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Abstract 
In this paper, Boundary Element (BEM) solutions were 

obtained for the transient flow of fluids through homogene- 
ous, anisotropic porous media. The Green’s function method 
with Euler method of forward time differencing and Laplace 
transform method have been used by previous authors. 
Unlike these methods, this paper uses the fundamental solu- 
tion to the differential equation and the convolution behavior 
of the resulting integrals to obtain an implicit and stable solu- 
tion. This allows large time steps to be taken without 
significant loss in accuracy. Comparison with the Laplace 
transform method and Green’s function method with discrete 
time stepping, for two test cases, show that the method is 
very accurate. The computations however, become quite 
storage intensive owing to the dynamic increase in the 
number of stored matrices. It has been shown elsewhere that 
for certain problems with both Dirichlet and Neumann boun- 
dary conditions, asymptotic expression generated from exact 
solution is needed for starting the computational procedure. 
The present formulation alleviates this requirement. 

These solutions are developed for use in the analysis of 
pressure transients in complex reservoir problems. 

INTRODUCTION 
Solution of reservoir engineering problems associated 

with fluid injection and fluid movement in reservoirs and its 
related pressure response at the well is of major importance 
in the exploitation of geothermal reservoirs. Usually these 
reservoirs are of complex geometries (shapes) and are pro- 
duced by means of numerous wells. These problems are 
difficult to treat accurately and efficiently by numerical 
methods which suffer from dispersion and grid orientation 
effects. Analytical techniques are not available except for a 
very few regular geometries. In this paper we explore the use 
of the boundary element method to solve such problems. 

The Boundary Integral Equation Method (BIEM), or 
Boundary Element Method @EM) as’it is often called..is 
gaining popularity in solving problems encountered in solid 
mechanics, heat transfer, groundwater hydrology and various 
other fields. The methodology of solving partial differential 
equations follows closely that of finite element method where 
the goveming differential equation is cast in an integral form. 
Instead of choosing basis functions which approximate the 
differential equations in the domain as in the finite element 
method, fundamental solutions to the differential operator are 
used to reduce the problem to quadratures. The solution 
becomes a pure boundary procedure if inhomogeneities in the 
differential operators are removed. 

The primary advantage which has encouraged people to 
explore and use this technique is that the dimensionality of 
the problem is reduced by one. A 3-D problem is reduced to 
a 2-D problem and so forth, Since it is a boundary pro- 
cedure, it conforms well to boundaries. The results obtained 
with this method are usually more accurate than finite 
difference or finite element methods, as it is an analytic tech- 
nique requiring only numerical evaluation of integrals. 
Integration is a smoothing procedure and for well behaved 
functions can be performed quite accurately. In BEM the 
governing differential equation is exactly satisfied in the 
domain of the problem, it is only on the boundaries that the 
approximations are made. The only bottleneck in this pro- 
cedure is finding the fundamental solutions to the differential 
operators. 

The efficiency and accuracy of the method has been 
proved for elliptic operators. Nwnbere et aL(1986). and 
Masukuwa et aL(1986) have used BEM as a useful stream- 
line generating method for Laplace’s equations with odd 
shaped boundaries and with moving interfaces. A variety of 
problems arising in groundwater hydrology have been solved 
by Liggen and coworkers [Liggen and Liu (1983), Lafe and 
Liggen (1981). Taigbenu and Liggett (1985)I using Boundary 
Element Methods. 

The present work involves solution of unsteady state 
(transient) problems with BEM. A slightly different formula- 
tion than the one presented by Liggett et aL(1979) has been 
used. Another similar problem, the solution of the diffisivity 
equation by integral equations, which govern the transient 
heat conduction in materials, was looked at by Rizzo and 
Shippy (1970). They removed the time derivative by convert- 
ing the problem into Laplace space. 

Tuigbenu Md Liggett (1985), use the fundamental solu- 
tion to the diffusion equation and cast it in terms of an 
integral equation. Depending on the interpolating functions 
used between nodes, some of the integrals, in the discretized 
equations, can be performed analytically. They performed the 
analytic integrations in space first and then used Euler’s 
method of time stepping to evaluate the solution at each time 
step. Use of this’mepod in a mixed type problem [with both 
Neumann (flux) and Dirichlet (potential) boundary condi- 
tions] requires that the initial normal derivatives of the velo- 
city potential be known. They derived an asymptotic expres- 
sion from the exact solution and used it to start the computa- 
tional procedure at early time. 

We use the convolution character of the integral equa- 
tion as observed by Wrobef and Brebbia (1981) and Pinu 
(1984) to develop a boundary element code. The formulation 
is implicit in nature and thus very stable with respect to time 
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step sizes. Performing the time integrations analytically 
removes the singularity of the fundamental solution in the 
time dimension. The space integrals are then evaluated 
analytically or by the use of accurate Gaussian quadrature 
techniques. This formulation does not require knowledge of 
the analytic solutions beforehand in order to develop asymp- 
totic expressions at early times to start the computational pro- 
cedure. Wrobef and Brebbia (1984) suggested a term by 
term integration of the series to find values of singular 
integrals obtained when the collocation point is on the same 
boundary element as the field point. The series converges 
very slowly for large arguments which are frequent due to 
the small time step sizes used. We provide here an analytic 
integration technique in terms of smoothly behaved functions 
which are easier to evaluate. 

In the solution process with constant time step size, the 
left hand side coefficient matrix is generated once, inverted 
and stored. At every step, one additional matrix needs to be 
generated. However, all the previous coefficient matrices and 
solution vectors need to be stored because of the convolution 
character of the problem. But with high speed auxiliary 
memory access and large swap spaces in modem computers 
this extra storage requirement is not much of a problem. 

Some simple test problems which have exact solutions 
were used to check the efficacy of the technique. 

FORMULATION 
The continuity equation for two-dimensional flow of a 

slightly compressible, single phase fluid in a homogeneous, 
anisotropic and confined reservoir is (Aziz and Serfari (1979)) 

where Darcy's law has been used. Q' is the strength of a sink 
in mass per unit volume per unit time. Using the equation of 
state for small and constant compressibility fluid and assum- 
ing that the permeability tensor can be diagonalized and also 
that the viscosity of the fluid and the porosity of the medium 
are constant, we obtain in a Cartesian coordinate system, with 
the coordinate axes aligned with the principal permeability 
directions, the following equation 

Assuming k,  and k, to be constants and performing a coor- 
dinate transformation given by 

we obtain 

where, 

H 

x = i ;  (3) 

(4) 

Since the system geometry can be odd, the above sys- 
tem can be normalized with respect to the area (A) of the 

Figure 1. Typical computational domain 

system. A description of a typical system geometry is shown 
in Fig. 1. Thus, defining 

gives 

a2po a2pD apD 

ax,2 ay,2 ar,, - + QD -+- = 

where, 

and Q D  is non-dimensionalized with respect to a flow rate of 

We drop the subscripts hereafter for convenience. 
Now, three types of boundary conditions can be applied to 

unity. 

Eqn. (6) 

P = PI on rl E r (Dinchler) 

an - ' on Tz E r (Neunaann) (7) ap 

ap  

- -  

aP + p- = y 
an 

on Ts E r (Robin, Radiation or Mixed) 

The free space Green's function for the above equation 
has been derived by Greenberg (1971), Zauderer (1983). 
Morse and Feshbach (1953). A two dimensional free space 
Green's function is defined [Carslaw and Juegur (1959)l as 
the pressure at (x,y) at a time t due to an instantaneous line 
source of strength unity generated at the line P(6,q) at the 
time T. The medium is initially at zero pressure and infinite 
in extent. The integral equation formulation of equation(6) 
using the divergence theorem of Gauss has been given by 
Liggen and Liu (1983). The integral equation is 
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where, 

is the free space Green's function for the diffusion equation. 
and 

H(t - 7 )  is the Heaviside step function. 

also 

rz = (x-{)2+ 0,- q)2 

where, 5 and q are the coordinates of a fictitious source 
point, and 

Figure 2. Local co-ordinate system 

integrations which can be done analytically we obtain, 
a = 2r if (x,y) E (loa) 

a = 8  if (x,Y) E r (lob) 

5% 6ij pj = Ai + Bi + [(U),( + (U)rr,I; i = 1,N (13) 
SOLUTION OF THE INTEGRAL EQUATION il il 

If there is no inhomogeneity in the governing equation 
Le.; QD is zero and also the equation is non-dmensionaliml 
such that the initial condition is homogeneous, then the solu- 
tion becomes suictly a boundary procedure. This is not a 
limitation because the forcing function on the right hand side 
of the differential equation is usually a source or a sink term. 
Since the differential operator is linear, we can use the con- 
cept of singularity programming to superpose the contribution 
due to sources and sinks separately onto the solutions free of 
sources and/or sinks. 

where 

Ai = 

Bi = 

ax 

Q& 

Equation(8) can then be solved by choosing a finite 
number of elements on the boundary. An interpolating func- 
tion for pressure and flux on a boundary element both in 
space and time dimensions is assumed. The integral equation 

' l i  

(&+I - tj) (Ahg = ~ 

could be solved by a collocation type technique by moving a 
fictitious source point to aJl the nodes and generating enough 
equations so that they match the number of unknowns. The 
problem then reduces to one of solving a matrix equation. 

For simplicity we choose interpolating functions 
between boundary elements that are linear in space and con- 
stant in time. Higher dimensional elements could be chosen. 
Wrobel Md Brebbia (1981) show some of the integrals aris- 
ing from choosing higher dimensional interpolating functions 
in time. Pressure or the normal derivative of pressure at any 
point on the element is expressed in terms of the nodal 
values as follows : 

and 

P = [(P*I - pj) 5 + (ShlPj 

where, 5 is the local coordinate varying along the element. 
Integrations are performed after transferring every element in 
a moving local coordinate system. An illustration of a local 
coordinate system is given in Fig. 2. After performing a l l  the 
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where, 

Singular Integral Evaluation 
When the collocation point is on the same boundary 

element as the field point we obtain integrals which are 
singular at one of the limits. This can be seen easily from 
Fig. 2. This happens when q is zero and ti or Shl is zero. 
The usual techniques for numerical integration are unsuitable 
and special care needs to be taken. Such a functions is E,(z), 
which is singular at z = 0. Pinu(1984) used series expansion 
of E,(z) which is uniformly and absolutely convergent 
[ A b r w i f z  and Sfegun (1964) page 2291 and integrated it 
term by term. For arguments greater than 1.0 the series con- 
verges very slowly. Since the time step sizes used are usually 
very small thus the argument of the function tends to be 
large. We present here a simple closed form integration in 
terms of very smoothly behaved functions. 

The singular integrals that are encountered are of the 
form : 

C 

We obtain the following resulc 

The details of the derivation are given in Appendix-A. 

Solution of Matrix Equations 
At every node, one piece of information is prescribed 

by the boundary condition, and the other is unknown. Thus, 
one could move the fictitious source point to all the boundary 
nodes. This will generate N equations for N boundary nodes. 
The system of N equations in N unknowns can then be 
solved, in principle. The matrix equation generated is 

f 

~ P u "  = b" 
a=l 

Note that the integrals that are obtained have time both in the 
limit and in the integrand and thus are of the form, 

(21) 

The convolution character of the above equation is evident. If 
we assume a constant time step size then, t = to + nAr, where 
At is the step size. If the solution up to (n - I)* time step is 
known then the solution at the n* time level could be found 
from the above equations as 
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which on transposing becomes 

r l  
Pu" = b"- C P U ~  

The matrix P depends entirely on the geometry of the 
system and the step size. At the n* time level for example, 
Equation(22b) suggests that the unknown vector u" at time 
step n is multiplied by a coefficient matrix P. Because of 
the convolution character of the matrices P = H 1 * ,  if the 
time step size is constant. Similarly H'")kl) = H*'. Similar 
relations could be derived between various matrices. What 
this provides is the need to create only one extra matrix at 
every time step. Another way to solve the same problem 
would be to start the time integrations from zero at every 
time step. This becomes quite time consuming, whereas the 
above method needs extra storage space. Taigbenu and Lig- 
getr (1985) have used the solution obtained after the first 
time step as the initial condition to advance in time. This too 
reduces the storage requirement but introduces a domain 
integral in the integral equation. To evaluate such an integral 
the entire domain has to be discretized once every time step 
in a finite element type subdivision. This reduces the charm 
of the method as being a boundary procedure, though it may 
improve the efficiency of calculations. 

VERIFICATION 
A computer code has been developed on the foregoing 

lines. The program has been tested on four simple problems 
until now. These problems have closed form analytical solu- 
tions to compare with. 

A Neumann Problem 
The first example is a solution to the diffusivity equa- 

tion in a porous medium with a step change in the flux at the 
inlet end. AU the boundary conditions are of Neumann type 
and the initial condition is homogeneous. Figure 3 shows the 
problem domain. The goveming equation and the boundary 
conditions are as follows : 

ap 
a t  

v z p  = - 

P(X.Y.0) = 0 

The results are shown in Figs. 4 and 5 .  Pressure at the inlet 
end is plotted as a function of time. Smaller step sizes give 
more accurate results but the implicit nature of the solution 
procedure allows us to take large step sizes. 

A Mixed Problem 
The problem domain is the same as the previous one. 

The governing equation and the initial condition is also the 
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same. The boundary conditions are 

- - Exact Soln. 
- BEM Soln. [At =0.025] X=O.ZS - 

Figure 3. Domain used for example calculations 
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Figure 4. Neumann problem 
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Figure 5. Effect of step size on the solution for Neumann 
problem 

In this problem the inner and the outer boundaries are held at 
constant pressures and the other two boundaries at a no flux 
condition. Figures 6 through 9 show the comparisons with 
the analytical solution. Pressure solutions match very well 
even for large time steps. But flux is infinite at early times 
and thus poses a problem for large time steps. On taking 
sufficiently small time steps the fluxes match well. The 
effect of time step size on the solutions for pressures are 
shown in Figs. 6 and 7 whereas Figs. 8 and 9 show the 
effect of time step size on the calculation of fluxes at the 
inner boundary. 

Figure 6. Mixed problem 
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Figure 7. Effect of step size on the solution for mixed 
problem 
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Figure 8. Mixed problem: Matching of flux singularity at 
the inlet 

t 

- Exact Soln. 
BEM Soh. [At = 0.0051 

" 
0 0.1 0.2 0.3 0.4 0.5 0.6 

TIME 

Figure 9. Effect of step size on flux for mixed problem 

Problems with Radiation Boundary Conditions 
The problem domain remains the same as the previous 

problems. Two different inner boundary conditions were 
used. The outer boundary conditions are the same in both the 
examples considered below. The outer boundary conditions 
for the two problems are 

a P + -P( l ,y , f )  = 0 
an 

Figure 10 shows the pressure response at the outer boundary 
with time for the case of a constant pressure inner boundary 
condition. It is the flux at the inner boundary which has a 
singular behavior and is difficult to match. With refinement 
of step sizes we could match the fluxes well at early times. 
Figure 11 shows the flux at the inner boundary as a function 
of time, for a step size of 0.005. 

Figure 12 shows the pressure response at inner and 
outer boundaries with time. This is for the case of a 
prescribed flux inner boundary condition and radiation outer 
boundary condition. The BEM solution matches the analytical 
solution very closely. 

These problems are very simple but they 'do show the 
efficacy of the method which can now be used on compli- 
cated and odd shaped domains with accuracy. 

OS c 
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Figure 10. Constant pressure inner boundary and radiation 
outer boundary 
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Figure 11. Matching fluxes for constant pressure IBC and 
radiation OBC 
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Figure 12. Constant flux inner boundary and radiation outer 
boundary 
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CONCLUSIONS 
Problems governed by diffusivity equation in odd 

shaped boundaries can be solved efficiently and accurately by 
the Boundary Element Method. A slightly different formula- 
tion compared to other authors has been discussed and imple- 
mented. Simple problems with analytical solutions have been 
tested to check the validity of the method. All combinations 
of the three boundary conditions viz; Dirichlet, Neumann and 
Radiation (mixed) have been used. The solution methodol- 
ogy holds promise for solution of problems leading to pres- 
sure transient testing for single phase flow. 
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APPENDIX-A 
We evaluate here the singular integral obtained when 

the collocation point is on the same boundary element as the 
field point. 

where, 
1 

4t 
a = -  

Integrating once by parts, we obtain 

Since E,(&) as x - t O  grows logarithmically and hence 
grows slower than any polynomial, thus x --f 0 faster than E, 
grows. 

=> x E,(&) lo + 0 os x + 0 (A5) 
thus, 

where 

For large arguments El(ac2) goes to zero asymptotically and 
e./(&) goes to 1 asymptotically. Thus a very stable and 
easy to evaluate form is obtained. 
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