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ABSTRACT

The conventionally accepted models for the inter-
pretation of pressure transient tests in naturally frac-
tured reservoirs usually involve simplistic assumptions
regarding the geometry and transport properties of the
fractured medium. Many single well tests in this type of
reservoirs fail to show the predicted behavior for dual
or triple porosity or permeability systems and cannot
be explained by these models. This paper describes the
application of a new model based on a fractal interpreta-
tion of the fractured medium. The approach, discussed
elsewhere [2], [6], is applied to field data from The Gey-
sers Geothermal Field. The objective is to present an
alternative interpretation to well tests that character-
izes the fractured medium in a manner more consistent
with other field evidence. The novel insight gained from
fractal geometry allows the identification of important
characteristics of the fracture structure that feeds a par-
ticular well. Some simple models are also presented that
match the field transient results.

INTRODUCTION

Pressure transient responses predicted by the dual
or triple porosity models [1], {18], [19] are sometimes
not observed in actual transient tests in naturally frac-
tured reservoirs. In some cases the observed behavior
is similar to that of a single fracture cutting the well-
bore. The well response is characterized by parallel lin-
ear plots of pressure and pressure derivative vs time
on a log-log scale with a slope m between 0 and 0.5
and a separation equal to log(L) as shown in Figure
1. Such behavior is ordinarily explained by assuming
the existence of a single fracture of finite conductivity
intersecting the well, {3], [8]. This type of response has
also been explained as a transition between single in-
finite conductivity fracture flow (3 log-log slope) and
radial flow (semilog straight line) in the parallelepiped
reservoir model {9], [11]. Another case often observed
involves pressure derivative plot with a negative slope
not large enough to be interpreted by a spherical flow
regime. In systems where individual wells are connected
to networks of fractures, alternative conceptual models
need to be proposed. The purpose of this investigation
was to examine the feasibility of using fractal geometry
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Figure 1: Pressure (solid) and pressure derivative
(dashed) for a fractal fracture network m = 0.27 (§ =
0.73)

to interpret the above responses in a manner consistent
with the expectation that networks of fractures domi-
nate the flow behavior. ‘

The application of fractal geometry to the analysis
of pressure transient tests resulted from a direct ex-
tension of novel discoveries in diffusion in disordered
media and fractal objects [13], [15]. It has been found
that the diffusion process, which also governs pressure
transient tests, occurs in a unexpected fashion when the
medium is highly disordered or fractal. Such phenom-
ena, classified in general as “anomalous diffusion” [13],
have helped in explaining many slow diffusion processes
poorly understood only a few years ago.

The application of these concepts to pressure tran-
sient testing in fractal fractured systems was proposed
by Chang and Yortsos [6], who described the general
theoretical formalism. The theory was tested using nu-
merical models of fractured networks in the recent work
of Acuna and Yortsos [2]. A key feature of a fractal
transient response is that the log-log plot of pressure
derivative versus time is linear. The observed slope de-
pends on the dimensionality and ranges between -0.5
and 0.5. Where -0.5, 0 and 0.5 correspond to spheri-
cal, radial and linear flow respectively. When the slope
is between 0 and 0.5, the pressure curve is parallel to
the pressure derivative curve, making the identification
casier. Regardless of dimensionality, all responses can




be considered as particular cases of a general solution.

Although theory and numerical examples have been
presented elsewhere [2], [6], [10], practical applications
to real well tests have been limited [5]. The Geysers
Geothermal Field, whose characterization is still elu-
sive, represents an excellent test case to explore the fea-
sibility of a fractal structure. In particular, the nature
of drilling fluid, air, used in the bulk of the fractured
system helps in examining fractures relatively free of
near-wellbore damage.

THEORETICAL BACKGROUND

The finite conductivity single fracture model [3], [8]
predicts that at early times the pressure behavior can
be approximated by the expression

p = AT (1)

where A is a constant. From (1) follows that the log-
log plots of pressure and pressure derivative vs time
will be parallel with slope m and separated by a dis-
tance equal to log(:) (or & = L). Many wells in
naturally fractured reservoirs behave in this fashion al-
though the existence of only a single fracture as cause
of that behavior is not supported by other wellbore or
reservoir measurements. The fractal model discussed
below shows how a particular fracture network can also
be responsible for that behavior.

When a fractured medium is highly disordered and
fractal, the single-phase pressure transient of individual
wells differ significantly from the homogeneous radial
flow case [6]. The theoretical, ideal response would be
described as follows: In a perfect fractal object of in-
finitely many generations of fractures, the mass density
of any arbitrary cluster of radius r around an arbitrary
point decreases in a power law fashion with respect to
the distance r. The exponent of the power law is D —d
where D is the mass fractal dimension of the object
and d the embedding dimension (2 for two-dimensional
case). However, when the object has finite size, devi-
ations with respect to this behavior are expected and
will occur, although the average over many origins is ex-
pected to give the same power law [12], [14], [15]. Con-
sider a fractal network of fractures. The “mass density”
at any given radius corresponds to the average poros-
ity at that radius r, defined as the total void volume
divided by the total volume at radius r. This poros-
ity will therefore change in a power law fashion with
respect to r.

(r) = po(—)P~* 2)
where ¢q is a constant.

Using the same reasoning, we could expect the sam-
ple permeability to also vary with r. For example, if
steady-state flow across a sphere of radius r occurs,
the corresponding single-phase permeability can be ex-

r
To

pressed as
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K(r) = Ko(—)P74° (3)
To
where D and 6 are fractal parameters, rp is the mini-
mum size considered in the network (smallest fracture)
and Ky is a constant.

These values of porosity and permeability are not
point values, as traditionally interpreted, but sample
(macroscopic) values over that radius r. For instance,
the point value for porosity is either 0 or 1 depending
on the point being on the matrix or the fracture. Here,
we are concerned with the macroscopic values of these
properties. The conductivity and storativity terms KA
and ¢A are obtained by multiplying equations (2) and
(3) by Br¢!, where B is a constant. As can be ob-
served, conductivity and storativity are power law func-
tions of radius with different exponents. The diffusivity
7 is, therefore, dependent on the radius as n r=%, This
variation of diffusivity with radius gives rise to several
phenomena referred in general as “anomalous diffusion”
[13], [15]. Diffusion over fractal objects is “anomalous”
in that the standard diffusivity equation may not be
used. The most rigorous alternative is to consider a
Green’s function approach, based on which solutions
can be readily constructed [7]. A simplification of that
approach at late times is a diffusivity equation, but with
properties that vary spatially according to (2) and (3).
Then, as shown in [6] (see also [7]), one obtains

Pp D—-0-10p ,0p

or? r or | 9t
with boundary conditions that p vanishes as r — oo,
and that constant flow rate applies at the wellbore

0 (1)

Ip
. D—6—
limg (P41 22 = -1 2
For this problem a similarity solution was obtained [6],
based on which the pressure at the well p,,, after a short
time, obeys the power law behavior
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where C = F—&({%;—Pg—) is constant with respect to time and

6= 2%9. The constant term C becomes negligible with
respect to the time dependent term when § < 1. The
log-log plots of pressure and pressure derivative versus
time appear as two straight parallel lines after sufficient
time. When 6 > 1 (dimensionality greater than 2), how-
ever, the constant term becomes the asymptotic value
of the pressure. In such cases only the derivative plot
will show the log-log linear behavior with the pressure
curve approaching asymptotically a constant value at
late times. Equation (3) is valid for a single well test
and it cannot be used for multiple well tests, where re-
course to the Green’s function formalism must be made
[7]. For § =1 the traditional exponential integral ‘solu-

tion arises.
An alternative derivation for a similar problem was

presented by Barker [4]. In his derivation conductivity



and storativity were assumed to be power law-dependent

on the radius with the same exponent. Theoretically,
this may only result if we assume that the area perpen-
dicular to flow changes in a power law fashion. Doe [10]
attempted to rationalize such a variation in flow area
by proposing drainage volumes with unusual shapes. In
the Chang and Yortsos [6] notation, this assumption is
equivalent to setting the parameter § = 0, a value char-
acteristic of perfectly connected networks. The diffusiv-
ity n is therefore constant and normal diffusion should
be expected. According to Barker’s solution, the slope
of the log-log plot of pressure versus time must approach
a constant value equal to 1 — %. This was not ob-
served in our numerical simulations, neither in the sim-
ulations by Polek et al. {16}, instead, the value obtained
from flow simulations is consistently lower than the ge-
ometric fractal dimension. The results are, however,
entirely consistent with Chang and Yortsos derivation.
Although Barker’s theory may be appropriate for cer-
tain objects (yet to be precisely described), it is certain
that it cannot be applied to describe flow in fractals.
According to Chang and Yortsos, for a two-dimensional
embedding medium, the slope m of both the pressure
and the pressure derivative in log-log plots is given by
m=1—-6§=1-— -2%. The two parameters D and 8
suffice to formulate the power-law variation. A type of
system that gives rise to the above variation is a net-
work of fractures with fractal properties. Indeed, it was
shown numerically [2] that in such a fractal network of
fractures, the two parameters D and § have real physi-
cal meaning and that parameters, such as permeability
and fracture porosity are power-law dependent on the
radius.

Parameter D is the mass fractal dimension of the
network, a strictly geometric property. It is measured
by plotting the cumulative “mass” or length of fractures
(for fractures of the same width) contained inside a cir-
cle of radius r versus r. A linear log-log plot of mass
versus radius indicates the existence of a fractal struc-
ture with an exponent identical to D. Parameter @, on
the other hand, is a property depending on both the ge-
ometry and the transport properties of the medium. In
a given network, it can be measured by taking a large
number of random walks of £ steps each and by calculat-
ing the average square distance of the walker from the
origin. Contrary to the normal situation of Euclidean

geometry networks, where < r? >oc t, fractal systems ’

exhibit slowdown, < r? >oc t749 [13], [15], a key feature
in the process of anomalous diffusion.

When dealing with transient tests from a single well
only, the information at the producing well can only
determine the ratio § = %. In other words, any com-
bination of D and € that results in the same value of
8§, will produce the same slope in the pressure deriva-
tive curve. To complete the reservoir characterization,
therefore, additional information is needed.
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APPLICATION TO THE GEYSERS DATA

To demonstrate the feasibility of such a model we
ideally need a naturally fractured reservoir, where drilling
circulation losses and fracture damage are minimal. The
Geysers Geothermal Field with its air drilled wells fit
those requirements quite adequately.

According to [6], given suflicient time in a fractal
reservoir with dimensionality D less than 2, the log-log
plots of pressure and pressure derivative versus time
should appear as two straight, parallel lines. Equation
(6) as well as our experience with synthetic numerical
networks [2] has shown that the linearity sets in earlier
in the pressure derivative curve (In a way, the same is
true for a homogeneous radial system (D = 2 and 0 = 0)
where the asymptotic slope of 1 — § = 0 is achieved
faster by the pressure derivative curve). When dealing
with real systems, however, finite size effects are always
important. These effects are of course absent from the
theoretical analysis. Thus, at early times, a real sys-
tem would respond only to a few fractures of a certain
finite size around the test well. The effect is mathemat-
ically equivalent to a skin factor in the pressure curve.
This skin factor together with any constant contribu-
tion to the pressure response would be filtered out by
the process of differentiation, thus, rendering the slope
of the derivative curve much more useful than that of
the pressure curve. The noise in the derivative curve is
however a problem. The separation log(X) = log(%5)
of the two lines is invaluable in helping to identify the
correct value of the slope m for dimensionality less than
2. At late times, however, boundary conditions begin
to influence the data and the curves deviate from the
asymptotic trend. If enough time is available in the

“infinite acting” period, the pressure curve reaches a
slope equal to that of the pressure derivative. For di-
mensionality greater than 2, the parallel slope behavior
is observed only if the pressure is replaced by the term
C — py(t) where C is the asymptotic constant value of
the pressure at very long time.

If additional information suggest that a network of
fractures is connected to the well, the approaching of
the asymptotic straight lines should be good evidence
to consider power-law variation in porosity and perme-
ability

These concepts are illustrated in Figure 2 which
shows a buildup test for well A at The Geysers. Both
pressure and pressure derivative plots are linear and
parallel for a certain period of time, before boundary
effects become significant. The slope measured from
the derivative curve is 1 — § = 0.40, suggesting a ratio
§ = % = 0.60. From our experience with synthetic
fractal fracture networks, we found that the parame-
ter 8 ranges between 0 and 0.5 for various networks. If
we accept that the real fracture network above behaves
similarly to our artificial networks [2], possible values
of D predicted are in the range 1.20 < D < 1.50, indi-
cating a sparse network of fractures with radial fractal
dimension D in the specified range. A network with
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Figure 2: Pressure (o-solid), pressure derivative (-
dashed) and best fit power law (§ = 0.60) at Well A. P2

such characteristics will be presented below. .

Figure 3 shows build-up test data for another field  qugag ie

test at location B. Pressure and pressure derivative curves
are shown, the associated best fit value of 6 being equal
to 0.84 for the early part and it changes slightly to 0.87
for the later data. This change may be due to vari-
ations in the fractal structure or to boundary effects.
Again using the previous estimates, the expected val-
ues for the mass fractal dimension D lie in the interval
1.68 < D <« 2.0. Although Figures 2 and 3 could be
explained by the response of a single finite conductiv-
ity fracture model, all other available evidence such as
steam entries, outcrops mapping [17], mud logs, etc,
points out to the existence of a network of fractures,
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Figure 3: Pressure (o-solid) and pressure derivative (-
dashed) and best fit power law (6 = 0.84 and 0.87) at
Well B.

rather than one single fracture feeding the well. The
fractal model proposed above gives the most plausi-
ble explanation of why a pressure transient response
of wells in The Geysers resemble those of hydraulically
fractured wells. We should point out that the signif-
icance of the need for a proper value of D cannot be
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overemphasized. For example, the resulting fracture
porosity volume in a drainage volume of a disk of radius
7. and constant thickness would scale as ¢or? which is a
factor 722 smaller than if estimated at constant poros-
ity.
Values § = 1 are indicative of a homogeneous ra-
dial system, as in the case of well C presented in Figure
4. Of course, there is always the possibility of D being
different than 2, implying a power-law varying porosity.
For example this may happen when D = 2+6 as can be
corroborated from equation (3). Because the value of 8
is always positive, the “homogeneous response” would
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Figure 4: Pressure(o-solid), pressure derivative (-
dashed) and best fit power law (6 = 1.0) at Well C.

require D > 2. This is not possible for a fractal embed-
ded in a two-dimensional space, but it is for a finite size
network as explained below.

The case § > 1 (negative pressure derivative slope)
such as shown for well D in Figure 5 deserves partic-
ular attention. Because § > 0, values of § > 1 imply
D > 2, namely the fracture structure is much more
dense, the system features being intermediate between
two and three-dimensional structure. The parallel plots
will not be observed but the slope of the pressure deriva-
tive equals 1 — §. The pressure curve itself equals a
constant C' minus a power-law term with the same ex-
ponent than the derivative curve. To improve the esti-
mation of the slope m we draw a straight line (C'—p,(t))
parallel to the derivative plot separated a distance equal

“tolog(Z}) (m < 0), as shown in Figure 5. The value of

C can be calculated as twice the value of the pressure
at the intersection between the pressure curve and this
parallel line. This simple geometric construction can be
verified using equation (6). A trial an error approach
may be necessary. In this case, the flow can be in-
terpreted as intermediate between radial and spherical
types. :

We should point out that a value of the mass ex-
ponent D > 2 implies that the fracture mass increases
with the radius with an exponent greater than 2. A net-
work with dimensionality greater than 2 has this kind
of variation. A finite 2-D network, however, can also
give this type of response if the porosity increases with
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dial fractal dimension equal to 1.26. This is one of in-
finitely many networks that can be generated with the
same radial fractal dimension. It is the presence of gaps
of a given size at a given distance that controls the value
of D. Because we do not have very good control on the

At{minutes)

Figure 5: Pressure (o-solid), pressure derivative (*-
dashed) , best fit power law for derivative (solid) and
C — p,(t) {dashed) at Well D. (6 = 1.16)

radius. Although this is not possible for infinite frac-
tal objects, it is, nonetheless, conceivable for finite size
networks.

For the separate estimation of D and @, additional
information is needed. This information could be the
response at observation wells located at the Euclidean
distance r. The parameters could be estimated using
the results of [6] and [7]. An important practical prob-
lem, however, is that a given point at a distance r is
usually not representative of the behavior of every point
at that same distance. The fractal parameters reflect
an overall behavior, therefore, for a good estimate in a
particular well, finite size effects must be minimal.

As in every inverse problem of this type, includ-
ing problems in Euclidean homogeneous media, there is
an inherent non-uniqueness associated with single point
measurements. Thus, even though the values of D and
0 may be available, the precise structure of the reser-
voir is unavailable, different relations giving rise to the
same single-well result. Nevertheless, by applying the
numerical techniques developed in [2], we may get a
qualitative understanding of the structure of the net-
work that can give rise to the responses shown above
(e.g. for wells A and B).

Although we have the capability of creating more
natural-looking networks, such as the ones presented in
[2], there is no particular reason to include additional
geometric characteristics. In the absence of other infor-
mation, therefore, these models have a regular, some-
what unrealistic appearance. The networks presented
do not contain many generations of fractures, therefore,
the fractal mass variation with respect to radius is not
expected to be observed in every point. To overcome

this problem, these network are constructed in such a -

way that those power law variations hold for the point
where the well is. This type of behavior would appear
for any point of the network if the number of genera-
tions is substantially increased, something we are not
able to do due to computer limitations.

Figure 6 shows a realization corresponding to a ra-
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Figure 6: Synthetic network with the pressure transient
response similar to that of Well A (D = 1.26).

value of 8, except for the fact that its range is fairly
limited, a trial and error approach is necessary in order
to obtain the desired value of § (here equal to 0.60).
Likewise, Figure 7 is a synthetic network whose tran-
sient response is similar to Well B. Again, this one of
many possible realizations
Acceptance of a fractal model in the particular drainage

area of a well implies a porosity distribution that is
power-law dependent on the distance from the well, as
well as within any other test volume where the fractal
description applies. In such systems, significant conse-
quences on the estimation of the pore volume associated
with the well and on the expected behavior of heat re-

covery by cold water injection can be expected.

CONCLUDING REMARKS

We have presented an interpretation of pressure tran-
sient tests of certain wells in The Geysers Geothermal
Field that behave similarly to a single fracture of finite
conductivity or that tend to resemble spherical flow.
Our fractal model shows how a network of fractures
with some special characteristics can explain such re-
sponse. This explanation appears more consistent with
other field evidence [17] as well as with the concept of
fracturing in naturally fractured systems.

Several wells analyzed in The Geysers Field show
characteristics of fractal behavior, although the power-
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Figure 7: Synthetic network with the pressure transient
response similar to that of Well B (D = 1.84).

law exponents are different at different locations. It
was found in our previous sensitivity studies [2], and
it is also evident by a casual inspection of Figures 6
and 7 that the position of the well may affect substan-
tially the characteristics of the transient response, pro-
vided that finite size effects are important. Such would
not have been the case if the upper and lower cutoffs
(which correspond to the largest and smallest sizes for
Figures 6 and 7, for instance),were greatly separated.
Real systems, however, involve cutoffs of finite values,
thus making the pressure response site specific.

This explanation can be offered to interpret why ev-
ery well in The Geysers Geothermal Field does not re-
spond in the same way. Another distinct possibility is
that the true fractal parameters do vary in space as
a result of different structure. Having different frac-
tal parameters for individual wells does not invalidate
the approach. On the contrary, it allows the determi-
nation of the individual parameters for each well. A
true fractal reservoir would be one of infinite size in
which well defined power laws for the permeability and
porosity would be asymptotically approached, once the
local variations at small radii have dissipated. From
the limited pressure transient tests available to us we
do not observe a tendency towards a single set of fractal
parameters for The Geysers Field. Therefore, a single
model cannot be proposed in which the entire reservoir
is a single fractal object. On the other hand, the local
fractal information derived from each well can be used
to improve the global description of the reservoir. Fu-
ture progress of this research is aimed at extracting the
appropriate power-law variations for each well and to
arrive at a unified model.
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NOMENCLATURE

d = Euclidean dimension of medium in which fractal
object is embedded

D = mass fractal dimension

K = permeability at radius r. [L?]
m = slope in a log-log plot.

p = pressure. [ML 172

r = radial distance. [L]

t = time. [T

1 = hydraulic diffusivity (L?27-]
I'(z) = Gamma function

¢ = porosity

O = fractal exponent
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