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ABSTRACT

The problem of dispersion, advection and
adsorption of a tracer in a double-porosity
reservoir due to tracer injection in a well
with a steady, radially divergent flow field
was solved for the case of constant tracer
concentration in the injection well.
Longitudinal dispersion and advection was
assumed to dominate transport in the fracture
system and tracer diffusion and adsorption was
assumed to dominate movement of the tracer in
the matrix blocks. The blocks were assumed to
be sphere shaped and covered with a thin skin
of material that provides resistance to the
diffusion of tracer into the blocks. Values
of dimensionless concentration in the fracture
system versus dimensionless time were computed
by numerical inversion of the Laplace
transform solution to the Airy equation. Type
curves demonstrate effects of changing
reservior characteristics and show the
usefulness of the concept of fracture skin in
understanding dispersive processes in
fractured porous media.

INTRODUCTION

There has been a recent surge of interest in
analytical solutions to problems of radial
dispersion in porous media. Such analytical
solutions can be used in tracer injection
tests to evaluate dispersive and adsorptive
properties of groundwater and geothermal
aquifers, and can be used to verify the
accuracy of numerical, solute-transport
codes. Hsieh (1986) pointed out that the
radial dispersion problem is of particular
interest because it is perhaps the simplest
case involving a spatially varying velocity
field.

Unfortunately, because the coefficient of
longitudinal hydrodynamic dispersion is
linearly related to velocity, solutions to the
one-dimensional, advection dispersion problem
in radial coordinates are difficult to

obtain. Ogata (1958) appears to have been the
first to obtain a closed-form analytical
solution to the radial dispersion problem.

His solution is based upon the assumption that
a steady, radially divergent flow field has
been established around the injection well
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prior to the establishment of a step change in
tracer concentration in the well bore.

Because of the form of the Ogata solution, it
is difficult to evaluate and alternative forms
have appeared in the literature (Tang and
Babu, 1979; Hsieh, 1986).

In a fractured porous medium it is believed
that a tracer may become dispersed not only by
hydrodynamic dispersion but also by diffusion
into the porous matrix. Feenstra et al.
(1984) proposed a radial flow model for a
single, horizontal fracture that accounts for
matrix diffusion. Their model is simplified
considerably by neglecting effects of
longitudinal dispersion in the fracture. Chen
(1985, 1986) proposed radial flow models that
account for both matrix diffusion and
longitudinal dispersion. Both Chen and
Feenstra et al. assume that the aquifer or
fracture is bounded by porous blocks of
infinite thickness.

In this paper a new dimension of complexity,
and therefore versatility, is added to the
radial dispersion problems. The aquifer or
geothermal reservoir is assumed to be composed
of highly fractured, porous rock that might be
characterized as a double-porosity system
(Barenblatt, 1960). Longitudinal dispersion
and advection is assumed to dominate tracer
transport in the fractures and diffusion and
adsorption is assumed to dominate tracer
movement in the matrix blocks. Blocks are
assumed to be sphere shaped for mathematical
simplicity and coated with a thin skin of
material that may provide resistance to the
diffusion of tracer into the blocks. This
skin may be the result of the deposition of
minerals or the alteration of minerals due to
the natural circulation of geothermal

fluids. For a literature review of flow to a
well in a double-porosity system and for a
description of fracture skin as it relates to
the flow problem see Moench (1983, 1984). As
regards to diffusion in sphere-shaped blocks
with skin, the proposed model is similar to
the model of Rasmusen and Neretnieks (1980).
It differs in that the more complicated case
of radial flow in the fracture system is
considered instead of one-dimensional, planar
flow. Also, Rasmusen and Neretnieks did not




present any computational results showing the
effects of the diffusion barrier or skin.

MATHEMATICAL MODEL

The model is developed under the following
general assumptions: (1) As depicted in
Figure (1) a vertically oriented injection
well of finite diameter fully penetrates a
horizontal, confined, double-porosity aquifer
of constant thickness and of infinite radial
extent. (2) A steady state flow field, which
is radially divergent and axially symmetric
with respect to the injection well, is present
in the fracture system as a result of the
constant-rate injection of tracer-free

fluid. (3) Advection in the blocks is
negligible. (4) At the start of a test a step
change in concentration occurs in the
injection well. (5) Tracer is transported in
the fracture system by radial advection and
longitudinal mechanical dispersion:

transverse mechanical dispersion and molecular
diffusion in the fractures are negligible.
Mechanical dispersion is assumed to be
linearly related to velocity and is therefore
a function of radial position. (6) Tracer
diffuses in the sphere-shaped blocks (see
Figure 2) in accordance with Fick's law. (7)
As depicted in Figure 2, the blocks are coated
with a thin layer (skin) of material that
impedes the diffusion of tracer at the block-
fracture interface and does not allow for the
storage of tracer. (8) Tracer is attenuated
in the porous blocks by adsorption, which is
described by an equilibrium, adsorption
isotherm. (9) Adsorption on the fracture
surfaces is negligible.
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Figure 1. Schematic diagram of a double-

porosity aquifer of thickness H with a steady
state flow field established around an
injection well.

The advection-dispersion equation for plane
radial flow in a porous medium is given by
Bear (1979, p. 247). For a double-porosity
system it may be written as,

-126-

Cy Fissure

Figure 2. Geometrical configuration for
sphere-shaped blocks with fracture skin.

3 801 3
[ D, — ] - [rVC1]
r dr ar r or
8C1
-qQ=— r > r. 1)
at
3D' aC!
where q = - — 2 =0
bt 9z 2

for sphere-shaped blocks (see Moench, 1984,
equations 29-31). The symbols are defined in
the Nomenclature.

The first two terms on the left hand side of
equation (1) represent, in order, the
transport of solute by dispersion and
advection. The third term represents the
exchange of solute at the block-fracture
interface by matrix diffusion. The term on
the right hand side of equation (1) represents
the accumulation of tracer in the fracture
system.

The coefficient of longitudinal hydrodynamic
dispersion is assumed to take the form

D

L (2)

= aLV

where molecular diffusion has been
neglected. The longitudinal dispersivity, ay s
is assumed to be a characteristic property of
the fracture system. The velocity, V, is
described mathematically as

V= A/r (3)

where A 3Q/2w¢rH .

In order to solve equation (1) the following
boundary conditions and initial conditions are
used:

()
(5)

C1(rw,t) = C0

C1(r*m,t) >0

C1(r,0) =0 (6)



The diffusion equation for the sphere-shaped
blocks, allowing for linear equilibrium

sorption, is
2°(2C1) a(2C})
D' > = ¢$'R' 0 Sz sb! (7)
9z at

The boundary conditions used to solve equation
(7) are,

3C’1(b',t)
=0 (8)
9z
[tcr ) -c. ] ac!
17°2=0 1 . 1
Ds =D ( )z=0 (9)
bs 3z

Equation (9) represents continuity of
diffusive flux across the skin and derives
from heat flow theory (see Carslaw and Jaeger,
1959, p. 20). It is assumed that the skin is
negligibly thin and does not accomodate the
accumulation of mass.

Using the dimensionless parameters defined in
the Nomenclature, the controlling equations
and boundary conditions are rewritten in
dimensionless form. The coupled,
dimensionless boundary-value problems become,
for the fracture systenm,

ac®  ac ac
- — - q, = — P> (10)
P 892 p 3p P 3ty 0
ac!
where q = ‘BY(———)Z =0
9z D
D
C(po.tD) =1 (1)
C(p»m,tD) + 0 (12)
C(p,0) =0 (13)
and, for the block system,
2%(2,C") o 3(z,C")
> = - 0sz)s1 (QR'D]
9z at
D D
aC!
Cr(0,ty) - € = s(—), (15)
9z D
D
30'(1,tD)
_ =0 (16)
BzD
C'(zD,O) = 0 \an

Equations (10)~(17) are solved by the method
of Laplace transformation.

LAPLACE TRANSFORM SOLUTIONS
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The Laplace transform solutions are, for the
fracture systen,

- G A1(81/3y)

C = 5 exp 73 (18)
2 Ai(8 YO)

where y=p+ (llB)_1

-1
y0=po+(46)
B=p+ qp

3Y[m coth(m) - 1]

q =

1o+ SF[m coth(m) - 1 ]

m = (up/Y)”2

and, for the block system,

sinh[m(1-zD)] esch(m)

c' = (19)

(1-zD){1 + S_|m coth(m) - 1]}

(
F
The Laplace transform variable, p, is
inversely related to the dimensionless time,
tp- The bar over C, C' and ap designates
their Laplace transforms.

BREAKTHROUGH CURVES

The Laplace transform solutions given by
equations (18) and (19) are easily inverted
with the Stehfest (1970) algorithm to produce
dimensionless breakthrough curves. Figure 3
shows dimensionless breakthrough curves, due
to tracer injection, for the indicated values
of the parameters, comparing the case of zero
matrix diffusion with finite matrix
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Figure 3. Dimensionless concentration

breakthrough curves for the case of zero
matrix diffusion (0=0) compared with a case of

finite matrix diffusion (g=10%,Y=1).
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Figure 4. Dimensionless concentration
breakthrough curves for the case of zero
matrix diffusion (plotted points) compared
with finite matrix diffusion for various
values of Y and fixed ¢ (solid lines).

diffusion. As expected the effect of matrix
diffusion is such as to delay the arrival of
the breakthrough curve at a given radial
distance from the injection well. The amount
of delay is directly related to the magnitude
of the parameter ¢, which is dependent upon
the retardation factor and the porosity of the
block system and the porosity of the fracture
system (see Nomenclature). Also the greater
the dispersivity of the aquifer system, o,
the greater is the spreading of the tracer.

Figure 4 shows tracer breakthrough curves for
various values of Y given fixed values of p,

pn and ¢. The parameter Y is proportional to
the diffusion coefficient for the block system
(see Nomenclature). This shows that as Y
decreases, due to reduced diffusion
coefficient, effects of matrix diffusion
diminish and the response approaches that
expected for no matrix diffusion. It is of
interest to note the steepening of the curve
for Y=100 in Figure Y4, This curve corresponds
to the case where, because of a large
diffusion coefficient, the tracer is taken up
by the blocks almost instantaneously causing a
long delay in the appearance of the
breakthrough curve. It is as though there is
enhanced storage of tracer in fhe fracture
system. The response for Y=10" is about the
same as that for Y=10"7 except that it is
shifted to the right by a factor of 1+g¢.

Figure 5 shows effects of fracture skin upon
tracer breakthrough curves. A concentration
plateau separates the breakthrough curve for
zero matrix diffusion from the breakthrough
curve for finite matrix diffusion. For SF=100
the concentration buildup faithfully follows
the case of zero matrix diffusion at early
time. For SF=1O the concentration buildup
follows the case of finite matrix diffusion at
late time. Similar responses are shown in
Figure 6 using a larger value of o,
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Figure 5. Dimensionless concentration
breakthrough curves for the case of zero
matrix diffusion (plotted points) compared
with finite matrix diffusion with fracture
skin for p=5.0 and py=0.1 (solid lines).
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Figure 6. Dimensionless concentration
breakthrough curves for the case of zero
matrix diffusion (plotted points) compared
with finite matrix diffusion with fracture
skin for p=0.5 and py=0.01 (solid lines).

CONCLUSIONS

The figures showing hypothetical dimensionless
breakthrough curves in observation wells
illustrate tracer spreading due to dispersion
in the fracture system and matrix diffusion in
sphere-shaped blocks. The barrier to
diffusion (or fracture skin) located on block
surfaces causes a concentration "plateau" to
occur in the breakthrough curves separating
the response for zero matrix diffusion from
that for finite matrix diffusion. The
magnitude of the separation depends upon the
retardation factor for the blocks and the
block and fracture porosity. Because this
model includes the effects of a radially
varying velocity field in the fractures, the
diffusion of tracer in the matrix blocks, and
the barrier to diffusion at the fracture block
interfaces, it should be useful in helping to
validate large numerical models for chemical
transport problems.



NOMENCLATURE
A [= 3Q/2m¢;H]) advection parameter,
2
L</T.
Ai(x) Airy function.
b half thickness of a representative
fracture, L.
bt radius of a representative, sphere-

shaped block, L.

bg average thickness of fracture skin, L.

CO input concentration of the tracer,
M/L3.

C1 concentration of trager in the
fracture system, M/L-.

C'1 concentration of tracer in block
system, M/L3.

C [= C1/Co] dimensionless concentration
in fracture system.

c! [= C'1/Co] dimensionless concentration
in block system.

DL longitudinal hydrodynamic dispersion
ag a point in the fracture system,

/T.

D! diffusion_coefficient for block
system, L</T.

Dg diffusign coefficient for fracture
skin, L°/T.

H aquifer thickness, L

Ky distribution coefficient for porous
blocks, LZ/M.

p Laplace transform variable.

Q rate of fluid injection in the well,
L2/T.

q source term for tracer diffusjon at
block-fracture interface, M/L-T.

ap dimensionless form of q.

r radial distance from center line of
injection well, L.

ry radius of injection well, L.

RY [=1 + b Kd/¢'] retardation factor
for blocks.

Sg [= D'bs/Dsb'] dimensionless skin
factor for diffusion.

£ time, T.

tpy [= At/aLz] dimensionless time.

v average radial velocity at a point in
the fracture system, L/T.

z radial distance in sphere-shaped
blocks, directed inward from skin-
block interface, L.

2p ' [= z/b'] dimensionless radial distance
in sphere-shaped blocks.

ay, longitudinal dispersivity for the
fracture system, L.

p [= r/aL] dimensionless radial distance
in fracture system.

o (= rw/aL] dimensionless dispersivity.

p? bulk density of porous blocks, M/L-,

¢ porosity of blocks.

bp [= 3b/b'] fracture porosity.

i [= 3¢'R'/¢f] dimensionless grouping
for pgrosity and tracer sorption.

Y [= a;“D'/Abb'] dimensionless grouping

for dispersion and diffusion.
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