
PROCEEDINGS 
EIGHTEENTH WO KSHOP 

GEOTHERMAL RESERVOIR ENGINEERING 

January 26-28,1993 

SGP-TR-145-17



DISCLAIMER 
 

This report was prepared as an account of work sponsored by an 
agency of the United States Government.  Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof.  The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 
 
Portions of this document may be illegible in 
electronic image products.  Images are produced 
from the best available original document. 
 



PROCEEDINGS, Eighteenth Workshop on Geothf!rmal Reservoir Engineering 
Stanford University, Stanford, California, January 26-28, 1993 
SCP-TR-145 

FRACTAL CHARACTERIZATION OF SUBSURFACE FRACTURE NETWORK 
FOR GEOTHERMAL ENERGY EXTRACTION SYSTEM 

K. Watanabe and H. Takahashi 

Research Institute for Fracture Technology 
Faculty of Engineering, Tohoku University, Sendai 980, Japan 

ABSTRACT 

As a new modeling procedure of geothermal 
energy extraction systems, the authors present two 
dimensional and three dimensional modeling techniques 
of subsurface fracture network, based on fractal 
geometry. Fluid flow in fractured rock occurs primarily 
through a connected network of discrete fractures. The 
fracture network approach, therefore, seeks to model 
fluid flow and heat transfer through such rocks directly. 
Recent geophysical investigations have revealed that 
subsurface fracture networks can be described by 
"fractal geometry". In this paper, a modeling procedure 
of subsurface fracture network is proposed based on 
fractal geometry. Models of fracture networks are 
generated by distributing fractures randomly, following 
the fractal relation between fracture length r and the 
number of fractures N expressed with fractal dimension 
D as N = C . F D ,  where C is a constant to signify the 
fracture density of the rock mass. This procedure 
makes it possible to characterize geothermal reservoirs 
by the parameters measured from field data, such as 
core sampling. In this characterization, the fractal 
dimension D and the fracture density parameter C of a 
geothermal reservoir are used as parameters to model 
the subsurface fracture network. Using this model, the 
transmissivities between boreholes are also obtained as 
a function of the fracture density parameter C, and a 
parameter study of system performances, such as heat 
extraction, is performed. The results show the 
dependence of thermal recovery of geothermal reservoir 
on fracture density parameter C. 

INTRODUCTION 

Recently, HDR(Hot Dry Rock) and HWR(Hot Wet 
Rock) have attracted considerable attention as new 
geothermal energy extraction systems. In order to 
evaluate the performance of these systems, it is 
necessary to establish a modeling procedure of fluid 
flow and heat exchange in fractured rock. 

Traditionally, models of ground water flow have 
used parallel fractures, or a continuum approximation 
such as a "permeable zone". Such models are often 

valid when a representative volume of rock can be 
defined that is much smaller than the region of interest. 
However, it has been becoming difficult to approximate 
the behavior of geothermal reservoirs by such models. 
In fractured rocks, ground water flow and solute 
transport occur predominantly through the connected 
network of discrete fractures. For the performance 
evaluation of such geothermal energy extraction 
systems, interest has grown in more direct models of 
water flow and heat exchange in fractured rock. 

Recent geophysical investigations have confirmed 
that a subsurface fracture network can be described by 
fractal geometry. In the field of seismology several 
reports are available which have characterized 
subsurface fractures and fault systems based on fractal 
geometry. Hirata [ 19891 has investigated several fault 
systems in Japan, and characterized them by fractal 
geometry. In his paper, fractal geometry was 
considered as a useful tool to characterize the geometry 
of the fault line. The fractal dimensions of those fault 
systems were calculated by the so called "box-counting 
method". Furthermore, Meredith [ 19901 has noted that 
subsurface fractures could also be characterized by 
using a methodology in which the number of fractures 
was related to the fracture length. 

In this paper, two and three dimensional modeling 
procedures of subsurface fractuIe network are proposed, 
based on the relationship between the fracture length 
and the number of fractures &s reported by Meredith. 
The importance of the parameter is discussed to 
describe the fracture density of rock mass. This 
procedure is attractive, since this parameter can be 
measured from field data such as the core sample, and it 
is also possible to characterize subsurface fracture 
network by the same parameter. 

For geothermal energy extraction systems, the 
transmissivity and changes in temperature of 
geothermal reservoir are important. So, based on this 
modeling procedure, the transmissivity are discussed in 
terms of probabilities. Finally, we present one of the 
results of changes in temperature at reservoir outlet as 
computed by our model, which suggests the strong 
dependence of temperature change on fracture density. 
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FRACTAL DISTRIBUTION OF 
FRACTURE LENGTH 

Fractal geometry is a branch of mathematics that 
has lingered in the realms of theoretical geometry since 
the last century. Mandelbrot [I9831 realized its great 
potential for characterizing and simulating the geometry 
of complex shapes, especially the shapes of nature. The 
shapes which can be explained by fractal geometry have 
two important properties. Firstly they have self- 
similarity. Secondly they are characterized by their 
fractal dimension. 

In nature, there are several irregular shapes which 
can be explained by fractal geometry. The geometry of 
subsurface fractures is one of the typical example of 
such shapes. Hirata [1989] has shown that subsurface 
fractures such as fault systems can be explained by 
fractal geometry and he computed the fractal 
dimensions of several fault systems in Japan. Usually, 
the fractal dimensions of subsurface fractures or fault 
systems signify the spatial distribution of fractures. 
These kinds of fractal dimensions are calculated by the 
"box-counting method". 

Meredith [ 19901 has reported the investigation of 
the relationship between the fracture length and the 
number of fractures. He used the data of several scale 
fault systems shown in Figure 1. 
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Figure 1 
scales, after Shaw & Gartner [1986]. 

Geometry of fracture system over a range of 

Figure 2 shows the relationship between the normalized 
fracture length and the number of fractures. This 

revealed that the relation between fracture length r (in 
his paper, fracture length is represented by the symbol 
I,) and the number of fractures N whose lengths are 
equal to or larger than r can be expressed by the 
following fractal equation : 

N = C .  r-D (1) 
where C is a constant and D is the fractal dimension. 
The parameter C signifies the fracture density of rock 
mass. In this paper, C is defined as the fracture density 
parameter. 
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Figure 2 Normalized discrete frequency - length 
distribution of fracture shown in Figure 1, after 
Meredith [ 19901. 

Meredith reported that the fractal dimensions were 
almost equal to 1 for all fault systems he investigated, 
Figure 1. The meaning of this fractal dimension D is 
different from that of the fractal dimension calculated 
by "box-counting method". The former is a measure of 
the geometry of fractures (branching geometry), while 
the latter is a measure of the spatial distribution of 
fractures. 

Furthermore, Thomas et al [1989] have 
investigated the width (opening) distribution of 
fractures observed on core samples and boreholes. The 
result showed that the relationship between the fracture 
width w and the number of fractures whose widths are 
equal to or larger than w can be also explained by the 
same formula as Equation (1) and it can be represented 
by the following equation (although the importance of 
fracture width distribution is not included here) : 

(2) N' = C .w-D 

In the modeling procedure proposed here, the 
models of fracture network are regarded as being 
composed of discrete fractures. These fractures are 
distributed to satisfy Equation (1). 
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TWO DIMENSIONAL. NUMERICAL. MODEL 

1. Characteristic features of individual fractures 
For the two dimensional model of subsurface 

fracture network, imagine the square area of edge length 
L between boreholes as shown in Figure 3. Within this 
area discrete fractures are distributed following the 
fractal relationship between the length and the number 
of fractures. In other words, the fracture network model 
is generated in this area by using fractures that satisfy 
Equation (1). In order to simplify the discussion, the 
area and the fractures are normalized by the length L as 
shown in Figure 3. 

B O r s b O k  

NOrmalirariO" 

I 

Figure 3 Concept of two dimensional fracture. 

In this model, the total number of fractures is expressed 
by the symbol n, and ith(i=l,2, ..., n) fracture is 
characterized by the following three parameters: (1) 
Middle point, pi, (2) Angle from the horizon, ei, (3) 
Length, ri. In this paper, these parameters are 
determined as follows. 

(1) Middle point of the fracture, pi  
It is assumed that the fractures do not form a 

cluster around any point. So, x and y co-ordinates of 
.the point pi  are determined by using random numbers 
lying between 0 to 1. 

(2) Angle from the horizon, ei 
The distribution of ei seems to be random, 

however field data sometimes shows that there exist 
preferred directions of fracture orientation. So, if it is 
possible to obtain the preferred direction, ei must be 
determined to have the same tendency as that of the 
field data. In this paper, two types of angle distribution 
are used as examples. 

(3) Length of the fracture, ri 
Since the lengths of fractures are ruled by fractal 

geometry, ri distribution must satisfy Equation (1). In 
order to satisfy Equation ( l ) ,  ri is determined by the 
following formula : 

(4) Total number of fractures, n 
Theoretically, if we need to consider very small 

fractures whose lengths approach 0, n would approach 

infinity. However, very small fractures can not be 
observed, and is dependent upon the resolution of 
measuring instrument. In this paper, rmin is defined as 
the smallest length of fracture which can be observed. 
According to the data reported by Meredith [ 19901, rmin 
is between 0.04 and 0.11. So, we let the value of rmin 
as 0.04, and the smallest i which satisfies ri>rmin as the 
value of n. 

2.  Fractal Dimension : D 
Although some fault systems have been 

investigated and their fractal dirnensions calculated by 
the "box-counting method", the fractal dimensions 
required for Equation (1) are not available. The data 
from Meredith [1990] is the only published information 
from which we can obtain the fractal dimension D. 
Meredith [ 19901 has measured the relationship between 
the fracture length and the number of fractures at 4 
different scale fault systems and shown that the fractal 
dimensions of all fault systems are almost equal to 1 as 
shown in Figure 2. In this present work, we adopt the 
same value of fractal dimension, i. e. D=1. 

3. Examples of fracture network model 
Figure 4 shows some sample patterns of fracture 

network model for 3 different values of the fracture 
density parameter C. Two types of fracture network 
model are shown. One model has a random 
distribution of fracture angle (Type l), the other has two 
preferred directions (Type 2). Figure 4 illustrates the 
strong influence of the fracture density parameter C on 
fracture network patterns. 

5.0 

Figure 4 Some of fracture patterns generated 
numerically based on modeling procedure proposed 
here. 
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THREE DIMENSIONAL 
FRACTURE NETWORK MODEL 

For the estimation of practical system performance 
such as transmissivity and thermal recovery, two 
dimensional geothermal reservoir model may not be 
accurate. It is necessary to extend two dimensional 
modeling procedure into a three dimensional one. 
However, there is no information about three 
dimensional shape of subsurface fractures. In this 
paper, we assume that the subsurface fractures are 
penny-shaped. Figure 5 shows the concept of three 
dimensional fracture network model. The network is 
formed by distributing penny-shaped fractures in the 
box randomly. 

Scan Plane 
\ Scan Line 

--+X 

Plane 

Figure 5 
model. 

Concept of three dimensional fracture 

As in the two dimensional modeling procedure, 
each fracture is characterized by the following 
parameters : 
(1) Central point of the fracture : p 
(2) Normal of the fracture plane : 6 
(3) Diameter of the fracture : r 
In this paper, these parameters are determined by 
following the same way as the two dimensional 
modeling procedure. Central point and normal of the 
fracture are determined by random numbers. Diameter 
of the fracture is calculated by Equation (3). 

Figure 6 is a schematic figure of the three 
dimensional fracture network model. 

Figure 6 
model. 

Schematic figure of three dimensional 

RELATIONSHIP BETWEEN TWO DIMENSIONAL 
AND THREE DIMENSIONAL MODELS 

Length distributions of fractures observed on two 
dimensional area are fractal. Therefore length 
distributions of fractures observed on any two 
dimensional section area of this model must be fractal. 
Scan planes are introduced to examine fracture pattern 
and length distribution as shown in Figure 5. Figure 7 
shows one of the fracture patterns on a scan plane 
obtained from three dimensional fracture network 
model. Figure 8 shows length distributions of fractures 
on four scan planes randomly chosen from a model 
( D=1.8, C=5.0 ). It is possible to say that the three 
dimensional model which has fractal length distribution 
of fractures shows fractal characteristics on its two 
dimensional sectional areas. The relationship between 
the fractal dimensions of two dimensional fracture 
network model and that of the three dimensional model 
is obtained as shown in Figure 9. 

Figure 7 One of the fracture patterns on a scan plane. 
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Figure 8 
planes. 

Length distribution of fracture on scan 
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Figure 9 Relationship between fractal dimension of 
two dimensional model and that of three dimensional 
model. 

ESTIMATION OF THE VALUE OF PARAMETER C 

It is possible to measure the number of fractures 
which are observed on a core sample or borehole per 
unit length of depth. Considering a borehole as a scan- 
line of a subsurface fracture network as shown in 
Figure 5, it is possible to predict the number of 
fractures observed on core sample per unit length of 
depth m by the following equation : 

~ 

where sine, is the average of 0,. From Equation (4), 
the fracture density parameter C can be calculated using 
the following equation : 

( 5 )  
4m 

sine, . { S n  (1 - ~2;:) + 1) 
C =  

AF'PLIC ATIONS 

Transmissivity 

using the following equation : 
Transmissivities of fracture network are calculated by 

d 2 P  d 2 P  d Z P  
dx2 dy2 dz2 

k x . - - - + k y . - + k z . - =  

where P and Q stand for pressure and quantity of water 
respectively. k,, ky and k, represent rock mass 
permeability in each of the x ,  y ,  z directions, which are 
determined by the fractures. 

Three types of water flow models used for the 
calculation are (Figure 10) 
(1) Plane - Plane flow 
(2) Plane - Borehole flow 
(3) Borehole - Borehole flow 

Figure 10 Water flow 
models. 

Figure 11 shows one of the results of the 
calculation. For this calculation, lOOm square reservoir 
is used and the assumption that the width of the fracture 
is proportional to its length is adopted. 
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Figure 11 
transmissivity. 

Relationship between parameter C and 

Heat Extraction 
The change in temperature at the outlet of the 

reservoir as the time passes is calculated. The model 
used for thermal calculation is shown in Figure 12. 
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Figure 12 A model used for thermal calculation. 

In Figure 12, dashed line expresses adiabatic boundary 
for thermal calculation and LE represent the distance to 
the boundary. Equation (7) is adopted for thermal 
calculation. 

cR.pR.-+cw.pR' v;-+v, a T a T  .-+v..") 
at ( ax ay az 

= A. ($+ $ + 3 (7) 

where T stands for the temperature of rock ( equal to the 
temperature of water in this paper). A is thermal 
diffusivity of rock. CR and C, represent specific heats 
of rock and water, pR and pw represent the densities of 
rock and water. vx, vy and vz are flow velocities in each 
of directions. 

Figure 13 shows the results of the calculation with 
following parameters : 

Size of reservoir 
LE : lOOm 
Initial temperature of rock mass : 300 "C 
Temperature of water at outlet : 200 O C  

: lOOm cubic 

320 
Q =  lOt/h 

200 I I I I I 

0 20 40 60 BO 100 120 

Time (Months) 

Figure 13 Changes in temperature at reservoir outlet. 

In Figure 13 we plot the reservoir outlet temperature 
versus time by ranging the parameter C which 
represents the fracture density of rock mass. It can be 
clearly seen from the graph that there is a strong 
relationship between the outlet temperature and the 
fracture density. 

CONCLUSION 
A modeling procedure based on fractal geometry is 

quite effective for characterizing subsurface fracture 
networks. Borehole data have not been used in the past, 
although it is one of the few datas which contain 
subsurface information. For this modeling procedure, 
borehole data gives significant bases for the 
characterization of geothermal reservoir. Once the 
model of geothermal reservoir is established, it is 
possible to predict the transmissivity of fluid path and 
thermal recovery of geothermal reservoir. 

Using the fracture network model proposed here, 
hydrological and thermal behavior, including long-term 
performance, of several types of geothermal reservoir 
can be simulated numerically. This modeling procedure 
should also make it possible to predict the effectiveness 
of hydraulically stimulated fractures, since hydraulical 
stimulation increases the density of fracture in 
geothermal reservoirs. 
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