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INTERPRETATION OF BOREHOLD TIDES AND OTHER ELASTOMECHANICAL 
OSCILLATORY PHENOMENA IN GEOTHERMAL SYSTEMS 

Gunnar Bodvarsson 
School of Oceanography 

Oregon Sta te  University 
Corval l is ,  Oregon 97331 

Introduction 

U1 tralow t o  low-frequency o s c i l l  atory phenomena of elastomechanical 
nature have been observed i n  a number of geothermal areas .  
pressure and water level o sc i l l a t ions  in the t i da l  frequency range 
lo-’+ Hz (White, 1968), flow osc i l l a t ions  a t  around 
Bjornsson, 1976) and ground noise i n  the range 10-l t o  10 Hz (Douze and 
Sorre l ,  1972). 
on the underlying geothermal systems which i s  of both theore t ica l  and prac- 
t i c a l  interest. 
aspects r e l a t ing  t o  the in te rpre ta t ion  of o sc i l l a to ry  f i e l d  data w i t h  the 
main emphasis on borehole t i des .  

These include 
t o  

Hz (Bodvarsson and 

The presence of such osc i l l a t ions  conveys ce r t a in  information 

In the following, we wil l  very b r i e f ly  discuss  a few 

Osci l la t ions of Tidal Origin 

Pressure osc i l l a t ions  i n  the t i da l  frequency range, which may be 
observed e i t h e r  d i r e c t l y  by pressure transducers ernplaced i n  closed subsur- 
face f l u i d  spaces, o r ,  as  water level o sc i l l a t ions  i n  boreholes, r e su? t  from 
the s t r a in ing  of the surrounding formations by forces of t i d a l  or igin.  The 
water level o sc i l l a t ions  represent a breathing of  the  formations through the 
borehole. The volume amplitude of the osc i l l a t ing  f lu id  must therefore give 
clues a s  t o  the local s t r a i n  amplitude and the formation volume i n  d i r e c t  
contact w i t h  the borehole. 
we have t o  consider the diffusion of low frequency pressure f i e l d s  in  natural  
formations. 

To obtain quant i ta t ive  cause-effect  re la t ions  , 

Concentrating on the case of f luid-saturated Darcy-type porous media, 
the s implif ied l inear pressure diffusion theory g i v e n  by Bodvarsson (1970) 
can b e  applied t o  obtain useful re la t ions .  The o sc i l l a to ry  pressure f i e l d  
is  then derived as a solut ion to  a standard l i n e a r  s ca l a r  diffusion equation. 
Applying the theory t o  the simple b u t  p rac t ica l ly  re levant  model shown in 
Figure 1 ,  we consider a spherical volume V o f  radius R o f  a homogeneous and 
i so t ropic  Darcy-type medium saturated by a f l u i d  of density p and w h i c h  i s  
embedded in  a formation of negl igible  permeability. 
storage coef f ic ien t  of  the wet medium i s  s and i t s  hydraulic conductivity 
c = k/v where k i s  the permeability o f  the medium and L, the  kinematic viscos- 
i t y  of the f l u i d .  
w i t h  an angular frequency w i s  then obtained by (Bodvarsson, 1970) 

The capac i t iv i ty  o r  

The skin depth d of a harmonic osc i l l a to ry  pressure f i e l d  

d = ( 2 ~ / p s w ) ~  
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A borehole of cross-section a has  been d r i l l e d  in to  the center  o f  the 
porous formation and f o r  convenience we assume tha t  i t  i s  connected with V 
t h rough  a small spherical  cavi ty  of radius r. The borehole i s  cased a l l  
the way to  the cavi ty  and there i s  a f r ee  water surface a t  an elevation h .  
Moreover, we assume t h a t  t i d a l  forces of angular frequency w produce a homo- 
geneous and i so t ropic  s t r a i n  of  amplitude b i n  V .  The formation matrix 
coef f ic ien t  E character izes  the re la t ion  between the imposed s t r a i n  and the 
porosity (Bodvarsson , 1970). 

O m i t t i n g  d e t a i l s  of der ivat ion,  we obtain by solving the pressure 
diffusion equation w i t h  appropriate boudary  conditions a t  the inner and 
outer  boundaries of the porous formation, the following re la t ion  f o r  the 
amplitude of the water level 

h = hsT(l + T)-’  

where hs i s  the  s t a t i c  amplitude (Bodvarsson, 1970) 

g i s  the accelerat ion of gravi ty  and T i s  the t i d a l  f ac to r  

w h i c h  i s  characterized by two quan t i t i e s ,  the skin volume 

and the complex dimensionless re f lec t ion  f ac to r  F which depends primarily 
on the r a t i o  R/d. 

The permeability o f  common Darcy-type reservoi r  formations i s  frequently 
of t he  order of t o  1 darcy and the skin depth a t  t i d a l  frequencies i s  
then 50 t o  500 meters (Bodvarsson, 1970). Moreover, reasonable values f o r  
the cavi ty  radius r a r e  of the order of one meter. Cases where r/d>>l and 
d/r>>l a re  therefore  of pa r t i cu la r  pract ical  i n t e r e s t .  An elementary 
der ivat ion shows t h a t  in t h i s  case the coupling between the borehole and 
the formation is  r e s i s t i v e  and the t i d a l  f ac to r  can then be approximated by 

T = - ipgsmd2/2a = -ignrc/wa (6) 
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This expression which can be assumed for a number of Darcy-type porous 
reservoirs furnishes the main clues as to  the problem of interpreting bore- 
hole t ides  i n  such cases. 

In a l l  practical cases, the density p and cross-section a a re  well 
known. The capaci t ivi ty  can generally be estimated w i t h  suffTcient accuracy 
on the basis of core samples. Moreover, although boreholes rarely open into 
spherical cav i t ies ,  most practical cases involving i r regular  cavi t ies  of 
small dimension compared with the skin depth d can be approximated by 
spherical cav i t ies  w i t h  an equivalent radius r which can be estimated w i t h i n  
reasonable l imits .  
the r i g h t  of equation (6 ) .  

The skin depth d i s  therefore the principal unknown on 

Moreover, the s t a t i c  amplitude h, given by equation ( 3 )  can i n  principle 

Provided tha t  such observation can be made, 

often be determined experimentally by closing the borehole w i t h  packers a t  
appropriate levels  and placing instrumentation t o  record the t ida l  Pressure 
amplitude i n  the enclosed space. 
we can conclude tha t  the skin depth i s  the principal unknown on the r i g h t  
of equation ( 2 ) .  Hence, observing the t idal  water level amplitude h ,  we 
can obtain data on the s k i n  depth d and thereby because of (6 )  information 
on the hydraulic conductivity c .  
fore  the principal targets  of most interpret ive e f fo r t s  involving borehole 
t ides .  

These two quant i t ies ,  d and c y  are there- 

Local Enhancement of the Tidal Dilatation 

Elementary considerations indicate tha t  the local t idal  d i la ta t ion  i s  
generally modified by variations i n  the subsurface e l a s t i c  parameters. 
e f f ec t  i s  most obvious a t  very abrupt inhomogeneities such as i n  the case of 
open subsurface spaces. Consider, for  example, an open very f l a t  penny- 
shaped cavity of radius r and w i d t h  w.  
so l id  rock a t  a depth which i s  substant ia l ly  greater t h a n  the diameter 2r 
and such tha t  i t s  a x i s  i s  parallel  t o  the direction of maximum principal 
t i da l  s t r a in .  A simple argument (Bodvarsson, 1977) indicates t h a t  the 
cavi ty  w i l l  breathe i n  response t o  the t i d a l  s t resses  and  t h a t  the d i l a t a t i o n  
amplitude of the open space i s  enhanced by a factor  of approximately r/w 
re l a t ive  to  the undisturbed d i la ta t ion  a t  a distance from the cavity. 
spec i f ic  cases, the local d i la ta t ion  amplification can thus a t t a in  very 
large values. Moreover, there i s  also a substantial enhancement of the t i d a l  
s t resses  along the edge of the cavity. This i s  a typical notch e f fec t .  

The 

The cavity i s  placed i n  homogeneous 

In 

Analog ef fec ts ,  b u t  generally of a more complex nature, a re  obtained 
i n  the cases of other types of inhomogeneities (Bodvarsson, 1977) .  
sions of porous fluid-saturated material i n  sol id  rock will a lso breathe i n  
response t o  the sol id  earth t ides ,  and there will be notch type s t ress  
concentrations i n  par t icular  locations. The theory o f  these phenomena i s  
somewhat complex, i n  par t icular ,  when the dimensions of the inclusions 
exceed the hydraulic s k i n  depth a t  t i d a l  frequencies of the porous material 

Inclu- 

The case of  f racture  zones w i t h  a permeable fluid-saturated gouge is  
of par t icu lar  i n t e re s t .  
the surface of the gouge. 

We assume t h a t  the f lu id  can breathe freely through 
Although very l i t t l e  i s  known a b o u t  the f l u i d  
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conductivity character is t ics  of gouge materials, we can on the basis of 
rather simple theoretical  modeling (Bodvarsson, 1977)  infer  t h a t  the t ida l  
f lu id  pressure amplitude within the gouge may in some cases, a t  l ea s t ,  
vary along the fracture  zone as indicated i n  Figure 2 .  There i s  an upper 
zone, the depth of which i s  of the order of the hydraulic skin depth i n  the 
gouge, where the breathing t h r o u g h  the open surface causes a reduction of 
the t idal  pressure amplitude. 
pressure amplitude. 
pressure amplitude in the surface zone. 
the e f fec t  of the open surface i s  negligible,  the pressure amplitude a t t a ins  
the local s t a t i c  value given by equation ( 3 ) .  

Further below i s  a zone of an enhanced 
This i s  a notch type e f f ec t  caused by the reduced 

Deeper in the fracture  zone, where 

The above considerations indicate t h a t  data on the local t idal  pressure 
amplitude, as measured in closed boreholes, can be of some value as an 
exploration tool.  Some character is t ics  of the local geological structure 
and material properties can be reflected in the observational d a t a .  

Hydroelastic Oscil lations 

Helmholtz type borehole-cavi ty  osci 1 la t ions.  Small amp1 i tude temperature 
osc i l la t ions  of frequency around Hz have been observed i n  a thermal 
borehole i n  Southwestern"Ice1and. The hole flows about  0.5 kg/s  a t  43°C. 
Bodvarsson and  Bjornsson (1 976) have d i  scussed th i s  phenomenon and have 
concluded tha t  i t  may be caused by weak flow osc i l la t ions  due to  a hydro- 
e l a s t i c  Helmholtz type borehole-cavi ty  resonance excited by pressure f l  uc- 
tuations of turbulent origin.  

Fracture osc i l la t ions  and geothermal ground noise. When properly 
excited. f l u id  f i l l e d  fracture  sDaces can Perform hvdroelastic osc i l la t ions  
and radiate  very low frequency seismic signals.  
of such osc i l la t ions  has been given by Bodvarsson (1978). 
f of the basic osc i l la t ion  mode of a very thin fracture  space of constant 
w i d t h  w ,  vertical  dimension L, and which i s  open to  the surface as shown i n  
Figure 3,  can be estimated by the following relat ion 

A iimple approximate theory 
The frequency 

f = (pw/pL3)4 ( 7 )  

where p i s  the shear modulus of the rock and p i s  the density of the f lu id .  

The above r e su l t  indicates t ha t  f racture  spaces of w i d t h  m and 
vertical  dimension of 10 to  100 m have basic frequencies in the range 0 .2  
t o  5.0 Hz. This i s  the frequency range of  seismic ground noise which has 
been observed in many geothermal areas (Douze and  Sorrels,  1972). The 
observed seismic signals may thus r e su l t  from hydroelastic osci l la t ions of 
t h i n  f racture  spaces. 
the excitation may again be provided by pressure fluctuations of turbulent 
nature in the convecting geothermal f lu id .  

As i n  the above case of Helmholtz type osc i l la t ions ,  

Provided the above interpretat ions are correct ,  the observPd frequencies 
give some clues as t o  the dimensions o f  the osc i l la t ing  spaces. 
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