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ABSTRACT 

The conventionally accepted models for the inter- 
pretation of pressure transient tests in naturally frac- 
tured reservoirs usually involve simplistic assumptions 
regarding the geometry and transport properties of the 
fractured medium. Many single well tests in this type of 
reservoirs fail to show the predicted behavior for dual 
or triple porosity or permeability systems and cannot 
be explained by these models. This paper describes the 
application of a new model based on a fractal interpreta- 
tion of the fractured medium. The approach, discussed 
elsewhere [2], [6], is applied to field data from The Gey- 
sers Geothermal Field. The objective is to present an 
alternative interpretation to well tests that character- 
izes the fractured medium in a manner more consistent 
with other field evidence. The novel insight gained from 
fractal geometry allows the identification of important 
characteristics of the fracture structure that feeds a par- 
ticular well. Some simple models are also presented that 
match the field transient results. 

INTRODUCTION 

Pressure transient responses predicted by the dual 
or triple porosity models [l], [18], [I91 are sometimes 
not observed in actual transient tests in naturally frac- 
tured reservoirs. In some cases the observed behavior 
is similar to that of a single fracture cutting the well- 
bore. The well response is characterized by parallel lin- 
ear plots of pressure and pressure derivative vs time 
on a log-log scale with a slope rn between 0 and 0.5 
and a separation equal to log($) as shown in Figure 
1. Such behavior is ordinarily explained by assuming 
the existence of a single fracture of finite conductivity 
intersecting the well, [3], [SI. This type of response has 
also been explained as a transition between single in- 
finite conductivity fracture flow ( 2  log-log slope) and 
radial flow (semilog straight line) in the parallelepiped 
reservoir model [9], [Ill.  Another case often observed 
involves pressure derivative plot with a negative slope 
not large enough to he interpreted by a spherical flow 
regime. In systems where individual wells are connected 
to networks of fractures, alternative conceptual models 
need to be proposed. The purpose of this investigation 
was to examine the feasibility of using fractal geometry 
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Figure 1: Pressure (solid) and pressure derivative 
(dashed) for a fractal fracture network rn = 0.27 (6 = 
0.73) 

to interpret the above responses in a manner consistent 
with the expectation that networks of fractures domi- 
nate the flow behavior. 

The application of fractal geometry to the analysis 
of pressure transient tests resulted from a direct ex- 
tension of novel discoveries in diffusion in disordered 
media and fractal objects [13], [15]. It has been found 
that the diffusion process, which also governs pressure 
transient tests, occurs in  a unexpected fashion when the 
medium is highly disordered or fractal. Such phenom- 
ena, classified in general as “anomalous diffusion” [13], 
have helped in explaining many dow diffusion processes 
poorly understood only a few years ago. 

The application of these concepts to pressure tran- 
sient testing in fractal fractured systems was proposed 
by Chang and Yortsos [6], who described the general 
theoretical formalism. The theory was tested using nu- 
merical models of fractured networks in the recent work 
of Acuna and Yortsos [2]. A key feature of a fractal 
transient response is that the log-log plot of pressure 
derivative versus time is linear. The observed slope de- 
pends on the dimensionality and ranges between -0.5 
and 0.5. Where -0.5, 0 and 0.5 correspond to spheri- 
cal, radial and linear flow respectively. When the slope 
is between 0 and 0.5, the pressure curve is parallel to 
the pressure derivative curve, making the identification 
easier. Regardless of dimension,slity, all responses can 
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be considered as particular cases of a general solution. 
Although theory and numerical examples have been 

presented elsewhere [a], [SI, [lo], practical applications 
to real well tests have been limited [5]. The Geysers 
Geothermal Field, whose characterization is still elu- 
sive, represents an excellent test case to explore the fea- 
sibility of a fractal structure. In particular, the nature 
of drilling fluid, air, used in the bulk of the fractured 
system helps in examining fractures relatively free of 
near-wellbore damage. 

T H E O R E T I C A L  B A C K G R O U N D  

The finite conductivity single fracture model [3], [8] 
predicts that at early times the pressure behavior can 
be approximated by the expression 

p M At” (1) 
where A is a constant. From (1) follows that the log- 
log plots of pressure and pressure derivative vs time 
will be parallel with slope m and separated by a dis- 
tance equal to log(&) (or ?;- = k ) .  Many wells in 
naturally fractured reservoirs behave in this fashion al- 
though the existence of only a single fracture as cause 
of that behavior is not supported by other wellbore or 
reservoir measurements. The fractal model discussed 
below shows how a particular fracture network can also 
be responsible for that behavior. 

When a fractured medium is highly disordered and 
fractal, the single-phase pressure transient of individual 
wells differ significantly from the homogeneous radial 
flow case [6]. The theoretical, ideal response would be 
described as follows: In a perfect fractal object of in- 
finitely many generations of fractures, the mass density 
of any arbitrary cluster of radius r around an arbitrary 
point decreases in a power law fashion with respect to 
the distance r .  The exponent of the power law is D - d 
where D is the mass fractal dimension of the object 
and d the embedding dimension (2 for two-dimensional 
case). However, when the object has finite size, devi- 
ations with respect to this behavior are expected and 
will occur, although the average over many origins is ex- 
pected to give the same power law [12], [14], [15]. Con- 
sider a fractal network of fractures. The “mass density” 
at any given radius corresponds to the average poros- 
ity at that radius r ,  defined as the total void volume 
divided by the total volume at radius r .  This poros- 
ity will therefore change in a power law fashion with 
respect to r .  

tb 

where 40 is a constant. 
Using the same reasoning, we could expect the sam- 

ple permeability to also vary with r .  For example, if 
steady-state flow across a sphere of radius r occurs, 
the corresponding single-phase permeability can be ex- 
pressed as 

(3) 

where D and 0 are fractal parameters, ro is the mini- 
mum size considered in the network (smallest fracture) 
and K O  is a constant. 

These values of porosity and permeability are not 
point values, as traditionally interpreted, but sample 
(macroscopic) values over that radius r .  For instance, 
the point value for porosity is either 0 or 1 depending 
on the point being on the matrix or the fracture. Here, 
we are concerned with the macroscopic values of these 
properties. The conductivity and storativity terms K A  
and q5A are obtained by multiplying equations (2) and 
(3) by Brd-’, where B is a constant. As can be ob- 
served, conductivity and storativity are power law func- 
tions of radius with different exponents. The diffusivity 
7 is, therefore, dependent on the radius as 7 cx r-*. This 
variation of diffusivity with radius gives rise to several 
phenomena referred in general as “anomalous diffusion” 
[13], [15]. Diffusion over fractal objects is “anomalous” 
in that the standard diffusivity equation may not be 
used. The most rigorous alternative is to consider a 
Green’s function approach, based on which solutions 
can be readily constructed [7]. A simplification of that 
approach at  late times is a diffusivity equation, but with 
properties that vary spatially according to (2) and (3) .  
Then, as shown in [6] (see also [7]), one obtains 

(1) 
a Z p  ~ - 6 - i a ~  _ _  

ar r - = O  at -+  dr 
with boundary conditions that p vanishes as r + 03, 

and that constant flow rate applies at the wellbore 

For this problem a similarity solution was obtained [6], 
based on which the pressure at  the well p w ,  after a short 
time, obeys the power law behavior 

where C = Jl.kL!- r(s)(z+8) is constant with respect to  time and 
6 = &. The constant term C becomes negligible with 
respect to the time dependent term when 6 < 1. The 
log-log plots of pressure and pressure derivative versus 
time appear as two straight parallel lines after sufficient 
time. When 6 > 1 (dimensionality greatex than 2), how- 
ever, the constant term becomes the asymptotic value 
of the pressure. In such cases only the derivative plot 
will show the log-log linear behavior with the pressure 
curve approaching asymptotically a constant value at 
late times. Equation (3) is valid for a single well test 
and it cannot b? used for multiple well tests, where re- 
course to the Green’s function formalism must be made 
[7]. For 6 = 1 the traditional exponential integral solu- 
tion arises. 

An alternative derivation for a similar problem was 
presented by Barker [4]. In his derivation conductivity 
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and storativity were assumed to be power law-dependent 
on the radius with the same exponent. Theoretically, 
this may only result if we assume that the area perpen- 
dicular to flow changes in a power law fashion. Doe [lo] 
attempted to  rationalize such a variation in flow area 
by proposing drainage volumes with unusual shapes. In 
the Chang and Yortsos [6] notation, this assumption is 
equivalent to setting the parameter 6’ = 0, a value char- 
acteristic of perfectly connected networks. The diffusiv- 
ity 7 is therefore constant and normal diffusion should 
be expected. According to Barker’s solution, the slope 
of the log-log plot of pressure versus time must approach 
a constant value equal to 1 - $. This was not ob- 
served in our numerical simulations, neither in the sim- 
ulations by Polek et al. [16], instead, the value obtained 
from flow simulations is consistently lower than the ge- 
ometric fractal dimension. The results are, however, 
entirely consistent with Chang and Yortsos derivation. 
Although Barker’s theory may be appropriate for cer- 
tain objects (yet to be precisely described), it is certain 
that it cannot be applied to describe flow in fractals. 
According to Chang and Yortsos, for a two-dimensional 

embedding medium, the slope m of both the pressure 
and the pressure derivative in log-log plots is given by 
m = 1 - 6 = 1 - &$,. The two parameters D and 0 
suffice to formulate the power-law variation. A type of 
system that gives rise to the above variation is a net- 
work of fractures with fractal properties. Indeed, it was 
shown numerically [a] that in such a fractal network of 
fractures, the two parameters D and 6’ have real physi- 
cal meaning and that parameters, such as permeability 
and fracture porosity are power-law dependent on the 
radius. 

Parameter D is the mass fractal dimension of the 
network, a strictly geometric property. It is measured 
by plotting the cumulative “mass” or length of fractures 
(for fractures of the same width) contained inside a cir- 
cle of radius r versus r .  A linear log-log plot of mass 
versus radius indicates the existence of a fractal struc- 
ture  with an exponent identical to D.  Parameter 0, on 
the other hand, is a property depending on both the ge- 
ometry and the transport properties of the medium. In 
a given network, it can be measured by taking a large 
number of random walks o f t  steps each and by calculat- 
ing the average square distance of the walker from the 
origin. Contrary to  the normal situation of Euclidean 
geometry networks, where < r2 >K t ,  fractal systems ’ 
exhibit slowdown, < rz  > K  t h  [13], [15], a key feature 
in the process of anomalous diffusion. 

When dealing with transient tests from a single well 
only, the information a t  the producing well can only 
determine the ratio 6 = $. In other words, any com- 
bination of D and 6’ that results in the same value of 
6, will produce the same slope in the pressure deriva- 
tive curve. To complete the reservoir characterization, 
therefore, additional information is needed. 

APPLICATION TO THE GEYSERS DATA 

To demonstrate the feasibility of such a model we 
ideally need a naturally fractured reservoir, where drilling 
circulation losses and fracture damage are minimal. The 
Geysers Geothermal Field with its air drilled wells fit 
those requirements quite adequately. 

According to [6], given sufficient time in a I’IactiL1 
reservoir with dimensionality D less than 2, the log-log 
plots of pressure and pressure derivative versus time 
should appear as two straight, parallel lines. Equation 
(6) as well as our experience wii;h synthetic numerical 
networks [ 2 ]  has shown that the lineirity sets in earlier 
in the pressure derivative cu iw  (111 a. way, the same is 
true for a homogeneons radial system ( D  = 2 and 0 = 0) 
where the asymptotic slope of :l - 6 = 0 is achieved 
fa.ster by the pressure derivative curve). When dealing 
with real systems, however, finit? size effects are always 
important. These effects are of course absent from the 
theoretical analysis. Thus, a t  e,arly times, a real sys- 
tem would respond only to a few fractures of a certain 
finite size around the test well. The effect is mathemat- 
ically equivalent to a skin factor in the pressure curve. 
This skin factor together with a.ny constant contribu- 
tion to the pressure response would be filtered out by 
the process of differentiation, thus, rendering the slope 
of the derivative curve much more useful than that of 
the pressure curve. The noise in the derivative curve is 
however a problem. The separation log($) = log(&) 
of the two lines is invaluable in helping to identify the 
correct value of the slope m for dimensionality less than 
2. At late times, however, boundary conditions begin 
to influence the data and the curves deviate from the 
asymptotic trend. If enough time is available in the 
“infinite acting” period, the pressure curve reaches a 
slope equal to that of the pressure derivative. For di- 
mensionality greater than 2, the parallel slope behavior 
is observed only if the pressure is replaced by the term 
C - p w ( t )  where C is the asympt.otic constant value of 
the pressure at very long time. 

If additional information suggest that a network of 
fractures is connected to the well, the approaching of 
the asymptotic straight lines should be good evidence 
to consider power-law variation in porosity and perme- 
ability 

These concepts are illustrated in Figure 2 which 
shows a buildup test for well A at The Geysers. Both 
pressure and pressure derivative plots are linear and 
parallel for a certain period of time, before boundary 
effects become significant. The slope measured from 
the derivative curve is 1 - 6 = 0.40, suggesting a ratio 
6 = $ = 0.60. From our experience with synthetic 
fractal fracture networks, we found that the paranie- 
ter 6’ ranges between 0 and 0.5 for various networks. If 
we accept that the real fracture network above behaves 
similarly to  our artificial network:s [a], possible values 
of D predicted are in the range 1..20 < D < 1.50, indi- 
cating a sparse network of fractures with radial fractal 
dimension D in the specified range. A network with 
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Figure 2: 
dashed) and best fit power law (6 = 0.60) a t  well A. 

such characteristics will be presented below. 
Figure 3 shows build-up test data for another field 

test at location B. Pressure and pressure derivative curves 
are shown, the associated best fit value of 6 being equal 
to  0.84 for the early part and it changes slightly to 0.87 
for the later data. This change may be due to vari- 
ations in the fractal structure or to boundary effects. 
Again using the previous estimates, the expected val- 
ues for the mass fractal dimension D lie in the interval 
1.68 < D < 2.0. Although Figures 2 and 3 could be 
explained by the response of a single finite conductiv- 
ity fracture model, all other available evidence such as 
steam entries, outcrops mapping [17], mud logs, etc, 
points out to  the existence of a network of fractuies, 

Pressure (0-solid), pressure derivative (*- 

Figure 3: Pressure (0-solid) and pressure derivative (*- 
dashed) and best fit power law (6 = 0.84 and 0.87) at 
Well B. 

rather than one single fracture feeding the well. The 
fractal model proposed above gives the most plausi- 
ble explanation of why a pressure transient response 
of wells in The Geysers resemble those of hydraulically 
fractured wells. We should point out that the signif- 
icance of the need for a proper value of D cannot be 

overemphasized. For example, the resulting fracture 
porosity volume in a drainage volume of a disk of radius 
T ,  and constant thickness would scale as 40.8 which is a 
factor T F - ~  smaller than if estimated at constant poros- 
ity. 

Values 6 = 1 are indicative of a homogeneous ra- 
dial system, as in the case of well C presented in Figure 
4. Of course, there is always the possibility of D being 
different than 2, implying a power-law varying porosity. 
For example this may happen when D = 2 + 8  as can be 
corroborated from equation (3). Because the value of B 
is always positive, the "homogeneous response" would 

&(minutes) 

Figure 4: 
dashed) and best fit power law (6 = 1.0) a t  Well C. 

Pressure(0-solid), pressure derivative (*- 

require D > 2. This is not possible for a fractal embed- 
ded in a two-dimensional space, but it is for a finite size 
network as explained below. 

The case 6 > 1 (negative pressure derivative slope) 
such as shown for well D in Figure 5 deserves partic- 
ular attention. Because 0 > 0, values of 6 > 1 imply 
D > 2, namely the fracture structure is much more 
dense, the system features being intermediate between 
two and three-dimensional structure. The parallel plots 
will not be observed but the slope of the pressure deriva- 
tive equals 1 - 6. The pressure curve itself equals a 
constant C minus a power-law term with the same ex- 
ponent than the derivative curve. To improve the esti- 
mation of the slope m we draw a straight line (C-p,(t)) 
parallel to  the derivative plot separated a distance equal 
to log (2)  ( m  < O ) ,  as shown in Figure 5 .  The value of 
C can be calculated as twice the value of the pressure 
at the intersection between the pressure curve and this 
parallel line. This simple geometric construction can be 
verified using equation (6). A trial an error approach 
may be necessary. In this case, the flow can be in- 
terpreted as intermediate between radial and spherical 
types. 

We should point out that a value of the mass ex- 
ponent D > 2 implies that the fracture mass increases 
with the radius with an exponent greater than 2. A net- 
work with dimensionality greater than 2 has this kind 
of variation. A finite 2-D network, however, can also 
give this type of response if the porosity increases with 
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Figure 5: Pressure (o-solid), pressure derivative (*- 
dashed) , best fit power law for derivative (solid) and 
C - p W ( t )  (dashed) at Well D. (6 = 1.16) 

radius. Although this is not possible for infinite frac- 
tal objects, it is, nonetheless, conceivable for finite size 
networks. 

For the separate estimation of D and 0, additional 
information is needed. This information could be the 
response at observation wells located a t  the Euclidean 
distance r .  The parameters could be estimated using 
the results of [6] and [7].' An important practical prob- 
lem, however, is that a given point at a distance T is 
usually not representative of the behavior of every point 
at that same distance. The fractal parameters reflect 
an overall behavior, therefore, for a good estimate in a 
particular well, finite size effects must be minimal. 

As in every inverse problem of this type, includ- 
ing problems in Euclidean homogeneous media, there is 
an inherent non-uniqueness associated with single point 
measurements. Thus, even though the values of D and 
8 may be available, the precise structure of the reser- 
voir is unavailable, different relations giving rise to the 
same single-well result. Nevertheless, by applying the 
numerical techniques developed in [a], we may get a 
qualitative understanding of the stiucture of the net- 
work that can give rise to the responses shown above 
(e.g. for wells A and B). 

Although we have the capability of creating more 
natural-looking networks, such as the ones presented in 
[a], there is no particular reason to include additional 
geometric characteristics. In the absence of other infor- 
mation, therefore, these models have a regular, some- 
what unrealistic appearance. The networks presented 
do not contain many generations of fractures, therefore, 
the fractal mass variation with respect to radius is not 
expected to be observed in every point. To overcome 
this problem, these network are constructed in such a 
way that those power law variations hold for the point 
where the well is. This type of behavior would appear 
for any point of the network if the number of genera- 
tions is substantially increased, something we are not 
able to  do due to computer limitations. 

Figure 6 shows a realization corresponding to a ra- 

dial fractal dimension equal to 1.26. This is one of in- 
finitely many networks that can be generated with the 
same radial fractal dimension. It is the presence of gaps 
of a given size a t  a given distance that controls the value 
of D. Because we do not have very good control on the 

Figure 6: Synthetic network with the pressure transient 
response similar to that of Well A ( D  = 1.26). 

value of 8 ,  except for the fact that its range is fairly 
limited, a trial and error approach is necessary in order 
to obtain the desired value of 6 (here equal to 0.60). 
Likewise, Figure 7 is a synthetic network whose tran- 
sient response is similar to Well B. Again, this one of 
many possible realizations 

area of a well implies a porosity distribution that is 
power-law dependent on the dis1,ance from the well, as 
well as within any other test volume where the fractal 
description applies. In such systems, significant conse- 
quences on the estimation of the pore volume associated 
with the well and on the expected behavior of heat re- 
covery by cold water injection can be expected. 

Acceptance of a fractal model in the particular drainage 

CONCLUDING REMARKS 

We have presented an interpretation of pressure tran- 
sient tests of certain wells in The Geysers Geothermal 
Field that behave similarly to a single fracture of finite 
conductivity or that tend to resemble spherical flow. 
Our fractal model shows how a network of fractures 
with some special characteristics can explain such re- 
sponse. This explanation appears more consistent with 
other field evidence [17] as well as with the concept of 
fracturing in naturally fractured systems. 

Several wells analyzed in The Geysers Field show 
characteristics of fractal behavior, although the power- 
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N O M E N C L A T U R E  

d = Euclidean dimension of medium in which fractal 
object is embedded 
D = mass fractal dimension 
K = permeability at radius r.  [L2] 
m = slope in a log-log plot 
p = pressure. [ML-*T-2] 
r = radial distance. [L] 
t = time. [TI 
71 = hydraulic diffusivity [L2T-'J 
r(z) = Gamma function 
4 = porosity 
0 = fractal exponent 
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Figure 7: Synthetic network with the pressure transient 
response similar to that of Well B ( D  = 1.84). 

law exponents are different at  different locations. It 
was found in our previous sensitivity studies [ a ] ,  and 
it  is also evident by a casual inspection of Figures 6 
and 7 that the position of the well may affect substan- 
tially the characteristics of the transient response, pro- 
vided that finite size effects are important. Such would 
not have been the case if the upper and lower cutoffs 
(which correspond to the largest and smallest sizes for 
Figures 6 and 7, for instance),were greatly separated. 
Real systems, however, involve cutoffs of finite values, 
thus making the pressure response site specific. 

This explanation can be offered to interpret why ev- 
ery well in The Geysers Geothermal Field does not re- 
spond in the same way. Another distinct possibility is 
that the true fractal parameters do vary in space as 
a result of different structure. Having different frac- 
tal parameters for individual wells does not invalidate 
the approach. On the contrary, it allows the determi- 
nation of the individual parameters for each well. A 
true fractal reservoir would be one of infinite size in 
which well defined power laws for the permeability and 
porosity would be asymptotically approached, once the 
local variations at small radii have dissipated. From 
the limited pressure transient tests available to us we 
do not observe a tendency towards a single set of fractal 
parameters for The Geysers Field. Therefore, a single 
model cannot be proposed in which the entire reservoir 
is a single fractal object. On the other hand, the local 
fractal information derived from each well can be used 
to improve the global description of the reservoir. Fu- 
ture progress of this research is aimed at  extracting the 
appropriate power-law variations for each well and to 
arrive at  a unified model. 
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