LEU Conversion Feasibility Studies
for the BMRR and HFBR'

R.B. Pond, N.A. Hanan, and J.E. Matos
Technology Development Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

The submitted manuscript has been created by
the University of Chicago as Operator of
Argonne National Laboratory (“Argonne”)
under Contract No, W-31-109-ENG-38 with
the U.S. Department of Energy. The US.
Govemnment retains for itself, and pthers act-
ing on its behalf, a paid-up, nonexclusive,

- irrevocable worldwide license in said article to
reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government.

To be presented at:

af —NAG T

RECEIVEr
JUL 2 6 1999

0871,

1997 ANS Winter Meeting and Embedded Topical Meetings

Albuquerque, New Mexico
November 16-20, 1997

* Work supported by the U.S. Department of Energy, Office of Nonproliferation and National Security, under

Contract No. W-31-109-ENG-38.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

are: Soft Links, VME/VXI, CAMAC, Allen Bradley,
GPIB, Bitbus, and a couple of special bus types.

2.2 C Structure Definition

The program dbToRecordtypeH creates a C structure
definition file from the record description file. This C file is
included by the record support module and also by any
associated device support modules.

2.3 Record Support Module

A record support module contains a set of methods that
are accessed by iocCore via a record support entry table
having the following structure:

struct rset { /* record support entry table */

long number;
RECSUPFUN init;
RECSUPFUN init_record;
RECSUPFUN process;

}

Each record support module must define a global
variable for its record support entry table. This definition
has the form:

struct rset aiRSET={
RSETNUMBER,
report,

}

The global variable is aiRSET. It is permissible for any
support method to be null. During IOC initialization,
EPICS locates the address of the record support entry table
for each record type.

3 Extensible Device Support

A device support module contains a set of methods that
are called by record support. These methods implement
device-specific code. For example, there is one analog
input record support module but a large collection of
analog device support modules, one for each supported
analog device. In order to create support for a new device.
a new device definition and a device support module must
be created.

3.1 Create a Device Definition
A device definition has the form:

device(ai. VME_IO.devAiXX."XX device")

The first parameter is the record type to which this
device support is related, and the second parameter is the
bus type. The third argument is the name of the giobal
variable that will be discovered at IOC initialization, and
the last parameter is a DTYP menu choice string.

3.2 Create the Device Support Module

The methods for a device support module are described
in a device support entry table which has the following
structure:

struct dset {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
/* other methods are record type dependent*/

}

Each device support module must define a global
variable for its device support entry table. It has the form:
struct dset devAiXX={
6,
report,

}

4 Implementation Summary

The preceding two . sections described the syntax for
defining a record type and a device. In addition, a syntax is
defined for defining menus and record instances. The
complete syntax is called the EPICS Database Definition
Language.

EPICS databases can be accessed via two libraries: static
database access and run-time database access. The static
library never calls any record or device support method
while the run-time library does. The static library is
supported on the cross development system as well as on
I0Cs. The run-time library is supported only on I0Cs.

In general there are four types of software that need
access to EPICS records: Database Configuration Tools,
Channel Access Clients, IOC software accessing records in
the same 10C, and Record/Device Support accessing its
own record instances.

Database Configuration Tools can only use static
database access. Channel Access Clients access records via
a channel access (CA) server that resides in each IOC. The
CA server in turn uses a combination of static and run-time
database access. Any IOC software can use a combination

of static and run-time database accesses to access records
in the same IOC.

Record/Device Support uses the C structure definition to
directly access record instances of their record type. This
provides very fast access. A C structure is also generated
for dbCommon. This structure is included by many
components of the core I0C software. Thus the core
software can access these fields quickly.

The early versions of EPICS did not have both static and
run-time access libraries. Originally there was only one
Database Configuration Tool that directly accessed the
internal structures used to implement the database. Thus,
whenever any change was made to the internal structures,
‘the Database Configuration Tool also had to be changed.
The static access library was created to fix this limitation as
well as to allow additional Database Configuration Tools.

5 Discussion

Although the design of extensible support was not
intentionally object oriented, the design does have an
object-oriented flavor. Here we discuss the good and bad
aspects of using object-oriented ideas.

Since the structures generated from a Record Description
File contain only data and not methods, they are- NOT
similar to Java or C++ classes. Because methods are not
present, a clear separation between static and . run-fime
database access is possible. This is a good feature and
should be kept. It also allows generation of C structures
that can be used by either C or C++ code.

The record and device support entry tables are almost
like Java interfaces or pure abstract C++ classes. We can
state that EPICS databases are defined via a Database
Definition Language and an Abstract Interface Definition.

The two main shortcomings of the existing
implementation are: 1) only two interfaces are defined:
RSETs and DSETs (actually a third called a driver éntry
table is also defined), and 2) the way hardware links are
implemented makes it extremely difficult to support
arbitrary bus types and additional hardware configuration
information.

6 Possible Future improvements

The first change would be to support an arbitrary number
of interfaces. An Interface Definition syntax can be
developed that would allow automatic generation of C and
C++ module templates. A few interface definitions will be
used by core IOC software but additional interfaces can be
defined. A library will be provided to register and locate
interface implementations.

The second change would be to redo the existing
implementation of links. This involves defining a Structure
Definition Format, eliminating DBF_DEVICE, adding two
new link types, DBF_IN_STRUCTURE and
DBF_OUT_STRUCTURE, and replacing the existing
device definition with a link definition.

6.1 Structure Definition

A structure definition is just like a record type definition
except that it begins:

structure(<name>) {
field(. ..
}

and does not include dbCommon.

6.2 New Link Types

Instead of DBF_INLINK and DBF_OUTLINK define
the following:

DBF_INLINK, DBF_OUTLINK
These provide the same functionality as existing soft
DBF_INLINK, DBF_OUTLINK, i.e., they are NOT
used for hardware links.

DBF_IN_STRUCTURE, DBF_OUT_STRUCTURE
These are the replacements for the existing
DBF_DEVICE and INP, OUT.

6.3 Link Replacement for Existing Device Definition
The existing device definition will be replaced by:

link(<record_type>.<field>,<structure>,<interface>,
"<choice>")

where:

<record_type>.<field>
is the record type and the field within the record to
which this definition applies.

<structure>
is the name of a structure that contains additional
information for this link.

<interface>
is the name of an interface that will handle
processing of this link. The methods supplied by an
interface will be record-type specific. Methods,
however, will be defined that implement existing
functionality.

<choice>
is a choice string for Database Configuration Tools
and for choosing an interface for run-time processing.

For example, the existing definition
device(ai, VME_IO.devAiDvx2502,"DVX-2502")

could be replaced by
link(ai.INP,VME_10,devAiDvx2502,"DV X-2502")

where VME_IO is now the name of a structure rather than
a hard-coded definition in link.h.

A record instance file currently has a definition similar
10

field(INP,"#C0 SO @").
This would become something like

field(INP.VME_IO) {
card(0)
signal(0)
parm("™)

}

6.4 Benefits

Because the link definition specifies both the record type
and a field name, there is no hidden dependency between
two fields like there currently is between DTYP and INP or
OUT. In addition, it is possible to have multiple link
definition fields in a record.

Because the link specifies a structure name, arbitrary
information can be entered for the field. Thus, the currently
hard-coded information in link.h is replaced by a general
mechanism. Support for new bus types and other
configuration information is possible.

Because the link specifies an arbitrary interface
definition rather than just a DSET, more general interfaces
are possible.

7 References

The following web site contains a large collection of
EPICS documentation:
http://www.aps.anl.gov/asd/controls/epics/
EpicsDocumentation/WWWPages/EpicsDoc.html

Of particular interest for this paper are the Application
Developer's Guide and the Record Reference Manual.

