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ABSTRACT 

The problem of dispersion, advection and 
adsorption of a tracer in a double-porosity 
reservoir due to tracer injection in a well 
with a steady, radially divergent flow field 
was solved for the case of constant tracer 
concentration in the injection well. 
Longitudinal dispersion and advection was 
assumed to dominate transport in the fracture 
system and tracer diffusion and adsorption klas 
assumed to dominate movement of the tracer in 
the matrix blocks. The blocks were assumed to 
be sphere shaped and covered with a thin skin 
of material that provides resistance to the 
diffusion of tracer into the blocks. Values 
of dimensionless concentration in the fracture 
system versus dimensionless time were computed 
by numerical inversion of the Laplace 
transform solution to the Airy equation. Type 
curves demonstrate effects of changing 
reservior characteristics and show the 
usefulness of the concept of fracture skin in 
understanding dispersive processes in 
fractured porous media. 

INTRODUCTION 

There has been a recent surge of interest in 
analytical solutions to problems of radial 
dispersion in porous media. Such analytical 
solutions can be used in tracer injection 
tests to evaluate dispersive and adsorptive 
properties of groundwater and geothermal 
aquifers, and can be used to verify the 
accuracy of numerical, solute-transport 
codes. Hsieh (1986) pointed out that the 
radial dispersion problem is of particular 
interest because it is perhaps the simplest 
case involving a spatially varying velocity 
field. 

Unfortunately, because the coefficient of 
longitudinal hydrodynamic dispersion is 
linearly related to velocity, solutions to the 
one-dimensional, advection dispersion problem 
in radial coordinates are difficult to 
obtain. Ogata (1958) appears to have been the 
first to obtain a closed-form analytical 
solution to the radial dispersion problem. 
His solution is based upon the assumption that 
a steady, radially divergent flow field has 
been established around the injection well 

prior to the establishment of a step change in 
tracer concentration in the well bore. 

Because of the form of the Ogata solution, it 
is difficult to evaluate and alternative forms 
have appeared in the literature (Tang and 
Babu, 1979; Hsieh, 1986). 

In a fractured porous medium it is believed 
that a tracer may become dispersed not only by 
hydrodynamic dispersion but a130 by diffusion 
into the porous matrix. Feenstra et al. 
(1984) proposed a radial flow model for a 
single, horizontal fracture that accounts for 
matrix diffusion. Their model is simplified 
considerably by neglecting effects of 
longitudinal dispersion in the fracture. Chen 
(1985, 1986) proposed radial flow models that 
account for both matrix diffusion and 
longitudinal dispersion. Both Chen and 
Feenstra et al. assume that the aquifer or 
fracture is bounded by porous blocks of 
infinite thickness. 

In this paper a new dimension of complexity, 
and therefore versatility, is added to the 
radial dispersion problems. 
geothermal reservoir is assumed to be composed 
of highly fractured, porous rock that might be 
characterized as a double-porosity system 
(Barenblatt, 1960). Longitudinal dispersion 
and advection is assumed to dominate tracer 
transport in the fractures and diffusion and 
adsorption is assumed to dominate tracer 
movement in the matrix blocks. Blocks are 
assumed to be sphere shaped for mathematical 
simplicity and coated with a thin skin of 
material that may provide resistance to the 
diffusion of tracer into the blocks. This 
skin may be the result of the deposition of 
minerals o r  the alteration of minerals due to 
the natural circulation of geothermal 
fluids. For a literature review of flow to a 
well in a double-porosity system and for a 
description of fracture skin as it relates to 
the flow problem see Moench (1983, 1984). As 
regards to diffusion in sphere-shaped blocks 
with skin, the proposed model is similar to 
the model of Rasmusen and Neretnieks (1980). 
It differs in that the more complicated case 
of radial flow in the fracture system is 
considered instead of one-dimensional, planar 
flow. Also, Raamusen and Neretnieks did not 

The aquifer or 
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present any computational results showing the 
effects of the diffusion barrier or skin. 

MATHEMATICAL MODEL 

The model is developed under the following 
general assumptions: ( 1 )  As depicted in 
Figure (1) a vertically oriented injection 
well of finite diameter fully penetrates a 
horizontal, confined, double-porosity aquifer 
of constant thickness and of infinite radial 
extent. (2) A steady state flow field, which 
is radially divergent and axially symmetric 
with respect to the injection well, is present 
in the fracture system as a result of the 
constant-rate injection of tracer-free 
fluid. (3) Advection in the blocks is 
negligible. ( 4 )  At the start of a test a step 
change in concentration occurs in the 
injection well. ( 5 )  Tracer is transported in 
the fracture system by radial advection and 
longitudinal mechanical dispersion: 
transverse mechanical dispersion and molecular 
diffusion in the fractures are negligible. 
Mechanical dispersion is assumed to be 
linearly related to velocity and is therefore 
a function of radial position. ( 6 )  Tracer 
diffuses in the sphere-shaped blocks (see 
Figure 2) in accordance with Fick's law. (7) 
As depicted in Figure 2, the blocks are coated 
with a thin layer ( s k i n )  of material that 
impedes the diffusion o f  tracer at the block- 
fracture interface and does not allow for the 
storage of tracer. ( 8 )  Tracer is attenuated 
in the porous blocks by adsorption, which is 
described by an equilibrium, adsorption 
isotherm. (9) Adsorption on the fracture 
surfaces is negligible. 

Observation well Q Injection well v.11 \I I 7' payTz---~ piezometric surface t- 

+ -+r 
rW 

Figure 1. Schematic diagram of a double- 
porosity aquifer of thickness H with a steady 
state flow field established around an 
injection well. 

The advection-dispersion equation for plane 
radial flow in a porous medium is given by 
Bear (1979, p. 247). For a double-porosity 
system it may be written as, 

Figure 2. Geometrical configuration for 
sphere-shaped blocks with fracture skin. 

a ac 1 a 
-[ rDL - ] - -[rVC1] 
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a t  
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for sphere-shaped blocks (see Moench. 1984. 
equations 29-31 1. The symbols are defined in 
the Nomenclature. 

The first two terms on the left hand side of 
equation ( 1 )  represent, in order, the 
transport of solute by dispersion and 
advection. The third term represents the 
exchange of solute at the block-fracture 
interface by matrix diffusion. The term on 
the right hand side of equation (1) represents 
the accumulation of tracer in the fracture 
system. 

The coefficient of longitudinal hydrodynamic 
dispersion is assumed to take the form 

D L = a V  L (2) 

where molecular diffusion has been 
neglected. The longitudinal dispersivity, aL, 
is assumed to be a characteristic property of 
the fracture system. The velocity, V, is 
described mathematically as 

V = A/r ( 3 )  

where A = 3Q/2rOfH . 
In order to solve equation (1)  the following 
boundary conditions and initial conditions are 
used: 

c1 

c1 

c1 

rw,t) = Co 

r+m,t) + 0 

r,O) = 0 
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The diffusion equation for the sphere-shaped 
blocks, allowing for linear equilibrium 
sorption, is 

a2( zc; a(zc;) 

az at 
Dt2 = +IR'- 0 5 z 5 bt (7) 

The boundary conditions used to solve equation 
(7) are, 

(9) 

Equation (9) represents continuity of 
diffusive flux across the skin and derives 
from heat flow theory (see Carslaw and Jaeger, 
1959, p. 20) .  It is assumed that the skin is 
negligibly thin and does not accomodate the 
accumulation of mass. 

Using the dimensionless parameters defined in 
the Nomenclature, the controlling equations 
and boundary conditions are rewritten in 
dimensionless form. The coupled, 
dimensionless boundary-value problems become, 
for the fracture system, 

ac2 ac ac 
qD = - P > Po (10) 

act 

- - - -  
P aP2 P a p  at, 

where qD = -3y[- L , = O  
az, 

and, for the block system, 

0 6 zD 6 1 (14) 

(16) 

Equations (10)-(17) are solved by the method 
of Laplace transformation. 
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LAPLACE TRANSFORM SOLUTIONS 

The Laplace transform solutions are, for the 
fracture system, 

p - po Ai(6'/3y) 
(18) - 1  c = - exp(--) 

P 2 Ai(f31'3~o) 

where y = p + (461-l 
yo = po + (46)-l 

6 = p + q D  

- 3Y[m coth(m) - 1 1  
qD = - 

1 + SF[m coth(m) - 1 ] 

and, for the block system, 

- -  sinh[m(l-zD)] csch(m) 
C' = c - (19) 

(l-zD){l + SF[m coth(m) - l]} 

The Laplace transform variable, p, is 
inversely related to the dimensionless time, 
t,. The bar over C, C' and qD designates 
their Laplace t.ransforms. 

BREAKTHROUGH CURVES 

The Laplace transform solutions given by 
equations (18) and (19) are easily inverted 
with the Stehfest (1970) algorithm to produce 
dimensionless breakthrough curves. Figure 3 
shows dimensionless breakthrough curves, due 
to tracer injection, for the indicated values 
of the parameters, comparing the case of zero 
matrix diffusion with finite matrix 

Figure 3. Dimensionless concentration 
breakthrough curves for the case of zero 
matrix diffusion ( o = O )  compared with a case of 
finite matrix diffusion (0=lO4,Yp1)* 
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Figure 4. Dimensionless concentration 
breakthrough curves for the case of zero 
matrix diffusion (plotted points) compared 
with finite matrix diffusion for various 
values of Y and fixed a (solid lines). 

diffusion. As expected the effect of matrix 
diffusion is such as to delay the arrival of 
the breakthrough curve at a given radial 
distance from the injection well. The amount 
of delay is directly related to the magnitude 
of the parameter u t  which is dependent upon 
the retardation factor and the porosity of the 
block system and the porosity of the fracture 
system (see Nomenclature). 
the dispersivity of the aquifer system, aL, 
the greater is the spreading of the tracer. 

Figure 4 shows tracer breakthrough curves for 
various values of Y given fixed values of p ,  
po and a. The parameter Y is proportional to 
the diffusion coefficient for the block system 
(see Nomenclature). This shows that as Y 
decreases, due to reduced diffusion 
coefficient, effects of matrix diffusion 
diminish and the response approaches that 
expected for no matrix diffusion. 
interest to note the steepening of the curve 
for Y=lOo in Figure 4. 
to the case where, because of a large 
diffusion coefficient, the tracer is taken up 
by the blocks almost instantaneously causing a 
long delay in the appearance of the 
breakthrough curve. It is as though there is 
enhanced storage of tracer in he fracture 
system. The response- or Y=lOb is about the 
same as that for Y = 1 0  ' except that it is 
shifted to the right by a factor of l + o .  

Figure 5 shows effects of fracture skin upon 
tracer breakthrough curves. A concentration 
plateau separates the breakthrough curve for 
zero matrix diffusion from the breakthrough 
curve for finite matrix diffusion. 
the concentration buildup faithfully follows 
the case of zero matrix diffusion at early 
time. For SF=10 the concentration buildup 
follows the case of finite matrix diffusion at 
late time. Similar responses are shown in 
Figure 6 using a larger value of aL. 

Also the greater 

It is of 

This curve corresponds 

For SF=lOO 

Figure 6. Dimensionless concentration 
breakthrough curves for the case of zero 
matrix diffusion (plotted points) compared 
with finite matrix diffusion with fracture 
skin for p=O.5 and po-0.01 (solid lines). 

CONCLUSIONS 

The figures showing hypothetical dimensionless 
breakthrough curves in observation wells 
illustrate tracer spreading due to dispersion 
in the fracture system and matrix diffusion in 
sphere-shaped blocks. The barrier to 
diffusion (or fracture skin) located on block 
surfaces causes a concentration "plateau" to 
occur in the breakthrough curves separating 
the response for zero matrix diffusion from 
that for finite matrix diffusion. The 
magnitude of the separation depends upon the 
retardation factor for the blocks and the 
block and fracture porosity. 
model includes the effects of a radially 
varying velocity field in the fractures, the 
diffusion of tracer in the matrix blocks, and 
the barrier to diffusion at the fracture block 
interfaces, it should be useful in helping to 
validate large numerical models for chemical 
transport problems. 

Because this 
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NOMENCLATURE 

A [ =  3Q/2refH] advection parameter, 

Ai(x) Airy function. 
L*/T. 

half thickness of a representative 
fracture, L. 
radius of a representative, sphere- 
shaped block, L. 
average thickness of fracture skin, L. 
input concentration of the tracer, 
MIL3. 
concentration of tra er in the 

concentration of tracer in block 
system, M/L3. 
[ =  Cl/Co] dimensionless concentration 
in fracture system. 
[ =  Cvl/Co] dimensionless concentration 
in block system. 
longitudinal hydrodynamic dispersion 
a$ a point in the fracture system, 
L /T. 
diffusion coefficient for block 
system, L~/T. 
diffusi n coefficient for fracture 
skin, L /T. 
aquifer thickness, L 
distribution coefficient for porous 
blocks, L3/M. 
Laplace transform variable. 
rate of fluid injection in the well, 
L3/T. 
source term for tracer diffusion at 
block-fracture interface, M/L3T. 
dimensionless form of q. 
radial distance from center line of 
injection well, L. 
radius of injection well, L. 
[=  1 + pb Kd/.$'l retardation factor 
for blocks. 
[ =  D'bs/D,b7] dimensionless skin 
factor for diffusion. 
time, T. 
[ =  At/aL2] dimensionless time. 
average radial velocity at a point in 
the fracture system, LIT. 
radial distance in sphere-shaped 
blocks, directed inward from skin- 
block interface, L. 
[ =  z/bv] dimensionless radial distance 
in sphere-shaped blocks. 
longitudinal dispersivity for the 
fracture system, L. 
[ =  r/aL1 dimensionless radial distance 
in fracture system. 
[ =  rw/aL] dimensionless dispersivi y. 

porosity of blocks. 
[ =  3b/b'l fracture porosity. 
[=  3g'R'/~$~] dimensionless grouping 
for porosity and tracer sorption. 
[ =  aL2D'/Abb'] dimensionless grouping 
for dispersion and diffusion. 

fracture system, MIL 3 . 

9 

bulk density of porous blocks, M/L 3 . 
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