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Abstract

A new dual-porosity model is developed for single-
phase flow in fractured/porous media. As in the
commonly-used approach, flow is assumed to take place
through the fracture network, and between the fractures
and matrix blocks. The matrix blocks are treated in a
lumped-parameter manner, with a single average pres-
sure used for each matrix block. However, instead of
assuming that fracture/matrix flux is proportional to the
difference between the fracture pressure and matrix
pressure at each point, as in the Warren-Root model, a
nonlinear equation is used which accurately models the
flux at both early and late times. This flux equation is
verified against analytical solutions for spherical blocks
with prescribed pressure variations on their boundaries.
This equation is then used as a source/sink term in the
numerical simulator TOUGH. The modified code
allows more accurate simulations than the conventional
Warren-Root method, and with a large savings in com-
putational time compared to methods which explicitly
discretize the matrix blocks.

Introduction

Numerical simulation of flow processes in fractured
rocks is a formidable task, due to the often complex
geological and hydrological characteristics of such for-
mations. The specific specific geometry and other
characteristics of the fracture system is generally not
known, so it is not possible to explicitly model indivi-
dual fractures or individual matrix blocks. To circum-
vent this difficulty, so-called ‘‘double-porosity’’ models
are often used. In double(or dual)-porosity models,
knowledge of the actual geometric and hydrological
features of the fracture network are not required, but
instead only ‘‘average’’ properties, such as a typical
fracture spacing, are needed. In a numerical simulation
of a flow process in a dual-porosity system, the indivi-
dual computational cells are assumed to be sufficiently
large so that it is meaningful to assign suitably-averaged
“‘effective’” properties to them. Despite this
simplification, numerical modeling of dual-porosity
reservoirs is still a complicated and costly process. In
general, fairly fine spatial discretization is needed in the
matrix blocks - typically five to ten ‘‘matrix’” cells are
required for each ‘‘fracture’ cell. Hence modeling of a
fractured reservoir will require five-to-ten times as many
computational cells as would be needed for a porous
medium simulation of a reservoir of the same overall
size.
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Although most geothermal reservoirs reside in fractured
rocks, most models that have been developed to analyze
their behavior have been based on porous medium
approximations. It is well-known, however, that porous
medium models are poorly suited for predicting certain
aspects of the behavior of geothermal wells, especially
enthalpy transients, thermal front migration due to injec-
tion, or chemical tracer movement. Nevertheless, in
many cases the porous medium approximation must be
invoked, due to constraints of time or cost. There is
consequently a great need for improved numerical capa-
bilities for the modeling of fractured geothermal reser-
voirs, using accurate and appropriate models.

In this paper we present a new method for modeling
fractured reservoirs that can simulate reservoir behavior
more efficiently and economically. The method
involves  analytical treatment of fracture/matrix
interflow, eliminating the need for discretization of the
matrix blocks. This allows accurate dual-porosity simu-
lations, using a substantially smaller number of cells
than would be needed in a fully-discretized simulation.
Although at this time we can simulate only single-phase,
isothermal processes with our semi-analytical approach,
our intention is to extend the basic approach to the treat-
ment of two-phase, non-isothermal processes.

Dual-Porosity Models

When a single-phase, slightly compressible fluid flows
through a macroscopically-homogeneous  fractured
medium, the fluid pressure inthe fractures is governed
by the usual diffusion equation used in reservoir
engineering (Matthews and Russell, 1967):

oP;(x;,t) k
¢,~cf*fa+—=Tf—VZPf(xf,t>-+Q(xf,r). (1)

In this equation, ¢ is the time, x; is the position vector
of a point in the fracture continuum, & is the absolute
permeability of the fracture continuum, ¢, is the total
fracture porosity, and ¢, is the total compressibility of
the fractures and the fluid within them. Q is a source
term that represents the net addition of fluid to the frac-
ture system from the matrix blocks, per unit of total
volume. The pressure P, represents the fluid pressure
in the fractures, averaged over some suitably large
representative  elementary volume (REV; see Chen,
1989). The Laplacian operator V? represents the diver-
gence of the gradient, and takes on different specific




forms for each type of coordinate system (i.e., Cartesian,
cylindrical, or spherical). The fracture continuum is
assumed to occupy all of the physical space spanned by
the variable x,, with the actual pore volume of the frac-
tures accounted for by the porosity factor.

A dual-porosity model can be formulated by first ima-
gining that, at each point x;, there is located a matrix
block of some specified shape. Inside each block the
fluid pressure P, will, in general, vary from point to
point. Two position variables are needed to identify a
point inside a matrix block; x, will locate the point
within the block, relative to, say, the block’s center of
gravity, while x; is needed as a label to fix the location
of that particular block within the fracture continuum.
Fluid flow within each matrix block is governed by an
equation of a similar form as (1), which can be written
as

oP, (x,..t;x;) Kk
q)mCm—m(—E—f—:TszPm(xm,t;xf). @

In this equation, the parameters have meanings analo-
gous to those in eq. (1). The derivatives implicit in the
operator V2 are taken with respect to the local variable
X, , wWhile the variable x, is merely used as a label. The
fracture/matrix interflow term Q does not appear expli-
citly in eq. (2) since, whereas the interflow is assumed
to be distributed throughout the fracture continuum as a
source/sink term, the interflow enters the matrix blocks
only at their boundaries.
boundary of a given matrix block located at point X, in
the fracture continuum are always assumed to be equal
to the fracture pressure at that point - i.e., if x,, is on
the boundary of the matrix block, then
Pm(xm,t;xf)=f’f(xf,t).

The system of equations (1) and (2) actually represent a
single equation for the fracture continuum, along with a
family of equations for the matrix blocks that are
located at each point x,. These equations are coupled
through the term Q, Wﬁlch can be found by integrating
the flux out of the boundary of each matrix block, using
Darcy’s law (see Duguid and Lee, 1977):

-1 k,, oP,
Xp,t)= — | ———4dA , 3
Q0. 1) VmainFl p e
where the derivative of P, is taken in the direction of
the outward unit normal vector to the boundary oV, of
the block, and the integral is taken over the entire boun-
dary. A well-posed boundary- -value problem for the
system of equations (1-3) would typically require initial
conditions for P,, and P , as well as boundary condi-
tions for the pressures at the outer boundary of the
macroscopic region under investigation, i.e., at the outer
boundary of the x, domain. If the initial state were one
of local equilibrium, as would often be the case, we
would have Pf(xf,t— 0) =P,x,,t=0; xf) at each
point x;.

Dual-porosity models of the type discussed above, in
which diffusion equations are solved in both the fracture
and the matrix systems, are sometimes used in numeri-
‘cal simulations. An example is the MINC method
(Pruess and Narasimhan, 1985), in which the matrix
blocks are discretized into nested shell-like cells. In
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The pressures at the outer .

order to achieve high accuracy over all time scales,
however, we have found that about ten computational
cells are needed in each matrix block. In some cases,
only one cell is used to model each matrix block; this
approach is then basically a numerical implementation
of the Warren-Root model, which is discussed below.
As is well known, when solving problems in dual-
porosity media, the Warren-Root model is inaccurate
during -a certain intermediate time regime. The MINC
method approaches the exact response as the number of
nested matrix shells increases. The method we have
developed, which treats fracture/matrix flow with a non-
linear ordinary differential equation, is reasonably accu-
rate over all time scales.

Warren-Root Lumped-Parameter Models

The Warren and Root (1963) model is a simplified form
of dual-porosity model in which no attempt is made to
solve the diffusion equation within each block, but the
blocks are instead treated in a ‘‘lumped parameter’’
fashion. The pressure in the matrix blocks is then
governed by an ordinary, rather than partial, differential
equation. If implemented into numerical simulators in
the form of a source/sink term for the fracture elements,
the amount of computational time spent on solving for
the matrix block pressure, and the fluid-interaction term
@, becomes negligible compared to the time spent solv-
ing the diffusion equation (1) in the fracture continuum.
This model can be derived by first replacing the pres-
sure distribution in each block, P, (x,,.!; X, by the
average pressure within the block,

K>3 xp)dV Gy

m

= 1
Prlxp,) = w= [P
Vi

A more rigorous definition of P,, would involve some
sort of weighted average over the block, to account for
the fact that the fluid compressibility varies with the
thermodynamic state of the fluid. However, for isother-
mal single-phase flow, with moderate pressure varia-
tions, the fluid compressibility is nearly constant, and
definition (4) suffices. Eq. (1) can still be used for the
pressure within the fracture network, but eq. (2) govern-
ing the pressure distribution within the matrix blocks is
no longer meaningful, since the pressure P, is no
longer defined at each point x,, within the matrix block.
Instead, we integrate eq. (2) over an entire matrix block
centered at point x,, use the d1vergence theorem to con-
vert the volume integral of V2P, into a surface integral
of dP,,/on, and divide the resultmg equation by V,,, to
arrive at

BP (Xf,[) 1 m m
¢mcm_T_' - V_a\'[ T on . &)

By comparison of eq. (5) with eq. (3), we see that the
mean pressure in the matrix block is governed by the
following ordinary differential equation:

dﬁm(xf:t)
mCm dt

=-00.1). ©)

Equations (1) and (6) now govern the behavior of a
lumped-parameter type dual-porosity model. Note that



since the local variable x,, within each matrix block has
been integrated out, Q cannot be evaluated as in eq. (3),
but must somehow be related to the two pressures Py
and P,,.

In order to maintain the linearity and relative simplicity
of the system of differential equations, Warren and Root
(1963) chose to model the flux term @ by assuming that
it is directly proportional to-the difference between Py
and P,,:

-0k, _
Q(Xf,l)=_u_(Pf—Pm)’ @)

where o is a parameter that depends on block shape,
and has_dimensions of 1/Area. The governing equation
(6) for P,, then takes the form

dP,, (1) ok,
dr -

O Con (P;~P,). ' (8)

_Expressions (7) and (8) for the flux and the matrix pres-

sure are often referred to as the ‘‘quasi-steady-state’’
approximation (Chen, 1989). This terminology reflects
the fact that, under conditions of a step-function
increase in pressure at the outer boundary of the block,
the mean pressure in the block is governed by an equa-
tion of the form (8). For simple geometries, such as
spheres or cubes, the parameter o can be related to the
relaxation time of the most-slowly decaying Fourier
component of the step-function response. For spherical
blocks of radlus a,,, for example, we find (Crank, 1975)
that o =n%/a,2.

Potential difficulties with equations of the form (8) can
be anticipated from the fact that this equation only
strictly holds for large times, and even then only for
step-function boundary conditions. The errors incurred
by using eq. (8) will generally be quite large at ‘‘small”’
times, for any type of boundary condition. The aim of
our work is to incorporate a modification of eq. (8) into
a dual-porosity simulator, which will be accurate over
all ranges of time scales, and for more general boundary
conditions.

Fully-Transient Coupling Term

Qur intention is to maintain the computational simplicity
inherent in a lumped-parameter formulation of a dual-
porosity model, but with equations (7) and (8) replaced
by equations that more accurately account for
fracture/matrix flow interactions. This approach requires
the derivation of an equation for O, which depends on

and P,,, as well as the various physical parameters
o{ the problem, but which does not necessarily have the
same exact form as eqs. (7) and (8). Since the Warren-
Root interaction equation can be derived by
differentiating the large-time approximation to the step-
function pressure response, it might be thought that a
more general interaction equation could be derived by
dlfferentlatmg the exact step-function pressurc response,
which is (Crank, 1975)

=1-—Y —exp(—n nk o, UCnan), (9)
Po=P; nz,gl n? mH
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where P; is the initial pressure in the block, and P,

the pressure imposed at the outer boundary of the block
at 1 =0. Unfortunately, if we attempt this procedure, it is
not possible to eliminate ¢ from explicitly appearing in
the resulting differential equation. A related approach is
to first find an algebraically simple approximation to the
step-function respcnse, and then find the first-order
differential equation that it satisfies. To do this, we start
with the observation by Vermeulen (1953) that the
step-function pressure response () can be approximated,
over all time scales, by

P,-P;
P,—P;

o i

[1—exp(--1tk 110, Uy G, 2)} . (10)

Differentiating eq. (10) with respect to ¢, and then elim-
inating ¢ from the result, leads to

APy _ Wk l(Py=P)’ = P —Pi)")
dar 2¢mMC am(P "P)

(1

We now generalize eq. (11) by assuming that P,
represents the fracture pressure P,, even if P, varies
with time:

AP, Wk (P =P =(P,—P))) 12
dr 20, he,anPr=P)

For the step-function boundary conditions, eq. (12)
integrates to eq. (10), which is a very close approxima-
tion to the exact step-function response, eq. (9). Using
the value o=n?/a,’ that is appropriate for a spherical
block, the Warren-Root equation (8) can be integrated to
yield the following step-function response:

P,—P;
P"‘_ P‘ = 1—exp(-T2hp 1 1O LCp @,2) - (13)

o i

The Warren-Root step-function response is compared in
Fig. 1 to the exact response, and to the response
predicted by the Vermeulen equation. While both the
Warren-Root and Vermeulen approximations are valid
as t oo, the Warren-Root step-function response is
very inaccurate at small times, whereas the Vermeulen
equation is accurate for all values of . Note that vari-
ous authors have used slightly different values for the
parameter o, particularly for the case of cubical matrix
blocks (cf., deSwaan, 1990). Such choices cannot
remedy the fact that a Warren-Root-type equation will
predict the incorrect exponent for the time-dependence
of the pressure in the small-time limit.

The superiority of the Vermeulen differential equation
(12) over the Warren-Root differential equation (8), for
step-function boundary conditions, is to be expected,
since eq. (12) was derived for those conditions. How-
ever, we have (forruitously) found that the Vermeulen
equation is also more accurate than Warren-Root under
very general types of boundary conditions. For exam-
ple, consider a ramp-function increase in Py, which can
be specified by
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Fig. 1. Normalized average matrix pressure for a spheri-
cal block subjected 1o a step-function increase in
the pressure at its boundary, as given by the
exact solution (9), the Vermeulen prediction
(10), and the Warren-Root prediction (13). For
comparison, the pressure at the boundary (i.e., in
the fractures) is also shown.

(14)

Pr>0)=P;+Br, (15)

where B is some constant with_ dimensions of
pressure/time. The exact solution for P, in this case is
(Crank, 1975)

ky (P, —P;) Kkt

1

15

8

6
+_

7 J;exp(-nznzkmz/¢mucma,3). (16)
A

1

The ramp-function response predicted by the Warren-
Root equation can be found by solving eq. (8) subject to
conditions (14) and (15), to yield

km(ﬁm—Pi)

OnHCnanB  OplCndn

k.t

_L
71:2

+ lzexp(—nZk,,,t/q)m e, a,2) . (17
n

The Vermeulen equation cannot be solved in closed-
form for the ramp-function boundary condition, but can
be integrated numerically to yield the results plotted in
Fig. 2. As was the case for the step-function boundary
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Fig. 2. Same as Fig. 1, for a ramp-function increase in
the boundary pressure. The diffusion coefficient
D is defined as k,,/0,, lC), -

condition, the Vermeulen equation is considerably more
accurate than the Warren-Root equation in predicting the
matrix block pressures. Furthermore, it can also be
shown that the Vermeulen differential equation always
predicts the correct exponent in the time-dependence for
the pressure in the small-time limit, whereas the
Warren-Root equation always predicts an incorrect
exponent, for arbitrary variations in P;. Hence, it
seems that eq. (12) can be used to model the mean
matrix block pressure, in cases where the pressure at the
boundary of the block is specified as a function of time.
With this in mind, we have modified an existing numer-
ical simulator so as to use eq. (12) to compute
fracture/matrix flow. This modified simulator can be
used to solve large-scale reservoir problems in which, in
general, the fracture pressures are not known in
advance, and must be found, in a coupled manner along
with the matrix block pressures, as part of the solution.

Coupled Dual-Porosity Simulator

Numerical reservoir simulators used for single-
continuum systems typically solve eq. (1) by discretiz-
ing the reservoir into a number of computational cells,
and use some numerical scheme such as finite-
differences (Huyakorn and Pinder, 1983), finite elements
(Pinder and Gray, 1977), or integral finite-differences
(Edwards, 1972; Narasimhan and Witherspoon, 1976),
to reduce the partial differential equation to a set of
algebraic equations. These algebraic equations are
solved at each time-step, ¢,, in order to yield the pres-
sures in each cell at the next time-step, t,,; =, + At.
Our approach is to assign to the computational cells
those properties that correspond to the fractured contin-
uum, -averaged over a suitably-large REV. Fluid that
enters or leaves the fracture system from the matrix
blocks is then treated as a source/sink term. This
approach requires minimal modifications to existing
simulators, which typically allow for sources/sinks of
various kinds. A certain number of matrix blocks will



be associated with each computational cell, with physi-
cal properties {k,,9,,,a,,,andc,, } that must be entered
as input for each cell. Each computational cell will
have associated with it a new variable, P,, which
represent the average matrix pressure in those matrix
blocks that are contained in that cell.

We have implemented this approach using the TOUGH
simulator (Pruess, 1987). an integral-finite-difference
code that has been shown to accurately simulate three-
dimensional, single-phase, isothermal flow processes
such as those discussed in this paper (as well as non-
isothermal and two-phase processes). The
fracture/matrix interaction equation has been incor-
porated as an option in a subroutine which is normally
used for sources/sinks that represent injection or with-
drawal of fluid from a well, etc. As a test of the use of
our modified dual-porosity code, consider the problem
of linear one-dimensional flow from a boundary that is
maintained at some pressure P, into a semi-infinite for-
mation that is initially at pressure P;. We have also
tested the modified version of TOUGH on problems
involving radial flow to a well, and under constant-flux
boundary conditions. However, the problem discussed
here seems 10 most clearly illustrate the different time
regimes, and the effects of fracture/matrix flow. The
boundary and initial conditions for this problem are

Prlxs,t=0)=P,(x;,t=0) =P, , (18)
Prix; =0,1>0)=P, , (19)
lim P(x;,0) =P, . 20
x/l.r?m ) =Py (20)

The results of the simulation using the new semi-
analytical dual-porosity version of TOUGH, incorporat-
ing eq. (12) as the fluid coupling term, are presented in
Fig. 3. The figure shows the flowrate from the inlet
feeding the fractures, as a function of time. In the
simulation, _ the permeabilitiecs were taken as
kg =10"5m? and k, =108 m?, the porosities were
taken as ¢y =0.001 and ¢,, =0.1, and the matrix block
radii were taken to be a,, =1m. The temperature was
set at 20°C, and the boundary and initial pressures were
taken to be P; = 10MPa and P, = 11MPa. Under
these conditions, the viscosity of water is roughly
0.001 Pa-sd and the compressibility is roughly
4.5%x107'%/ Pa, although the TOUGH code actually uses
more accurate values that are computed at each tempera-
ture and pressure from empirically-derived equations of
state. For simplicity, we assume that the rock is rigid,
so that the compressibility term reflects only the
compressibility of the water.

At small times, flow takes place primarily in the frac-
tures, and the flux varies as £7'%, as is typical in a one-
dimensional diffusion problem. However, as time
progresses, the leakage of fluid into the matrix blocks
has the effect of temporarily halting the decline of the
flux into the system, as is seen in Fig. 3. According to
the Warren-Root method, this leads to an intermediate-
time regime in which the overall flux is essentially con-
stant. However, Nitao and Buscheck (1991) have
shown that in this intermediate regime, the flux actually
decreases as r~'’4, which is in agreement with the results
of our semi-analytical dual-porosity calculation. Also
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Fig. 3. Total instantaneous flux for one-dimensional flow
into a dual-porosity formation with constant
boundary pressure. The meaning of the parame-
ters, and their values, are discussed in the text.
MINC simulations were carried out using
TOUGH code; ‘‘new method’’ simulation was
carried out using modified TOUGH.

shown are the results calculated using a fully discretized
MINC-type approach, in which each spherical matrix
block is broken up into ten nested shells; the MINC
simulation with one cell per matrix block corresponds to
the Warren-Root model. Note that as the number of
shells in the MINC simulation increases, the fluxes
approach those calculated with our new semi-analytical
approach. As expected, the Warren-Root method
overestimates the time needed for flow into the matrix
blocks to begin to appreciably influence the overall
flowrate into the formation, and gives an inaccurate
flowrate variation for intermediate times. At large
times, the matrix blocks near the x =0 inlet have been
filled, and the overall response is similar to that of a
single-porosity medium with an effective porosity of
¢,+0,=0,, and an effective permeability of
k,+ks=ks. Hence at large times the flowrate again
drops off as 172, but with a multiplicative constant that
is larger by a factor of about

N@o+ 0, Y+ YO, TRy = NG, 10

Conclusions

We have developed a new dual-porosity model for
single-phase flow in porous/fractured media. Instead of
using a Warren-Root-type equation for fracture/matrix
flow, in which the flux is proportional to the difference
between the fracture pressure and the mean matrix pres-
sure, we use a nonlinear differential equation. This
equation is more accurate than the Warren-Root equa-
tion, for a wide variety of matrix block boundary condi-
tions. This differential equation has been incorporated
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into the numerical simulator TOUGH, to serve as a
source/sink term for the discretized fracture continuum.
For the test problems we have simulated, the modified
TOUGH code is more accurate than the Warren-Root
model, and is more computationally efficient  than
models which require discretization of the matrix
blocks.
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