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BUOYANCY INDUCED BOUNDARY LAYER FLOWS I N  GEOTHERMAL RESERVOIRS 

Ping Cheng 
Department o f  Petroleum Engineer ing 

Stanford Un ive rs i t y ,  Stanford,  CA. 94305 

J: 

Most o f  the t h e o r e t i c a l  study on heat and mass t r a n s f e r  i n  
geothermal rese rvo i r s  has been based on numerical method. Recent- 
l y  a t  t he  1975 NSF Workshop on Geothermal Reservoir  Engineer ing,  
Cheng ( 1 )  presented a number o f  a n a l y t i c a l  so lu t i ons  based on 
boundary l aye r  approximat ions which a r e  v a l i d  f o r  porous media 
a t  h igh  Rayleigh numbers. According t o  var ious  est imates the 
Rayleigh number f o r  the Wairakei geothermal f i e l d  i n  New Zealand 
i s  i n  the  range o f  1000-5000, which i s  t y p i c a l  f o r  a v i a b l e  geo- 
thermal f i e l d  c o n s i s t i n g  o f  a h i g h l y  permeable format ion and a 
heat source a t  s u f f i c i e n t l y  h igh  temperature. 

The bas ic  assumption o f  the  boundary l aye r  theory i s  t h a t  
heat convect ive heat t r a n s f e r  takes p lace  i n  a t h i n  porous l a y e r  
ad jacent  t o  heated o r  cooled surfaces. Indeed, numerical so lu t i ons  
suggest t h a t  temperature and v e l o c i t y  boundary layers  do e x i s t  i n  
porous media a t  h igh  Rayleigh numbers ( 2 ) .  I t  i s  wor th ment ioning 
t h a t  the l a rge  v e l o c i t y  g rad ien t  e x i s t i n g  near the  heated o r  cooled 
surfaces i s  n o t  due t o  v i s c o s i t y  bu t  i s  induced by the  buoyancy 
e f f e c t s .  The present paper i s  a summary o f  the work t h a t  we have 
done on the  a n a l y t i c a l  so lu t i ons  o f  heat and mass t r a n s f e r  i n  a 
porous medium based on the  boundary l aye r  approximat ions s ince  
the  1975 Workshop. 

S i m i l a r i t y  So lu t ions  t o  Boundary Layer Equations 

Free Convection about a V e r t i c a l  Impermeable Surface w i t h  Uni form 
Heat F1 ux 

The s o l u t i o n  f o r  f r e e  convect ion about a v e r t i c a l  impermeable 
sur face w i t h  w a l l  temperature being,a power func t i on  o f  d is tance,  
i .e . ,  T = T + Ax f o r  x > O  i s  g iven  by Cheng and Minkowycz (3 ) .  
The constant  heat f l u x  s o l u t i o n  can be obta ined by a s imple t rans-  
format ion o f  va r iab les  and by s e t t i n g  A = 1/3 i n  Ref. 3. The 
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expressions f o r  l o c a l  Nussel t  number, the mean Nussel t  number, 
and thermal boundary layer  th ickness are  

1 
Nu / [ R a C ; l 3  = 0 . 7 7 2 3 ,  

- 

X X 

i - 

1 - 
3 ~- 6T - 4.8/[Ra:] , 

X 
( 3 )  

t he  dens i t y  o f  the  f l u i d  a t  i n f i n i t y ;  g t h e  g r a v i t a t i o n a l  
acce1erat ion;u and B the  v i s c o s i t y  and the thermal expansion co- 
e f f i c i e n t  o f  t he  f l u i d ;  K the  pe rmeab i l i t y  o f  the porous medium; 
L the  l eng th  o f  the  p l a t e ;  q the  sur face heat f l u x ;  a and K 

t he  equ iva len t  thermal d i f f u s i v i t y  and the thermal c o n d u c t i v i t y  
o f  the  sa tura ted  porous medium. The equivalence of Eqs. ( 1 )  through 
( 3 )  and the  corresponding expressions g iven by Cheng & Minkowycz ( 3 )  
was shown r e c e n t l y  by Cheng ( 4 ) .  

Free Convection about a Hor i zon ta l  Impermeable Surface w i t h  Uni form 
Heat F lux  

The constant  heat f l u x  s o l u t i o n  f o r  a h o r i z o n t a l  impermeable 
sur face can be obta ined by a s imple t rans format ion  o f  va r iab les  
and by s e t t i n g  h = 1/2 i n  the  s o l u t i o n  g iven by Cheng and Chang ( 5 ) .  
The expressions f o r  l o c a l  Nussel t  number, the mean Nussel t  number, 
and thermal boundary l aye r  th ickness f o r  the  present problem a r e  

1 - 
Nu = 0.8588, 

X 

z / [ R a ; l 4  L = 1.288, 

( 4 )  
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Mixed Convection from a V e r t i c a l  Isothermal Impermeable Surface 

The problem o f  mixed convect ion from a v e r t i c a l  impermeable 
sur face w i t h  a s tep  increase i n  w a l l  temperature ( i .e . ,  
f o r  x L 0) , embedded i n  a porous medium i s  considered byTWCheng ( 6 ) .  
The expressions f o r  l oca l  Nussel t  number, average Nussel t  number, 
and thermal boundary l aye r  th ickness a re  

= T m + A  

Nu __- X = [ - B ' ( O ) ]  
11 2 Y 

[ R e  P r ]  
X 

( 7 )  

V 
X V a and P r  w i t h  Re - - where Um i s  t he  v e l o c i t y  ou ts ide  

u 2  

the boundary layer .  

as a f u n c t i o n  o f  G r  /Re a re  shown i n  Figs.  1 and 2, where the  
corresponding values f o r  f r e e  convect ion about a v e r t i c a l  isothermal 
p l a t e  as g iven by Cheng and Minkowycz (3) can be r e w r i t t e n  as 

The values of  Nux/[RexPr]' and [RexPr]'€iT/x 

x x  

- 
2 6.31 [ R e x F r ]  6T/x = __ i l  

[ G r x / R e J  2 
(11) 

Mixed Convection from a Hor izon ta l  Impermeable Surface w i t h  Uni form 
Surface Heat F lux  

The expressions f o r  l o c a l  Nussel t  number, average Nussel t  
number, and thermal boundary l aye r  th ickness are  g iven by (4,7) 

[ R e x P r ]  
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The Val es o f  Nux/[RexPr]’ and [RexPr,]’?/x as a f u n c t i o n  Y o f  Ra*/(Re P r )  a r e  g i v e n  i n  Ref. 4, where t h e  asymtotes f o r  f r e e  
conveet ionxabout a h o r i z o n t a l  p l a t e  w i t h  u n i f o r m  heat f l u x  a r e  
g i v e n  by Eqs. (4 )  and ( 6 ) ,  which can be r e w r i t t e n  as 

1 1 

The E f f e c t  o f  U, on Heat T r a n s f e r  Rate and t h e  S ize  o f  Hot-Water Zone 

To g a i n  some f e e l i n g  on t h e  o r d e r  o f  magnitude o f  v a r i o u s  
p h y s i c a l  q u a n t i t i e s  i n  a geothermal r e s e r v o i r ,  cons ider  a v e r t i c a l  
impermeable s u r f a c e  a t  2 1 5 O C  i s  embedded i n  an a q u i f e r  a t  15 C.  
I f  t h e r e  i s  a p ressure  g r a d i e n t  i n  t h e  a q u i f e r  such t h a t  ground- 
water  i s  f l o w i n g  v e r t i c a l l y  upward, t h e  va lues o f  heat t r a n s f e r  
r a t e  and t h e  s i z e  o f  t h e  h o t  water  zone can be determined f rom 
Figs. 1 and 2. The r e s u l t s  o f  t h e  computations for U, varying 
f r o m  0.01 cm/hr t o  10 cm/hr a r e  p l o t t e d  i n  F igs .  3 and 4 where 
i t  i s  shown t h a t  t h e  t o t a l  heat t r a n s f e r  r a t e  f o r  a v e r t i c a l  sur -  
face,  1 km by 1 km, increases from 20 MW t o  110 MW, w h i l e  t h e  
boundary l a y e r  th ickness  a t  x = 1 km decreases f r o m  130 m t o  
20 m. 

0 

V a l i d i t y  o f  Boundary Layer Approximat ions 

The v a l i d i t y  o f  t h e  boundary l a y e r  approx imat ions can be 
accessed by a comparison o f  r e s u l t s  o b t a i n e d  by s i m i l a r i t y  so lu -  
t i o n s  t o  t h a t  of numerical  s o l u t i o n s  o f  exac t  p a r t i a l  d i f f e r e n t i a l  
equat ions,  o r  t o  exper imenta l  data.  For f r e e  c o n v e c t i o n . i n  a 
porous medium between p a r a l l e l  v e r t i c a l  p l a t e s  separated b y . a  
d i s t a n c e  H, t h e  c o r r e l a t i o n  equat ion  g i v e n  by B o r i e s  and Combarnous 
(8) i s  
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- 0 . 6 2 5  H 0 . 3 9 7  
NuH. = 0 . 2 4 5  ( R a H )  ( E )  Y (17) 

- 
and RaH = pgBK L i s  t h e  l e n g t h  o f  t h e  p l a t e ,  NuH - - hH - - 

3 
where 

H / r  between 0.05 and 0.15 8 . 
r a t e  as ob ta ined f r o m  boundary l a y e r  approx imat ions f o r  an i s o -  
thermal v e r t i c a l  p l a t e  ( 3 )  i s  

(T -TL)H/va. Eq. ( 1 7 )  i s  v a l i d  f o r  Ra f rom k 2  10 t o  10 and f o r  
On t h e  o t t e r  hand, t h e  heat  t r a n s f e r  

NuL = 0.688 ( R a L )  0.5 , 

which can be r e w r i t t e n  as 

0.5 H 0 . 5  
N""= 0.888 ( R a H )  ( E )  > 

(18) 

(19) 

Eqs. (17) and (19) f o r  H/L = 0.05 and 0.15 a r e  p l o t t e d  i n  
F i g .  5 f o r  comparison. I t  i s  shown t h a t  they a r e  i n  good agree- 
ment, e s p e c i a l l y  a t  h i g h  Ray le igh  numbers where t h e  boundary l a y e r  
approx imat ions a r e  v a l i d .  

Conc 1 ud i ng Remarks 

As i n  t h e  c l a s s i c a l  c o n v e c t i v e  heat  t r a n s f e r  theory,  
boundary l a y e r  approx imat ions i n  porous l a y e r  f l o w s  can r e s u l t  i n  
a n a l y t i c a l  s o l u t i o n s .  Mathemat ica l l y ,  t h e  approx imat ions a r e  t h e  
f i r s t - o r d e r  terms o f  an asympto t ic  expansion which i s  v a l i d  f o r  
h i g h  Ray le igh  numbers. Comparison w i t h  exper imenta l  da ta  and 
numer ica l  s o l u t i o n s  show t h a t  the  approx imat ions a r e  a l s o  a c c u r a t e  
a t  moderate va lues  o f  Ray le igh  numbers. For problems w i t h  low 
Ray le igh  numbers where boundary l a y e r  i s  t h i c k ,  h igher -order  
approx imat ions  must be used (9). 
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F I G U R E  3. T H E  E F F E C T  OF U, ON T O T A L  H E A T  TRANSFER R A T E  FOR M I X E D  C O N V E C T I O N  FROM 
A N  I S O T H E R M A L  V E R T I C A L  H E A T E D  SURFACE I N  A GEOTHERMAL R E S E R V O I R .  
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