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THE EFFECTS OF A STEP CHANGE I N  WATER FLOW ON AN INITIALLY 
LINEAR PROFILE OF TEMPERATURE 

Manuel Nathenson 
U.S. Geo log ica l  Survey 

Menlo Park, CA. 

I n  recen t  analyses o f  t he  ho t -water  system a t  Wai rake i ,  New Zealand 
(Mercer, P inder ,  and Donaldson, 1975) and the  vapor-dominated system a t  La r -  
d e r e l l o ,  I t a l y  (Pet racco and Squarc i ,  1975), i t  has been suggested t h a t  
l a r g e  q u a n t i t i e s  o f  c o l d  water a r e  e n t e r i n g  the  r e s e r v o i r  by f l o w i n g  down 
from t h e  su r face  and then h o r i z o n t a l l y  i n t o  t h e  r e s e r v o i r  because o f  
decreased r e s e r v o i r  pressures.  I t  i s  a l s o  suggested t h a t  decreased 
r e s e r v o i r  pressures should inc rease these downward f l o w s  above t h e i r  p re -  
e x p l o i t a t i o n  l e v e l s .  I n  o rde r  t o  es t ima te  t h e  e f f e c t s  o f  v e r t i c a l  f l ows  
on t h e  temperature d i s t r i b u t i o n ,  two i d e a l i z e d  problems a r e  analyzed i n  
t h i s  paper. I n  b o t h  problems, t h e  i n i t i a l  c o n d i t i o n  i s  a l i n e a r  
temperature inc rease w i t h  depth,  and t h e  f l o w  s t a r t s  a t  t ime  equal t o  
zero.  I n  t h e  f i r s t  problem, the  f l o w  i s  th rough a semi -con f in ing  l a y e r  
w i t h  t h e  temperature f i x e d  a t  t h e  t o p  and bottom o f  t h e  l a y e r .  I n  t h e  
second problem, t h e  f l o w  i s  i n t o  a ha l f - space  w i t h  t h e  su r face  temperature 
f i x e d .  

The govern ing  equa t ion  i s  conse rva t i on  o f  energy i n  a porous medium 
(e.g. ,  Bredehoeft  and Papadopulos, 1965) which can be w r i t t e n  i n  t h e  form 

where 4;': = (+pwc 
(pc) o f  water an8 rock w i t h  t 6 e  p z r g s i t y  @ ,  K - k,/p cw i s  an e f f e c t i v e  
thermal d i f f u s i v i t y  i n v o l v i n g  t h e  thermal c o n d u c t i v i r y  of t h e  rock  p l u s  
water and the  v o l u m e t r i c  s p e c i f i c  heat  o f  the  water ,  and q i s  t h e  seepage 
v e l o c i t y .  For the  f i r s t  problem of f l o w  th rough a semi -con f in ing  bed o f  
t h i ckness  R t h e  cons tan t  temperature a t  t h e  top  and bottom o f  t h e  bed and 
t h e  i n i t i a l  c o n d i t i o n  o f  cons tan t  g r a d i e n t  may be w r i t t e n  as 

+ (1-4) prc ) / p  c combines t h e  v o l u m e t r i c  s p e c i f i c  heats 

TO 
T ( 0 , t )  = 
T(1 , t )  = T i  

The boundary and i n i t i a l  c o n d i t i o n s  f o r  t h e  ha l f -space a r e  w r i t t e n  as 

0 
T(o , t )  = T 
l i m  aT r" ay e x i s t s  
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where (3b) insures  t h a t  t h e r e  i s  no p e r t u r b a t i o n  t o  the  g r a d i e n t  a t  i n f i n i t y  
and G i s  t h e  temperature g r a d i e n t  a t  t ime equal zero.  

The s o l u t i o n  t o  equat ions (1) and (2) i s  ob ta ined by changing t o  
d imensionless v a r i a b l e s  t h a t  reduce t h e  problem t o  homogeneous boundary 
and i n i t i a l  c o n d i t i o n s .  The f o y  o f  t h e  d i f f e r e n t i a l  equat ion  i s  then 
m o d i f i e d  by t h e  t r a n s f o r m a t i o n  T = T* exp (q"y") t o  an inhomogeneous 
equat ion  b u t  w i t h  no l i n e a r  g r a d i e n t  term. The reduced problem i s  so lved 
by c l a s s i c a l  techniques (see e.g., Berg and McGregor, 1964) t o  g i v e  

(4a) t = b * P t l l / K  q = ?Kq"/Q y = y q  

The l o c a t i o n  o f  a f l u i d  p a r t i c l e  t h a t  s t a r t e d  a t  t h e  o r i g i n  (y=o) a t  t=o  
may be w r i t t e n  i n  terms o f  d imension less v a r i a b l e s  as 

Yt', = 2h,* q"t"/$. ( 5 )  

The s o l u t i o n  t o  equat ions  ( 1 )  and ( 3 )  i s  o b t a i n e d  by a s i m i l a r  t r a n s -  
f o r m a t i o n  to a homogeneous problem. 
i s  mod i f ied  by t h e  t r a n s f o r m a t i o n  T I  = T?: exp ( X I - t ' )  as suggested by 
Brenner (1962) and t h e  equat ions a r e  so lved by o b t a i n i n g  an o r d i n a r y  
d i f f e r e n t i a l  e q u a t i o n  by Laplace t ransforms,  s o l v i n g  i t ,  and u s i n g  t h e  
i n v e r s i o n  g i v e n  i n  Carslaw and Jaeger (1959, p. 496).  The s o l u t i o n  may 
be w r i t t e n  as 

The fo rm o f  t h e  d i f f e r e n t i a l  equat ion  

Some sample s o l u t i o n s  a r e  presented i n  F ig .  1 f o r  the  s e m i - c o n f i n i n g  
l a y e r .  The va lues  f o r  i n f i n i t e  t i m e  a r e  ob ta ined f rom Bredehoeft  and 
Papadopulos (1965) formula (T-T ) / ( T  -T ) = (exp (2q" y / L ) - l ) / ( e x p ( 2 q 1 ' ) - 1 )  
as i t  i s  e a s i e r  t o  eva lua te .  
d imension less v a r i a b l e s  f o r  a f l o w  r a t e  q" = 1 ( t o p )  and 2.5 (bottom) w i t h  
t h e  l o c a t i o n  o f  a f l u i d  p a r t i c l e  t h a t  s t a r t e d  a t  t h e  o r i g i n  a t  t = o  marked 
w i t h  a h o r i z o n t a l  l i n e .  Choosing a l a y e r  t h i c k n e s s  o f  100 m, d i f f u s i v i t y  
of 23 m2/yr, $ = 0.2, and $5 - 0.68, t h e  d imensionless f low r a t e s  correspond 
t o  seepage v e l o c i t i e s  o f  0.46 and 1 .2  m/yr and t h e  i n s e t  t a b l e  shows t h e  

Tge so1utPon i s  presented i n  terms of 
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correspondence between p h y s i c a l  and dimensionless t ime. The f i g u r e s  show 
t h a t  t imes g r e a t e r  than 60 years  a r e  r e q u i r e d  t o  reach t h e  steady s t a t e  
s o l u t i o n .  For a l a y e r  t h a t  i s  10 m t h i c k ,  t h i s  t ime  i s  reduced t o  0.6 
year ( w h i l e  t h e  v e l o c i t i e s  a r e  1/10 t h e  values i n  F i g .  1 ) .  

F i g .  2 shows t h e  r e s u l t s  f o r  a ha l f - space .  Because o f  t h e  non- 
d i m e n s i o n a l i z a t i o n  (equat ions  6a) ,  d i f f e r e n t  va lues  o f  y '  and t '  a r e  
r e q u i r e d  t o  o b t a i n  the  same values o f  p h y s i c a l  l e n g t h  when changing t h e  
f l o w  r a t e .  The t o p  o f  F ig .  2 i s  f o r  t h e  same f l o w  r a t e  as t h e  bottom o f  
F i g .  1 .  The s o l u t i o n  i n  F i g .  2 i s  u s e f u l  i n  enab l i ng  t h e  i n f l u e n c e  o f  
t h e  upper boundary c o n d i t i o n  t o  be s t u d i e d  w i t h o u t  hav ing  t h e  bottom 
boundary c o n d i t i o n  o f  t h e  s o l u t i o n  i n  F ig .  1 propagate upwards. The 
major r e g i o n  o f  c u r v a t u r e  i n  t h e  p r o f i l e s  i s  w e l l  behind t h e  l o c a t i o n  o f  
t he  f l u i d  p a r t i c l e  t h a t  s t a r t e d  a t  y=o a t  t=o, and f a i r l y  modest v e l o c i t i e s  
show e a s i l y  measured temperature changes i n  o n l y  a few years.  I n  t h e  
model f o r  Wairakei  o f  Mercer, P inder ,  and Donaldson (1975) ,  t h e  area o f  
downflow needed t o  supply t h e  n a t u r a l  recharge appears f rom the  temperature 
contours  t o  be about 10 km2 a l though  i t  cou ld  be l a r g e r .  The v e l o c i t y  
needed t o  supply t h e  n a t u r a l  recharge o f  440 kg/sec i s  1 . 5  m/yr, about 
t h e  same as t h a t  i n  F i g .  2 ( t o p ) .  The v e l o c i t y  o f  4 . 6  m/yr i n  F i g .  2 
(bottom) i s  rough ly  t h a t  which would be r e q u i r e d  i f  t h e  c u r r e n t  p r o d u c t i o n  
were t o  be ob ta ined  w i t h o u t  recourse t o  removing s t o r e d  water bu t  as 
steady s t a t e  f l o w  (Bo l ton ,  1970) w i t h  recharge over  t h e  same 10 km2. 
assumptions, i f  t r u e ,  i n d i c a t e  t h a t  l a r g e  temperature d i f f e r e n c e s  should 
be e a s i l y  found i n  such an area o f  recharge. 

These 

For L a r d e r e l l o ,  t h e  maximum va lue  o f  recharge as suggested by a hydro- 
l o g i c  s tudy  i s  9 x l o 6  m3/yr (Pet racco and Squarc i ,  1975).  
t o  be d i s t r i b u t e d  over an area e q u i v a l e n t  t o  the  e n t i r e  p r o d u c t i v e  area 
(200 km2 f rom Gabbro t o  Carbo1 i ) ,  t h e  seepage v e l o c i t y  would be 0.05 m/yr 
and t h e  e f f e c t s  would be smal l  f o r  a 100 m t h i c k  c o n f i n i n g  bed. I f  the  
recharge area were r e s t r i c t e d  to  20 km2, t h e  f l o w  corresponds t o  F i g .  1 
( t o p )  and t h e  e f f e c t  should be e a s i l y  measurable. The magnitudes o f  t h e  
e f f e c t s  f o r  t h e  two cases cons idered suggest t h a t  m o n i t o r i n g  temperatures 
i n  und is tu rbed  w e l l s  on t h e  margins o f  producing geothermal areas should 
g i v e  a measure o f  t h e  change i n  t h e  f a i r l y  l o c a l  recharge. I f  t h e  amount 
o f  t o t a l  recharge i s  known, s u b t r a c t i n g  the  l o c a l i z e d  recharge should 
g i v e  an es t ima te  o f  t h e  recharge d e r i v e d  from deep c i r c u l a t i o n  t h a t  
o r i g i n a t e s  a t  l a r g e  d i s tances  from t h e  r e s e r v o i r .  

I f  t h i s  were 
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Figure 1.--Temperature versus depth in semi-confining layer for several 
times at dimensionless flow rates of 1 (top) and 2.5 (bottom). 
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Figure 2 .  - -Temperature  v e r s u s  d e p t h  f o r  h a l f - s p a c e  f o r  s e v e r a l  times. 
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