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APPLICATION OF THERMAL DEPLETION MODEL TO GEOTHERMAL RESERVOIRS 
WITH FRACTURE AND PORE PERMEABILITY 

P. W. Kasameyer and R. C. Schroederf: 
Ear th  Sciences Geothermal Group 

U n i v e r s i t y  o f  C a l i f o r n i a  
Lawrence Livermore Laboratory 
Livermore, C a l i f o r n i a  94550 

The use fu l  l i f e t i m e  o f  a geothermal resource i s  u s u a l l y  ca lcu-  
l a t e d  by assuming f l u i d  w i l l  be produced from and r e i n j e c t e d  i n t o  a 
un i fo rm porous medium. However, most geothermal systems a r e  found 
i n  f rac tu red  rock.  I f  the  r e i n j e c t i o n  and produc t ion  w e l l s  i n t e r -  
sec t  connected f rac tu res ,  then r e i n j e c t e d  f l u i d  may cool  the pro-  
duc t i on  w e l l s  much sooner than would be p red ic ted  from c a l c u l a t i o n s  
o f  f l o w  i n  a porous medium. 

We have developed a "qu ick and d i r t y ' '  method f o r  c a l c u l a t i n g  
(Kasameyer and Schoeder, how much sooner t h a t  coo l i ng  w i l l  occur 

1975, 1976).  I n  t h i s  paper, we discuss the  bas ic  assumptions o f  
the  method, and show how i t  can be app l i ed  t o  the Sa l ton  Geothermal 
F i e l d ,  the R a f t  R i v e r  Sys tem,  and t o  r e i n j e c t i o n  o f  supersaturated 
f l u i d s .  

S o l u t i o n  f o r  Flow i n  a Porous Medium 

We model a f i n i t e  hot-water r e s e r v o i r  produced a t  a constant  
f l o w  r a t e  w i t h  f l u i d  rep len ished e i t h e r  by r e i n j e c t i o n  o r  by cool  
recharge a t  the  boundaries. We assume t h a t  an i dea l i zed  w e l l  d i s t r i -  
b u t i o n  can be found which a l lows a s p e c i f i e d  f l o w  r a t e  and which 
produces a l l  o f  the  o r i g i n a l  f l u i d  fr,om the r e s e r v o i r  be fore  any 
r e i n j e c t e d  f l u i d  has been produced. Fur ther ,  we assume there  i s  no 
pressure drawdown o r  f l ash ing ,  t h a t  the f l u i d  moves w i t h  p i s t o n  d i s -  
placement through the  pores, and t h a t  the pore f l u i d  and m a t r i x  come 
t o  thermal e q u i l i b r i u m  instantaneously .  A l l  these assumptions lead 
t o  an over-est imate o f  the  produc t ion  temperature. 

An a n a l y t i c a l  s o l u t i o n  f o r  t h i s  i dea l i zed  problem o f  heat t rans-  
f e r  has been discussed by Bodvarsson (1974).  
moves through the  system w i t h  no change o f  shape w i t h  time, and w i t h  
a slower v e l o c i t y  than the f l u i d  f r o n t .  Ahead o f  the temperature 
f r o n t ,  the  r e s e r v o i r  r e t a i n s  i t s  i n i t i a l  temperature. Behind the  f r o n t ,  
enough heat has been taken from the  rocks t o  cool  them t o  the r e i n j e c -  
t i o n  temperature. 

A steep temperature f r o n t  

;': R. C.  Schroeder i s  now w i t h  Lawrence Berkeley Laboratory 
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1 
So lu t i on  i n  the Presence o f  Fractures 

A f am i l y  o f  f r a c t u r e s  i s  assumed t o  e x i s t  p a r a l l e l  t o  the  
d i r e c t i o n  o f  f l ow .  The f r a c t u r e s  a re  charac ter ized  by a permea- 
b i l i t y  k f r  and a spacing D .  
f r a c t u r e s  a re  t i g h t  enough so t h a t  water storage i n  them i s  n e g l i -  
g i b l e . )  
f i e l d  so t h a t  the f l o w  stream l i n e s  are  p a r a l l e l  i n  the  porous rock 
and i n  the  f rac tu res ,  bu t  the  f l ow  v e l o c i t i e s  a re  d i f f e r e n t .  

(For the r e s u l t s  presented here, the 

The f r a c t u r e s  a re  assumed t o  have no e f f e c t  on the  pressure 

The s o l u t i o n  o f  a problem w i t h  two d i s t i n c t  v e l o c i t i e s  by a 
f i n i t e  d i f f e r e n c e  method (e.g., Kasameyer and Schroeder, 1975) i s  no t  
e f f i c i e n t  i f  the  v e l o c i t i e s  a re  q u i t e  d i f f e r e n t .  I n  t h a t  case, t ime 
steps must be determined by the  most rap id  v e l o c i t y  and c a l c u l a t i o n s  
take a long t ime when f r a c t u r e s  a re  important.  An approximate so lu-  
t i o n  r e q u i r i n g  a few t ime steps has been developed. The r e s e r v o i r  
i s  conceptua l l y  d i v ided  i n t o  10 regions o f  equal volume. The 
boundaries o f  the  regions co inc ide  w i t h  f l o w  f r o n t s  o f  the  r e i n -  
j e c t e d  f l u i d  so t h a t  the  f l u i d  i n  the pores and the f l u i d  i n  the  
f r a c t u r e s  both f l o w  through the regions i n  se r ies  (see F igure 1 ) .  
I n  each reg ion,  we w r i t e  p a i r s  o f  approximate equations r e l a t i n g  the  
temperature of the  f l u i d  i n  the  f rac tu res  averaged throughout the  
region, T f r ,  t o  the average temperature o f  the  s a t u r a t i n g  f l u i d ,  Ts .  
The 10 p a i r s  o f  coupled f i r s t - o r d e r  equations a r e  solved a n a l y t i c a l l y  
by assuming constant  c o e f f i c i e n t s  dur ing  t ime i n t e r v a l s  which a r e  
much longer than those appropr ia te  f o r  the  f i n i t e - d i f f e r e n c e  method. 

The equat ions f o r  the ith region a r e  presented here i n  dimension- 
l ess  form (see Kasameyer and Schroeder, 1976, f o r  the d e r i v a t i o n s  . 
The times have been m u l t i p l i e d  by cx = (thermal d i f f u s i v i t y ) / ( D / 2 )  1 . 

dT -R ( I t - R  ) 
f r =  q LJ M (Tf r -Tf ro )  + H 

d t  R (1t-R ) 7" 
lJ q 

- ( l t R u )  M (T -T ) - R H 
dT 

s =  __ d t  ( i + R  ) 7" so u 
4 

The equations depend o n l y  on th ree  dimensionless constants 

Flow in Fractures x =  
q F l o w  i n  p o r e s  

-291 - 



5i 
-c = a-r where T i s  t h e  l i f e t i m e  based  on a porous  f l o w  c a l c u l a t i o n .  

- Heat s t o r e d  i n  f r a c t u r e s  
'p Fieat stored-in s a t u r a t e d  r o c k  

- 

The f l u i d  enters  the  pores and f r a c t u r e s  o f  reg ion  i a t  
temperatures T and TSo, respec t i ve l y .  These temperatures a r e  
determined from the  s o l u t i o n  f o r  reg ion  i - 1 ,  o r  by the r e i n j e c t i o n  
temperature i f  i=1.  

The term H i s  the  heat conducted from the  saturated rock i n t o  
the f r a c t u r e s .  That term i s  approximated by an expression depending 
on ly  on the  t ime and the  instantaneous values and d e r i v a t i v e s  o f  
the  average temperatures. 

The f u n c t i o n  F ( t )  v a r i e s  smoothly from one a t  e a r l y  t imes t o  
zero a t  l a t e  times. 

The approximat ion o f  H i s  j u s t i f i e d  by the  c lose  agreement o f  
our  c a l c u l a t i o n s  o f  the temperature i n  f rac tu red ,  impermeable rock 
w i t h  those o f  Gr ingar ten,  e t  a l . ,  (1975) ,  shown i n  F igure  2. Resul ts 
presented a t  the  Stanford Workshop i n  1975 (Kasameyer and Schroeder, 
1975) i nd i ca ted  b e t t e r  agreement between the  methods, bu t  'those re -  
s u l t s  were f o r  a small range o f  values o f  T" and were based on the  
very slow f i n i t e - d i f f e r e n c e  c a l c u l a t i o n  w i t h  a l a rge  number o f  regions. 
Our answers d i f f e r  from those o f  Gr ingarten, e t  a l .  because 1 )  we 
over-est imate the  heat t r a n s f e r  t o  the  f r a c t u r e  f l u i d  a t  e a r l y  t imes, 
and 2) the thermal f r o n t  i s  smoothed ou t  a t  l a t e  times because o f  
averaging over l a r g e  reg ions.  

.I 

Correc t ion  Factors  f o r  Porous F low Models 

A se t  o f  ca l cu la ted  produc t ion  temperature h i s t o r i e s  a r e  shown i n  
F igure  3 .  Results from many such c a l c u l a t i o n s  can be summarized i n  one 
f i g u r e  by c a l c u l a t i n g  the time, t f ,  when the produc t ion  temperature 
f a l l s  below a s p e c i f i e d  value. That va lue would normal ly  be de te r -  
mined from power generat ing equipment. 
below, we have chosen a va lue o f  0.8. The r a t i o  o f  t f / - r  f o r  
d i f f e r e n t  f r a c t u r e  systems and produc t ion  ra tes  i s  a c o r r e c t i o n  f a c t o r  
f o r  the  use fu l  l i f e t i m e .  

For the  examples presented 
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The values o f  t h a t  c o r r e c t i o n  f a c t o r  f o r  small Rp-,- a r e  con- 
toured i n  F igure  4 .  The contours depend o n  RU and r".  For no 
f l o w  i n  f r a c t u r e s  (Rq < 1 )  o r  f o r  slow removal o f  f l u i d  ( ~ > > ' / c x ) ,  
t he  porous medium c a l c u l a t i o n s  a r e  c o r r e c t .  I f  those cond i t i ons  
a r e  no t  met, the  c o r r e c t i o n  f a c t o r  can be determined from t h i s  
d i agram. 

Examp 1 es 

I .  The Sa l ton  Sea F i e l d  

The T" values have been r e l a t e d  t o  f r a c t u r e  spacings (D)  
by assuming parameters appropr ia te  f o r  the  Sal ton Sea Geothermal 
F i e l d  (F igure  4 ) .  Two scales o f  f r a c t u r e  systems a r e  seen i n  t h a t  
f i e l d .  Fractures a re  seen i n  cores w i t h  spacings less  than a 
meter. From F igure  4, we see t h a t  f l o w  i n  these f r a c t u r e s  w i l l  n o t  
shorten the use fu l  l i f e t i m e  o f  the f i e l d .  Fau l ts  hundreds o f  meters 
apa r t  i n f l uence  the  f l o w  i n  several  we l l s .  I f  these f a u l t s  c a r r y  
more than h a l f  the  f l u i d ,  produced and r e i n j e c t e d  we l l s ,  the  use fu l  
l i f e t i m e  may be d r a s t i c a l l y  shor te r  than pred ic ted  from porous f low 
c a l c u l a t i o n s .  

I I .  A Fracture-Dominated System L i ke  Raf t  River 

I f  most o f  the f l ow  i s  from f rac tu res ,  then the c o r r e c t i o n  
f a c t o r  depends o n l y  on the f r a c t u r e  spacing and the  r a t e  a t  which 
heat i s  removed from the system. I n  F igure 5, we see t h a t  the 
dependence o f  the c o r r e c t i o n  f a c t o r  on pumping r a t e  can be s t rong,  
and knowledge o f  the f r a c t u r e  spacing i n  such a system i s  c r u c i a l  
f o r  p lanning e x p l o i t a t i o n  ra tes .  

I I I. Re in jec t i on  o f  Super-saturated Br ines 

I t  may be p r a c t i c a l  t o  i n h i b i t  s i l i c a  depos i t ion  i n  a geo- 
thermal power p l a n t  by b r i n e  mod i f i ca t i on .  A c i d i f i c a t i o n  o f  Sal ton 
Sea b r i n e  i n h i b i t s  depos i t ion  o f  s i l i c e o u s  scale and decreases ra tes  
o f  p r e c i p i t a t i o n  o f  s i l i c a  and s u l f i d e s  long enough t o  produce 
power from the  b r i n e  and r e i n j e c t  i t  i n t o  the  ground (Owen, 1975; 
Owen and T a r d i f f ,  1977). However, the format ion around a r e i n j e c t i o n  
w e l l  may become badly plugged by s i l i c a  i f  the r e i n j e c t e d  b r i n e  i s  
no t  reheated r a p i d l y  . 

The length  o f  t ime r e i n j e c t e d  b r i n e  s tays cool  can be e s t i -  
mated. I f  the  f l u i d  i s  i n j e c t e d  i n t o  a porous medium, a steep 
boundary between warm and cool  rock moves a t  a v e l o c i t y  less  than 
the  p a r t i c l e  v e l o c i t y .  I f  R i s  t he%f rac t i on  of the  heat o f  the 
r e s e r v o i r  s to red  i n  the pore f l u i d  (R%.3 f o r  15% p o r o s i t y ) ,  then 
the  temperature moves a t  v e l o c i t y  RVp, where Vp i s  the p a r t i c l e  
ve l  oc i t y  . 
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P a r t i c l e  paths and temperature boundary l oca t i ons  f o r  r a d i a l  
f l o w  areound a w e l l  a r e  shown i n  F igure  6. A p a r t i c l e  i n j e c t e d  a t  
t ime t a f t e r  the w e l l  s t a r t e d  f l ow ing  remains cool  f o r  a per iod  o f  
t ime, tc, where 

As shown i n  F igure  6, b r i n e  i n j e c t e d  one year a f t e r  i n j e c t i o n  
begins w i l l  remain cool f o r  nea r l y  h a l f  a year.  Short- term i n j e c t i o n  
t e s t s  may not  i n d i c a t e  the f u l l  p o t e n t i a l  f o r  i n j e c t i o n  w e l l  damage, 
because the  f i r s t  b r i n e  which i s  i n j e c t e d  w i l l  be r a p i d l y  reheated. 
The k i n e t i c s  o f  p r e c i p i t a t i o n  from super-saturated b r ines  and the 
temperature dependence o f  the  ra tes  o f  poss ib le  rock-br ine  i n t e r -  
ac t i ons  must be s tud ied  i n  o rder  t o  p r e d i c t  the long-term success 
o f  r e i  n j e c t  ion. 
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I n  j ec:  i o n  P roduc t i on  
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FIGURE 1. D i v i s i o n  o f  r e s e r v o i r  i n t o  a small 
number o f  regions. 

 IO-^ lo-* 10-1 1 10 

Time. t* 

FIGURE 2. Comparison o f  our  ca l cu la ted  curves 
f o r  the ou tpu t  temperature from 
f r a c t u r e d  impermeable rock (dashed) 
w i t h  those o f  Gr ingar ten e t  a l . ,  
1975, ( s o l i d ) .  The i r  values have 
been converted t o  our  dimensionless 
format, where t" = a t .  
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FIGLXE 3 .  

Thermal d e p l e t i o n  curves for  d i f f e r e n t  
f r a c t u r e  spacings D ( i n  meters ) .  The 
parameters were chosen s o  t h a t  a l l  t h e  
o r i g i n a l  pore  f l u i d  would be produced 
a f t e r  20 years,  and t h e  u s e f u l  l i f e t i m e  
(T) based on t h e  exact  porous f l o w  c a l -  
c u l a t i o n  was 66 years.  
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FIGURE 4 .  

Correction factor for lifetime estimates. The production 
temperature falls to 0.8 at t'f. The ratio of tf/T is con- 
toured fgr different flow distribution (Rq) and production 
rates (T ) .  The contour where the' factor equals 0.20 is 
distorted because of our approximation of term H.  The 
fracture spacings (D) are appropriate for the Salton Sea 
Field example. 
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I 1 I I 

R = 6  4 

Fracture spacing, m 

5 .  The e f f e c t  o f  p roduc t ion  r a t e  on the c o r r e c t i o n  fac to r .  
f r a c t u r e  spacing i s  around 10 meters, more than tw ice  the  energy 
can be removed from the  system a t  t he  slow produc t ion  r a t e  
(T = 120 years) as a t  the  f a s t  r a t e  (T = 30 years ) .  

If t he  

" 
0 1 2 3 4 

Time, years  

FIGURE 6 .  Locat ion  o f  temperature f r o n t  and f l u i d  p a r t i c l e s  as f u n c t i o n  o f  
t ime s ince  r e i n j e c t i o n  s ta r ted .  
( R  = 0.3, and r a d i a l  f l o w  o f  0.05 rn3/sec. i n t o  a 200111 t h i c k  a q u i f e r  
w i t h  20% p o r o s i t y .  ' T h e  s o l i d  l i n e  shows the  d is tance to  the 
temperature f r o n t .  
p a r t i c l e s  i n j e c t e d  a t  d i f f e r e n t  times. A p a r t i c l e  i n j e c t e d  one 
year a f t e r  i n j e c t i o n  s t a r t e d  remains cool  f o r  AT years. 

The curves i n  the  f i g u r e  a re  f o r  

The dashed curves a r e  the t r a j e c t o r i e s  o f  
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