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ABSTRACT

As a new modeling procedure of geothermal
energy extraction systems, the authors present two
dimensional and three dimensional modeling techniques
of subsurface fracture network, based on fractal
geometry. Fluid flow in fractured rock occurs primarily
through a connected network of discrete fractures. The
fracture network approach, therefore, seeks to model
fluid flow and heat transfer through such rocks directly.
Recent geophysical investigations have revealed that
subsurface fracture networks can be described by
“fractal geometry". In this paper, a modeling procedure
of subsurface fracture network is proposed based on
fractal geometry. Models of fracture networks are
generated by distributing fractures randomly, following
the fractal relation between fracture length r and the
number of fractures N expressed with fractal dimension

D as N=C-r®, where C is a constant to signify the
fracture density of the rock mass. This procedure
makes it possible to characterize geothermal reservoirs
by the parameters measured from field data, such as
core sampling. In this characterization, the fractal
dimension D and the fracture density parameter C of a
geothermal reservoir are used as parameters to model
the subsurface fracture network. Using this model, the
transmissivities between boreholes are also obtained as
a function of the fracture density parameter C, and a
parameter study of system performances, such as heat
extraction, is performed.  The results show the
dependence of thermal recovery of geothermal reservoir
on fracture density parameter C.

INTRODUCTION

Recently, HDR(Hot Dry Rock) and HWR(Hot Wet
Rock) have attracted considerable attention as new
geothermal energy extraction systems. In order to
evalvate the performance of these systems, it is
necessary to establish a modeling procedure of fluid
flow and heat exchange in fractured rock.

Traditionally, models of ground water flow have
used parallel fractures, or a continuum approximation
such as a "permeable zone". Such models are often
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valid when a representative volume of rock can be
defined that is much smaller than the region of interest.
However, it has been becoming difficult to approximate
the behavior of geothermal reservoirs by such models.
In fractured rocks, ground water flow and solute
transport occur predominantly through the connected
network of discrete fractures. For the performance
evaluation of such geothermal energy extraction
systems, interest has grown in more direct models of
water flow and heat exchange in fractured rock.

Recent geophysical investigations have confirmed
that a subsurface fracture network can be described by
fractal geometry. In the field of seismology several
reports are available which have characterized
subsurface fractures and fault systems based on fractal
geometry. Hirata [1989] has investigated several fault
systems in Japan, and characierized them by fractal
geometry. In his paper, fractal geometry was
considered as a useful tool to characterize the geometry
of the fault line. The fractal dimensions of those fault
systems were calculated by the so called "box-counting
method". Furthermore, Meredith [1990] has noted that
subsurface fractures could also be characierized by
using a methodology in which the number of fractures
was related to the fracture length.

In this paper, two and three dimensional modeling
procedures of subsurface fracture network are proposed,
based on the relationship between the fracture length
and the number of fractures as reported by Meredith.
The importance of the parameter is discussed to
describe the fracture density of rock mass. This
procedure is attractive, since this parameter can be
measured from field data such as the core sample, and it
is also possible to characterize subsurface fracture
network by the same parameter.

For" geothermal energy extraction systems, the
transmissivity and changes in temperature of
geothermal reservoir are important. So, based on this
modeling procedure, the transmissivity are discussed in
terms of probabilities. Finally, we present one of the
results of changes in temperature at reservoir outlet as
computed by our model, which suggests the strong
dependence of temperature change on fracture density.




FRACTAL DISTRIBUTION OF
FRACTURE LENGTH

Fractal geometry is a branch of mathematics that
has lingered in the realms of theoretical geometry since
the last century. Mandelbrot [1983] realized its great
potential for characterizing and simulating the geometry
of complex shapes, especially the shapes of nature. The
shapes which can be explained by fractal geometry have
two important properties.  Firstly they have self-
similarity. Secondly they are characterized by their
fractal dimension.

In nature, there are several irregular shapes which
can be explained by fractal geometry. The geometry of
subsurface fractures is one of the typical example of
such shapes. Hirata [1989] has shown that subsurface
fractures such as fault systems can be explained by
fractal geometry and he computed the fractal
dimensions of several fault systems in Japan. Usually,
the fractal dimensions of subsurface fractures or fault
systems signify the spatial distribution of fractures.
These kinds of fractal dimensions are calculated by the
"box-counting method".

Meredith [1990] has reported the investigation of
the relationship between the fracture length and the
number of fractures. He used the data of several scale
fault systems shown in Figure 1.
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Figure 1 Geometry of fracture system over a range of
scales, after Shaw & Gartner [1986].

Figure 2 shows the relationship between the normalized
fracture length and the number of fractures. This

revealed that the relation between fracture length » (in
his paper, fracture length is represented by the symbol
L) and the number of fractures N whose lengths are
equal to or larger than r can be expressed by the
following fractal equation :

N=C-r?® (1

where C is a constant and D is the fractal dimension.
The parameter C signifies the fracture density of rock
mass. In this paper, C is defined as the fracture density
parameter.
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Figure 2 Normalized discrete frequency - length
distribution of fracture shown in Figure 1, after
Meredith [1990].

Meredith reported that the fractal dimensions were
almost equal to 1 for all fault systems he investigated,
Figure 1. The meaning of this fractal dimension D is
different from that of the fractal dimension calculated
by "box-counting method". The former is a measure of
the geometry of fractures (branching geometry), while
the latter is a measure of the spatial distribution of
fractures.

Furthermore, Thomas et al [1989] have
investigated the width (opening) distribution of
fractures observed on core samples and boreholes. The
result showed that the relationship between the fracture
width w and the number of fractures whose widths are
equal to or larger than w can be also explained by the
same formula as Equation (1) and it can be represented
by the following equation (although the importance of
fracture width distribution is not included here) :

N=Cw?"” 2)

In the modeling procedure proposed here, the
models of fracture network are regarded as being
composed of discrete fractures. These fractures are
distributed to satisfy Equation (1).



TWO DIMENSIONAL NUMERICAL MODEL

1. Characteristic features of individual fractures

For the two dimensional model of subsurface
fracture network, imagine the square area of edge length
L between boreholes as shown in Figure 3. Within this
area discrete fractures are distributed following the
fractal relationship between the length and the number
of fractures. In other words, the fracture network model
is generated in this area by using fractures that satisfy
Equation (1). In order to simplify the discussion, the
area and the fractures are normalized by the length L as
shown in Figure 3.
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Figure 3 Concept of two dimensional fracture.

In this model, the total number of fractures is expressed
by the symbol n, and ith(i=1,2,...,n) fracture is
characterized by the following three parameters: (1)
Middle point, p;, (2) Angle from the horizon, 6;, (3)
Length, r;. In this paper, these parameters are
determined as follows.

(1) Middle point of the fracture, p;

It is assumed that the fractures do not form a
cluster around any point. So, X and y co-ordinates of
the point p; are determined by using random numbers
lying between O to 1.

{2) Angle from the horizon, 6;

The distribution of 6; seems to be random,
however field data sometimes shows that there exist
preferred directions of fracture orientation. So, if it is
possible to obtain the preferred direction, 6; must be
determined to have the same tendency as that of the
field data. In this paper, two types of angle distribution
are used as examples.

(3) Length of the fracture, r;
Since the lengths of fractures are ruled by fractal
geometry, r; distribution must satisfy Equation (1). In

order to satisfy Equation (1), r; is determined by the

following formula : :
rn=(CIliy" 3

(4) Total number of fractures, n
Theoretically, if we need to consider very small
fractures whose lengths approach 0, n would approach

infinity. However, very small fractures can not be
observed, and is dependent upon the resolution of
measuring instrument. In this paper, r,,;, is defined as
the smallest length of fracture which can be observed.
According to the data reported by Meredith [1990], r,,;,
is between 0.04 and 0.11. So, we let the value of r,;,
as 0.04, and the smallest i which satisfies r;>r,,;, as the
value of n.

2. Fractal Dimension : D

Although some fault systems have been
investigated and their fractal dimensions calculated by
the "box-counting method", the fractal dimensions
required for Equation (1) are not available. The data
from Meredith [1990] is the only published information
from which we can obtain the fractal dimension D.
Meredith [1990] has measured the relationship between
the fracture length and the number of fractures at 4
different scale fault systems and shown that the fractal
dimensions of all fault systems are almost equal to 1 as
shown in Figure 2. In this present work, we adopt the
same value of fractal dimension, i. e. D=1.

3. Examples of fracture network model
Figure 4 shows some sample patterns of fracture
network model for 3 different values of the fracture
- density parameter C. Two types of fracture network
model are shown. One model has a  random
distribution of fracture angle (Type 1), the other has two
preferred directions (Type 2). Figure 4 illustrates the
strong influence of the fracture density parameter C on
fracture network patterns.

C Type 1 - Type 2

1.0

3.0

50
Figure 4 Some of fracture patterns generated
numerically based on modeling procedure proposed

here.
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THREE DIMENSIONAL
FRACTURE NETWORK MODEL

For the estimation of practical system performance
such as transmissivity and thermal recovery, two
dimensional geothermal reservoir model may not be
accurate. It is necessary to extend two dimensional
modeling procedure into a three dimensional one.
However,  there is no information about three
dimensional shape of subsurface fractures. In this
paper, we assume that the subsurface fractures are
penny-shaped. Figure 5 shows the concept of three
dimensional fracture network model. The network is
formed by distributing penny-shaped fractures in the
box randomly.

Scan Plane )
Scan Line

Sy

Fracture Plane

Figure 5
model.

Concept of three dimensional fracture

As in the two dimensional modeling procedure,
each fracture is characterized by the following
parameters :

(1) Central point of the fracture : p
(2) Normal of the fracture plane : n
(3) Diameter of the fracture : r
In this paper, these parameters are determined by
following the same way as the two dimensional
modeling procedure. Central point and normal of the
fracture are determined by random numbers. Diameter
of the fracture is calculated by Equation (3).

Figure 6 is a schematic figure of the three
dimensional fracture network model.

Figure 6 Schematic figure of three dimensional

model.
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RELATIONSHIP BETWEEN TWO DIMENSIONAL
AND THREE DIMENSIONAL MODELS

Length distributions of fractures observed on two
dimensional area are fractal. Therefore length
distributions of fractures observed on any two
dimensional section area of this model must be fractal.
Scan planes are introduced to examine fracture pattern
and length distribution as shown in Figure 5. Figure 7
shows one of the fracture patterns on a scan plane
obtained from three dimensional fracture network
model. Figure 8 shows length distributions of fractures
on four scan planes randomly chosen from a model
( D=1.8, C=5.0 ). It is possible to say that the three
dimensional model which has fractal length distribution
of fractures shows fractal characteristics on its two
dimensional sectional areas. The relationship between
the fractal dimensions of two dimensional fracture
network model and that of the three dimensional model
is obtained as shown in Figure 9.
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Figure 8 Length distribution of fracture on scan
planes.
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Figure 9  Relationship between fractal dimension of
two dimensional model and that of three dimensional
model.

ESTIMATION OF THE VALUE OF PARAMETER C

It is possible to measure the number of fractures
which are observed on a core sample or borehole per
unit length of depth. Considering a borehole as a scan-
line of a subsurface fracture network as shown in
Figure 5, it is possible to predict the number of
fractures observed on core sample per unit length of
depth m by the following equation :

.
jl n-(i) [_dN) dr+C} (4)
Tmin 2 dr

where sin6; is the average of 8,. From Equation (4),

the fracture density parameter C can be calculated using
the following equation :

m=sinb, -

4m
sin6, -{97:- (1-r22

min

C= (5)

)+1}

APPLICATIONS

Transmissivity
Transmissivities of fracture network are calculated by
using the following equation :

2 2 2
k, -d‘I:+ky -dhl:+kz -ii::O
dx dy dz
where P and Q stand for pressure and quantity of water
respectively.  k, k, and k, represent rock mass
permeability in each of the x, y, z directions, which are
determined by the fractures. ‘

(6)
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Three types of water flow models used for the
calculation are (Figure 10)
(1) Plane - Plane flow
(2) Plane - Borehole flow
(3) Borehole - Borehole flow

Figure 10 Water flow
models.

Figure 11 shows one of the results of the
calculation. For this calculation, 100m square reservoir
is used and the assumption that the width of the fracture
is proportional to its length is adopted.

40
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Figure 11 Relationship between parameter C and
transmissivity.

Heat Extraction

, The change in temperature at the outlet of the
reservoir as the time passes is calculated. The model
used for thermal calculation is shown in Figure 12.
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Figure 12 A model used for thermal calculation.

In Figure 12, dashed line expresses adiabatic boundary
for thermal calculation and LE represent the distance to
the boundary. Equation (7) is adopted for thermal
calculation.

CR'PR'E'*'CW'PR'(VX'E*'V,'QT“‘*'V Q_T_j

ot ox dy ooz
FT JFT T

where T stands for the temperature of rock ( equal to the
temperature of water in this paper). A is thermal
diffusivity of rock. Ci and Cy, represent specific heats
of rock and water, pg and p,, represent the densities of
rock and water. vy, v, and v, are flow velocities in each
of directions.
Figure 13 shows the results of the calculation with

following parameters :

Size of reservoir : 100m cubic

LE : 100m

Initial temperature of rock mass : 300 °C

Temperature of water at outlet : 200 °C

320
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Figure 13 Changes in temperature at reservoir outlet.

In Figure 13 we plot the reservoir outlet temperature
versus time by ranging the parameter C which
represents the fracture density of rock mass. It can be
clearly seen from the graph that there is a strong
relationship between the outlet temperature and the
fracture density.

CONCLUSION

A modeling procedure based on fractal geometry is
quite effective for characterizing subsurface fracture
networks. Borehole data have not been used in the past,
although it is one of the few datas which contain
subsurface information. For this modeling procedure,
borehole data gives significant bases for the
characterization of geothermal reservoir. Once the
model of geothermal reservoir is established, it is
possible to predict the transmissivity of fluid path and
thermal recovery of geothermal reservoir.

Using the fracture network model proposed here,
hydrological and thermal behavior, including long-term
performance, of several types of geothermal reservoir
can be simulated numerically. This modeling procedure
should also make it possible to predict the effectiveness
of hydraulically stimulated fractures, since hydraulical
stimulation increases the density of fracture in
geothermal reservoirs.
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