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HEAT EXTRACTION FROM A HYDRAULICALLY FRACTURED 
PENNY-SHAPED CRACK I N  HOT DRY ROCK 

H. Ab;,' T. Mura and L. M. Keer 

Evanston, I l l i n o i s  60201, U.S.A. 
Northwestern Un ive r s i ty  

Heat e x t r a c t i o n  from a penny-shaped crack  having both  i n l e t  and o u t l e t  
ho le s  i s  i n v e s t i g a t e d  a n a l y t i c a l l y  by cons ider ing  t h e  hydrau l i c  and thermal  
growth of t h e  c rack  when f l u i d  i s  i n j e c t e d  a t  a cons t an t  flow r a t e .  The rock 
m a s s  i s  assumed t o  be  i n f i n i t e l y  extended, homogeneous, and i s o t r o p i c .  The 
equat ions  f o r  f l u i d  flow are der ived  and solved t o  determine t h e  flow p a t t e r n  
i n  t h e  crack.  Temperature d i s t r i b u t i o n s  i n  both rock and f l u i d  are  a l s o  d e t e r -  
mined. The c rack  width change due t o  thermal  c o n t r a c t i o n  and t h e  corresponding 
flow ra te  i n c r e a s e  are d iscussed .  Some numerical  c a l c u l a t i o n s  of o u t l e t  t e m -  
p e r a t u r e ,  thermal  power e x t r a c t i o n ,  and crack  opening displacement due t o  
thermal  c o n t r a c t i o n  of rocks  are  presented  f o r  c r acks  a f t e r  they  a t t a i n  sta- 
t i o n a r y  s ta tes  f o r  given i n l e t  flow r a t e  and o u t l e t  s u c t i o n  p res su re .  

The p resen t  paper i s  a f u r t h e r  development of t h e  prev ious  works of 
Bodvarsson (1969), Gr ingar ten  e t  al. (1975), Lowell (1976), Harlow and Pracht  
(1972), McFarland (1975), among o t h e r s ,  and cons ide r s  t h e  two dimensional  r a t h e r  
than  t h e  one-dimensional crack. Furthermore, the crack radius and w i d t h  are 
q u a n t i t i e s  t o  be  determined r a t h e r  than given a p r i o r i .  

FLUID FLOW I N  A PENNY-SWED CRACK 

Consider a l a r g e  penny-shaped c rack  having a r ad ius  R and width w ( i n  the  
z -d i r ec t ion )  as shown i n  Fig.  1. F lu id  i s  i n j e c t e d  from t h e  i n l e t  a t  t h e  c e n t e r  
of t h e  c rack  and removed i n  p a r t  a t  t h e  o u t l e t ,  x = a ,  where x is  t h e  d i s t a n c e  
measured i n  t h e  v e r t i c a l  d i r e c t i o n  from the  c e n t e r .  The r a d i i  o f  t h e  i n l e t  and 
o u t l e t  h o l e s  are denoted by RO and Ra, r e s p e c t i v e l y .  

The t o t a l  mass flow r a t e  a t  the  i n l e t  we l lbo re  can be  w r i t t e n  i n  t h e  form: 

40 4, + qE + qL + qT (1) 
where qa i s  t h e  e f f e c t i v e  flow ra te  equal  t o  t h e  o u t l e t  f low rate,  qE i s  t h e  
t o t a l  m a s s  change i n  t h e  c rack ,  qL corresponds t o  the  t o t a l  f l u i d  loss i n  t he  
c rack  p e r  u n i t  time, and qT i s  t h e  i n c r e a s e  of t h e  c rack  volume due t o  the  
thermal  c o n t r a c t i o n  of t h e  rock and can be neglec ted .  

I f  t h e  c rack  is  subjec ted  t o  a cons t an t  i n l e t  f low rate and t h e  c rack  
r a d i u s  i s  s u f f i c i e n t l y  l a r g e ,  t h e  f l u i d  v i s c o s i t y  can be neglec ted  from t h e  
equat ion  of l i n e a r  momentum as shown i n  a previous  paper  (Ab6, Mura and Keer, 
1976) : 

'Permanent address  , Tohoku Unive r s i ty ,  Sendai,  Japan. 
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a =  p g r  s i n  e 
ar f a e  f 
* = - p  g cos  e ,  

where p i s  t h e  f l u i d  p re s su re  i n  t h e  c rack ,  g is  t h e  a c c e l e r a t i o n  due t o  
g r a v i t y ,  and pf i s  t h e  f l u i d  dens i ty .  Equation (2) i s  i n t e g r a t e d  as 

p ( r , B , t )  = P O W  - pf g r  cos  e (3) 

where po i s  t h e  f l u i d  p re s su re  a t  r = 0 and t i s  t i m e .  
assumed t o  be cons t an t .  

The d e n s i t y  pf has  been 

The f r a c t u r e  mechanics i s  introduced h e r e  by cons ider ing  a c rack  opening 
stress 

K 

(uz)z=o = -p + ( S O  - K  p g x )  where S O  i s  t h e  t e c t o n i c  stress a t  r = 0, a Y  
i s  t h e  c o e f f i c i e n t  of a c t i v e  rock  p r e s s u r e ,  and py  i s  t h e  d e n s i t y  of t h e  rock. 

The stress i n t e n s i t y  f a c t o r  a t  t h e  c rack  t i p  and t h e  opening displacement  
a 

are e a s i l y  obta ined  from t h e  r e s u l t s  der ived  by Keer (1964): 

K = l i m  ( r  - R)1’2 oZ = @[po - S o +  5 2 gR(K p - pf )cos  e ]  
r + R  IT a Y  

and 

- S o  + {(K p - p f ) g  r cos  e ] jR2-  r2  3 
a Y  

w( r , e>  = ---[Po 
OfD 

where 

wi th  E and v being  Young’s modulus and Poisson’s  r a t i o  r e s p e c t i v e l y .  

The f low rate qE, def ined  i n  ( l ) ,  i s  

R I T  

0 -lT 

d 
qE = - / d t  / pf  w r dedr  = R3(p0 - S o ) ) .  d t  D 

Now t h e  average stress i n t e n s i t y  f a c t o r  i s  introduced by t h e  d e f i n i t i o n  

K = -  - 1  7 K de = - fi (po - So) .  
21T IT 

-IT 

It i s  assumed t h a t  when t h e  c rack  i s  expanding 

E = cons tan t  K . 
C 

The f low l o s s  i s  def ined  by 

where uL i s  t h e  f l u i d  l o s s  r a t e  pe r  u n i t  area of t h e  c rack  su r face  and i s  
assumed h e r e  t o  be  a l i n e a r  func t ion  of p;  

2PfUL = CL0 + CL1(P0 - pf g r  cos  8 )  

where CLO and CL1 are cons t an t .  Then, (10) becomes 
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F i n a l l y ,  t h e  flow rate  qa i n  (1) i s  eva lua ted  from the  Bernou l l i  equa t ion  
appl ied  t o  t h e  f low i n  t h e  neighborhood of t h e  t h r o a t  of t h e  o u t l e t .  Then 

where p: i s  t h e  s u c t i o n  p r e s s u r e  by t h e  o u t l e t  pump and t h e  cons tan t  Cv (> 1 )  
i s  an  o u t l e t  head l o s s .  

r e s p e c t  t o  t f o r  given va lues  of qo, p: and o t h e r  phys i ca l  cons t an t s  and geo- 
metrical va lues  of ho, a ,  Ra; po i s  expressed i n  terms of Kc and R through t h e  
r e l a t i o n s  (8) and (9) .  The c rack  r a d i u s  R i n c r e a s e s  wi th  t i m e  from t h e  i n i t i a l  
va lue  Rs which i s  t h e  va lue  of R b e f o r e  t h e  o u t l e t  i s  introduced.  R reaches a 
s t a t i o n a r y  v a l u e  a f t e r  some t i m e  when 

Equations ( I ) ,  (7), (12) and (13) provide a f u n c t i o n a l  form of R wi th  

> 0 and pz/So < l / A  - 1 (14) 4E 

where A = S o / p f  gho.  
can remain a t  the  i n i t i a l  s i z e  R when 

W e  c a l l  t h i s  case Case ( I ) .  On t h e  o t h e r  hand, t h e  c rack  

S 

< O  and K < K .  (15) ‘E - C 

W e  c a l l  t h i s  case Case (11).  
from (l), (7), (12) and (13) f o r  given values of 9 0 ,  p: and o t h e r  phys i ca l  and 
geometr ica l  cons t an t s .  I n  t h e  next  s e c t i o n  w e  s h a l l  c a l c u l a t e  t h e  q u a n t i t y  of 
h e a t  e x t r a c t e d  from t h e  o u t l e t  i n  each case  (I) and (11) .  Several numerical  
examples f o r  R = R ( t )  and p o  = p o ( t )  w e r e  shown i n  a previous  paper (Ab6, Keer, 
Mura 1976).  

Here, R = Rs and po i s  obta ined  as  a func t ion  of t 

HEAT EXTRACTION FROM OUTLET 

I n  t h i s  s e c t i o n  a s t a t i o n a r y  penny-shaped c rack  ( a f t e r  R and po have at- 
t a i n e d  t h e i r  s t a t i o n a r y  va lues )  is  t r e a t e d  as  a s t a r t i n g  p o i n t  f o r  t h e  analy-  
t i c a l  s tudy  of two-dimensional h e a t  t ransmiss ion  problems. 

crack.  Assumptions of i n c o m p r e s s i b i l i t y  and i r r o t a t i o n a l i t y  of f l u i d  l e a d  t o  
W e  have t o  determine f i r s t  t h e  v e l o c i t y  f i e l d  of t h e  f l u i d  i n s i d e  t h e  

a a q r  - ar ( r  qe> - - a e  = o 

- 
and ur and u 
boundary cond i t ion  i s  tr = 0 a t  r = R. 
p o i n t  source  and s i n k ,  r e s p e c t i v e l y ,  s i n c e  Ro and Ra are s u f f i c i e n t l y  s m a l l  

are t h e  components of v e l o c i t y  averaged through t h e  width w. The e 
The i n l e t  and o u t l e t  are t r e a t e d  as a 
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when compared wi th  R. The s o l u t i o n  is  obtained as 

m n  

1 a n-1 a r cos  e - a r cos  ne - - r ( r  cos  e - a ) 2  + r2s in2e  
'a 

q r = n [ C  
n=l R 

m n  
3 =--[I qa - a n- 1 a s i n  0 r s i n  ne + 2Tr 2n ( r  cos  8 - a ) L  + r z s i n 2 8  n=l  R qe  

+ 1 pf g CL1 (3R2 - r 2 ) s i n  0 .  

It should b e  no t i ced  t h a t  (19) i s  v a l i d  even f o r  a non-s ta t ionary  crack.  

Next,  t h e  energy equat ion f o r  t h e  f l u i d  i s  der ived .  , F o r  hea t  t r a n s f e r  
problems a t  s m a l l  f l u i d  v e l o c i t y ,  t h e  mechanical energy terms are s m a l l  i n  t h e  
energy equat ion .  The e f f e c t  of h e a t  conduction i n  f l u i d  (water)  may a l s o  b e  
s m a l l  compared w i t h  those  of h e a t  convect ion and t r a n s f e r  terms. Furthermore,  
t h e  t i m e  d e r i v a t i v e  term of t h e  f l u i d  temperature  T can be neglec ted  because of 
smal lness  (Bodvarsscn, 1969, Lowell ,  1976).  It i s  assumed t h a t  t h e  rock  temper- 
a t u r e  Tr is approximately equal  t o  T on t h e  c rack  s u r f a c e  and T i s  cons tan t  
through t h e  c rack  width (Bodvarsson, 1969, Gr ingar ten  e t  a l . ,  1975, Lowell, 1976).  
In  t h i s  way t h e  energy equat ion  f o r  t h e  f l u i d ,  a f t e r  averaging through t h e  c rack  
wid th ,  can be w r i t t e n  i n  t h e  form: 

where Cf and X are t h e  s p e c i f i c  h e a t  of t h e  f l u i d  and t h e  h e a t  conduc t iv i ty  of 
t h e  rock  r e s p e c t i v e l y .  The p o s i t i o n  of t h e  boundary z = w/2 h a s  been rep laced  
by z = 0, s i n c e  w i s  ve ry  s m a l l  compared wi th  t h e  r a d i u s  R and t h e  d i s t a n c e  a. 

i n  t h e  rock i s  ve ry  s m a l l  compared w i t h  R and a so  t h a t  t he  h e a t  f l u x  i s  almost 
perpendicular  t o  the  f r a c t u r e  su r face .  
be governed by t h e  fo l lowing  equat ion:  

When t h e  energy system ope ra t e s  e f f e c t i v e l y ,  t h e  thermal  p e n e t r a t i o n  depth 

Thus t h e  rock temperature  Tr may simply 

a 2T c P aTr 
- YY- a -  A a t  

where Cy i s  t h e  s p e c i f i c  h e a t  of t h e  rock.  
does no t  mean t h a t  Tr i s  independent of r and e.  
used t h e  same equat ion  as  (21).  

and (21) must s a t i s f y  t h e  fol lowing cond i t ions :  

It i s  noted t h a t  t h i s  s i m p l i f i c a t i o n  
Harlow and Pracht  (1972) have 

The temperatures  T ( r , B , t )  and T,(r ,B,z , t )  which are t h e  s o l u t i o n s  of (20) 
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The h e a t  e x t r a c t i o n  ra te  o r  thermal  power output  a t  t h e  o u t l e t  i s  

Qf = qaCf(Ta - To) 

where T i s  the  f l u i d  temperature  a t  t h e  o u t l e t ,  o r  by (23) and (22c) a 

ILLUSTRATIVE EXAMPLES 

The d a t a  employed h e r e  and i n  t h e  fo l lowing  are  g iven  below: 

= 1.0  c a l / g r  "C cf Ra/RO = 0.5 

= 1.25 C = 0.25 c a l / g r  O C  

= 1.0 gr/cm3 X = 6 . 2 ~  cal /cm sec "C 

T = 250°C 

= 0.49 T o  = 65°C 

V Y 
C 

Pf 

@Y = 2.65 gr/cm3 m 

a K 

V = 0.25 c1 = 8.0 x10-6/oC 

TK /*So = 1.118. 

T 

So/Pfgho = 1 . 3  C 

Furthermore,  B1 i s  taken  as ze ro  s i n c e  t h e  e f f e c t  of t h e  p r e s s u r e  on t h e  
l o s s  should n o t  b e  l a r g e  as  d i scussed  by H a l l  and Do l l a rh ide  (1964). 

f l u i d  

The o u t l e t  f l u i d  temperature  Ta and t h e  thermal  power output  Qf i n  Case (I) 
are graphed as f u n c t i o n s  of t i m e  i n  Figs .  2a and 2b. The corresponding r e l a t i o n s  
i n  Case (11) are graphed i n  F igs .  3a and 3b. The e f f e c t  of t h e  p o s i t i o n  of t h e  
o u t l e t  h o l e  i s  a l s o  shown i n  F igs .  2a and 2b. The o u t l e t  f low rate qa cons idered  
h e r e  is  n o t  n e c e s s a r i l y  l a r g e  (Table 1). 
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Table 1. Stationary Cracks 

3000 

2000 

3000 

Case 1 
1.451~10~ -0.23916 5.305~10~ 0.24009 11500 

1.409 -0.24264 5.151 0.24396 5750 

1.289 -0.23852 4.647 0.23923 

1.232 -0.23882 4.649 0.23954 10000 

1.162 -0.23916 4.653 0.23988 

1.183 -0.24172 3.819 0.24245 

1 

2 

A 

B 

C 

D 

E 

I 

I1 

I F  1 1.059 I -0.24264 I 3.827 1 0.24337 1 
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Fig. 1 
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