skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers

Technical Report ·
DOI:https://doi.org/10.2172/888539· OSTI ID:888539

This report presents an efficient trajectory-based approach to integrate transient pressure data into high-resolution reservoir and aquifer models. The method involves alternating travel time and peak amplitude matching of pressure response using inverse modeling and is particularly well-suited for high resolution subsurface characterization using hydraulic tomography or pressure interference tests. Compared to travel time inversion only, our proposed approach results in a significantly improved match of the pressure response at the wells and also better estimates of subsurface properties. This is accomplished with very little increase in computational cost. Utilizing the concept of a ''diffusive'' time of flight derived from an asymptotic solution of the diffusivity equation, we develop analytical approaches to estimate the sensitivities for travel time and peak amplitude of pressure response to subsurface properties. The sensitivities are then used in an iterative least-squared minimization to match the pressure data. We illustrate our approach using synthetic and field examples. In the field application at a fractured limestone formation, the predominant fracture patterns emerging from the inversion are shown to be consistent with independent geophysical experiments and borehole data.

Research Organization:
Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station
Sponsoring Organization:
USDOE
DOE Contract Number:
FC26-02NT15345
OSTI ID:
888539
Country of Publication:
United States
Language:
English