
d%

●

LEU Conversion Feasibility Studies
for the BMRR and I-IFBR’

R.B. Pond, N.A. Hanan, and J.E. Mates
Technology Development Division

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

The submittedmanuscripthas been created by
the University of Chicago as Operator of
kgonne National LaboratorY (“Argonne”)
under Contract No. W-3i -109-ENG-38 with
the U.S. Department of Energy. The U.S.
Government retains for itself and $thers act-
ing on its behalf a paid-up, no”nexchrsive,
irrevocableworldwidelicense in said title to
reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government.

0s7 ,.

To be presented at:

1997 ANS Winter Meeting and Embedded Topical Meetings
Albuquerque, New Mexico

November 16-20, 1997

“ Work supported by the U.S. Department of Energy, Office of Nonproliferation and National Security, under
Contract No. W-3 1-109-ENG-38.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, Gr represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER‘

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

. .
.,.”

are: Soft Links, VME/VXL CAMAC, Allen Bradley,

GPIB, Bitbus, and a couple of special bus types.

2.2 C Structure Definition

The program dbToRecordtypeH creates a C structure

definition tile from the record description file. This C file is
included by the record support module and also by any

associated device support modules.

2.3 Record Support Module

A record support module contains a set of methods that

are accessed by iocCore via a record support entry table
having the following structure:

structrset (/*record supptentryt able*/
long numbe~
RECSUPFUN init;
RECSUPFUN init_record;
RECSUPFUN process;

. . .

}

Each record support module must define a global
variable for its record support entry table. This definition
has the form

struct rset aiRSET={
RSETNUMBER.
report,
. . .

)

The global variable is

support method to be

aiRSET. It is permissible for any

null. During IOC initialization,

EPICS locates the address of the record support entry table
for each record type.

3 Extensible Device Support

A device support module contains a set of methods that
are called by record support. These methods implement
device-specific code. For example, there is one analog
input record support module but a large collection of

analog device support modules, one for each supported
analog device. In order to create support for a new device.
a new device definition and a device support module must

be created.

3. J Create a Device Definition

A device definition has the form:

device(ai.VYIE_ [O.devAiXX.”XX device”)

The first parameter is the record type to which this

device support is related, and the second parameter is the

bus type. The third argument is the name of the global
variable that will be discovered at IOC initialization, and

the last parameter is a DTYP menu choice string.

3.2 Create the Device Support Module

The methods for a device support module are described
in a device support entry table which has the following

structure.

struct dset {
long number,

DEVSUPFUN repow
DEVSUPFUN ini~
DEVSUPFUN init_record;
DEVSUPFUN get-ioint_info;
/* other methods are record type dependent*/

1

Each device support module must define a global
variable for its device support entry table. It has the form:

struct dset devAiXX={
6,
report,
. . .

}

4 Implementation Summary

The preceding two sections described the syntax for
defining a record type and a device, In addition, a syntax is

defined for defining menus and record instances. The

complete syntax is called the EPICS Database Definition
Language.

EPICS databases can be accessed via two libraries: static

database access and run-time database access. The static
library never calls any record or device support method
while the run-time library does. The static library is

supported on the cross development system as well as on
IOCS. The run-time library is supported only on IOCS.

In general there are four types of software that need

access to EPICS records Database Configuration Tools,

Channel Access Clients, IOC software accessing records in
the same IOC, and Record/Device Support accessing its

own record instances.
Database Configuration Tools can only use static

database access. Channel Access CIients access records via
a channel access (CA) server that resides in each IOC. The

CA server in turn uses a combination of static and run-time
database access. Any IOC software can use a combination

--- . .
. ,,>+

of static and run-time datitbase accesses to access records

in the same IOC.
Record/Device Support uses the C structure definition to

directly access record instances of their record type. This

provides very fast access. A C structure is also generated
for dbCommon. This structure is included by many

components of the core IOC software. Thus the core

software can access these fields quickly.
The early versions of EPICS did not have both static and

run-time access libraries. OriginalIy there was only one

Database Configuration Tool that directly accessed the
internal structures used to implement the database. Thus,

whenever any change was made to the internal structures,
the Database Configuration Tool also had to be changed.
The static access library was created to fix this limitation as
well as to allow additional Database Configuration Tools.

5 Discussion

Although the design of extensible support was not
intentionally object oriented, the design does have an

object-oriented flavor. Here we thscuss the good and bad
aspects of using object-oriented ideas.

Since the structures generated from a Record Description
File contain only data and not methods, they are NOT

similar to Java or C++ ciasses. Because methods are not
present, a clear separation between static and run-!ime
database access is possible. This is a good fea~re and
should be kept. It also allows generation of C structures
that can be used by either C or C++ code.

The record and device support entry tables are almost
like Java interfaces or pure abstract C++ classes. We can

state that EPICS databases are defined via a Database

Definition Language and an Abstract htterface Definition.

The two main shortcomings of the existing

implementation are 1) only two interfaces are defined

RSETS and DSETS (actually a third called a driver entry
table is also defined), and 2) the way hardware links are

implemented makes it extremely difficult to support
arbhrary bus types and additional hardware configuration
information.

6 Possible Future improvements

The first change would be to support an arbitrary number
of interfaces. An Interface Definition syntax can be

developed that would aIlow automatic generation of C and
C++ module templates. A few interface definitions will be
used by core IOC software but additional interfaces can be

defined. A library will be provided to register and locate
interface implementations.

The second change would be to redo the existing

implementation of links. This involves defining a Structure
Definition Format, eliminating DBF_DEVICE, adding two

new link types, DBF.IN.STRUCTURE and

DBF_OUT_STRUCTURE, and replacing the existing
device definition with a link definition.

6.1 Structure Definition

A structure definition is just like a record type definition
except that it begins:

structure(<name>) (

field(. . .

}

and does not include dbCommon.

6.2 New Link Types

Instead of DBF_INLINK and DBF_OUTLINK define
the following:

DBF.INLINK, DBF.OUTLINK

These provide the same functionality as existing soft
DBF_INLINK, DBF_OUTLINK, i.e., they are NOT

used for hardware links.

DBF_IN_STRUCTURE, DBF_OUT_STRUCTURE

These are the replacements for the existing
DBF_DEVICE and INP, OUT.

6.3 Link Replacement for Existing Device Definition

The existing device definition will be replaced by

Iink(aecord_type> .die1d>,<structure>,cinterface>,

“<choice>”)

where:

aecord_type>.<tield>
is the record type and the field within the record to
which this definition applies.

<structure>
is the name of a structure that contains additional
information for this link.

<interface>

is the name of an interface that will handle
processing of this link. The methods supplied by an
interface will be record-type specific. Methods,

however, will be defined that implement existing
functionality.

cchoice>
is a choice string for Database configuration Tools

and for choosing an interface for run-time processing.

. ,,* .,.
* .4$.9

For example, the existing definition

device(ai,VME_IO.devAiDvx2502,’’DVX-25O2”)

could be replaced by

1ink(ai.INP,VME_I0,devAiDvx2502,’’DVX-2502”)

where VME_IO is now the name of a structure rather than

a hard-coded definition in link.h.
A record instance tile currently has a definition similar

to

fieId(INP,’’#COSO C?”).

This would become something like

fieId(INP.VME_lO) {

card(0)

signal(0)
parm(””)

}

6.4 Benefits

Because the link definition specifies both the record type
and a field name, there is no hidden dependency between

two fields like there currently is between DTYP and INP or
OUT. In addition, it is possible to have multiple link
definition fields in a record.

Because the link sp~cities a structure name, arbitrary
information can be entered for the field. Thus, the currently

hard-coded information in lirtk.h is replaced by a general

mechanism. Support for new bus types and other
configuration information is possible.

Because the link specifies an arbitrary interface
definition rather than just a DSET, more general interfaces
are possible.

7 References

The following web site contains a large collection of

EPICS documentation:
http://www.aps. anl.gov/asdJcontrolslepicsl
EpicsDocumentation/WWWp ages/EpicsDoc.html

Of particuhr interest for this paper are the Application
Developer’s Guide and the Record Reference Manual.

