogous to this latter process, the *N*-TMS substitution prevents the allylation from occurring even at room temperature. However, the addition of 1 equiv of MeOH generates the free imine (*N*-H) which undergoes allylation with **1** at -78 °C in 9-12 h. The new procedures also employ a convenient non-oxidative work-up which permits the efficient recovery (50-70%) of the chiral boryl moiety as **3** which is recycled directly back to **1** (98%) with allylmagnesium bromide. The previously unknown asymmetric allylboration of *N*-TMS ketimines was examined employing optically pure *B*-allyl-10-Ph-9-borabicyclo[3.3.2]decane **4** which reacts smoothly with *N*-TMS ketimines to produce 3°-alkyl homoallylic amines **5** in high optical purity (*R* = Ar, *t*-Bu, 89-98% ee) and good yields (50-75%). As expected, simple aliphatic ketimine derivatives exhibit lower selectivities (*i.e.* *R* = *n*-Pr, 19% ee). This new methodology can be applied to aromatic and aliphatic ketimines providing a general protocol to **5** as well as to the efficient recovery of **6** which is directly converted back to **4** with allylmagnesium bromide. The possible origins of the enantioselectivities observed in these processes will be presented and discussed.

CONVECTION ENHANCED DELIVERY OF A BORONATED PORPHYRIN TO INTRACEREBRAL HUMAN GLIOBLASTOMA XENOGRAFTS IN ATHYMIC RATS

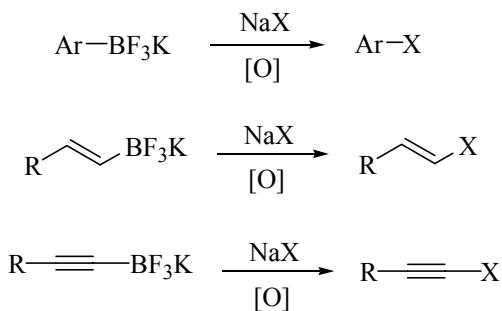

Tomoko Ozawa¹, Raquel A. Santos¹, Myoung-Seo Koo³, Stephen B. Kahl³ and Dennis F. Deen.^{1,2} *Departments of Neurological Surgery¹, Radiation Oncology² and Pharmaceutical Chemistry³, University of California, San Francisco, California, USA*

Purpose: Boron neutron capture therapy (BNCT) is an adjuvant therapy that has the potential to control local tumor growth. A selective delivery of sufficient amounts of boron to individual tumor cells, compared with surrounding normal tissues, is the key for successful BNCT, and new delivery agents are under current investigation. Recently, we have designed and synthesized a new highly water-soluble boronated compound, TABP-1, as a possible BNCT agent. Previously we injected the maximum tolerated dose (15 mg/kg) of TABP-1 systemically via the tail vein into athymic rats bearing intracerebral human glioblastoma U-87 MG xenografts. Our data indicated that TABP-1 injected intravenously accumulated in brain tumors compared to normal brain; however the level of boron in the tumor was less than generally considered optimal for therapy (≥ 30 micrograms/g tissue). In the present study, we investigated whether convection enhanced delivery (CED) could improve the boron distribution.

Methods: TABP-1 was administered directly into intracerebral U-87 MG xenografts using an Alzet osmotic minipump attached to a brain infusion cannula. Doses of TABP-1 ranging from 2.5×10^{-4} mg to 1.0 mg dissolved in 200 microliters of PBS were infused locally over 24 hours. Animals were sacrificed 1 day after completion of the infusion and tissue boron levels measured by inductively coupled plasma atomic emission spectrometry.

Results: Doses ≥ 0.25 mg produced average tumor boron concentrations significantly greater than those obtained systemically at the MTD. For example, CED administration of 0.5 mg of the compound resulted in a tumor boron level of 97.4 micrograms/g tumor, but a serum level of only 0.4 micrograms/g (tumor-to-serum ratio $\approx 238:1$). This mode of local delivery also resulted in relatively high tumor to normal brain ratios of $\sim 5:1$ for surrounding brain and $\sim 29:1$ for contralateral brain tissue at the 0.5 mg dose. Even at the highest dose (1.0 mg), serum boron levels equaled control levels.

Conclusions: Using CED we may be able to achieve therapeutic BNCT efficacy with minimal systemic toxicity or radiation-induced damage to normal tissue with TABP-1. Supported by NIH grant CA-82478 and DOE grant DE-AC02-76SF00098.


FACILE SYNTHESES OF ORGANIC HALIDES USING ORGANOTRIFLUOROBORATES

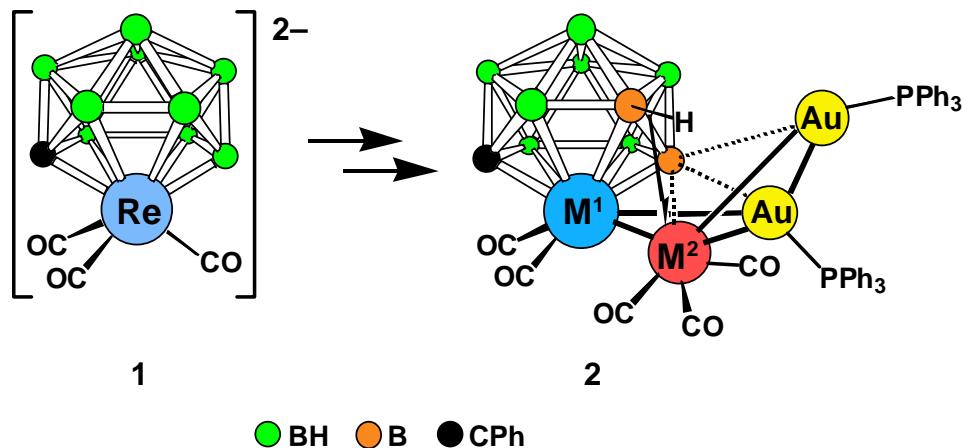
G. W. Kabalka* and A. R. Mereddy

Departments of Chemistry and Radiology, The University of Tennessee
Knoxville, TN 37996-1600 USA

Organic halides are widely used as synthetic intermediates in medicinal and pharmaceutical research. Organometallic reagents are convenient precursors to a wide variety of organic halides but their use is somewhat restricted due to the high reactivity and toxic properties of many of the reagents. The use of organoboranes as precursors to organic halides has been of continuous interest in our laboratory for almost 30 years and we have utilized boron-halogen exchange for preparing a wide variety of radiopharmaceuticals.^{1,2} Initially, we developed methods to halogenate trialkylboranes but found that boronic acids and esters were more convenient to handle and could be prepared containing a wide variety of functional groups (an important consideration in pharmaceutical research).³ However, the use of boronic acids as organohalogen precursors to pharmaceuticals has not kept pace with that of other reagents presumably due to their propensity to form boroxines that are unstable to both air and water.

Recently, potassium aryl- and vinyltrifluoroborates have proven to be versatile intermediates in organic synthesis because of their remarkable chemical stability. They are crystalline solids that are stable to both air and water, and they are readily prepared from the corresponding boronic acids by addition of KHF_2 . In addition, trifluoroborate salts have proven to be as versatile as boronic acids in organic synthesis. We wish to describe the use of organotrifluoroborates as precursors to a wide variety of structurally diverse organic iodides and bromides and the application of this new methodology to the rapid and high yield synthesis of high specific activity, iodine-123 labeled aryl, vinyl and alkynyl iodides.⁴

References:


- ¹ Kabalka, G. W.; Hedgecock, H. C.; Brown, H. C.; DeLue, N. R. *J. Am. Chem. Soc.* **1976**, 98, 1291.
- ² Kabalka, G. W.; Shoup, T. M.; Goodman, M.M. *Nucl. Med. Biol.* **2000**, 27, 279.
- ³ Kabalka, G. W.; Akula, M. R.; Zhang, J. *J. Nucl. Med. Biol.* **2002**, 29, 841.
- ⁴ Kabalka, G. W.; Mereddy, A. R. *Tetrahedron Lett.* **2004**, 45, 343.

BUILDING BUTTERFLIES ON A RHENIUM-MONOCARBORANE SUBSTRATE

Shaowu Du, Bruce Hodson, Jason Kautz, Xiu Lian Lu, Thomas McGrath,* F. Gordon A. Stone

Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA

A range of polynuclear species can be prepared by reaction of the rhenium-monocarbaborane dianion **1** with transition-metal cations.¹ By stepwise addition of the fragments $\{\text{M}(\text{CO})_2\}$ ($\text{M} = \text{Rh}$ or Ir^2+) and then $\{\text{Au}(\text{PPh}_3)\}$ to **1**, carborane-supported $\{\text{ReMAu}_2\}$ butterflies **2** have been assembled. The surprising structures of compounds **2** and related species will be presented and their mechanism of formation discussed.

References

1. Du, S. ; Kautz, J. A.; McGrath, T. D.; Stone, F. G. A. *Organometallics* **2003**, 22, 2842.
2. Du, S. ; Kautz, J. A.; McGrath, T. D.; Stone, F. G. A. *Angew. Chem. Int. Ed.* **2003**, 42, 5728.

AN INVESTIGATION OF NUCLEOPHILIC ATTACK ON THE $[n\text{-B}_{20}\text{H}_{18}]^{2-}$ ANION

Brian Newell* and Debra A. Feakes

Department of Chemistry and Biochemistry, Texas State University – San Marcos,
San Marcos, TX 78666

The reaction of small nucleophiles (Nu), such as $[\text{OH}]^-$ and $[\text{OCH}_3]^-$, with the $[n\text{-B}_{20}\text{H}_{18}]^{2-}$ anion produces a kinetic isomer, $[\text{B}_{20}\text{H}_{17}\text{Nu}]^{4-}$, characterized by an apical-equatorial connection between the polyhedral borane cages and the substituent location on the equatorial belt adjacent to the boron-boron intercage connection.¹ Acid catalyzed rearrangement of the kinetic isomer yields the thermodynamic isomer, characterized by an apical-apical connection between the polyhedral borane cages.¹ In contrast, the reaction of $[\text{SC(O)OC(CH}_3)_3]^-$ and $[n\text{-B}_{20}\text{H}_{18}]^{2-}$ produced, directly and in good yield, the $[\text{B}_{20}\text{H}_{17}\text{SC(O)OC(CH}_3)_3]^{4-}$ anion characterized by an apical-apical connection between the polyhedral borane cages and the substituent location on the equatorial belt adjacent to the terminal boron apex.² Therefore, the investigation of the reactivity of a variety of sterically hindered nucleophiles and the $[n\text{-B}_{20}\text{H}_{18}]^{2-}$ anion was conducted. The solvent utilized in the reactions was tetrahydropyran. Products of the reactions were characterized by ^1H , ^{13}C , and ^{11}B NMR spectroscopy. In each case, spectroscopic evidence indicated that the oxygen atom of the tetrahydropyran solvent was coordinated to the equatorial belt adjacent to the boron-boron intercage connection, an intermediate analogous to that proposed for tetrahydrofuran in some reactions.³ As a result, two investigations are currently underway. In the first set of reactions, the coordination of different solvents with the $[n\text{-B}_{20}\text{H}_{18}]^{2-}$ is being conducted. In the second set of reactions, the investigation of the reaction of sterically hindered nucleophiles with the $[n\text{-B}_{20}\text{H}_{18}]^{2-}$ anion in tetrahydrofuran is being conducted. The results of the investigations, to date, will be presented.

References:

1. a) M. F. Hawthorne, R. L. Pilling, P. F. Stokely & P. M. Garrett (1963) *J. Am. Chem. Soc.* **85**, 3704. b) M. F. Hawthorne, R. L. Pilling & P. M. Garrett (1965) *J. Am. Chem. Soc.* **87**, 4740.
2. D. A. Feakes, R. Corey Waller, D. K. Hathaway, and V. S. Morton (1999) *Proc. Natl. Acad. Sci. USA* **96**, 6406-6410.
3. M. F. Hawthorne, K. Shelly, and F. Li (2002) *Chem. Comm.* 547-554.

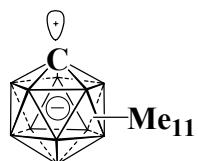
THE SYNTHESIS OF Tc(I) AND Re(I) CARBORANE COMPLEXES AND THE DEVELOPMENT OF ORGANOMETALLIC RADIOPHARMACEUTICALS

J.F. Valliant*, O.O. Sogbein, P. Merdy, K.A. Stephenson, A. Green

Department of Chemistry and The Medical Physics & Applied Radiation Sciences Unit,
McMaster University, Hamilton, Ontario, Canada, L8S 4M1.

Organometallic complexes of radiometals like ^{99m}Tc are attractive synthons for preparing receptor-targeted radiopharmaceuticals because of their small size and resistance to catabolism. A major obstacle to their use involves finding methods for preparing organometallic-radiometal complexes in aqueous media where the concentration of the radionuclide is typically on the order of 10^{-8} to 10^{-9}M .

Carboranes, unlike the majority of traditional organometallic ligands, are compatible with forming metal complexes in aqueous media. Unfortunately, traditional method for preparing metallocarboranes involves the use of highly basic reaction conditions, which precludes using the clusters to prepare bioconjugates.

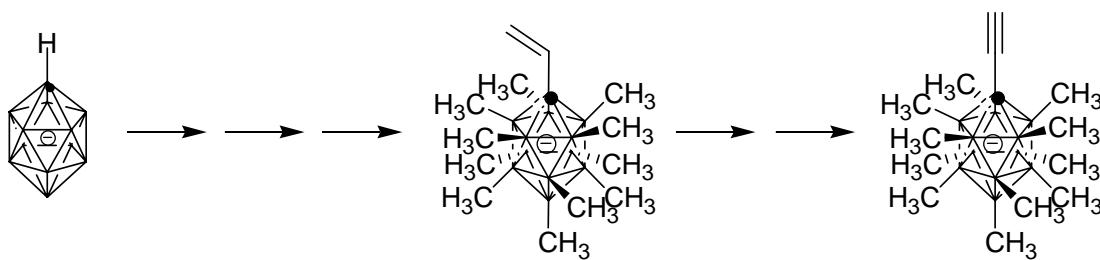

We have recently developed a new and highly efficient methodology for preparing metallocarborane complexes of Re and Tc in water under mild reaction conditions. The approach involves reacting *nido*-carborane ligands with $[\text{M}(\text{CO})_3(\text{OH}_2)_3]^+$ (M= Re, Tc) in the presence of aqueous potassium fluoride. The use of KF as a base afforded the desired metallocarboranes in excellent yields while avoiding the formation of Re-clusters, which are byproducts commonly observed when analogous reactions are carried out in the presence of strong aqueous bases. The KF mediated reactions also work at the tracer level and we have recently reported the first examples of ^{99m}Tc -labeled carborane complexes which was prepared in high radiochemical yield and purity. These organometallic complexes are stable to cysteine and histidine challenges for more than 24 hours making them viable synthons for designing radiopharmaceuticals.

The presentation will cover topics pertaining to the synthesis of ^{99m}Tc and Re labeled carborane complexes. Related advances in the bioconjugation chemistry of carboranes and metallocarboranes will also be described.

THE POSSIBLE ROLE OF THE CARBONIUM YLIDE $C(+)\mathbf{B}_{11}\mathbf{M}\mathbf{e}_{11}(-)$ AS A REACTION INTERMEDIATE

Kamesh Vyakaranam, Stefanie Koerbe, Hana Divišová, and Josef Michl, Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215

We report synthetic and kinetic evidence for a reactive intermediate that reacts as if it were the carbonium ylide $C(+)\mathbf{B}_{11}\mathbf{M}\mathbf{e}_{11}(-)$, which can also be visualized as a carbenoid. This species is produced under various solvolytic conditions, e. g. when $1-\text{[T-Br-}(\text{CH}_2)_n\text{]CB}_{11}\text{H}_{11}(-)$ ($n = 2, 5$, or 6) anions are methylated in sulfolane solution with methyl triflate in the presence of CaH_2 .



THE SYNTHESIS OF PERMETHYLATED 1-VINYL AND
1-ETHYNYL CB_{11}^- ANIONS

Ludvig Eriksson* and Josef Michl

Department of Chemistry and Biochemistry, University of Colorado,
Boulder CO 80309-0215

The synthesis of the 1-vinyl- and 1-ethynyl- $\text{CB}_{11}(\text{CH}_3)_{11}^-$ anions will be described. The synthetic route involves alkylation on the carborane carbon atom and methylation of the cage boron atoms, followed by Hofmann elimination to afford the vinyl moiety. Addition of bromine followed by dehydrohalogenation yields the ethynyl derivative.

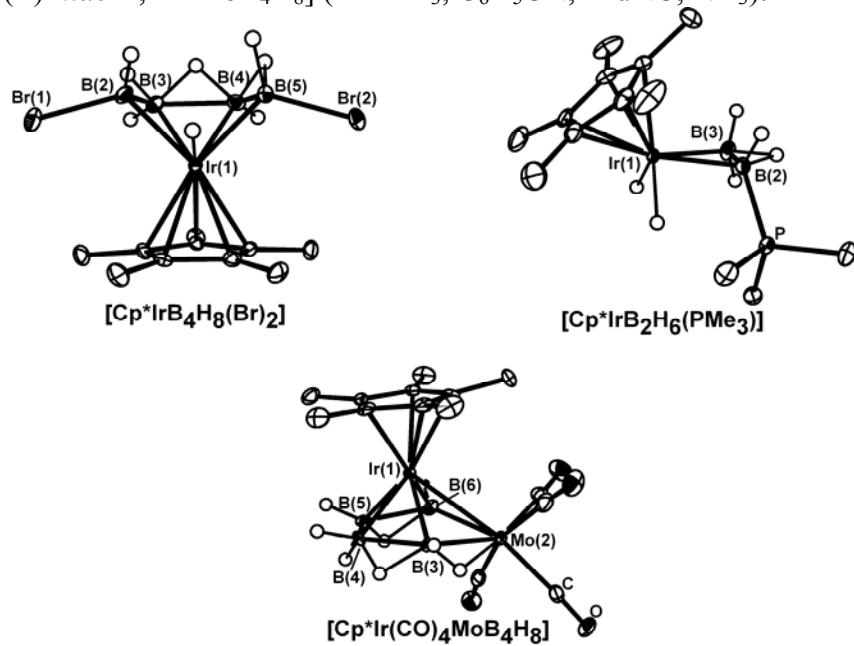
**CLOSOMERS OF HIGH BORON CONTENT: SYNTHESIS,
CHARACTERIZATION AND POTENTIAL APPLICATION AS UNIMOLECULAR
NANOPARTICLE DELIVERY VEHICLES FOR BNCT**

Ling Ma* and M. Frederick Hawthorne

Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA 90095

Abstract

Three novel ether- and ester-linked closomers with exciting potential as BNCT drugs have been designed and synthesized. Our Newly developed degradation method employing NaCN as the deboronation reagent was utilized to obtain sodium salts of the *nido*-ether linked closomer polyanions. The water solubility of these sodium salts suggests that the *nido* species may be used as unimolecular nanoparticle delivery vehicles for BNCT or as components of unilamellar liposomes.


CHEMISTRY OF [1-Cp*-1-H-*arachno*-1-IrB₄H₉]: REACTIONS WITH LEWIS BASES, BROMINE, AND [η⁶-(1,2-(CH₃)₂-C₆H₄)Mo(CO)₃]

Ramón Macías,* Thomas P. Fehlner, and Alicia M. Beatty

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556-5670

The treatment of [Cp*IrB₄H₁₀] (**1**) with Lewis bases afforded new substituted iridatetra- and iridatriboranes, [Cp*IrB₃H₇L] [L = PMe₃, PMe₂Ph, PMePh₂, PPh₃, py, NEt₃] plus BH₃L as coproduct. With PPh₃, py and NEt₃, the formation of the iridapentaborane, [1-Cp*-*nido*-1-IrB₄H₈] was also observed. The substituted iridatetraaboranes were found to decompose in solution and in the solid state, affording new iridatriboranes [Cp*IrB₂H₆L]. The decomposition pathways depend on the nature of the Lewis bases. Two routes involving the apparent disproportionation of iridaborane-base adducts were found to compete with the loss of a {BH} unit. A reaction cycle driven by Lewis acid/base chemistry of BH₃ was constructed. In contrast to reaction with nucleophiles, treatment of **1** with bromine and N-bromosuccinimide led to the formation of the dibromo- and monobromoderivatives, [1-Cp*-1-H-2,5-(Br)₂-*arachno*-1-IrB₄H₇] and [1-Cp*-1-H-2-Br-*arachno*-1-IrB₄H₈].^{1,2}

On the other hand, the reaction of **1** with [η⁶-(1,2-(CH₃)₂-C₆H₄)Mo(CO)₃] in THF gave the metallahexaborane [1-Cp*-2,2,2-(CO)₃-2-(THF)-*nido*-1,2-IrMoB₄H₈]. This compound is unstable, leading to the formation of the tetracarbonyl analogue [1-Cp*-2,2,2,2-(CO)₄-*nido*-1,2-IrMoB₄H₈]. The THF-derivative reacts with different nucleophiles such as PPh₃, C₆H₅CN, ⁿBuNC, and NH₃ to give new molybdenairidaboranes of general formula [1-Cp*-2,2,2-(CO)₃-2-(L)-*nido*-1,2-IrMoB₄H₈] (L = PPh₃, C₆H₅CN, ⁿBuNC, NH₃).

**1-H-2,3,4,5,6-F₅(CF₃)₆CB₁₁(-) AND 1-H-(CF₃)₁₁CB₁₁(-): NEW
TRIFLUOROMETHYLATED CARBORANE ANIONS**

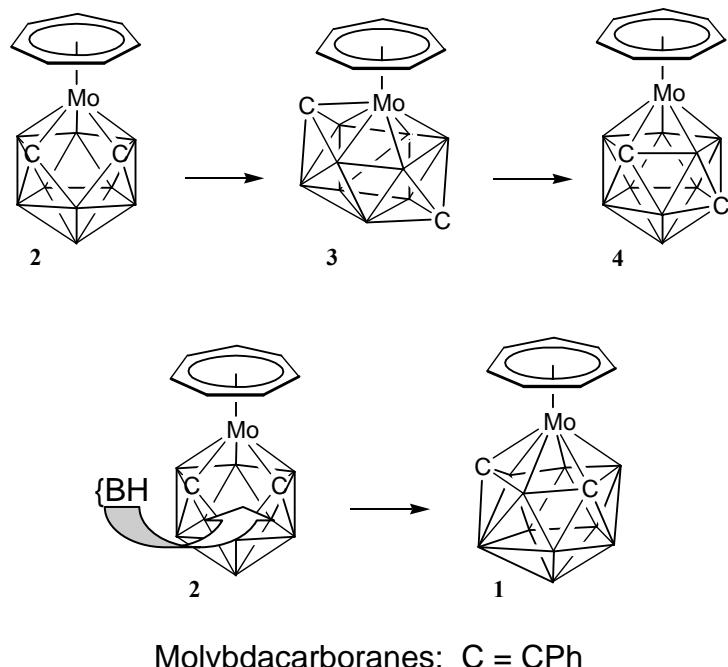
Matthew G. Fete* and Josef Michl

Department of Chemistry and Biochemistry, University of Colorado,
Boulder, CO 80309-0215

Methylation¹ of the 1-triisopropylsilyl derivative of the CB₁₁H₁₂(-) anion followed by removal of the triisopropyl silyl group yields the hexamethylated anion 7,8,9,10,11,12-(CH₃)₆CB₁₁H₆(-), while methylation of the parent anion, CB₁₁H₁₂(-), affords the anion 1-H-CB₁₁Me₁₁(-). We now report the direct fluorination of these anions with elemental fluorine to yield 1-H-2,3,4,5,6-F₅(CF₃)₆CB₁₁(-) (**1**) and 1-H-(CF₃)₁₁CB₁₁(-) (**2**), respectively. Like the previously reported anion (CF₃)₁₂CB₁₁(-) (**3**),² they are resistant to oxidation and stable in highly acidic media. Unlike the salts of **2** and **3**, those of **1** show no signs of explosive behavior. Anions **1** and **2** have an acidic proton on the carbon that is easily removed with a base to allow their incorporation into other structures.

1. King, B. T.; Janoušek, Z.; Grüner, B.; Trammel, M.; Noll, B. C.; Michl, J., *J. Am. Chem. Soc.* **1996**, *118*, 3313.
2. King, B. T.; Michl, J., *J. Am. Chem. Soc.* **2000**, *122*, 10255

UNANTICIPATED EXPANSION OF A 12-VERTEX MOLYBDACARBORANE

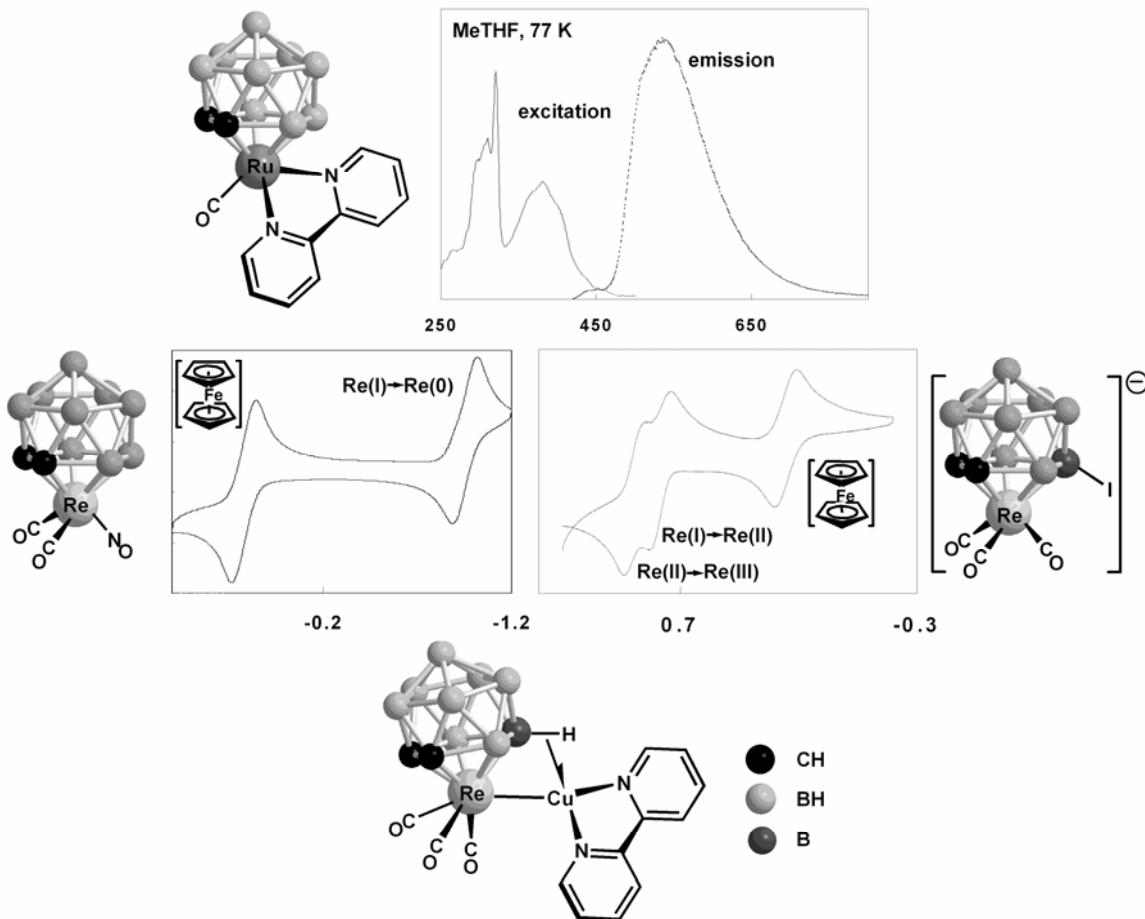

Ruaraidh McIntosh, David Ellis, Georgina M Rosair, Alan J Welch*

Department of Chemistry, Heriot-Watt University, Edinburgh, EH14 4AS, UK

Sodium reduction of 1,2-Ph₂-1,2-*clos*o-C₂B₁₀H₁₀ followed by addition of {Mo(η-C₇H₇)⁺} yields the paramagnetic 13-vertex molybdacarborane 1,6-Ph₂-4-(η-C₇H₇)-4,1,6-*clos*o-MoC₂B₁₀H₁₀ (**1**). Unexpectedly, compound **1** is also afforded when {Mo(η-C₇H₇)⁺} is added to [7,8-Ph₂-7,8-*nido*-C₂B₉H₁₀]⁻ previously treated with NaH. When, however, [7,8-Ph₂-7,8-*nido*-C₂B₉H₁₀]⁻ is deprotonated with BuLi then treated with {Mo(η-C₇H₇)⁺} three molybdacarboranes are isolated; the pseudocloso species 1,2-Ph₂-3-(η-C₇H₇)-3,1,2-*pseudocloso*-MoC₂B₉H₉ (**2**), the non-icosahedral “1,12-Ph₂-2-(η-C₇H₇)-2,1,12-*clos*o-MoC₂B₉H₉” (**3**), and the isomerised 1,8-Ph₂-2-(η-C₇H₇)-*clos*o-2,1,8-MoC₂B₉H₉ (**4**).

Compounds **2** and **3** are believed to be intermediates on the isomerisation pathway from the notional, transient, species [1,2-Ph₂-3-(η-C₇H₇)-*clos*o-3,1,2-MoC₂B₉H₉][‡] to compound **4**. In the absence of a source of “{BH}”, **2** → **3** → **4**. If, however, “{BH}” is available, via NaH degradation of (molybda)carborane, we believe that the 12-vertex pseudocloso compound **2** alternatively is converted into 13-vertex **1** by net {BH} addition.

This reaction represents a new route to 13-vertex metallacarboranes. We are currently exploring its generality.


Support from the EPSRC and the Carnegie Trust is gratefully acknowledged.

ELECTROCHEMICAL AND SPECTROSCOPIC STUDY OF RUTHENA- AND RHENACARBORANE COMPLEXES

Matthew Fischer, Paul A. Jelliss,* Justin L. Mason, Jamie M. Nazzoli, Justin H. Orlando, Lisa M. Phifer.

Dept. of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis MO 63103

The combination of the metallacarborane architecture with electronically active polypyridyls is a relatively unexplored arena. We are particularly interested in the impact of the carborane cage on the chromophoric and electrochemical properties of the metal-polypyridyl system and have investigated the synthesis and characterization of polypyridyl complexes incorporating ruthenium and rhenium. We can also reveal somewhat unexpected redox chemistry of the anionic complexes $[3,3,3-(CO)_3-closo-3,1,2-ReC_2B_9H_{11}]^-$ and its neutral nitrosyl derivative $[3,3-(CO)_2-3-NO-closo-3,1,2-ReC_2B_9H_{11}]$, leading to the synthesis and isolation of iodinated rhenacarboranes. In further work we have synthesized bimetallic metallacarborane-polypyridyl systems, where the carborane cage and polypyridyl ligand are linked by a metal-metal bond coupled with B–H→M bridge, such as the Re–Cu complex $[3,3,3-(CO)_3-\mu-3,8-\{Cu(2,2'-bipy)\}-closo-3,1,2-ReC_2B_9H_{11}]$ shown below. The results from luminescence and electrochemistry measurements will be presented, in addition to data from IR, UV-vis, and NMR analysis.

CYCLOPENTADIENYLMETAL VERTICES IN POLYHEDRAL BORANES: GEOMETRY AND CHEMICAL BONDING

R. Bruce King

Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA

Most cyclopentadienylmetallaboranes containing the vertex units CpM using three internal orbitals and donating one to three skeletal electrons (i.e., M is a transition metal from Group 8, 9, or 10; Cp = typically $\eta^5\text{-C}_5\text{H}_5$ or $\eta^5\text{-Me}_5\text{C}_5$) have structures closely related to binary boranes or borane anions. Smaller clusters of this type, such as metallaborane analogues of *arachno*- B_4H_{10} (e.g., $(\text{CpIr})_2\text{B}_2\text{H}_8$), *nido*- B_5H_9 (e.g., $(\text{CpRh})_2\text{B}_3\text{H}_7$ and $(\text{CpRu})_2\text{B}_3\text{H}_9$), *arachno*- B_5H_{11} (e.g., $\text{CpIrB}_4\text{H}_{10}$), $\text{B}_6\text{H}_6^{2-}$ (e.g., $(\text{CpCo})_4\text{B}_2\text{H}_4$), *nido*- B_6H_{10} (e.g., CpIrB_5H_9 and $(\text{CpRu})_2\text{B}_4\text{H}_{10}$), and *arachno*- B_6H_{12} (e.g., $(\text{CpIr})_2\text{B}_4\text{H}_{10}$), have the same skeletal electron counts as those of the corresponding boranes. However, such clusters with eight or more vertices, such as metallaborane analogues of $\text{B}_8\text{H}_8^{2-}$ (e.g., $(\text{CpCo})_4\text{B}_4\text{H}_4$), *arachno*- B_8H_{14} (e.g., $(\text{CpRu})_2\text{B}_6\text{H}_{12}$), and *nido*- $\text{B}_{10}\text{H}_{14}$ (e.g., $(\text{CpRu})_2\text{B}_8\text{H}_{12}$), have two skeletal electrons less than the corresponding metal-free boranes analogous to the skeletal electron counts of *isocloso* boranes relative to those of metal-free deltahedral boranes. Some metallaboranes have structures not analogous to metal-free boranes but instead analogous to metal carbonyl clusters such as 3-capped square pyramidal $(\text{CpRu})_2\text{B}_4\text{H}_8$ and $(\text{CpRu})_3\text{B}_3\text{H}_8$ analogous to $\text{H}_2\text{Os}_6(\text{CO})_{16}$ and capped octahedral $(\text{CpRh})_3\text{B}_4\text{H}_4$ analogous to $\text{Os}_7(\text{CO})_{21}$. In the metallaborane structures closely related to metal-free boranes the favored degrees of BH and CpM vertices appear to be 5 and 6, respectively.

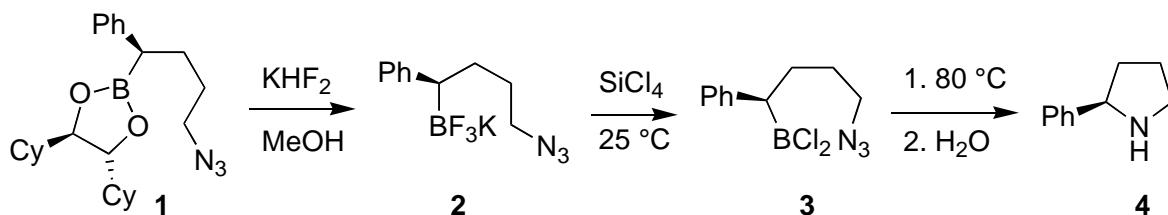
Cyclopentadienylmetal vertices of earlier transition metals (Groups 6 and 7) can only donate positive numbers of skeletal electrons if they provide four rather than the usual three internal orbitals. The polyhedra for the metallaboranes $(\text{CpM})_2\text{B}_n\text{H}_{n+4}$ ($\text{M} = \text{Cr, Mo, W}$; $n = 4, 5$) are derived from $(n+1)$ -gonal bipyramids by removal of an equatorial vertex. The deltahedra for the larger metallaboranes $(\text{CpW})_2\text{B}_7\text{H}_9$, $(\text{CpRe})_2\text{B}_n\text{H}_n$ ($7 \leq n \leq 10$), and $(\text{CpW})_3\text{B}_8\text{H}_9$ are derived from the corresponding $\text{B}_n\text{H}_n^{2-}$ deltahedra by sufficient diamond-square-diamond processes to provide vertices of degrees ≥ 6 for each of the CpM vertices.

FORMATION GROUP 4 TRANSITION METAL DERIVATIVES OF SMALL BORANES AND NOVEL BORANE COUPLING REACTIONS.

Rhodri Ll. Thomas, Mitsuhiro Hata, Nigam P. Rath, Grainne Biddlecombe and Lawrence Barton*

Department of Chemistry and the Center for Molecular Electronics,
University of Missouri-St. Louis, St. Louis, MO 63121.

This paper describes our attempts to prepare early transition metals derivatives of small borane clusters. In the case of pentaborane(9) we were able to effect either cage coupling or the formation of metallaboranes, depending on the conditions used. Reaction between $\text{Li}[\text{B}_5\text{H}_8]$ and Cp_2TiCl_2 afforded no observable products but reaction with CpTiCl_3 resulted in the formation of $\text{B}_{10}\text{H}_{14}$ in good yields. In reactions with CpZrCl_2 , pale orange solid, μ -(Cp_2ClZr) B_5H_8 (**1**), which exists as a B_5H_9 cage with a Cp_2ClZr moiety replacing a bridging H atom is formed in 70 % yield. **1** exhibits some interesting variable temperature NMR spectral behavior. Passage of a CH_2Cl_2 solution of **1** through silica gel affords **2**, $[(\text{Cp}_2\text{Zr})_2\text{B}_5\text{H}_8][\text{B}_{11}\text{H}_{14}]$, a yellow air-stable crystalline solid, in 14 % yield. The cation in **2**, $[(\text{Cp}_2\text{Zr})_2\text{B}_5\text{H}_8]^+$, consists of a distorted *spiro*[2.2]pentane-like B_5 moiety comprising two B_3 triangles sharing a naked boron vertex. The two triangles are twisted 72.8° with respect to each other and the two [Cp_2Zr] groups bond in a trihaptic-arrangement to the two opposite B-B edges. Each exterior B-Zr edge is H-bridged and the B atoms possess terminal hydrogens. The structure of the cation in **2** conforms to the Polyhedral Skeletal Electron Pair Theory by assuming that the unique boron atom is an intra-cage one. Reactions of Cp_2HfCl_2 with $\text{Li}[\text{B}_5\text{H}_8]$ lead to the formation of the analogue of **2**, $[(\text{Cp}_2\text{Hf})_2\text{B}_5\text{H}_8][\text{B}_{11}\text{H}_{14}]$ (**3**). The precursor to **3**, i.e., the Hf analogue of **1**, is not observed. When B_5H_9 is treated with $\text{Cp}_2\text{ZrCl}_2/n\text{-BuLi}$ in the presence of triphenylphosphine, *arachno*- $\text{B}_9\text{H}_{11}(\text{PPh}_3)_2$ (**4**) is formed in relatively high yield, apparently from oxidative coupling of B_5H_9 . The novel structure of **4** will be discussed as will attempts to couple the $[\text{B}_3\text{H}_8]^-$ anion analogously to the reported coupling of "B₃H₇" by Brellochs and Binder.¹


1. B. Brellochs and H. Binder, *Angew. Chem.* (1988) 100, 270.

CONVERSION OF ALKYLBORONIC ESTERS TO ALKYLDICHLOROBORANES

Donald S. Matteson

Washington State University, Pullman, WA 99164-4630 U.S.A.
<dmatteson@wsu.edu> 509-335-3365

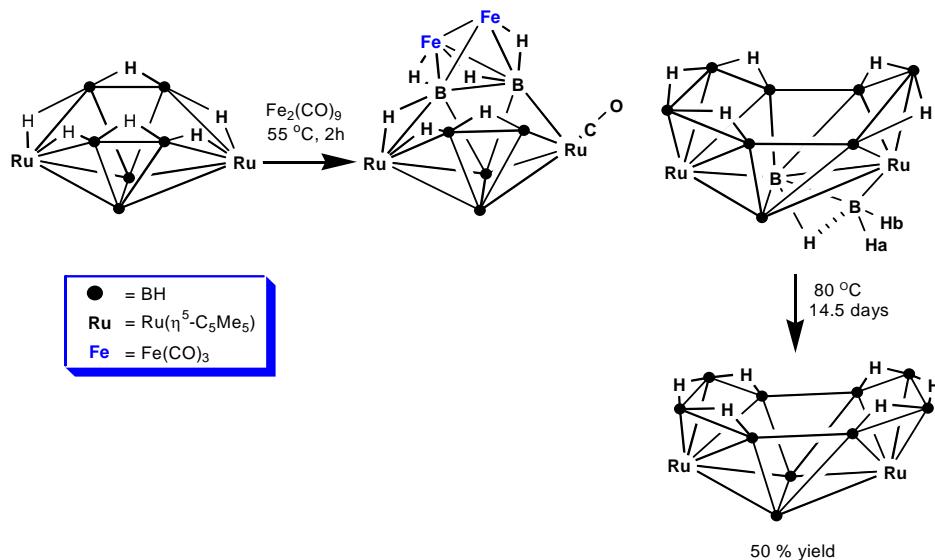
The utility of boronic esters in asymmetric synthesis is well established,¹ but some of the useful transformations of trialkylboranes fail because of the low reactivity of the boronic ester group. Vedejs' conversion of arylboronic acids via trifluoroborate salts to aryldifluoroboranes² led us to a useful conversion of asymmetric azido boronic esters such as **1** to the corresponding enantiopure secondary amine (**4**).³ The reaction of the boron function with azides proceeded much better when the trifluoroborate salt was treated with SiCl_4 than with Me_3SiCl .

We have now found that the reason for this result is that SiCl_4 rapidly converts the trifluoroborate salt (**2**) to alkyl dichloroborane (**3**) in the presence of acetonitrile or THF. Reaction of RBCl_2 with RN_3 requires heating, and RBCl_2 reacts faster and more efficiently than RBF_2 .

It may be surprising to chemists conditioned to think of fluoride as bonding extremely strongly to silicon, but the conversion of BF_3 and SiCl_4 to BCl_3 and SiF_4 is endothermic in the gas phase, $\Delta H^\circ_{298} = +6.2 \text{ kJ}\cdot\text{mol}^{-1}$ per bond; $\Delta G^\circ_{298} = +5.4 \text{ kJ}\cdot\text{mol}^{-1}$ per bond.⁵ From our recent ^{11}B NMR data, it appears that one of the deciding factors in the reaction of RBF_2 with SiCl_4 is that acetonitrile or THF complexes more strongly with RBCl_2 than with RBF_2 , and a second important factor is the rapid escape of gaseous SiF_4 from the reaction mixture.

The new chemistry provides solvated asymmetric RBCl_2 under mild conditions. Additional properties and potential applications of RBCl_2 and RBF_2 will be discussed.

References


3. Reviews: Matteson, D. S. *Tetrahedron* **1998**, *54*, 10555-10607; Matteson, D. S. *J. Organomet. Chem.* **1999**, *581*, 51-65.
4. Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. *J. Org. Chem.* **1995**, *60*, 3020-3027.
5. Matteson, D. S.; Kim, G. Y. *Org. Lett.* **2002**, *4*, 2153-2155.
6. Kim, B. J.; Matteson, D. S. manuscript accepted by *Angew. Chem.*
7. Calculated from *NIST-JANAF Thermochemical Tables*, M. W. Chase, Jr., Ed., *J. Phys. Chem. Ref. Data, Monograph 9*, American Institute of Physics, **1998**.

**METAL-CARBONYL PROMOTED DIRECT SYNTHESIS OF NOVEL
DECAMETALLABORANE SYSTEM: *EXO-NIDO*-(η^5 -C₅Me₅Ru)₂B₁₀H₁₆ AND *NIDO*-(η^5 -C₅Me₅Ru)₂B₁₀H₁₆**

Sundargopal Ghosh ^{*}, Bruce C. Noll and Thomas P. Fehlner

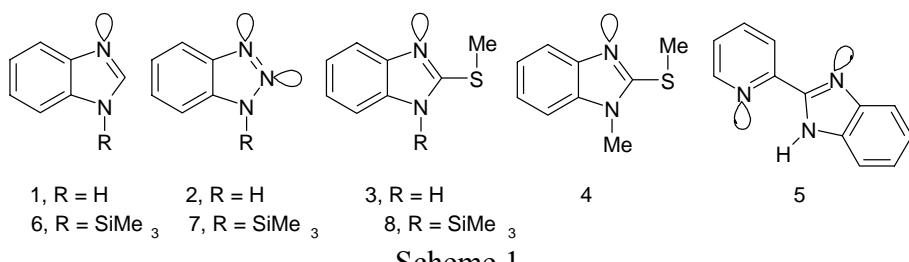
Department of Chemistry and Biochemistry
University of Notre Dame, Notre Dame, IN 46556, USA
email: sghosh@nd.edu

After the discovery of metal promoted fusion of boron containing clusters in 1974, Grimes and co-workers have extensively studied this class of reaction¹ and have synthesized some dimetallacborane derivatives of B₁₀H₁₂ and B₁₂H₁₆, however, no neutral *nido*-dimetallaborane derivatives of B₁₂H₁₆ are known. Recently, we have described *arachno*-(Cp*Ru)₂B_nH₁₂² (n = 6 and 8) with unusual shape and electron count. We report here two new metallaboranes, derivatives of B₁₂H₁₆, which exhibit structural dynamics of a type novel to metallaborane chemistry. Both *exo*-polyhedral metal and borane fragments are involved in metallaborane formation. Mild pyrolysis of *arachno*-(Cp*Ru)₂B₆H₁₂ -with 3 equivalent of Fe₂(CO)₉ results in two metallaborane compounds in moderate yield. One of the metallaboranes has been characterized as a metal carbonyl adduct of *arachno*-(Cp*Ru)₂B₆H₁₂ as 5,8-Fe₂(CO)₆-(η^5 -C₅Me₅RuCO)(η^5 -C₅Me₅Ru)B₆H₁₀, and the second light yellow metallaborane has been characterized as *exo*-BH₂-*nido*-(η^5 -C₅Me₅Ru)₂B₉H₁₄. Pyrolysis of *exo*-BH₂-*nido*-(η^5 -C₅Me₅Ru)₂B₉H₁₄ for a prolonged period of time results in colorless symmetrical *nido*-(η^5 -C₅Me₅Ru)₂B₁₀H₁₆. The X-ray structure analysis and NMR experiments of these two isomeric metallaboranes demonstrates irreversible insertion of the *exo*-polyhedral BH₂ unit into the main framework geometry with a half-life of 14.5 days.

1. a) Grimes, R. N. *Chem. Rev.* **1992**, *92*, 251; b) Grimes, R. N. *Coord. Chem. Rev.* **1995**, *143*, 71.
2. Ghosh, S.; Beatty, A. M.; Fehlner, T. P. *Angew. Chem. Int. Ed.* **2003**, *42*, 4678.

NMR STUDY AND IN SOLID STATE OF COORDINATING BEHAVIOUR OF 2-SUBSTITUTED BENZIMIDAZOLE COMPOUNDS

Angel Ramos-Organillo^{*1}, Angelina Flores-Parra² and Rosalinda Contreras²


¹Facultad de Ciencias Químicas, Universidad de Colima, AP 28400, Coquimatlán, Col., México.

²Chemistry Department, Centro de Investigación y de Estudios Avanzados.

A. P. 14-740. México 07000, D. F. México.

rcontrer@mail.cinvestav.mx

We are studying the chemistry of 2-sustituted benzimidazolic and triazolic compounds. Scheme 1 shows molecules with nitrogen atoms that can coordinate Lewis acids, they have also acidic protons that can be replaced by main group atoms. In this report, we will show the coordinating behaviour of free **1-5** and silylated **7-8** benzimidazolic compounds with BH_3THF and BF_3OEt_2 .

As we expect, [1-4] molecules **1-4**, **6** and **8** gave $\text{N}\rightarrow\text{BX}_3$ ($\text{X} = \text{H}, \text{F}$) compounds; whereas compound **7** gave a tetrameric compound similar to that observed by Weiss. [5] (figure 1a), and the reaction of **5** with one or two equivalents of BH_3THF gave a tetracyclic compound with BH_2 and BH_3 groups (figure 1b).

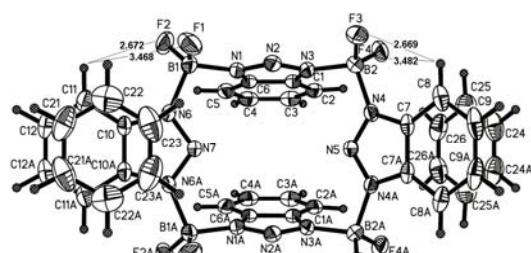
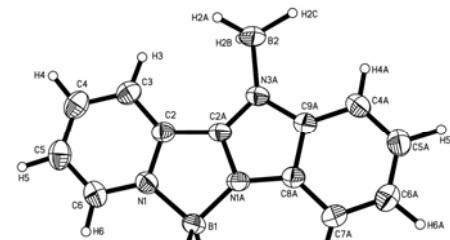
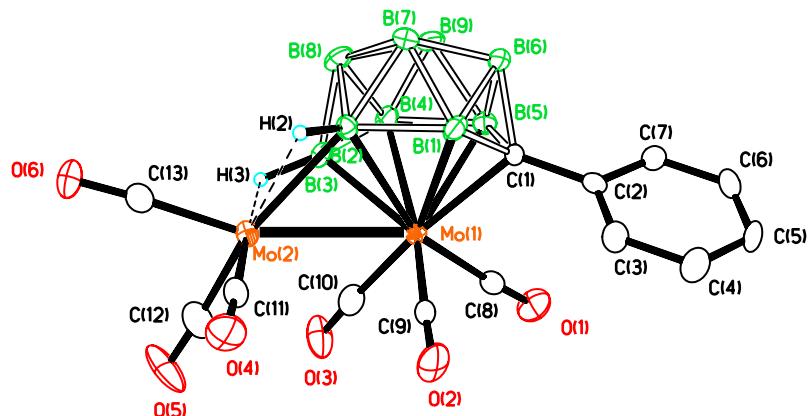



Figure 1a.

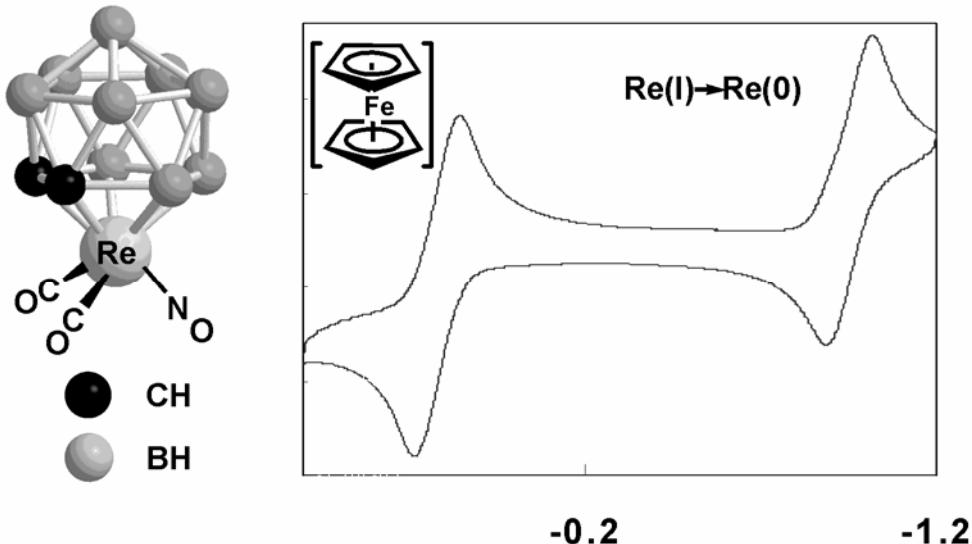

Abstracts of
POSTER
Presentations

SYNTHESIS AND STRUCTURE OF THE NOVEL AND ZERO-VALENT DI-MOLYBDENUM-CARBORANE TRIANION $[1,3,6-\{\text{MO}(\text{CO})_3\}-3,6-(\mu-\text{H})_2-1,1,1-(\text{CO})_3\text{2-PH-CLOSO-1,2-MOCB}_9\text{H}_7]^{3-}$ AND ITS REACTIVITY BY SUBSTITUTION AND OXIDATION

Peng Lei,* Thomas D. McGrath, and F. Gordon A. Stone

Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76798-7348

Treatment of $[\text{NEt}_4][6\text{-Ph-}nido\text{-}6\text{-CB}_9\text{H}_{11}]$ in tetrahydrofuran (THF) with BuLi (2 equiv) followed by 2 equivalents of $[\text{Mo}(\text{NCMe})_3(\text{CO})_3]$ gives the title trianion isolated by addition of $[\text{NEt}_4]\text{I}$ as the salt $[\text{NEt}_4]_3[1,3,6\text{-}\{\text{Mo}(\text{CO})_3\}\text{-}3,6\text{-}(\mu\text{-H})_2\text{-}1,1,1\text{-}(\text{CO})_3\text{-}2\text{-Ph-}closo\text{-}1,2\text{-MoCB}_9\text{H}_7]$. In the anion (Figure 1), one $\{\text{Mo}(\text{CO})_3\}$ group is bonded exo-polyhedrally to a $\{closo\text{-}1,2\text{-MoCB}_9\}$ cage system by a dative $\text{Mo}\rightarrow\text{Mo}$ bond supported by three-center two-electron $\text{B}-\text{H}\rightarrow\text{Mo}$ linkages. Salts of the new trianion react readily with several cationic transition metal-ligand fragments with substitution of the exo-polyhedrally bonded, zero-valent $\{\text{Mo}(\text{CO})_3\}$ group by a cationic fragment. Species prepared include $[\text{NEt}_4][1,3\text{-}\{\text{Pt}(\text{dppe})\}\text{-}3\text{-}\mu\text{-H-}1,1,1\text{-}(\text{CO})_3\text{-}2\text{-Ph-}closo\text{-}1,2\text{-MoCB}_9\text{H}_8]$ ($\text{dppe} = \text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2$) and $[\text{NEt}_4]_2[1,3,6\text{-}\{\text{Mn}(\text{CO})_3\}\text{-}3,6\text{-}(\mu\text{-H})_2\text{-}1,1,1\text{-}(\text{CO})_3\text{-}2\text{-Ph-}closo\text{-}1,2\text{-MoCB}_9\text{H}_7]$. Reaction of the trianion with excess CNBu' and $\text{Ag}[\text{PF}_6]$ (4 equiv) in MeCN gives the zwitterionic monomeric Mo^{II} complex, $[1,1,1,1,3\text{-}(\text{CNBu}')_5\text{-}2\text{-Ph-}closo\text{-}1,2\text{-MoCB}_9\text{H}_8]$. The title trianion reacts with $\text{HBF}_4\cdot\text{OEt}_2$ (2 equiv) in the presence of low pressure CO and $[\text{NEt}_4]\text{I}$ with oxidation of the metal center and formation of an unusual cage expansion species, $[\text{NEt}_4][2,2,2\text{-}(\text{CO})_3\text{-}2\text{-I-}1\text{-Ph-}8\text{-OH-}closo\text{-}2,1,8\text{-MoC}_2\text{B}_9\text{H}_9]$. The structures of all these species were confirmed by X-ray diffraction experiments.


Figure 1. Molecular structure of the trianion $[1,3,6-\{\text{Mo}(\text{CO})_3\}-3,6-(\mu\text{-H})_2-1,1,1-(\text{CO})_3-2\text{-Ph-}clos\text{o}-1,2\text{-MoCB}_9\text{H}_7]^{3-}$ with thermal ellipsoids drawn at 45% probability.

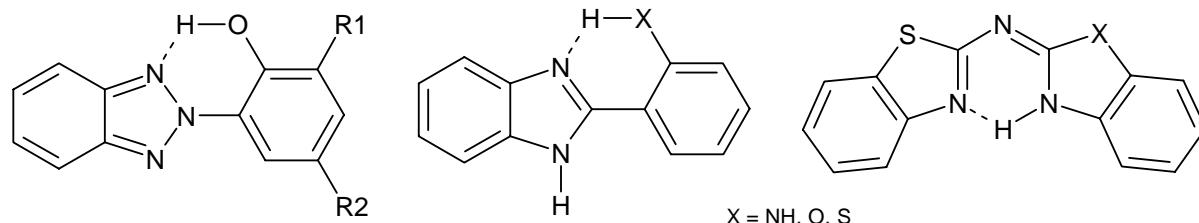
PRELIMINARY INVESTIGATIONS INTO THE PHOTOPHYSICS AND
ELECTROCHEMISTRY OF [3,3-(CO)₂-3-NO-*clos*o-3,1,2-ReC₂B₉H₁₁]

Matthew Fischer, Paul A. Jelliss,* Justin L. Mason, Justin H. Orlando, Keith Wampler.

Dept. of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis MO 63103

The nitrosyl rhenacarborane complex, [3,3-(CO)₂-3-NO-*clos*o-3,1,2-ReC₂B₉H₁₁], has been reported to undergo carbonyl substitution reactions with stronger σ -donors, such as phosphines and isonitriles. The parent complex, however, has lately displayed some interesting photophysical and electrochemical characteristics. UV-vis spectroscopic measurements in photolyzed methyl-THF glass at -90 °C had revealed unexpected dynamic behavior of the nitrosyl ligand. More recently, cyclic voltammetry has yielded a reversible one-electron reduction, in contrast to the precursor complex anion, [3,3,3-(CO)₃-*clos*o-3,1,2-ReC₂B₉H₁₁]⁻, which undergoes an irreversible one-electron oxidation. This redox process is apparently tied to a rapid, reversible chemical reaction, the nature of which is being investigated and will be discussed. Furthermore, spectroscopic measurements of MeTHF glass at 77 K have shown long-lived (290 μ s) emission of blue (450 nm) light. This is again in contrast to the complex, [3,3,3-(CO)₃-*clos*o-3,1,2-ReC₂B₉H₁₁]⁻, which is completely non-emissive.

NEW BORON HETEROCYCLES DERIVED FROM BENZIMIDAZOLE, BENZOTRIAZOLE AND BENZOTHIAZOLE


Adriana Esparza-Ruiz^{a*}, Julio Hernández-Díaz^b, Fabiola Téllez^a, Angelina Flores-Parra^a and Rosalinda Contreras^a

^{a)} Department of Chemistry, Centro de Investigación y de Estudios Avanzados, A.P. 14-740, México, D.F., C.P. 07360, México. ^{b)} Facultad de Ciencias Químicas, Universidad de Colima, A.P. 28400, Coquimatlan, Col., México.

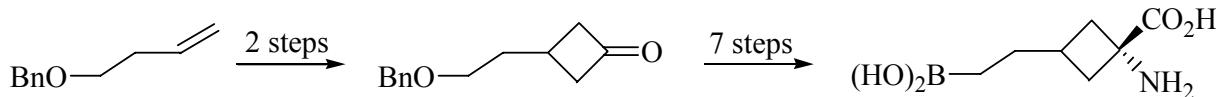
Email: rcontrer@mail.cinvestav.mx

Our research group has been interested in studying aromatic heterocycles of biological interest. Several main group compounds, derived from benzimidazole and benzothiazole, have been reported^[1-3]. These polyfunctional molecules bear nitrogen, oxygen and sulphur atoms as basic sites for coordination and acidic protons, which can be substituted by Lewis acids.

We have prepared new boron heterocycles from BH_3 , $\text{B}(\text{NMe}_2)_3$ and BPh_2OH . In these compounds the boron atoms form an electronically delocalized six membered ring. All compounds were characterized by NMR studies and some of them by x-ray diffraction studies.

$\text{R1} = 1,1,3,3\text{-tetramethylbutyl}$, $\text{R2} = \text{H}$
 $\text{R1, R2} = 1\text{-methyl-1-phenylethyl}$

- [1] I. I. Padilla-Martínez, N. Andrade-López, M. Gama-Goicochea, E. Aguilar-Cruz, A. Cruz and R. Contreras, *Heteroatom Chem.*, 7, 323 (1996) [2] N. Andrade-López, R. Cartas-Rosado, E. García-Baéz, R. Contreras, H. Tlahuext, *Heteroatom Chem.*, 9, 399 (1998) [3] M-P. Fialon, E. García-Baéz, N. Andrade-López, G. Osorio-Monreal, G. Canseco-Melchor, I. Velázquez-Montes, N. Barba-Behrens, R. Contreras, *Heteroatom Chem.*, 10, 577 (1999).


**SYNTHESIS OF 1-AMINO-3-[(DIHYDROXYBORYL)ETHYL]-
CYCLOBUTANECARBOXYLIC ACID AS A POTENTIAL BORON NEUTRON
CAPTURE THERAPY AGENT**

M.-L Yao, A. Naravane,* and G. W. Kabalka

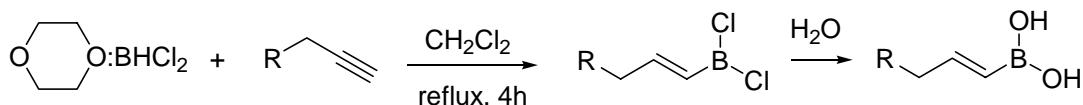
Departments of Chemistry and Radiology, The University of Tennessee, Knoxville, TN
37996

Boron neutron capture therapy (BNCT) is a cancer treatment in which a compound containing boron-10 is selectively delivered to a tumor tissue prior to its irradiation by neutrons.¹ It is believed that amino acids are preferentially taken up by growing tumor cells. Positron emission tomography (PET) investigations carried out at The University of Tennessee using carbon-11 labeled 1-aminocyclobutanecarboxylic acid (ACBC) demonstrated that this amino acid localizes in tumors more avidly than 4-dihydroxyborylphenylalanine (BPA).²

We have focused our efforts on the synthesis of boronated ACBC derivatives for a number of years. Carborane³ and phenylboronic acid⁴ ACBC derivatives were prepared previously. Two 3-butylboronic and 3-methylboronic acid ACBC derivatives were also synthesized.⁵ As part of a structure-activity relationship (SAR) study, we synthesized a novel 3-ethylboronic acid substituted ACBC in 9 steps from but-3-enyloxymethylbenzene. The new agent is currently being evaluated as a BNCT agent.

References:

- ¹ Hawthorne, M. F.; Maderna, A. *Chem. Rev.* 1999, 99, 3421.
- ² Hubner, K. F.; Thie, J. A.; Smith, G. T.; Kabalka, G. W.; Keller, I. B.; Cliefoth, A. B.; Campbell, S. K.; Buonocore, E. *Clin. Positron Imaging* 1998, 1, 165.
- ³ (a) Srivastava, R. R.; Singhaus, R.; Kabalka, G. W. *J. Org. Chem.* 1997, 62, 4476. (b) Das, B. C.; Kabalka, G. W.; Srivastava, R. R.; Bao, W.; Das, S.; Li, G. *J. Organometal. Chem.* 2000, 614–615, 255 (c) Das, B. C.; Das, S.; Li, G.; Bao, W.; Kabalka, G. W. *Synlett* 2001, 1419.
- ⁴ Srivastava, R. R.; Singhaus, R.; Kabalka, G. W. *J. Org. Chem.* 1999, 64, 8495.
- ⁵ Kabalka, G. W.; Yao, M.-L. *Synthesis* 2003, 2890.

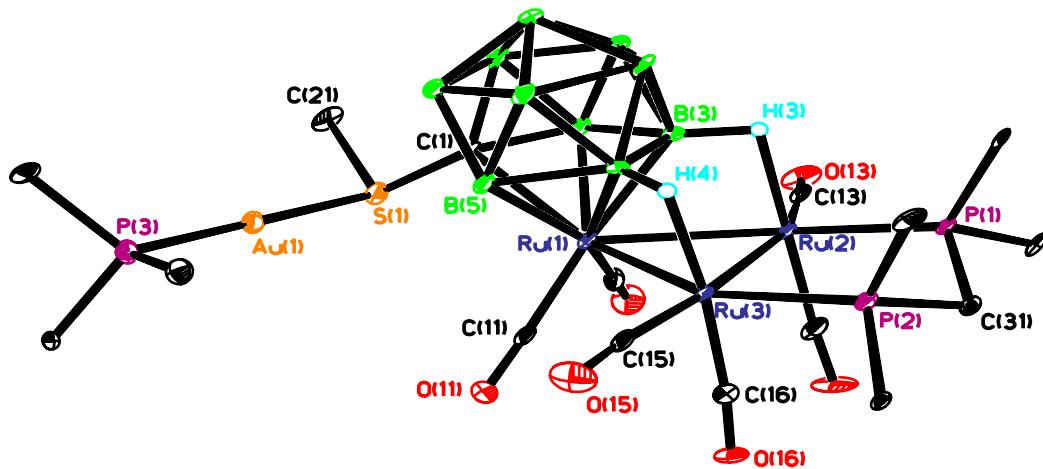


**DICHLOROBORANE-DIOXANE: AN EXCEPTIONAL REAGENT FOR THE
PREPARATION OF ALKENYL- AND ALKYLBORONIC ACIDS**

Kanth V. B. Josyula, Peng Gao and Chris Hewitt*

Aldrich Chemical Company, Inc., 1001 W. Saint Paul Avenue,
Milwaukee, WI 53233, USA

Terminal alkynes and alkenes were conveniently hydroborated to the corresponding terminal alkenyl- and alkyl dichloroboranes using dichloroborane-dioxane in dichloromethane. These dichloroboranes were hydrolyzed by water to the corresponding alkenyl- and alkylboronic acids in moderate to good yields

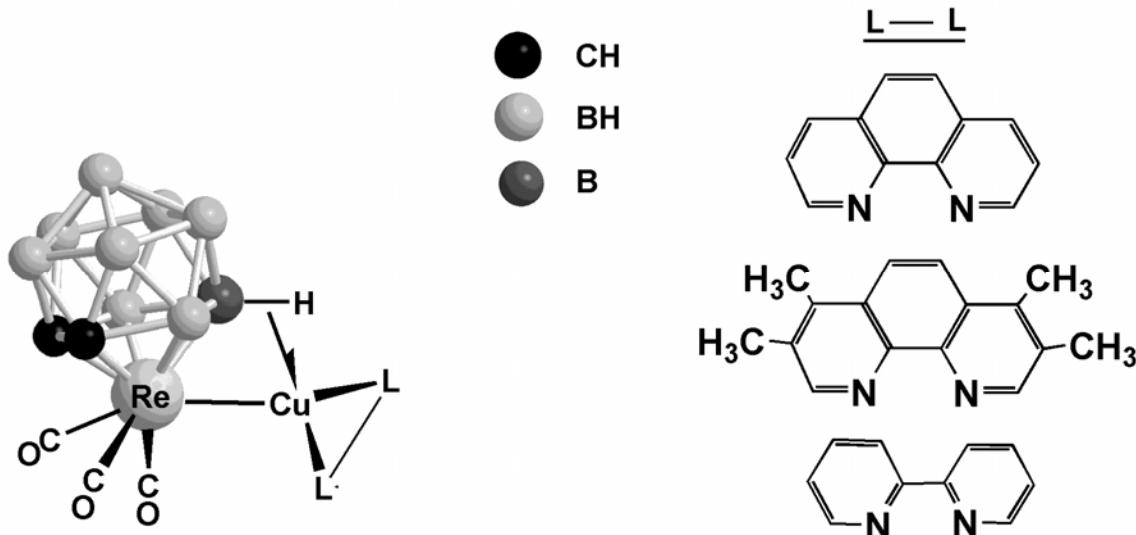


**SYNTHESIS AND DERIVATIZATION OF CHARGE-COMPENSATED
TRIRUTHENAMONOCARBORANE COMPLEXES CONTAINING THIOETHERS
[RU₃(CO)₈(μ₃:η⁵-7-L-CB₁₀H₁₀)] (L = SME₂, SC₄H₈).**

Kengkaj Sukcharoenphon*, Thomas D. McGrath, and F. Gordon A. Stone

Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798

In extending the studies on triruthenium cluster complexes coordinating to an 11-vertex carborane cage, we have prepared the title compounds (L = SMe₂ (**1**), L = SC₄H₈ (**2**)) by reaction of [Ru₃(CO)₁₂] with *nido*-7-L-CB₁₀H₁₂ in refluxing toluene to further explore their potentially interesting derivative chemistry. Reactions of **1** with PR₃ (R = Me, Cy, Ph) afford initial substitution products [Ru₃(PR₃)(CO)₇(μ₃:η⁵-7-SMe₂-CB₁₀H₁₀)] that subsequently yield [Ru₃(PR₃)(CO)₇(μ-H)(μ₃-σ:η⁵-7-SMe₂-CB₁₀H₉)], where a B-H bond adds across the triruthenium cluster. Reactions of **1** and **2** with diphosphines result in 4 different product types dependent on the diphosphine used. Demethylation of [Ru₃(μ-dppm)(CO)₆(μ₃:η⁵-7-SMe₂-CB₁₀H₁₀)] (**3**) with excess [NⁿBu₄]F in refluxing THF yields [NⁿBu₄][Ru₃(μ-dppm)(CO)₆(μ₃:η⁵-7-SMe-CB₁₀H₁₀)] (**4**) which can be further derivatized into the neutral complex **5** (Figure 1) by addition of [AuCl(PPh₃)] in the presence of Tl[PF₆].

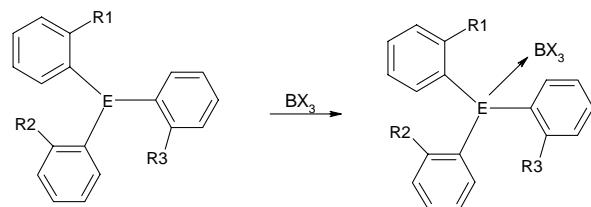

Figure 1. Molecular structure of [Ru₃(μ-dppm)(CO)₆(μ₃:η⁵-7-PPh₃AuSMe-CB₁₀H₁₀)] (**5**). Note: Phenyl rings have been omitted for clarity.

**SYNTHESIS OF BIMETALLIC METALLOCARBORANES WITH
CHROMOPHORIC CHELATING LIGANDS AND THE STUDY OF THEIR
SPECTROSCOPIC PROPERTIES.**

Matt Fischer,* Paul A. Jelliss, Lisa Phifer

Dept. of Chemistry, Saint Louis University, 3501 Laclede Ave. St. Louis, MO 63103

The synthesis of the neutral complex $[3,3,3-(CO)_3-\mu-3,8-\{Cu(2,2'-bipyridyl)\}-closo-3,1,2-ReC_2B_9H_{11}]$ has been accomplished by a similar synthetic pathway established by Stone *et al.* The carborane cage and bipyridyl ligand are linked via a Re-Cu bond coupled with a B-H \rightarrow Cu bridge. This complex has been structurally characterized by IR, NMR, UV-VIS, and single crystal X-ray crystallography. In a similar fashion other related complexes have been synthesized, including $[3,3,3-(CO)_3-\mu-3,8-\{Cu(1,10-phenanthroline)\}-closo-3,1,2-ReC_2B_9H_{11}]$, $[3,3,3-(CO)_3-\mu-3,8-\{Cu(3,4,7,8-tetramethyl-1,10-phenanthroline)\}-closo-3,1,2-ReC_2B_9H_{11}]$, and $[3,3,3-(CO)_3-\mu-3,8-\{Pt(2,2'-bipyridyl)\}-closo-3,1,2-ReC_2B_9H_{11}]^+[BF_4]^-$. These compounds have been studied using low temperature fluorescence spectroscopy and potentiometry in order to elucidate their optoelectronic properties.


**BORON-PHOSPHORUS AND BORON-NITROGEN ADDUCTS $BX_3 \cdot E(R)_3$, (E=P, N;
X=Cl, F OR H) DERIVED FROM O-METHOXYPHENYLPHOSPHINES
AND O-METHOXYPHENYLAMINE**

María Liliana Marín, Rosalinda Contreras*

Chemistry Department, Cinvestav, A. P. 14-760, México, D. F., C. P. 07000. Phone 5061 3800 ext. 4067., e-mail: rcontrer@mail.cinvestav.mx

o-Methoxyphenylphosphines are an important group of multidentate ligands which forms coordination compounds with metals due the presence of oxygen and phosphorus atoms [1, 2]. The chemistry of boron-phosphorus adducts has been less studied than boron-nitrogen adducts [3]. In our research group, we are interested in understand the nature of bonds like $P \rightarrow BX_3$, $N \rightarrow BX_3$ and to evaluate weak interactions, steric effects and the changes in the electronic distribution using 1H , ^{13}C , ^{31}P , ^{11}B , ^{19}F and NMR data [4-7].

We have isolated the 1:1 Lewis acid-base adducts $BX_3 \cdot E(R)_3$, (E = P, N; X = Cl, F or H) derived from *o*-methoxyphenylphosphines and tri-(*o*-methoxyphenyl)amine. They were characterized by multinuclear NMR spectroscopy, infrared, mass spectrometry and elemental analysis.

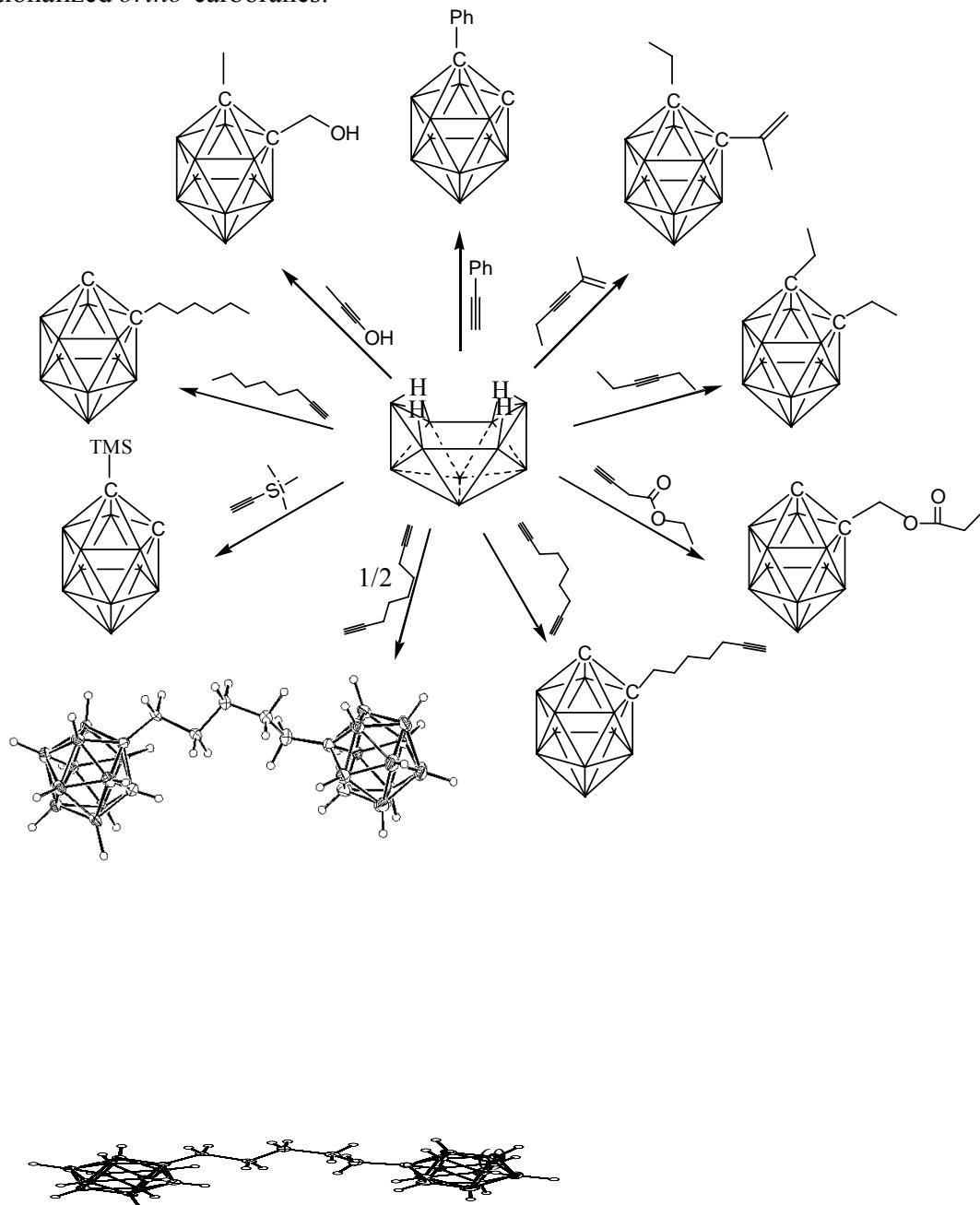
1 E = P
R1 = -OCH₃, R2 and R3 = H

2 E = P
R1 and R2 = -OCH₃, R3 = H

3 E = P and **4** = N
R1, R2 and R3 = -OCH₃

X = Cl, F or H

- [1] Holmes, R. R. *Chem. Rev.* **1996**, *96*, 927.
- [2] Verkade, J. G. *Acc. Chem. Res.* **1993**, *26*, 483.
- [3] Nöth H., Wrackmeyer, B. *Nuclear Magnetic Resonance Spectroscopy of Boron Compounds*. Springer-Verlag, **1978**.
- [4] Güizado-Rodríguez, M., Ariza-Castolo, A., Merino, G., Vela, A., Nöth, H., Bakhmutov, V. I., Contreras, R. *J. Am. Chem. Soc.* **2001**, *123*(37), 9144.
- [5] Padilla-Martinez, I. I., Ariza-Castolo, A., Contreras, R. *Magn. Reson. Chem.* **1993**, *31*, 189.
- [6] Paz-Sandoval, M. A., Camacho, C., Contreras, R., Wrackmeyer, B. *Spectrochim. Acta.* **1987**, *43a*, *11*, 133.
- [7] Padilla-Martinez, I. I., Andrade-López, N., Gama-Goicoechea, M., Aguilar-Cruz, E., Tlahuext, H., Contreras, H. *Heteroatom Chem.* **1996**, *7*, *5*, 323.

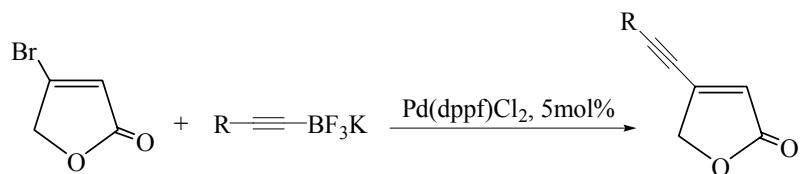

POLYBORANE REACTIONS IN IONIC LIQUIDS. A NEW EFFICIENT ROUTE TO *o*-CARBORANES

Yuqi Li,^{1,*} Mark G. Bradley,² Patrick J. Carroll¹ and Larry G. Sneddon¹

¹ Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323

² Widener University, Chester, PA 19013-5792

Ionic liquids (IL) are attractive substitutes for conventional solvents for organic and inorganic synthesis. We have now found that decaborane alkyne insertions occur in ionic liquids with a wide range of alkynes to produce excellent yields of $1,2\text{-R}_2\text{C}_2\text{B}_{10}\text{H}_{10}$ products without the need of the base catalyst used in conventional reactions. Reactions are carried out under biphasic conditions with reaction times typically ranging from only a few minutes to one hour. The ionic liquid route provides a new, one-step, high yield route to functionalized *ortho*-carboranes.


SYNTHESES OF 4-(1-ALKYNYL)-2(5H)-FURANONES AND COUMARINS VIA
THE PALLADIUM-CATALYZED CROSS-COUPLING REACTIONS OF
POTASSIUM ALKYNYLTRIFLUOROBORATES

G. Dong,* B. Venkataiah, and G. W. Kabalka

Department of Chemistry and Radiology, The University of Tennessee, Knoxville, TN
37996

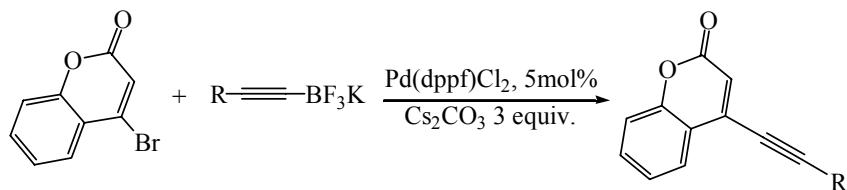
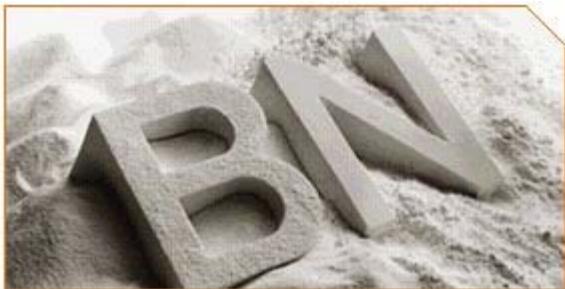

Recently, 4-(1-alkynyl)-substituted 2(5H)-furanones were found to exhibit potent cytotoxicity.¹ However, the methods for synthesizing of 4-alkynyl 2(5H)-furanones are limited.² Due to their ready availability and chemical stability, potassium organotrifluoroborates have attracted increasing attention in organic chemistry.³ In connection with our ongoing studies of the cross-coupling reactions of potassium organotrifluoroborates,⁴ we developed an efficient synthesis of 4-alkynyl substituted 2(5H)-furanones using potassium alkynyltrifluoroborates in the presence of $\text{Pd}(\text{dppf})\text{Cl}_2$. The reactions proceed smoothly in the absence of base and provide excellent yields of the desired products. (Figure 1).

Figure 1.

The new method was applied to the synthesis of 4-alkynylcoumarins. Interestingly, these reactions require base. The reactions of 4-bromocoumarin with various potassium alkynyltrifluoroborates were studied and the yields are excellent (Figure 2).

Figure 2.

References:

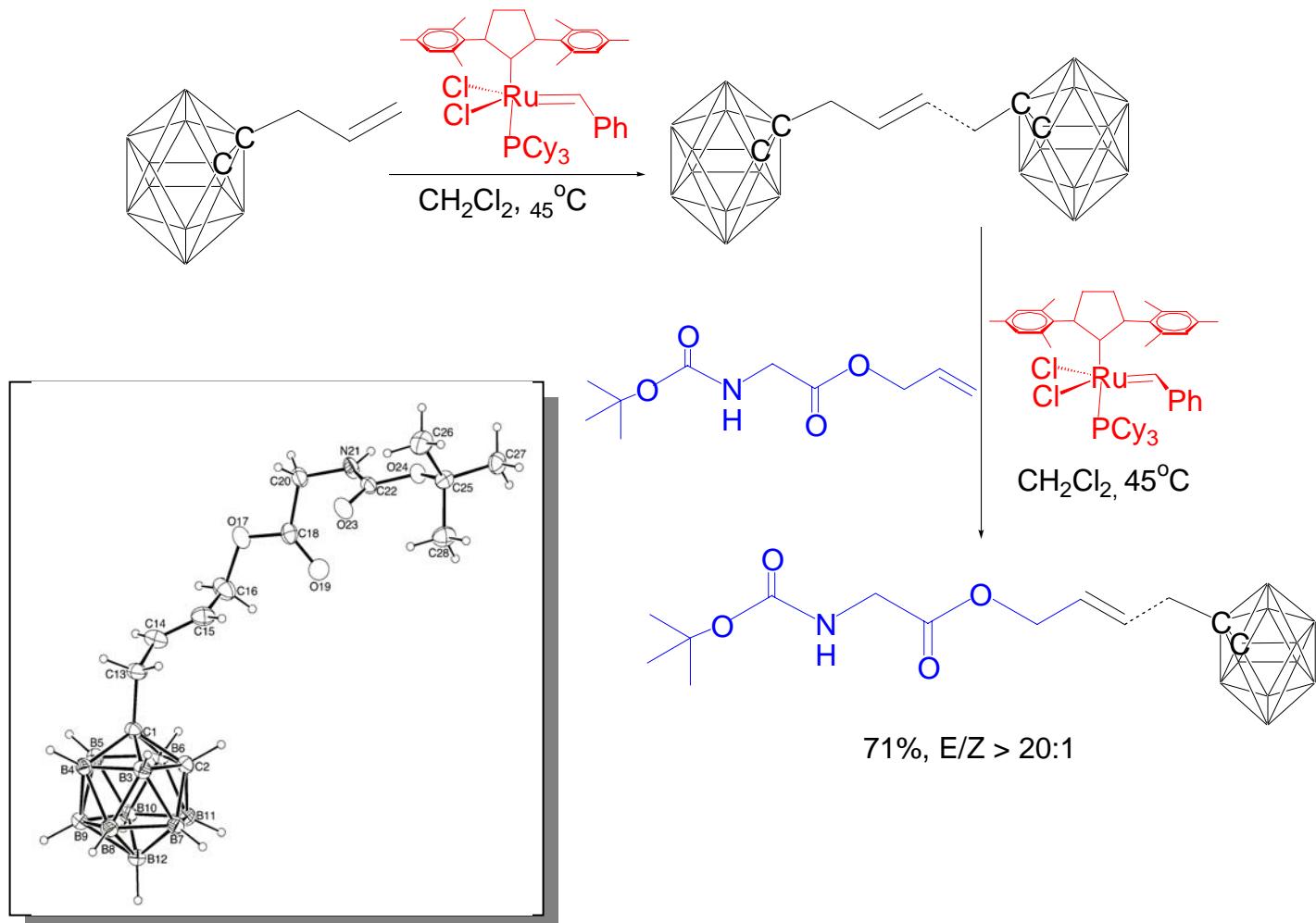

- ¹ Bellina, F.; Falchi, E.; Rossi, R. *Tetrahedron* **2003**, *59*, 9091.
- ² (a) Trost, B. M.; McIntosh, M. C. *J. Am. Chem. Soc.* **1995**, *117*, 7255. (b) Hollingworth, G. J.; Sweeney, J. B. *Synlett* **1993**, 463. (c) Ma, S.; Shi, Z.; Yu, Z. *Tetrahedron Lett.* **1999**, *40*, 2393. (d) Lücking, U.; Pfaltz, A. *Synlett* **2000**, *9*, 1261.
- ³ (a) Darses, S.; Michaud, G.; Genêt, J.-P. *Eur. J. Org. Chem.* **1999**, 1875. (b) Molander, G. A.; Katona, B. W.; Machrouhi, F. *J. Org. Chem.* **2002**, *67*, 8416.
- ⁴ Kabalka, G. W.; Venkataiah, B.; Dong, G. *Org. Lett.* **2003**, *5*, 3803.

BORATES AS SOLID STATE MATERIALS PRECURSORS

G. L. Wood, J. F. Janik, R. T. Paine*, D. M. Schubert and M. Z. Visi

Dept. of Chemistry, Valdosta State University, Valdosta, GA
AGH University of Science and Technology, Krakow, Poland
Dept. of Chemistry, University of New Mexico, Albuquerque, NM
US Borax, Inc., Valencia, CA

Solid state compounds containing boron play many important roles in modern materials science and new approaches for the synthesis of solid state boron materials are sought. Boric acid, for example is used in modest quantities to prepare the industrial ceramic boron nitride. Recently, our group has developed aerosol methods for the preparation of hexagonal BN having a unique spherical particle morphology. This presentation will summarize our recent efforts to obtain these materials from $(\text{MeO})_3\text{B}$ and from aqueous solutions containing a variety of ammonium and quanidinium borate salts.


**RUTHENIUM CARBENE CATALYZED
CROSS METATHESIS (CM) AND RING CLOSING METATHESIS (RCM) OF
DECABORANE AND O-CARBORANE BASED OLEFINS**

Xiaolan Wei, Patrick J. Carroll and Larry G. Sneddon

Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323

Email: xiaolanw@sas.upenn.edu, lsneddon@sas.upenn.edu

Alkenylborane metathesis reactions catalyzed by Grubbs-type ruthenium carbene catalysts provide efficient routes for the synthesis of organopolyboranes. Both 6-hexenyldecaborane and allyl-*o*-carborane undergo catalyzed homometathesis to form olefin-bridged polyboranes. Cross metathesis (CM) with a variety of olefins provide routes to functionalized polyboranes, including potential BNCT drugs. Dialkenylpolyboranes have also been found to readily undergo catalyzed ring closing metathesis (RCM).

BORON OXIDE FILLED POLYCARBONATE FOR FIRE RESISTANT APPLICATIONS

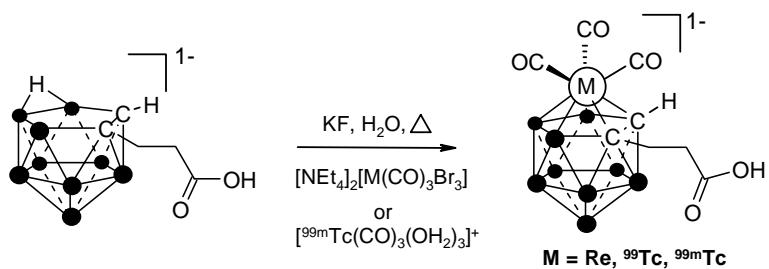
Suresh Murugesan, Chano Morin and Sreenivasulu R. Venumbaka*

Institute of Environmental and Industrial Sciences
Texas State University-San Marcos
San Marcos, TX 78666

Abstract

Flammability of the materials is an important property, which limits the usage of organic polymers in many Industrial applications. In order to improve the flame resistance of these types of materials many different types of additives are added to them of which most of them are halogenated compounds. In this study, boron oxide is *in-situ* generated from an alkoxide in 4X4 plaques of the polycarbonate using sol-gel procedure. Then these composites were tested for fire resistant property by measuring peak heat release rate (PHRR), weight loss, time to ignition. Also mechanical properties of these composites were studied. Preliminary results reveal that composites fire resistant property was improved 30-50% depending on the amount of the filler. The toughness of the composites has increased compared to the unfilled PC plaques.

THE SYNTHESIS, BIOCONJUGATION AND PRELIMINARY BIODISTRIBUTION STUDIES OF Tc-METALLOCARBORANES


O.O. Sogbein*,¹ P. Merdy¹, A. Green, B.D. Healy, R. Schibli² and J.F. Valliant¹

¹*Department of Chemistry and the Medical Physics and Applied Radiation Sciences Unit, McMaster University, Hamilton, ON, Canada L8S 4M1*

²*Center for Radiopharmaceutical Science of the ETH Zürich, Paul Scherer Institute Villigen and the University Hospital Zürich, CH-5232 Villigen, Switzerland*

We recently described a new method for the synthesis of Tc and Re metallocarborane complexes in water.¹ The synthetic methodology involves reacting *nido*-carborane ligands with $[M(CO)_3(OH_2)_3]^+$ ($M = Tc, Re$) in the presence of fluoride. The resulting carborane complexes have a number of features that make them attractive synthons for designing targeted radiopharmaceuticals. These include inertness, compact size and ease of functionalization.

We have recently begun developing a new series of carborane ligands and carborane-biomolecule conjugates that are designed to deliver Tc-to specific receptor sites. These include carbohydrate, alkylamino, pyridinium and peptide-carborane derivatives. The synthesis and characterization of these metallocarborane derivatives will be discussed and along with some preliminary biodistribution data.

¹ Sogbein, O.O.; Merdy, P.; Morel, P.; Valliant, J.F. *Inorg. Chem.* **2004**, *In Press*.

REACTION OF $\text{HCB}_{11}\text{Me}_{11}^\square$ AND $\text{CB}_{11}\text{Me}_{12}^\square$ RADICALS WITH DISILANES

Jaroslav Kvíčala, Magdalena Kvíčalová*, and Josef Michl

Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder,
CO 80309-0215

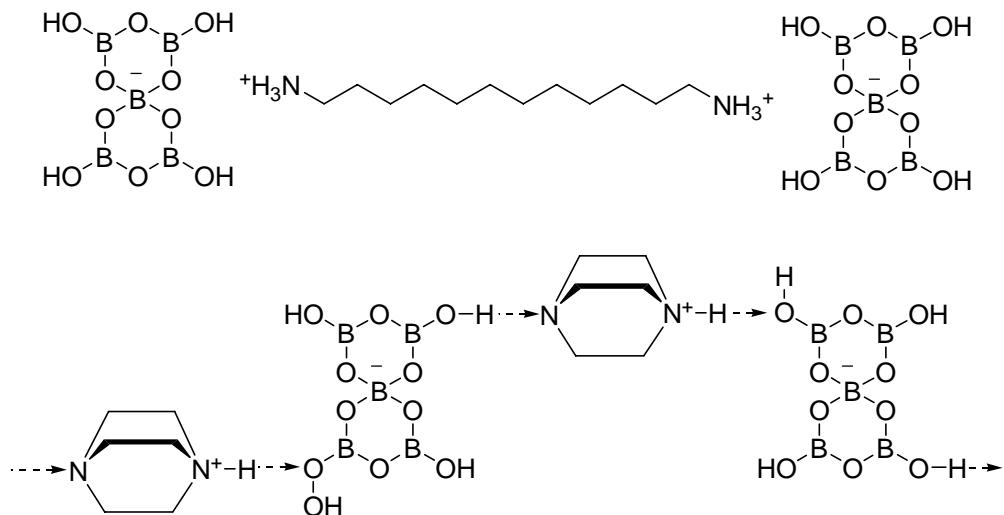
Solutions of the carboranyl radicals $\text{HCB}_{11}\text{Me}_{11}^\square$ and $\text{CB}_{11}\text{Me}_{12}^\square$ in pentane react with Si_2Me_6 at room temperature or with $\text{Si}_2\text{-}t\text{-Bu}_6$ even at $-100\text{ }^\circ\text{C}$ to form SiMe_4 or $\text{MeSi-}t\text{-Bu}_3$ and boron containing products which are stable below $-60\text{ }^\circ\text{C}$ but can apparently be trapped even at higher temperatures. With nucleophiles such as benzene, bromobenzene, phenylacetylene, and *n*-butyllithium, these materials yield 12-substituted methylated CB_{11}^- anion products and thus behave as if their structure were that of the boronium ylides $\text{HCB}_{11}\text{Me}_{10}$ or $\text{CB}_{11}\text{Me}_{11}$, with no ligand in position 12.

**METALLA-ORGANOHYDROBORATES AS POTENTIAL PRECURSORS
FOR THE CATALYSIS OF OLEFIN POLYMERIZATION**

Jungsu Park, Errun Ding, Xeunian Chen, Fabrice Lacroix, Fiu-Chen Liu, Shengming Liu,
Xianlong Ge, William Starnes, Jr. Sheldon Shore*

Department of Chemistry, The Ohio State University, Columbus, 43210

Several titanium and lanthanide-organohydroborates have been prepared, some of these are under investigation as precursors for catalysis of olefin polymerization. Some examples of complexes prepared are shown below and examples of polymerization reactions will be presented.

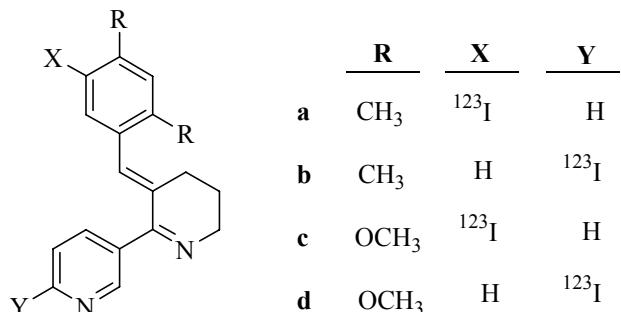

BORATE DERIVATIVES OF DIAMINES

Mandana Z. Visi,^{*1} David M. Schubert,¹ and Carolyn B. Knobler²

(1) U.S. Borax Inc., 26877 Tourney Road, Valencia, California, USA 91355-1847

(2) McCullough Crystallography Laboratory, University of California, Los Angeles, USA
90095-1569

Boron-oxygen compounds have vastly greater technological importance than any other class of boron compounds. Aside from boric acid and boric oxide, the majority of these compounds contain interstitial metal cations that serve as Lewis acid acceptors for oxygen of anionic borate structural units. Borate compounds containing non-metal cations have been studied to a far lesser extent. In contrast to metals, non-metal cations generally do not coordinate oxygen and may act as hydrogen bond donors to, or acceptors from, borate structural units. Syntheses and structural characterizations of crystalline borates containing non-metal cations derived from various diamines are described. In some cases, non-metal cations may direct the formation of unusual borate structures, as in imidazolium nonaborate, $[C_3N_2H_5]_3^+ [B_9O_{12}(OH)_6]^{3-}$. In other cases, borate anions form extended H-bonded networks that direct cation conformation, as in a series of novel pentaborates containing $[H_3N(CH_2)_nNH_3]^{2+}$ cations ($n = 5-12$) that alternatively arrange linearly along channels or fill pockets with disordered alkane moieties. The 1,12-diaminododecane bis(pentaborate), ignoring the important anion-anion and cation-anion H-bonds, is illustrated below. Also pictured is the pentaborate derivative of the $[N(CH_2CH_2)_3NH]^+$ cation, which crystallizes in the asymmetric space group Cc and exhibits highly directional cation-anion as well as anion-cation H-bonding. The anion-anion H-bonding interactions are not included in this picture.


RADIOLABELED ANABASEINE DERIVATIVES FOR USE IN THE EARLY DETECTION OF LUNG CANCER

A. L. Smith*, M. Akula, and G. W. Kabalka

Departments of Chemistry and Radiology, The University of Tennessee
Knoxville, TN 37996

The use of single photon emission tomography (SPECT) and positron emission tomography (PET) in Nuclear Medicine has resulted in the need for a variety of physiologically active compounds labeled with short-lived radioisotopes. Researchers at the University of Tennessee have found that small cell lung carcinoma express an α_7 -bungarotoxin (α_7 -BTX) sensitive neuronal nicotinic acetylcholine receptor comprised of α_7 subunits (α_7 -nAChR) which control cell growth.¹ Anabaseine and derivatives such as dimethoxybenzylideneanabaseine have been demonstrated to have a high affinity for this receptor.² A radiolabeled derivative of anabaseine could thus be valuable for the early detection of lung cancer using PET and SPECT.

Iodine-125 with a half-life of 60 days was used in the initial synthesis of a radiolabeled anabaseine derivative. The chemistry is readily transferable to iodine-123 which is the isotope of choice for SPECT as well as iodine-124, a positron emitting radionuclide.

References:

- ¹ Schuller, H. M.; Jull, B. A.; Sheppard, B. J.; Plummer, H. K. *Eur. J. Pharm.* **2000**, 393, 265.
- ² Kem, W. R; Mahnir V. M; Prokai L.; Papke, R. L; Cao X.; LeFrancois S. Wildeboer K.; Prokai-Tatrai K.; Porter-Papke J.; Soti F. *Mol. Pharm.* **2004**, 65, 56.

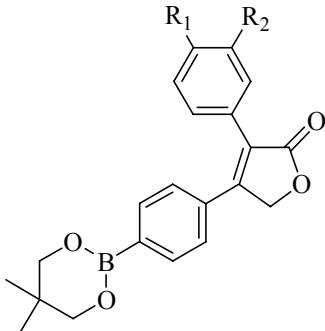
A TRIBUTE TO THE LIFE OF ROY M. ADAMS

Bernard F. Spielvogel* and David Badger#

*BoroScience Canada, 101 Research Drive, Dartmouth, Nova Scotia, B2Y 4T6, Canada

Department of Chemistry, Geneva College, Beaver Falls, PA, 15010

Professor Adams was an outstanding dedicated undergraduate educator, spending 39 years as a full time faculty member at Geneva College. Although retiring from Geneva in 1985, he continued to teach there until his death on March 26, 2003 at the age of 83. In addition to his academic duties, Dr Adams served as a consultant to nearby Callery Chemical Company and was intimately involved in the high energy boron fuels effort. He also consulted with Battelle Memorial Institute and the Midwest Research Institute. For more than 35 years, he dedicated his spare time to developing standards for chemical nomenclature and is now recognised as being largely responsible for the 1961 IUPAC rules on boron nomenclature. He co-authored "Boron, Metallo-Boron Compounds and Boranes", published in 1964 and which even to this day serves as one the most useful books on boron science. Professor Adam's contributions to boron chemistry will be presented.


BORONATED ANALOGUES OF COX II INHIBITORS AS POTENTIAL BNCT AGENTS

B. Underwood* and G. W. Kabalka

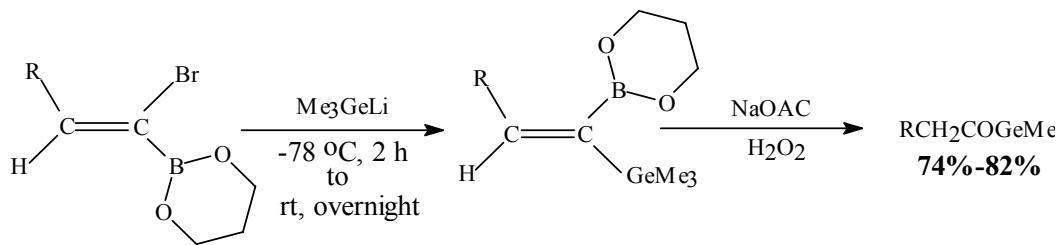
Departments of Chemistry and Radiology, The University of Tennessee
Knoxville, TN, 37996

Boron neutron capture therapy (BNCT) is a cancer treatment in which boron-10 nuclei are irradiated with thermal neutrons to generate high linear energy transfer particles. Many classes of compounds have been developed as potential BNCT agents; these include boronated carbohydrates, porphyrins, amino acids, and other biomolecules.¹ Cyclooxygenase (COX) enzyme inhibitors have been of interest as potential BNCT agents in our laboratory for a number of years because of their affinity for inflammatory processes.

3,4-Diarylfuranones are potent COX-2 inhibitors.^{2,3} For this reason we are interested in the structure activity relationship (SAR) and chemistry of these compounds. We have synthesized a variety of functionally substituted diarylfuranone derivatives. The boronic esters of the diarylfuranones are readily prepared by Suzuki-Miyaura chemistry using *bis*(neopentylglycolato)diboron and a palladium catalyst. The synthesis of these diarylfuranone boronic esters will be described.

where R₁, R₂ = H, Br, Cl, Me

References:


- ¹ Kabalka, G. W.; Yao, M.-L.; *Appl. Organomet. Chem.* **2003**, *17*, 298.
- ² Lee, S. H.; Soyoola, E.; Chanmugam, P.; Hart, S.; Sun, W.; Zhong, H.; Liou, S.; Simmons, D.; Hwang, D. *J. Biol. Chem.* **1992**, *267*, 25934.
- ³ Herschman, H. R. *Cancer Metathesis Rev.* **1994**, *13*, 241.

A FACIE REACTION OF α -BROMO-(Z)-1-ALKENYLBORONATE ESTERS WITH TRIMETHYLGEMMYLLITHIUM. NEW ACCESS TO ALKYL TRIMETHYLGEMMYL KETONES

Narayan G. Bhat* and Vanessa L. Perez

Department of Chemistry, The University of Texas-Pan American, 1201 West University Drive, Edinburg, Texas, USA 78541, Fax: 956-384-5006, E-mail: nbhat@panam.edu

A convenient, novel synthesis of (*E*)-*gem*-dimetallocloalkenes containing boron and germanium from the Z-1-bromo-1-alkenylboronate esters is developed. α -Bromo-(Z)-1-alkenylboronate esters readily prepared from the literature procedures smoothly undergo a reaction with freshly generated trimethylgermyllithium in hexamethylphosphoramide (HMPA) at -78 °C to provide the corresponding “ate” complexes. These “ate” complexes undergo intramolecular nucleophilic substitution reactions to provide the corresponding (*E*)-1-alkenylboronate esters containing trimethylgermyl moiety. These intermediates are oxidized with hydrogen peroxide and sodium acetate to provide the corresponding alkyl trimethylgermyl ketones in good isolated yields (74%-82%) and they are characterized by the spectral data (PMR and CMR).

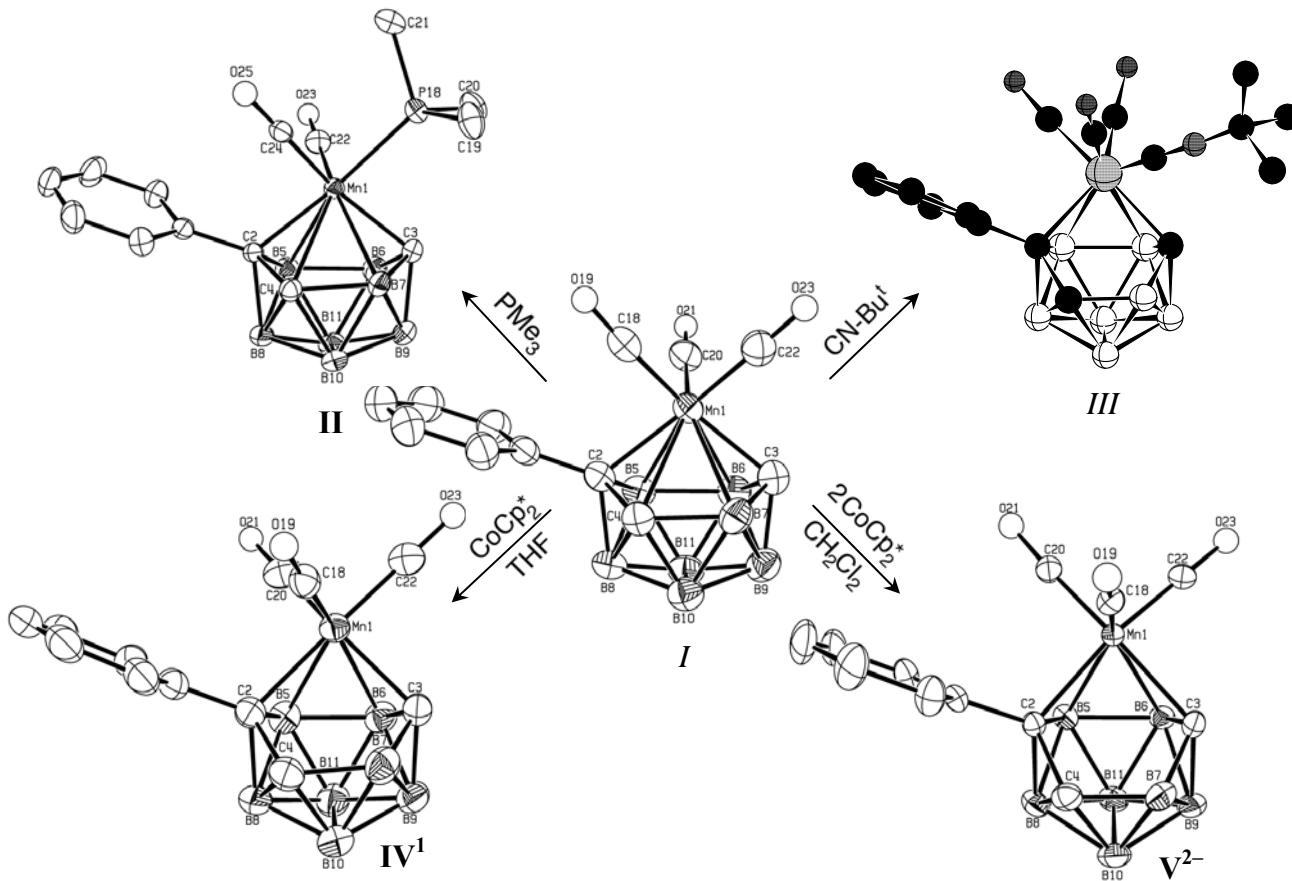
PREPARATION OF CARBORANE-CONTAINING CHOLESTEROL DERIVATIVES FOR POTENTIAL APPLICATION IN BNCT

Jacqueline Smits,* Colby C. Tate, and Debra A. Feakes

Department of Chemistry and Biochemistry, Texas State University – San Marcos,
San Marcos, TX 78666

Therapeutically useful concentrations of boron can be delivered to the interior of tumor cells using unilamellar liposomes of a specific size and composition, thus providing a potential tumor specific delivery vehicle for application in boron neutron capture therapy. A wide variety of boron-containing compounds can be incorporated into the liposomes. Hydrophilic boron-containing compounds can be encapsulated in the aqueous core of the liposomes while lipophilic boron-containing compounds can be embedded in the lipophilic bilayer. Although the majority of compounds investigated to date have been water-soluble derivatives of polyhedral borane anions, the use of lipophilic compounds provides several advantages. Lipophilic compounds are incorporated to a much higher degree than the hydrophilic compounds and provide a means of enhancing the delivered dose without increasing the osmotic stress on the bilayer. The standard lipid bilayer utilized in prior experiments has been composed of a 1:1 molar ratio of cholesterol to phospholipid (typically distearoylphosphatidylcholine, DSPC). The incorporation of carborane-containing derivatives of cholesterol should enhance the delivered dose of boron while minimizing the deleterious effects to the bilayer stability. A series of carborane-containing derivatives have been reported by our group; however, the original synthesis required many steps and resulted in relatively low overall yields of the carborane derivative. More recently, we have investigated an alternative synthetic methodology, the optimization of which will be presented in this poster.

SYNTHESSES AND PROPERTIES OF HALF-SANDWICH METALLATRICARBADECABORANYL COMPLEXES

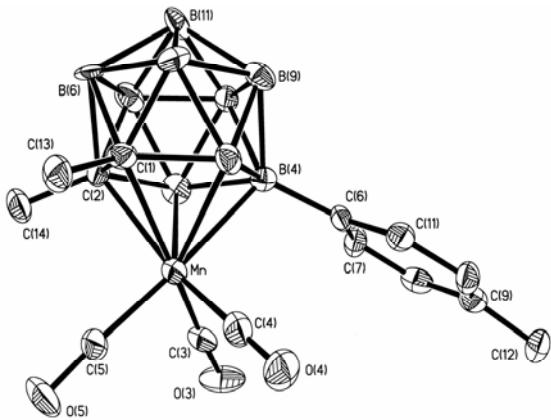

Robert Butterick III,^{†,*} Ayman Nafady,[‡] William E. Geiger,[‡] Patrick J. Carroll,[†] and Larry G. Sneddon[†]

[†]Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323

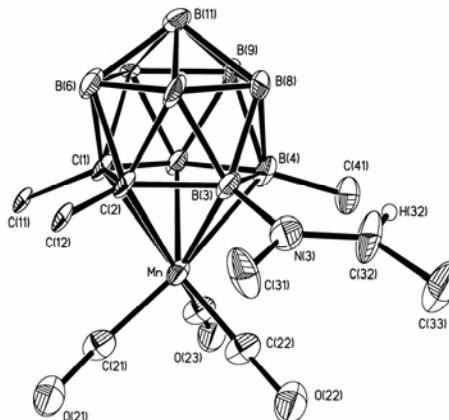
[‡]Department of Chemistry, University of Vermont, Burlington, VT 05405-0125

E-mail: rbiii@sas.upenn.edu, lsneddon@sas.upenn.edu

The tricarbaboranyl ligand $6\text{-Ph-}nido\text{-}5,6,9\text{-C}_3\text{B}_7\text{H}_9^-$ has been used to synthesize a variety of half-sandwich metal complexes. Reaction of $1,1,1\text{-(CO)}_3\text{-}2\text{-Ph-}closo\text{-}1,2,3,4\text{-MnC}_3\text{B}_7\text{H}_9$ (**I**) with a strong lewis base (e.g. PMe_3) yields the monosubstituted dicarbonyl complex $1,1\text{-(CO)}_2\text{-}1\text{-PMe}_3\text{-}2\text{-Ph-}closo\text{-}1,2,3,4\text{-MnC}_3\text{B}_7\text{H}_9$ (**II**), while reaction of **I** with a weaker lewis base (e.g. CNBu^t) yields the ring-slipped, monosubstituted tricarbonyl complex $1,1,1\text{-(CO)}_3\text{-}1\text{-CNBu}^t\text{-}2\text{-Ph-}nido\text{-}1,2,3,4\text{-MnC}_3\text{B}_7\text{H}_9$ (**III**). Depending on reaction stoichiometry and solvent, the reaction of CoCp^*_2 with **I** yields either mono- (**IV**¹⁻) or di-anionic (**V**²⁻) metallatricarbaboranyl complexes. The syntheses and properties of these metal complexes will be presented.



REACTIVITY OF $[\text{PPN}][3,3,3-(\text{CO})_3-1,2-\text{Me}_2-\text{closo-3,1,2-}\text{MnC}_2\text{B}_9\text{H}_9]$ AND ITS DERIVATIVES WITH ELECTROPHILES


Mitsuhiro Hata, Jason A. Kautz, Xiu Lian Lu,* Thomas D. McGrath, and F. Gordon A. Stone

Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798-7348

Although $\text{Cs}[3,3,3-(\text{CO})_3-\text{closo-3,1,2-}\text{MnC}_2\text{B}_9\text{H}_{11}]$ was firstly reported by Hawthorne and co-workers many years ago,^{1,2} its chemistry has scarcely been studied. In our group, it has proved possible to abstract hydride from a carborane boron vertex by reaction with certain electrophiles. Studies have shown that reaction of $[\text{PPN}][3,3,3-(\text{CO})_3-1,2-\text{Me}_2-\text{closo-3,1,2-}\text{MnC}_2\text{B}_9\text{H}_9]$ (**1**) with I_2 afforded $[\text{PPN}][8-\text{I-3,3,3-(CO)}_3-1,2-\text{Me}_2-\text{closo-3,1,2-}\text{MnC}_2\text{B}_9\text{H}_8]$ (**2**), of which the latter further reacted with Grignard reagents RMgBr in the presence of catalytic $[\text{PdCl}_2(\text{PPh}_3)_2]$ to give $[\text{PPN}][8-\text{R-3,3,3-(CO)}_3-1,2-\text{Me}_2-\text{closo-3,1,2-}\text{MnC}_2\text{B}_9\text{H}_8]$ ($\text{R} = \text{Me}$, **3**; $\text{R} = p\text{-C}_6\text{H}_4\text{Me}$, **4**). Treatment of **3** with I_2 afforded the further substituted complex $[\text{PPN}][4-\text{I-3,3,3-(CO)}_3-1,2,8-\text{Me}_3-\text{closo-3,1,2-}\text{MnC}_2\text{B}_9\text{H}_7]$ (**5**), whereas **3** with MeOTf in $\text{CH}_2\text{Cl}_2-\text{MeCN}$ gave neutral zwitterionic $[4-\{\text{Z-N(Me)}=\text{C(H)Me}\}-3,3,3-(\text{CO})_3-1,2,8-\text{Me}_3-\text{closo-3,1,2-}\text{MnC}_2\text{B}_9\text{H}_7]$ (**6**). The structures of **4** and **6** were determined by X-ray diffraction analysis (shown below).

Molecular structure of the anion of **4**

Molecular structure of **6**

References

1. Hawthorne, M. F.; Andrews, T. D. *J. Am. Chem. Soc.* **1965**, 87, 2496.
2. Hawthorne, M. F.; Young, D. C.; Andrews, T. D.; Howe, D. V.; Pilling, R. L.; Pitts, D.; Reintjes, M.; Warren, L. F., Jr.; Wegner, P. A. *J. Am. Chem. Soc.* **1968**, 90, 879.

**SYNTHESIS OF A POLYALKENE CARRYING MULTIPLE 2, 2, 2-
TRIFLUOROETHYLATED ICOSAHEDRAL CARBORATE ANIONS**

Peter Schreiber* and Josef Michl

Department of Chemistry and Biochemistry
University of Colorado, Boulder
Campus Box 215
Boulder, CO 80309

We find that the carbenoid derived from $\text{CF}_3\text{CH}_2\text{N}_2$ and a metal catalyst inserts CF_3CH_2 groups into BH bonds of the $\text{CB}_{11}\text{H}_{12}(-)$ anion. This reaction is the starting point for the synthesis of a partially fluorinated ionomer reminiscent of Nafion, but carrying the very bulky $\text{CB}_{11}\text{H}_n(\text{CH}_2\text{CF}_3)_{11-n}(-)$ substituents instead of sulfonate anions. Proton conductivity of the new polymer as a function of temperature is under investigation

EVALUATION OF THE BINDING OF POLYHEDRAL BORANE ANIONS WITH ALBUMINS AND SIMPLE AMINO ACIDS

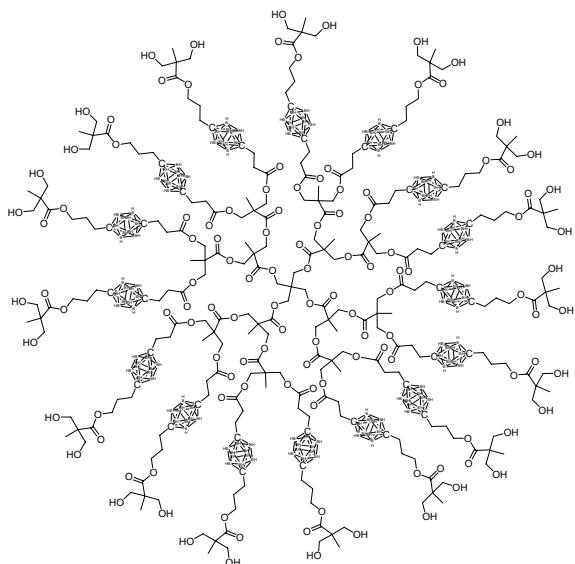
D. Michelle Motley,* W. Jefferson McVey, and Debra A. Feakes

Department of Chemistry and Biochemistry, Texas State University – San Marcos,
San Marcos, TX 78666

Unilamellar liposomes of a specific size and composition have been shown to deliver therapeutic quantities of boron to tumors in biodistribution experiments and, as a result, have potential applications in boron neutron capture therapy. A wide variety of boron-containing compounds can be incorporated into the liposomes. Water-soluble boron-containing compounds can be encapsulated within the aqueous core of the liposomes while water-insoluble boron-containing compounds can be incorporated into the lipophilic bilayer of the liposomes. Although both classifications of compounds have been utilized, the mechanism of uptake and retention of the water-soluble boron-containing compounds has been investigated to the greatest extent. Essentially any water-soluble boron-containing compound can be encapsulated into the core of the liposomes; however, only compounds which possess suitable reactivity are retained within the tumor for any significant period of time.

The $[B_{20}H_{17}SH]^{4-}$ anion has been evaluated and exhibits significant tumor uptake and retention in *in vivo* biodistribution experiments. Several mechanisms of retention can be proposed. In the first proposed mechanism, the thiol substituent has the potential to form disulfide bonds with intracellular protein moieties. In the second proposed mechanism, the anion has the potential to oxidize *in vivo* to the more reactive $[B_{20}H_{17}SH]^{2-}$ anion, capable of both disulfide bond formation and attack by nucleophilic protein substituents. The reaction of the $[B_{20}H_{17}SH]^{4-}$ with albumins has been investigated and the products of the reactions analyzed by HPLC, CZE, and MALDI mass spectrometry. The results indicate that a strong interaction occurs between the anion and the albumins; however, the nature of the binding, in terms of covalent or electrostatic interaction, is not clear. In order to evaluate the potential for covalent binding, the reaction of the $[B_{20}H_{17}SH]^{4-}$ anion with simple amino acids and metabolites has been investigated. The results of these investigations, to date, will be presented.

CARBORANE CONTAINING DENDRIMERS FOR DRUG DELIVERY


M.C. Parrott^{1*}, J.F. Valliant², A. Adronov¹

¹Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

²Department of Chemistry & McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Dendrimers are highly branched, three-dimensional polymers that can be prepared through step-by-step reactions diverging from a central core. Their monodispersity, three-dimensional structure, high molecular weight, and increased functionality significantly improve chemical and physical properties (solubility, viscosity) when compared to linear polymers, or small molecules. In addition, the stepwise synthesis of dendrimers allow for significant control over structure, functionality, and overall molecular size. Consequently, dendrimers are considered to be a leading candidate as building blocks for the construction of nanoscale objects, molecular devices and advanced drug delivery systems, amongst numerous other applications.

Implementation of a dendrimer as a drug delivery system will be the focus of this presentation. It is believed that potent hydrophilic or hydrophobic drugs can be incorporated into the dendrimer structure in such a way that they are masked, or hidden, by the dendrimer periphery, preventing them from being degraded or absorbed at inappropriate times. The ability to tailor the peripheral functional groups of the dendrimer then provides methods for incorporating targeting agents that will send the “packaged” drug molecules to appropriate destinations. Specifically, the heart of this project is to insert carborane clusters into the branches of a water-soluble polyester dendrimer scaffold (Figure 1). The ability to make carborane clusters soluble in an aqueous environment is of interest because of their use in arthritis treatment by way of Boron Neutron Capture Synovectomy (BNCS).

Figure 1. Structure of a carborane-containing aliphatic poly(ester) dendrimer.

Boron in the Americas IX **Participant Contact Information**

Prof. Lawrence Barton

University of Missouri-St. Louis
Department of Chemistry
8001 Natural Bridge Road
St. Louis, MO 63121
E-Mail: lbarton@umsl.edu
Phone: 314-516-5334
Fax: 314-516-5342

Dr. Narayan Bhat

The University of Texas-Pan American
Department of Chemistry
1201 West University Drive
Edinburg, Texas 78541-29
E-Mail: nbhat@panam.edu
Phone: (956)381-3373
Fax: (956)384-5006

Prof. Mark Bradley

Widener University
One University Place
Department of Chemistry
Chester, PA 19013
E-Mail:
bradley@pop1.science.widener.edu
Phone: 610-499-4267
Fax: 302-764-1437

Prof. Vladimir Bregadze

A.N.Nesmeyanov Institute of
Organoelement Compounds
28 Vavilov Str., INEOS
Moscow, Russia 119991
E-Mail: bre@ineos.ac.ru
Phone: +7(095)135 7405
Fax: +7(095)135 5085

Mr. Robert Butterick III

University of Pennsylvania
Box 331
231 S 34th St
Department of Chemistry
Philadelphia, PA 19104
E-Mail: rbiii@sas.upenn.edu
Phone: (215)573-7996

Mr. Jude Clapper

University of Pennsylvania
231 S. 34th St. Box 14
Philadelphia, PA 19104
E-Mail: judeclap@sas.upenn.edu
Phone: 215-898-4783
Fax: 215-573-6743

Prof. Rosalinda Contreras

Centro de Investigaciones y de Estudios
Avanzados
AP 14-740
México D. F. 07000
E-Mail: rcontrer@mail.cinvestav.mx
Phone: (55) 5747-7091
Fax: (55) 5061- 7113

Mr. Gang Dong

University of Tennessee
1611 Laurel Avenue Apt. 602
Knoxville, TN 37916
E-Mail: gdong1@utk.edu
Phone: 865-974-3473
Fax: 865-974-3454

Mr. Jemmis Eluvathingal
University of Hyderabad
School of Chemistry
Central University PO
Hyderabad, 500046
E-Mail: edjsc@uohyd.ernet.in
Phone: -91-40-2301-0917
Fax: -91-40-2301-2460

Dr. Ludvig Eriksson
University of Colorado, Boulder
1860 Athens St. apt.1
Boulder, Colorado 80302
E-Mail: eriksson@eefus.colorado.edu
Phone: 303 786 1718

Miss Adriana Esparza Ruiz
Chemistry Department in the Research
Center and Advanced Studies
(CINVESTAV)
Av. Instituto Politenico Nacional #2508
A.P. 14-740
Mexico, D. F. 07000

Dr. Debra A. Feakes
Texas State University - San Marcos
Department of Chemistry and
Biochemistry
601 University Drive
San Marcos, Texas 78666
E-Mail: df10@txstate.edu
Phone: (512) 245-7609
Fax: (512) 245-2374

Prof. Thomas P. Fehlner
University of Notre Dame
Nieuwland Science Hall
Department of Chemistry & Biochemistry
Notre Dame, IN 46556
E-Mail: fehlner.1@nd.edu
Phone: 574 631 7234
Fax: 574 631 6652

Mr. Matthew Fete
University of Colorado
Boulder, CO 80302
E-Mail: fete@eefus.colorado.edu
Phone: 303-492-6947
Fax: 303-492-5894

Mr. Matthew Fischer
Saint Louis University
3320 Marvin Ave.
Saint Louis, Missouri 63114
E-Mail: fischermatt80@yahoo.com
Phone: 314-428-7856

Prof. Angelina Flores-Parra
Centro de Investigacion y de Estudios
Avanzados
Av. Instituto Politenico Nacional #2508
A.P. 14-740
Mexico, D. F. 07000

Dr. Sundargopal Ghosh
University of Notre Dame
Department of Chemistry and
Biochemistry
Metallaborane Lab
Notre Dame, IN 46556
E-Mail: sghosh@nd.edu
Phone: 574 631 4022

Dr. Ewan Hamilton
The Ohio State University at Lima
4240 Campus Drive
Lima, OH 45804
E-Mail: hamilton.40@osu.edu
Phone: (419) 995-8262

Dr. Bruce Hodson
Baylor University
Department of Chemistry
One Bear Place #97348
Waco, TX 76798-73
E-Mail: Bruce_Hodson@baylor.edu
Phone: 254-710-4501
Fax: 254-710-2403

Prof. Narayan Hosmane
Northern Illinois University
Department of Chemistry and
Biochemistry
Michael Faraday Laboratories
DeKalb, Illinois 60115-28
E-Mail: nhosmane@niu.edu
Phone: (815) 753-3556
Fax: (815) 753-4802

Dr. Paul A. Jelliss
Saint Louis University
Dept. of Chemistry
Monsanto Hall 114
3501 Laclede Ave.
St. Louis, MO 63103-20
E-Mail: jelliss@slu.edu
Phone: (314) 977-2834
Fax: (314) 977-2521

Dr. Gary Jialanella
Dow Automotive
1250 Harmon Road
E-Mail: GLJialanella@dow.com
Phone: (248) 391-6535
Fax: (248) 391-6505

Dr. Kanth Josyula
Aldrich Chemicals Inc.
940 W. Saint Paul Ave.
Milwaukee, WI 53233
E-Mail: kjosyula@sial.com
Phone: (414)273-3850
Fax: (414)287-4076

Prof. George Kabalka
University of Tennessee
Chemistry Department
Knoxville, TN 37996
E-Mail: kabalka@utk.edu
Phone: 865-974-3260
Fax: 865-974-2997

Prof. Steve Kahl
University of California, San Francisco
513 Parnassus Ave.
San Francisco, CA 94143-0446
E-Mail: sbkahl@itsa.ucsf.edu
Phone: 415-476-4684
Fax: 415-476-0688

Prof. R. Bruce King
University of Georgia
Department of Chemistry
Athens, Georgia 30602
E-Mail: rbking@sunchem.chem.uga.edu
Phone: 1-706-542-1901
Fax: 1-706-542-9454

Ms. Arienne King
McMaster University
1280 Main Street West
NRB Rm. 106
Hamilton, Ontario L8S 4K1
E-Mail: kingas@mcmaster.ca
Phone: 905 525-9140
Fax: 905 524-3994

Dr. Goji Kodama
University of Utah
(Retired)
Salt Lake City, Utah
E-Mail: gojikdm@aol.com
Phone: 801-581-1711
Fax: 801-581-1711

Mr. Upal Kusari
University of Pennsylvania
231 S 34th Street
Department of Chemistry Box 237
Philadelphia, PA 19104
E-Mail: upal@sas.upenn.edu
Phone: 215-898-4783

Dr. Magdalena Kvicalova
University of Colorado at Boulder
1250 18th Street Apt. 2
Boulder, Colorado 80302
E-Mail: Magda@eefus.colorado.edu
Phone: 303 786 1630
Fax: 303 492 5894

Prof. Clint Lane
Northern Arizona University
Department of Chemistry
PO Box 5698
Flagstaff, AZ 86011-56
E-Mail: Clint.Lane@nau.edu
Phone: 928-523-6296
Fax: 928-523-8111

Mr. Mark Lee
University of California – Los Angeles
Department of Chemistry and
Biochemistry
607 Charles E Young Dr East
Los Angeles, CA 90095
E-Mail: marklee@chem.ucla.edu
Phone: (310)206-9444
Fax: (310)825-5490

Dr. Peng Lei
Baylor University
Department of Chemistry
One Bear Place #97348
Waco, TX 76798-73
E-Mail: Peng_Lei@baylor.edu
Phone: 254-710-4501
Fax: 254-710-2403

Ms. Yuqi Li
University of Pennsylvania
Department of Chemistry
231 South 34th Street
Philadelphia, PA 19104

Dr. Xiulian Lu
Baylor University
Department of Chemistry
One Bear Place #97348
Waco, TX 76798-73
E-Mail: Xiulian_Lu@baylor.edu
Phone: 254-710-4501
Fax: 254-710-2403

Dr. Ling Ma
University of California – Los Angeles
3310 Sawtelle Blvd., Apt# 304
Los Angeles, CA 90066
E-Mail: lingma@chem.ucla.edu
Phone: 310-206-9444
Fax: 310-825-5490

Dr. Ramon Macias-Maza
University of Notre Dame
Department of Chemistry and
Biochemistry
251 Nieuwland Science Hall
Notre Dame, Indiana 46556-56
E-Mail: rmaza@nd.edu
Phone: (574) 631-4022
Fax: (574) 631-6652

Prof. John Maguire
Southern Methodist University
Department of Chemistry
Southern Methodist University
Dallas, Texas 75275
E-Mail: jmaguire@smu.edu
Phone: (214) 768-2482
Fax: (214) 768-4089

Mrs. Maria Liliana Marin
CINVESTAV
Departamento de Quimica
A. P. 14-740
Mexico D. F. 07000

Mrs. Michelle Motley
Texas State University - San Marcos
Department of Chemistry & Biochemistry
601 University Drive
San Marcos, Texas 78666
E-Mail: mmotley923@txstate.edu
Phone: 512-392-7216
Fax: 512-245-2374

Dr. Karl Matos
BASF Corporation
1424 Mars-Evans City Road
Evans City, PA 16033
E-Mail: matosk@basf-corp.com
Phone: 724-538-1309
Fax: 724-538-1258

Dr. Suresh Murugesan
Texas State University – San Marcos
IEIS
601 University Drive
San Marcos, TX 78666
E-Mail: suresh@txstate.edu
Phone: 512-245-1412
Fax: 512-245-1892

Prof. Donald Matteson
Washington State University
Department of Chemistry
Box 644630
Pullman, WA 99164-46
E-Mail: dmatteson@wsu.edu
Phone: 509-335-3365
Fax: 509-335-8867

Mr. Abhijit Naravane
University of Tennessee
Dept. of Chemistry, 552 Buehler Hall
Knoxville, TN 37996-1600
E-Mail: naravane@novell.chem.utk.edu
Phone: 865-548-4283
Fax:

Dr. Tom McGrath
Baylor University
Department of Chemistry
One Bear Place #97348
Waco, TX 76798-73
E-Mail: tom_mcgrath@baylor.edu
Phone: 254-710-4501
Fax: 254-710-2403

Mr. Brian Newell
Texas State University - San Marcos
Department of Chemistry & Biochemistry
601 University Drive
San Marcos, Texas 78666
E-Mail: bn1021@txstate.edu
Phone: 512-392-7216
Fax:

Mr. W. Jeff McVey
Texas State University - San Marcos
Department of Chemistry & Biochemistry
601 University Dr.
San Marcos, TX 78109-27
E-Mail: jmcvey@txstate.edu
Phone: 512-245-6137
Fax: 512-245-2374

Mr. Justin Orlando
Saint Louis Department of Chemistry
Monsanto Hall
3501 Laclede Avenue
St. Louis, MO 63103-20
E-Mail: orlandoj@slu.edu
Phone: 314-621-1942

Prof. Robert Paine
Department of Chemistry
University of New Mexico
Albuquerque, NM 87131
E-Mail: rtpaine@unm.edu
Phone: (505)277-1661
Fax: (505)277-2609

Mr. Matt Parrot
McMaster University
1280 Main Street West
NRB 106
Hamilton Ontario
Canada
L8S4K1

Prof. Robert Parry
Department of Chemistry
University of Utah
315 South 1400 East
Salt Lake City, UT 84112
E-Mail:
Phone: (801) 581-6681
Fax: (801) 581-8433

Prof. P.V. Ramachandran
Purdue University
Department of Chemistry
H. C. Brown Center for Borane Research
West Lafayette, IN 47907-2084
E-Mail: chandran@purdue.edu
Phone: (765) 494-5303
Fax: (765) 494-0239

Dr. Angel Ramos-Organillo
Cinvestav-IPN and University of Colima
Mexico
AP 14-740 Mexico DF
Mexico City 07000
E-Mail: aaramos@mail.cinvestav.mx
Phone: 011525557477091
Fax: 011525550617113

Mr. Peter Schreiber
Department of Chemistry & Biochemistry
University of Colorado, Boulder
Campus Box 215
Boulder, CO 80309

Dr. David Schubert
U.S. Borax Inc.
26877 Turney Road
Valencia, CA 91355
E-Mail: dave.schubert@borax.com
Phone: (661) 287-6074
Fax: (661) 287-6014

Prof. Don Seo
Arizona State University
Dept of Chemistry and Biochemistry
Tempe, AZ 85287-16
E-Mail: DSeo@asu.edu
Phone: 480 727-7789
Fax: 480 965-2747

Professor Sheldon Shore
Department of Chemistry
The Ohio State University
100 West 18th Avenue
Columbus, OH 43210
E-Mail: shore@chemistry.ohio-state.edu
Phone: (614) 292-6000
Fax: (614) 292-1685

Mr. Aaron Smith
University of Tennessee
2718 Painter Ave. #D104
Knoxville, Tennessee 37919
E-Mail: asmith43@utk.edu
Phone: 8657425706

Ms. Jacqueline Smits

Department of Chemistry & Biochemistry
Texas State University – San Marcos
601 University Drive
San Marcos, TX 78666
e-Mail:
Phone: 512-245-8283
Fax: 512-245-2374

Prof. Takagaki

Aino College Hospital
Department of Neurosurgery
11-18, Takada-cho
Ibaraki-city, Osaka
567-0011
Japan
E-Mail: bnct@rri.kyoto-u.ac.jp
Phone: +81-72-627-7611
Fax: +81-72-627-3627

Prof. John Soderquist

Department of Chemistry
University of Puerto Rico
San Juan, Puerto Rico 00931-3346
E-Mail: jas@janice.uprr.pr
Phone: (787) 751-7779
Fax: (787) 766-1354

Dr. Ken Sukcharoenphon

Baylor University
Department of Chemistry
One Bear Place #97348
Waco, TX 76798-73
E-Mail: K_Sukchar@baylor.edu
Phone: 254-710-4501
Fax: 254-710-2403

Mr. Bola Sogbein

McMaster University
1280 Main Street West
NRB Room 106
Hamilton, ON L8S 4K1
E-Mail: sogbeioo@mcmaster.ca
Phone: 905 525-9140
Fax: 905 524-3994

Prof. Lee Todd

Gosport Scientific
9608 W Hedrick Rd
Gosport, IN 47433
E-Mail: toddlj@indiana.edu
Phone: 812-876-5195
Fax: same as above

Dr. Bernard Spielvogel

BoroScience Canada
101 Research Drive
Dartmouth, Nova Scotia
Canada, B2Y 4T6
E-Mail: bernardspielvogel@hotmail.com
Phone: 902 464-2676

Ms. Brandy Underwood

University of Tennessee at Knoxville,
Chemistry
P O Box 16479
Knoxville, TN 37996
E-Mail: blundergirl123@yahoo.com
Phone: (662)-279-2458

Prof. Gordon Stone

Baylor University
Department of Chemistry
One Bear Place #97348
Waco, TX 76798-73
E-Mail: gordon_stone@baylor.edu
Phone: 254-710-4427
Fax: 254-710-2403

Dr. John Valliant

McMaster University
1280 Main Street West
NRB Rm 106
Hamilton, Ontario L8S 4K1
E-Mail: valliant@mcmaster.ca
Phone: 905 525-9140 ext. 22840
Fax: 905 524-3994

Dr. Reddy Venumbaka
Texas State University-San Marcos
IEIS, CEN 340
San Marcos, TX 78666
E-Mail: reddy@txstate.edu
Phone: 512-245-2672
Fax: 512-245-1892

Dr. Ying Huai Zhu
Institute of Chemical and Engineering
Sciences Ltd.
Block 28, Ayer Rajah Crescent Unit 02-08
Singapore, 139959
E-Mail: hera_adam@ices.a-star.edu.sg
Phone: +65 6874 1920
Fax: +65 6873 4805

Ms. Mandana Visi
U.S. Borax
26877 Turney Road
Valencia, CA 91355
E-Mail: mandana.visi@borax.com
Phone: (661)287-6077
Fax: (661)287-6014

Dr. Kamesh Vyakaranam
University of Colorado at Boulder
1350 20th, B-16
Boulder, CO 80302
E-Mail: vyakaran@eefus.colorado.edu
Phone: 303-492-6947
Fax: 303-492-5894

Prof. Alan Welch
Heriot-Watt University
School of EPS - Chemistry
Edinburgh, EH14
E-Mail: a.j.welch@hw.ac.uk
Phone: +44 131 451 3217
Fax: +44 131 451 3180

Dr. Andrew Weller
University of Bath
Department of Chemistry
E-Mail: a.s.weller@bath.ac.uk
Phone: +44 (0)1225 383394
Fax: +44 (0)1225 386231

Boron in the Americas IX

Author Index

Name	Page(s)
Adronov, A.	82
Akula, M.	73
Badger, David	74
Barton, Lawrence	47
Beatty, Alicia M.	42
Beletskaya, Irina P.	26
Bhat, Narayan G.	76
Biddlecombe, Grainne	47
Bradley, Mark G.	28, 62
Bregadze, Vladimir I.	26
Brenstru, T.	23
Britten, J. F.	23
Buckner, Steven W.	53
Butterick III, Robert	78
Canales, Eda	33
Capretta, A.	23
Carroll, Patrick J.	62, 66, 78
Chen, Xeunian	70
Clapper, Jude	20
Contreras, Rosalinda	30, 54, 61
Deen, Dennis F.	34
Divisová, Hana	39, 55
Dong, G.	63
Du, Bin	24
Du, Shaowu	36
Ellis, David	44
Eriksson, Ludvig	40
Esparza-Ruiz, Adriana	54
Feakes, Debra A.	37, 77, 80
Fehlner, Thomas P.	42, 49
Ferguson, G.	23
Fete, Matthew G.	43
Fischer, Matthew	45, 60
Flores-Parra, Angelina	30, 54
Frost, Christopher G.	57
Gao, Peng	58
Ge, Xianlong	70
Geiger, William E.	78
Ghosh, Sundargopal	49
Green, A.	38, 68

Name	Pages
Hamilton, Ewan J. M.	24
Hata, Mitsuhiro	47, 79
Hawthorne, M. F.	19, 32, 41
Healy, B. D.	68
Hernandez, Eliud	33
Hernández-Díaz, Julio	54
Hewitt, Chris	58
Hodson, Bruce E.	36, 65
Hosmane, Narayan S.	25, 31
Iancu, Nora	29
Ingleson, Michael	21
Janik, J. F.	64
Jellis, Paul A.	45 , 53, 60
Jemmis, Eluvathingal D.	22
Josyula, Kanth V. B.	58
Kabalka, G. W.	35 , 56, 63, 73, 75
Kahl, Stephen B.	34
Kautz, Jason A.	36, 79
King, A. S.	23
King, Errun	70
King, R. Bruce	46
Knobler, Carolyn B.	72
Koebe, Stefanie	39
Koo, Myoung-Seo	34
Kultyshev, Roman G.	24
Kusari, Upal	28 , 71
Kvicala, Jaroslav	69
Kvicalova, Magdalena	55 , 69
Lacroix, Fabrice	70
Lee, Mark W.	19
Lei, Peng	52
Li, Yuqi	28, 62
Liu, Fiu-Chen	70
Liu, Shengming	24, 70
Lu, Xiu Lian	36 , 79
Ma, Ling	32 , 41
Macías, Ramón	42
Maguire, John A.	31
Marín, María Liliana	61
Mason, Justin L.	45
Matteson, Donald S.	48
McConnell, Brook	55
McGrath, Thomas D.	36 , 52, 59, 65, 79
McIntosh, Ruaraidh	44
McVey, W. Jefferson	80

Name	Pages
Merdy, P.	38, 68
Mereddy, A. R.	35
Merle, Nicolas	57
Meyers, Edward A.	24
Michl, Josef	39, 40, 43, 55, 69, 80
Morin, Chano	67
Motley, D. Michelle	80
Murugesan, Suresh	67
Nafady, Ayman	78
Naravane, A.	56
Nazzoli, Jamie M.	45
Newell, Brian	37
Noll, Bruce C.	49
Orlando, Justin H.	45, 53
Osipov, Sergey N.	26
Ozawa, Tomoko	34
Paine, R. T.	64
Park, Jungsu	70
Parrott, M. C.	82
Patmore, Nathan	21
Perez, Vanessa L.	76
Petrovskii, Pavel V.	26
Phifer, Lisa M.	45, 60
Ramachandran, P. Veeraraghavan	30
Ramos-Organillo, Angel	50
Rath, Nigam P.	47
Rosair, Georgina M.	44
Santos, Raquel A.	34
Schibli, R.	68
Schreiber, Peter	80
Schubert, David M.	27, 64, 72
Seo, Dong-Kyun	29
Shore, Sheldon G.	24, 70
Smith, A. L.	73
Smits, Jacqueline	77
Sneddon, Larry G.	20, 28, 62, 66, 71, 78
Soderquist, John A.	33
Sogbein, O. O.	38, 68
Spielvogel, Bernard F.	74
Starikova, Zoya A.	26
Starnes, Jr., William	70
Stephenson, K. A.	38
Stone, F. Gordon A.	36, 52, 59, 65, 79
Sukcharoenphon, Kengkaj	59
Takagaki, Masao	25

Name	Pages
Tate, Colby C.	77
Téllez, Fabiola	54
Thomas, Rhodri L.	47
Timofeev, Sergey V.	26
Tsuruta, Takeo	25
Underwood, B.	75
Valliant, J. F.	23, 38 , 68, 82
Venkataiah, B.	63
Venumbaka, Sreenivasulu R.	67
Visi, Mandana Z.	64, 72
Vyakaranam, Kamesh	39
Wang, Qiangbin	29
Wei, Xiaolan	66
Welch, Alan J.	44
Weller, Andrew S.	21, 57
Willis, Michael C.	57
Wood, G. L.	64
Wu, Li-Ming	29
Yamamoto, Yoshori	25
Yao, M. -L.	56
Yinghuai, Zhu	31