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SALTON SEA GEOTHERMAL RESERVOIR SIMULATIONS* 

T. D. Riney, J. W. P r i t c h e t t  and S. IC. Garg 
Systems, Science and Software 

P. 0. Box 1620, La J o l l a ,  C a l i f o r n i a  92038 

The Sa l ton  Sea Geothermal F i e l d  (SSGF) i s  a h i g h - s a l i n i t y ,  high- 
temperature  resource .  The San Diego Gas & E l e c t r i c  Company has con- 
s t r u c t e d  a nominal 10  MWe Geothermal Loop Experimental  F a c i l i t y  (GLEF) 
which w i l l  u s e  b r i n e  produced from Magma Power Company's Woolsey No. 1 
(Wl) and Magmamax No. 1 (Ml) w e l l s ;  t h e  Magmamax No. 2 (M2) and No. 3 
(M3) w e l l s  w i l l '  be used f o r  r e i n j e c t i o n .  I n t e r m i t t a n t  b r i n e  product ion/  
i n j e c t i o n  has  been performed s i n c e  May 1976, bu t  no a s soc ia t ed  f l u i d  
f low d a t a  have been publ ished.  The Lawrence Livermore Laboratory (LLL), 
however, has  c o r r e l a t e d  t h e  d a t a  a v a i l a b l e  from s u r f a c e  measurements and 
l o g s  from v a r i o u s  w e l l s  i n  t h e  SSGF. W e  have used t h i s  l i m i t e d  d a t a  
base  and t h e  MUSHRM s imula tor  t o  syn thes i ze  a preproduct ion r e s e r v o i r  
model f o r  a p o r t i o n  of t h e  SSGF which con ta ins  t h e  GLEF s i te .  The simu- 
l a t o r  is  then  appl ied  t o  t h e  model t o  examine r e s e r v o i r  performance under 
d i f f e r e n t  assumptions t o  improve our  understanding of t h e  system and i t s  
p o t e n t i a l  f o r  e x p l o i t a t i o n .  

DATA BASE AND MODELING APPROACH 

The main sequence r e s e r v o i r  rock i n  t h e  SSGF i s  bedded sandstone 
wi th  s h a l e  l e n s e s  and l a y e r s ,  o v e r l a i n  wi th  a r e l a t i v e l y  impermeable 
shale bed (caprock) ,  and i s  be l ieved  by t h e  LLL i n v e s t i g a t o r s  t o  be  
separa ted  i n t o  "upper" and "lower" r e s e r v o i r s  by a r e l a t i v e l y  t h i c k  and 
cont inuous s h a l e  l a y e r  [Towse, 1975; Schroeder,  19761. From s t u d i e s  of 
c o r e s ,  c u t t i n g s  and l o g s  from w e l l s  d r i l l e d  i n  t h e  SSGF, Towse [1975] 
determined t h e  approximate depths  t o  t h e  top  of  t h e  upper r e s e r v o i r  and 
t o  t h e  major s h a l e  break sepa ra t ing  t h e  upper and lower r e s e r v o i r s .  
Since t h e  geologic  l a y e r s  d i p  i n  a nor thwes ter ly  d i r e c t i o n  e s s e n t i a l l y  
p a r a l l e l  t o  t h e  Brawley F a u l t  Zone, we s e l e c t e d  t h e  r eg ion  covered by 
t h e  f i n i t e  d i f f e r e n c e  mesh i n  F igure  1 f o r  our study.  A cross-sec t ion  
i s  cons t ruc t ed  by p r o j e c t i n g  t h e  d a t a  onto  a vert ical  p lane  p a r a l l e l  t o  
t h e  s u r f a c e  trace of t h e  Brawley F a u l t  Zone (Figure 2) .  The i n t e r f a c e s  
between t h e  geologic  l a y e r s  are taken t o  be p l anes  d ipping  t o  t h e  north-  
w e s t  which approximate t h e  p o i n t s  depic ted .  The temperature-depth pro- 
f i l e s  measured i n  t h e  geothermal wells [Palmer, 19751 have been p ro jec t ed  
t o  c o n s t r u c t  t h e  approximate temperature  contours  shown i n  F igure  2. The 
GLEF product ion wells ( W l ,  M 1 )  are pe r fo ra t ed  almost e n t i r e l y  wi th in  t h e  
upper r e s e r v o i r  whereas t h e  i n j e c t i o n  w e l l s  (M2, M3) are pe r fo ra t ed  most ly  
w i t h i n  t h e  lower r e s e r v o i r .  

Whether o r  no t  t h e  i n t e r f a c i a l  s h a l e  b a r r i e r  p reven t s  s i g n i f i c a n t  
f l u i d  exchange between t h e  two r e s e r v o i r s  w i l l  have a profound e f f e c t  on 

* 
Work performed under NSF Grant No. AER75-14492 A01. 
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t h e i r  response t o  imposed p roduc t ion / in j ec t ion  condi t ions .  I n  t h e  ab- 
sence  of  v e r t i c a l  permeabi l i ty  d a t a ,  two l i m i t i n g  cases were analyzed. 
1. Product ion from upper r e s e r v o i r  without  i n j e c t i o n ,  i.e., s h a l e  bar-  

r i e r  prevents  f l u i d  i n j e c t e d  i n t o  lower r e s e r v o i r  from e n t e r i n g  
upper r e s e r v o i r .  

f r a c t u r e s  channel i n j e c t e d  f l u i d  i n t o  upper r e s e r v o i r .  
2. Product ion and i n j e c t i o n  occur  i n  upper r e s e r v o i r ,  l.e., v e r t i c a l  

Schroeder [1976] analyzed t h e  spa r se  d a t a  a v a i l a b l e  from d r i l l s t e m  tes t  
r eco rds  from M 1  and W1 and concluded t h a t  t h e  h o r i z o n t a l  pe rmeab i l i t y  
of t h e  r e s e r v o i r  sands i n  t h e  upper r e s e r v o i r  shale/sand sequence exceeds 
500 md. The sands comprise over 50 percent  of t h e  sequence and t h e i r  
p o r o s i t y  exceeds 0.3. For t h e  upper r e s e r v o i r  sequence we assume t h e  
fol lowing p r o p e r t i e s :  rock h o r i z o n t a l  permeabi l i ty  = 500 md; g r a i n  
d e n s i t y  of rock = 2.65 g/cm3; i n i t i a l  p o r o s i t y  of rock = 0.20; rock 
thermal  conduc t iv i ty  = 2.1 X l o 5  ergs/sec-cm-'C; rock s p e c i f i c  h e a t  = 
107 ergs/g-'C; b r i n e  s a l i n i t y ( s )  = 0.25; i r r e d u c i b l e  l i q u i d  s a t u r a t i o n  = 
0.3 and i r r e d u c i b l e  vapor s a t u r a t i o n  = 0.05. 
d e f i n e  t h e  re la t ive  p e r m e a b i l i t i e s ,  i n  t h e  case of two-phase flow, us ing  
t h e  Corey formula t ion .  

The la t te r  two parameters  

The 2D areal ve r s ion  of S3's MUS" r e s e r v o i r  s imula to r  i s  capable  
of t r e a t i n g  t h e  dipping and th ickening  upper r e s e r v o i r  i f  we cons ider  t h e  
component of g r a v i t y  a long t h e  d i r e c t i o n  of d i p  and vary  t h e  rock  proper- 
t i e s  t o  o f f s e t  v a r i a t i o n s  i n  th ickness .  The Brawley and Red H i l l  f a u l t s  
are  assumed t o  prevent  any f l u i d  flow ac ross  t h e  s i d e  boundaries  (F igure  
1). The f l u i d s  produced by w e l l s  on oppos i te  s i d e s  of t h e  Brawley f a u l t  
appear t o  have a d i f f e r e n t  o r i g i n ,  bu t  t h e r e  i s  no d e f i n i t e  evidence t h a t  
t h e  Red H i l l  f a u l t  i s  a s e a l i n g  f a u l t .  

PREPRODUCTION MODEL 

F igure  2 shows t h a t  t h e  temperature  a t  t h e  mid-plane of the upper 
r e s e r v o i r  is much less a t  t h e  sou theas t e rn  end ( l e f t ,  y = 0) than a t  t h e  
northwestern end ( r i g h t ,  y = L) .  
(s = 0.25) and t h e  temperature-depth p r o f i l e s  a t  t h e  two ends,  t h e  cor-  
responding mid-plane h y d r o s t a t i c  pressures  are computed t o  be P ( 0 )  = 38.02 
bars and P(L)  = 85.07 bars .  
d i p  ang le  a long  t h e  l eng th  of t h e  r e s e r v o i r  (Figure 2 ) ,  i t  is found t h a t  
i f  t h e r e  were no preproduct ion flow, t h e  va lue  of P(L) would need t o  be 
88.24 bar s .  
causes  a n  i n f l u x  of c\, 50'C groundwater from t h e  sou theas t  end (y 
would coo l  t h e  upper r e s e r v o i r  I f  h o t  b r i n e  i n f u s i o n  from t h e  lower reser- 
v o i r  were completely precluded by t h e  s h a l e  b a r r i e r .  
i t y  of 0.01 t o  0.1 md would s u f f i c e  f o r  s t eady  s t a t e  convect ive t r a n s p o r t  
a c r o s s  t h e  s h a l e  b a r r i e r  t o  swamp hea t  conduct ion,  a va lue  t o o  small t o  
a f f e c t  r e s e r v o i r  response performance. 

Using t h e  S3 b r i n e  equat ion-of-s ta te  

By cons ider ing  t h e  temperature  v a r i a t i o n  and 

The lengthwise p re s su re  d r i v e ,  hp = 3.17 b a r s ,  appa ren t ly  
0) which 

A v e r t i c a l  permeabil- 

These boundary cond i t ions  and r e s e r v o i r  p r o p e r t i e s  were incorpora ted  
i n t o  MUSHRM and a series of c a l c u l a t i o n s  performed u n t i l  a s a t i s f a c t o r y  
match wi th  t h e  mid-plane preproduct ion temperatures  i n  t h e  upper r e s e r v o i r  
was obtained.  A 1D v e r s i o n  was f i r s t  app l i ed  t o  t h e  d ipping  and th ickening  
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upper r e s e r v o i r  w i th  t h e  provis ion  t h a t  f o r  each zone t h e r e  i s  in fus ion  
of 2 7 5 O C  b r i n e  (s = 0.25) a t  t h e  rate requi red  t o  o b t a i n  t h e  correspond- 
i n g  p ro jec t ed  mid-plane preproduct ion temperature.  
5OoC groundwater (s = 0.25) i n f l u x  and convec t ive  b r i n e  in fus ion  are cal- 
cu la t ed  t o  be fio = 26.7 kg/sec and fiC 294.8 kg/sec,  r e spec t ive ly .  These 
t o t a l s  and t h e  lengthwise v a r i a t i o n  of t h e  i n f l u x  ra te  were maintained,  
bu t  t h e  temperature  of t h e  b r i n e  and t h e  l a t e r a l  d i s t r i b u t i o n  of t h e  in-  
f l u x  r a t e  were allowed t o  vary  i n  a subsequent series of  2 D  a r e a l  ca l cu la -  
t i o n s .  A symmetric d i s t r i b u t i o n  wi th  maximum a t  t h e  c e n t e r  was found t o  
b e s t  f i t  t h e  la teral  v a r i a t i o n  of t h e  mid-plane temperatures  measured i n  
t h e  wells. 
c u l a t i o n  w a s  then  r e run  wi th  t h e  temperature  of t h e  b r i n e  source  reduced 
t o  2 5 1 O C  i n  o rde r  t o  b e t t e r  match t h e  mid-plane temperatures .  The de- 
s i r e d  mid-plane temperatures  f o r  t h e  w e l l  l o c a t i o n s  are s a t i s f a c t o r i l y  
matched by t h e  s t eady- s t a t e  temperature  contours  c a l c u l a t e d  wi th  t h e  pre- 
product ion model (Figure 3). The v e l o c i t y  p l o t ,  F igure  4, shows t h a t  t h e  
i n f u s i o n  of ho t  b r i n e  from t h e  lower r e s e r v o i r  pushes a l a r g e  p a r t  of t h e  
incoming cold groundwater t o  t h e  edges of t h e  upper r e s e r v o i r ,  producing 
t h e  lower temperatures  t h e r e .  

The t o t a l  rates of 

Having s e l e c t e d  t h e  l a t e r a l  d i s t r i b u t i o n  i n f l u x  r a t e ,  t h e  ca l -  

RESERVOIR RESPONSE CALCULATIONS 

W e  make t h e  conserva t ive  assumption t h a t  t h e  in fus ion  of hot b r i n e  
from t h e  lower r e s e r v o i r  remains a t  i t s  preproduct ion value (fit = 294.8 
kg/sec)  during e x p l o i t a t i o n  of t h e  upper r e s e r v o i r .  The h y d r o s t a t i c  pres-  
s u r e  a t  t h e  downstream end of t h e  r e s e r v o i r  i s  maintained (P(L) = 85.07 
b a r s ) ;  t h e  p roduc t ion / in j ec t ion  rates are he ld  cons tan t  dur ing  t h e  course 
of  a given c a l c u l a t i o n .  When i n j e c t i o n  occurs ,  t h e  i n j e c t e d  b r i n e  i s  
taken t o  be 5OoC and t o  comprise 80 percent  of t h e  mass produced ( f i ~  = 
0.8 hP) .  

A product ion rate of kp = 100 kg/sec i s  assumed appropr i a t e  f o r  
a n e t  10  MWe a t  t h e  GLEF s i te .  For convenience,  t h i s  equivalence i s  used 
f o r  h igher  ra tes ,  e.g. ,  nominal 50 MWe means = 500 kg/sec.  Since t h e  
temperature  of t h e  produced b r i n e  d e c l i n e s  w i t  2 time, t h e s e  nominal v a l u e s  
of e lec t r ica l  power product ion become less meaningful.  

A series of  pre l iminary  c a l c u l a t i o n s  us ing  an approximate equation- 
o f - s t a t e  w a s  performed t o  examine t h e  s e n s i t i v i t y  of r e s u l t s  t o  t h e  bound- 
a r y  cond i t ion  assumed a t  t h e  upstream ( sou theas t )  end of t h e  r e s e r v o i r .  
Above nominal 50 MWe (product ion only)  t o  250 MWe (with i n j e c t i o n ) ,  t h e  
assumption of cons t an t  h y d r o s t a t i c  p re s su re  r e q u i r e s  inc reas ing  ground- 
water i n f l u x  above t h e  preproduct ion va lue .  
(fro - 26.7 kg/sec)  w a s  s e l e c t e d  as being a more r ea l i s t i c  boundary condi- 
t i o n  s i n c e  t h e  a v a i l a b l e  groundwater i s  l i m i t e d  p r imar i ly  t o  leakage from 
i r r i g a t i o n  cana l s  suppl ied  by t h e  Colorado River. 

Constant groundwater flow 

E s s e n t i a l l y  s t eady- s t a t e  p re s su re  and v e l o c i t y  f i e l d s  are soon 
e s t a b l i s h e d  wherein t h e  mass flow rate ou t  of  t h e  downstream end of t h e  
r e s e r v o i r  (&,) p l u s  t h e  excess  r a t e  of product ion over  i n j e c t i o n  must 
balance t h e  mass rate of f l u i d  e n t e r i n g  t h e  r e s e r v o i r  from t h e  upstream 

-1 80- 



Product ion Only 
Product ion Rates (&I = 0 )  

With I n j e c t i o n  
(AI = 0.8 fip) 

Nominal MWe $(kg/sec) ' 

Two nominal 50 MWe s imula t ions  t r e a t e d  the  four-zone product ion/  
i n j e c t i o n  p a t t e r n  shown i n  F igure  1. 
w i t h i n  t h e  two computat ional  zones conta in ing  W 1  and M 1 ,  and a l l  i n j e c -  
t i o n  w e l l s  are i n  t h e  zones conta in ing  M3 and M2. Figure  5 shows t h e  
time h i s t o r y  of t h e  bottomhole temperature  of t h e  b r i n e  produced from 
each of t h e  two product ion zones. Resu l t s  f o r  both assumptions regard ing  
t h e  e f f e c t i v e n e s s  of t h e  s h a l e  b a r r i e r  are presented .  The proximity of 
t h e  product ion zones t o  t h e  i n j e c t i o n  zones causes  a r ap id  d e c l i n e  of t h e  
temperature  of t h e  produced f l u i d  when t h e  i n j e c t e d  f l u i d  i s  assumed t o  
e n t e r  t h e  upper r e s e r v o i r .  Without i n j e c t i o n ,  t h e r e  is a reversal of t h e  
flow a t  t h e  downstream boundary as a n t i c i p a t e d  by t h e  t a b l e .  

A l l  product ion w e l l s  are loca ted  

I 

%(kg/sec) t r (yrs )  l$(kg/sec) t r ( y r s )  

From t h e  preproduct ion model i t  is apparent  t h a t  t h e  p r e f e r r e d  
product ion reg ion  of t h e  upper r e s e r v o i r  is n e a r  its center; the i n j e c -  
t i o n  zones should be e i t h e r  a long  t h e  two edges of t h e  r e s e r v o i r  or down- 
stream t o  minimize p o t e n t i a l  cool ing  of t h e  produced b r ine .  F igure  6 de- 
p i c t s  an improved (and symmetric) p roduc t ion / in j ec t ion  p a t t e r n  used f o r  
a nominal 50 MWe s imula t ion .  
times those  used above and t h e  i n t e n s i t y  of e x p l o i t a t i o n  ( w e l l  spacing)  
i s  more r ea l i s t i c .  F igure  7 shows t h e  t i m e  h i s t o r y  of t h e  bottomhole 
temperature  of t h e  produced b r i n e  averaged over  a l l  t h e  c a l c u l a t i o n a l  
zones i n  t h e  product ion area f o r  t h e  case where i t  i s  assumed t h a t  t h e  
i n j e c t e d  f l u i d  e n t e r s  t h e  upper r e s e r v o i r .  
temperature  d e c l i n e  of on ly  2OC over  t h e  30-40 year  per iod  i s  i n  sharp  
c o n t r a s t  t o  t h e  r e s u l t  ob ta ined  wi th  t h e  s imple four-zone p a t t e r n  wi th  
i n j e c t i o n .  
i n  agreement wi th  t h e  t a b l e ;  no assumption on t h e  a v a i l a b i l i t y  of ho t  
b r i n e  recharge  i s  requi red  (with i n j e c t i o n ) .  

Both product ion and i n j e c t i o n  areas are f i v e  

The maximum and minimum b r i n e  

Flow a t  t h e  downstream end of t h e  r e s e r v o i r  remains outward, 

250 2500 
325 3250 

-181- 

322 322 
302 222 

-17 9 542 222 
-2179 44 -179 
-2929 33 -329 
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Two a d d i t i o n a l  s imula t ions  examined t h e  response of t h e  upper 
r e s e r v o i r  t o  nominal 250 MWe power product ion us ing  a p r e f e r r e d  produc- 
t i o d i n j e c t i o n  p a t t e r n  (Figure 6 ) .  Compared t o  the nominal 50 We simula- 
t i o n s ,  t h e  i n t e n s i t y  of e x p l o i t a t i o n  i s  one-third t h a t  employed when us ing  
t h e  s imple four-zone p a t t e r n  and f i v e - t h i r d s  t h a t  employed when us ing  t h e  
improved p a t t e r n .  F igure  8 shows t h e  t i m e  h i s t o r y  of t h e  maximum, minimum 
and averaged bottom ho le  temperature  of produced f l u i d  f o r  t h e  case  where 
a l l  of t h e  i n j e c t e d  f l u i d  i s  assumed t o  e n t e r  t h e  upper r e s e r v o i r .  A 2OoC 
d e c l i n e  of t h e  averaged temperature  i s  p red ic t ed  over a 30-40 year  per iod .  
There i s  a r e v e r s a l  of t h e  f low a t  t h e  downstream end requi red  f o r  t h i s  
l a r g e  s c a l e  e x p l o i t a t i o n  o f  t h e  upper r e s e r v o i r  even wi th  i n j e c t i o n .  The 
case where no i n j e c t e d  f l u i d  i s  assumed t o  e n t e r  t h e  upper r e s e r v o i r  re- 
s u l t s  i n  an average temperature  d e c l i n e  of on ly  3OC over a 30-40 year  
per iod .  Attainment of t h i s  r e s e r v o i r  response ,  however, r e q u i r e s  tremen- 
douw replenishment  of ho t  b r i n e  a t  t h e  northwest  end. 

CONCLUDING REMARKS 

Because of t h e  l i m i t e d  d a t a  base ,  t h e  s imula t ions  presented  
n e c e s s a r i l y  invoked a v a r i e t y  of hypotheses  concerning geology, tempera- 
t u r e  d i s t r i b u t i o n ,  groundwater f low,  convec t ive  flow, e t c .  and w i l l  
l i k e l y  r e q u i r e  r e v i s i o n  t o  inc lude  new informat ion  as t h e  SSGF re source  
moves from t h e  exp lo ra t ion  and assessment s t a g e  of development t o  t h e  
e x p l o i t a t i o n  and u t i l i z a t i o n  s t a g e .  Only t h e  upper r e s e r v o i r  of a 
p o r t i o n  of t h e  SSGF w a s  t r e a t e d .  Th i s  p o r t i o n  of t h e  r e source  appears  
capable  of supply ing  b r i n e  f o r  a n e t  50 MWe demonstrat ion p l a n t  w i th  
v e r y  l i t t l e  temperature  d e c l i n e  over  a 30 t o  40 year  des ign  l i f e .  Un- 
c e r t a i n t i e s  r ega rd ing  boundary c o n d i t i o n s  and t h e  e f f e c t i v e n e s s  of t h e  
s h a l e  b a r r i e r  between t h e  upper and lower r e s e r v o i r  prevent  an e v a l u a t i o n  
of t h e  a b i l i t y  of t h e  upper SSGF t o  s u s t a i n  a 250 MWe p l a n t .  The c a p a c i t y  
of  t h e  lower r e s e r v o i r  should a l s o  be considered i n  such an eva lua t ion .  
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F i g u r e  5 .  Wellbottom tempera ture  
of b r i n e  produced frsm upper reser- 
v o i r  (nominal 50 me, s imple  f o u r  
zone p a t t e r n ) .  
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F i g u r e  7. Wellbottom tempera ture  
range  of b r i n e  produced from upper  
r e s e r v o i r  (nominal 50 me, improved 
p a t t e r n  v i t h  i n j e c t i o n ) .  
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F i g u r e  6. Improved p r o d u c t i o n l i n j e c t i o n  
p a t t e r n s  f o r  e x p l o i t a t i o n  of upper reser- 
v o i r :  nominal 50 W e  ( h e a v i l y  o u t l i n e d  
a r e a s )  and nominal 250 W e  ( t o t a l  areas 
shown). 
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F i g u r e  8. Wellbottom tempera tures  of 
b r i n e  produced from upper r e s e r v o i r  
(nominal 250 We, improved p a t t e r n  
w i t h  i n j e c t i o n ) .  
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