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Abstract

In this paper, Boundary Element (BEM) solutions were
obtained for the transient flow of fluids through homogene-
ous, anisotropic porous media. The Green’s function method
with Euler method of forward time differencing and Laplace
transform method have been used by previous authors.
Unlike these methods, this paper uses the fundamental solu-
tion to the differential equation and the convolution behavior
of the resulting integrals to obtain an implicit and stable solu-
tion. This allows large time steps to be taken without
significant loss in accuracy. Comparison with the Laplace
transform method and Green’s function method with discrete
time stepping, for two test cases, show that the method is
very accurate. The computations however, become quite
storage intensive owing to the dynamic increase in the
number of stored matrices. It has been shown elsewhere that
for certain problems with both Dirichlet and Neumann boun-
dary conditions, asymptotic expression generated from exact
solution is needed for starting the computational procedure.
The present formulation alleviates this requirement.

These solutions are developed for use in the analysis of
pressure transients in complex reservoir problems.

INTRODUCTION

Solution of reservoir engineering problems associated
with fluid injection and fluid movement in reservoirs and its
related pressure response at the well is of major importance
in the exploitation of geothermal reservoirs. Usually these
reservoirs are of complex geometries (shapes) and are pro-
duced by means of numerous wells., These problems are
difficult to treat accurately and efficiently by numerical
methods which suffer from . dispersion and grid orientation
effects. Analytical techniques are not available except for a
very few regular geometries. In this paper we explore the use
of the boundary element method to solve such problems. .

The Boundary Integral Equation Method (BIEM), or
Boundary Element Method (BEM) as it is often’ called, is
gaining popularity in solving problems -encountered in solid
mechanics, heat transfer, groundwater hydrology and various
other fields. The methodology of solving partial differential
equations follows closely that of finite element method where
the goveming differential equation is cast in an integral form.
Instead of choosing basis functions which approximate the
differential equations in the domain as in the finite element
method, fundamental solutions to the differential operator are
used to reduce the problem to quadratures. The solution
becomes a pure boundary procedure if inhomogeneities in the
differential operators are removed.
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The primary advantage which has encouraged people to
explore and use this technique is that the dimensionality of
the problem is reduced by one. A 3-D problem is reduced to
a 2-D problem and so forth. Since it is a boundary pro-
cedure, it conforms well to boundaries. The results obtained
with this method are usually more accurate than finite
difference or finite element methods, as it is an analytic tech-
nique requiring only numerical evaluation of integrals.
Integration is a smoothing procedure and for well behaved
functions can be performed quite accurately. In BEM the
goveming differential equation is exactly satisfied in the
domain of the problem, it is only on the boundaries that the
approximations are made. The only bottleneck in this pro-
cedure is finding the fundamental solutions to the differential
operators.

The efficiency and accuracy of the method has been
proved for elliptic operators. Numbere et al.(1986), and
Masukawa et al. (1986) have used BEM as a useful stream-
line generating method for Laplace’s equations with odd
shaped boundaries and with moving interfaces. A variety of
problems arising in groundwater hydrology have been solved
by Liggett and coworkers [Liggett and Liu (1983), Lafe and
Liggert (1981), Taigbenu and Liggert (1985)] using Boundary
Element Methods.

The present work involves solution of unsteady state
(transient) problems with BEM. A slightly different formula-
tion than the one presented by Liggett et al.(1979) has been
used. Another similar problem, the solution of the diffusivity
equation by integral equations, which govem the transient
heat conduction in materials, was looked at by Rizzo and
Shippy (1970). They removed the time derivative by convert-
ing the problem into Laplace space.

Taigbenu and Liggett (1985), use the fundamental solu-
tion to the diffusion equation and cast it in terms of an
integral equation. Depending on the interpolating functions
used between nodes, some of the integrals, in the discretized
equations, can be performed analytically. They performed the
analytic integrations in space first and then used Euler's
method of time stepping to evaluate the solution at each time
step. Use of this method in a mixed type problem [with both
Neumann (flux).and Dirichlet (potential) boundary condi-
tions] requires that the initial normal derivatives of the velo-
city potential be known. They derived an asymptotic expres-
sion from the exact solution and used it to start the computa-
tional procedure at early time.

We use the convolution character of the integral equa-
tion as observed by Wrobel and Brebbia (1981) and Pina
(1984) to develop a boundary element code. The formulation
is implicit in nature and thus very stable with respect to time




step sizes. Performing the time integrations analytically
removes the singularity of the fundamental solution in the
time dimension. The space integrals are then evaluated
analytically or by the use of accurate Gaussian quadrature
techniques. This formulation does not require knowledge of
the analytic solutions beforehand in order to develop asymp-
totic expressions at early times to start the computational pro-
cedure. Wrobel and Brebbia (1984) suggested a term by
term integration of the series to find values of singular
integrals obtained when the collocation point is on the same
boundary element as the field point. The series converges
very slowly for large arguments which are frequent due to
the small time step sizes used. We provide here an analytic
integration technique in terms of smoothly behaved functions
which are easier to evaluate.

In the solution process with constant time step size, the
left hand side coefficient matrix is generated once, inverted
and stored. At every step, one additional matrix needs to be
generated. However, all the previous coefficient matrices and
solution vectors need to be stored because of the convolution
character of the problem. But with high speed auxiliary
memory access and large swap spaces in modem computers
this extra storage requirement is not much of a problem.

Some simple test problems which have exact solutions
were used to check the efficacy of the technique.

FORMULATION
The continuity equation for two-dimensional flow of a
slightly compressible, single phase fluid in a homogeneous,
anisotropic and confined reservoir is (Aziz and Sertari (1979))
vecKR vp) - 200) , o M
" ot
where Darcy’s law has been used. Q" is the strength of a sink
in mass per unit volume per unit time. Using the equation of
state for small and constant compressibility fluid and assum-
ing that the permeability tensor can be diagonalized and also
that the viscosity of the fluid and the porosity of the medium
are constant, we obtain in a cartesian coordinate system, with
the coordinate axes aligned with the principal permeability
directions, the following equation

]

Assuming k. and &, to be constants and performing a coor-
dinate transformation given by
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Since the system geometry can be odd, the above sys-
tem can be nommalized with respect to the area (A) of the
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Figure 1. Typical computational domain

system. A description of a typical system geometry is shown
in Fig. 1. Thus, defining

ke 8 n P,-P
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gives

PP, 9%°Pp oPp

axp?  Oypl  Oipa +0p ®
where,

oy = 2p4

and Q) is non-dimensionalized with respect to a flow rate of
unity.

We drop the subscripts hereafter for convenience.
Now, three types of boundary conditions can be applied to
Eqn. (6)

P = P, onT, e (Dirichlet)
%’5 =gq onT,eT  (Neumann) (@))]

oP + Bg—’: =y onTseT (Robin, Radiation or Mixed)

The free space Green's function for the above equation
has been derived by Greenberg (1971), Zauderer (1983),
Morse and Feshbach (1953). A two dimensional free space
Green's function is defined [Carslaw and Jaegar (1959)] as
the pressure at (x,y) at a time t due to an instantaneous line
source of strength unity generated at the line P(E,n) at the
time 1. The medium is initially at zero pressure and infinite
in extent. The integral equation formulation of equation(6)
using the divergence theorem of Gauss has been given by
Liggernt and Liu (1983). The integral equation is
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where,

1
¢-)

G = H(t— 1) exp [— 4(1L—-1:)] ©)

is the free space Green's function for the diffusion equation.
and

H(t - 1) is the Heaviside step function.
also

P = @8 +0-n

where, £ and n are the coordinates of a fictitious source
point, and

a=2n if xy)eQ (10a)
oa=8 if xy)el (10b)

SOLUTION OF THE INTEGRAL EQUATION

If there is no inhomogeneity in the goveming equation
i.e.; Qp is zero and also the equation is non-dimensionalized
such that the initial condition is homogeneous, then the solu-
tion becomes strictly a boundary procedure. This is not a
limitation because the forcing function on the right hand side
of the differential equation is usually a source or a sink term.
Since the differential operator is linear, we can use the con-
cept of singularity programming to superpose the contribution
due 10 sources and sinks separately onto the solutions free of
sources and/or sinks.

Equation(8) can then be solved by choosing a finite
number of elements on the boundary. An interpolating func-
tion for pressure and flux on a boundary element both in
space and time dimensions is assumed. The integral equation
could be solved by a collocation type technique by moving a
fictitious source point to all the nodes and generating enough
equations so that they match the number of unknowns. The
problem then reduces to one of solving a matrix equation.

For simplicity we choose interpolating functions
between boundary elements that are linear in space and con-
stant in time. Higher dimensional elements could be chosen.
Wrobel and Brebbia (1981) show some of the integrals aris-
ing from choosing higher dimensional interpolating functions
in time. Pressure or the normal derivative of pressure at any
point on the element is expressed in terms of the nodal
values as follows :

P = [(Pu—P) &+ &P
= &PV Eim — &) Ei<E <& an

oP oP oP oP
G = {[(ﬁ),u - (ﬁ)’]& + [&,41('87),'

- g,('gi’:')m]}/ (;ju ~E&) €<t <ty (12)

where, £ is the local coordinate varying along the element.
Integrations are performed after transferring every element in
a moving local coordinate system. An illustration of a local
coordinate system is given in Fig. 2. After performing all the

boundary curve, [

Figure 2.

Local co-ordinate system

integrations which can be done analytically we obtain,
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20,8, P = A+ B+ 3, (AA),ﬁ+(AA),,‘_j]; i= 1N (13)
=

Fl
where
__r_
A; = l[exp 4 Py dA (14)
-7
_r
B, = Idz exp|—42 | o ua as)
) -1
_ M; 5,‘2 +n? §,‘+12 +n?2
a4y, = m(l’m -P) [El[ =) -E 200
2n; n? ]
_ P —EP.
‘T e"p[ ) S
§,-.1 [
a g’
J, @+nd) | 4(14)] 1o
and

(Pu.l‘Pn,) 1 2 5;412'*"1:‘2
Ay, = m 7 E + A E A

&2 +n? n?
2 2 ) _
- (gl- +nN°) E, ) ]}+ 2(—r) exp[ 20

_ &7 - 5 i . EmP w EP u’.u)
P e | ey Cp1 - &)
§in
E g +n? 17
! e [® an




where,

E) = J'% du (18)
X

Singular Integral Evaluation

When the collocation point is on the same boundary
element as the field point we obtain integrals which are
singular at one of the limits. This can be seen easily from
Fig. 2. This happens when 7 is zero and §; or &, is zero.
The usual techniques for numerical integration are unsuitable
and special care needs to be taken. Such a functions is E,(z),
which is singular at z = 0. Pina(1984) used series expansion
of E|(z) which is uniformly and absolutely convergent
[Abramowitz and Stegun (1964) page 229] and integrated it
term by term. For arguments greater than 1.0 the series con-
verges very slowly. Since the time step sizes used are usually
very small thus the argument of the function tends to be
large. We present here a simple closed form integration in
terms of very smoothly behaved functions.

The singular integrals that are encountered are of the
form :

c

{ El(%) dx

We obtain the following result;

[4

l[E,(fm)dx = cEl(%) + '\/% erf (o) (19)

The details of the derivation are given in Appendix-A.

Solution of Matrix Equations

At every node, one piece of information is prescribed
by the boundary condition, and the other is unknown. Thus,
one could move the fictitious source point to all the boundary
nodes. This will generate N equations for N boundary nodes.
The system of N equations in N unknowns can then be
solved, in principle. The matrix equation generated is

t
T HSE = b° (0)

a=]

Note that the integrals that are obtained have time both in the
limit and in the integrand and thus are of the form,
!

1[ A0 Gi~) dr @n

The convolution character of the above equation is evident. If
we assume a constant time step size then, t= i + nAr, where
At is the step size. If the solution up to (z — 1)* time step is
known then the solution at the n* time level could be found
from the above equations as

H'YW + 22 + .+ H™" = b* (22a)

-264-

which on transposing becomes

n=1
H™ = b~ S H™S (22b)
o=1

The matrix H™® depends entirely on the geometry of the
system and the step size. At the n* time level for example,
Equation(22b) suggests that the unknown vector u«* at time
step n is multiplied by a coefficient matrix #*. Because of
the convolution character of the matrices H™ = H", if the
time step size is constant. Similarly H®™®™ = y?'. Similar
relations could be derived between various matrices. What
this provides is the need to create only one extra matrix at
every time step. Another way to solve the same problem
would be to start the time integrations from zero at every
time step. This becomes quite time consuming, whereas the
above method needs extra storage space. Taigbenu and Lig-
gett (1985) have used the solution obtained after the first
time step as the initial condition to advance in time. This too
reduces the storage requirement but introduces a domain
integral in the integral equation. To evaluate such an integral
thé entire domain has to be discretized once every time step
in a finite element type subdivision. This reduces the charm
of the method as being a boundary procedure, though it may
improve the efficiency of calculations.

VERIFICATION

A computer code has been developed on the foregoing
lines. The program has been tested on four simple problems
until now. These problems have closed form analytical solu-
tions to compare with.

A Neumann Problem

The first example is a solution to the diffusivity equa-
tion in a porous medium with a step change in the flux at the
inlet end. All the boundary conditions are of Neumann type
and the initial condition is homogeneous. Figure 3 shows the
problem domain. The governing equation and the boundary
conditions are as follows :

2p _ 9P
VP = ot
P(xy0) = 0

2 - 2 = -
SPOY) = 1 =Py = -1

9 -9 -
EI-P(x,O,t) =5 P(x,1) = 0

The results are shown in Figs. 4 and 5. Pressure at the inlet
end is plotted as a function of time. Smaller step sizes give
more accurate results but the implicit nature of the solution
procedure allows us to take large step sizes.

A Mixed Problem

The problem domain is the same as the previous one.
The goveming equation and the initial condition is also the



N\ =
/7

same. The boundary conditions are
POys) =1 P(lyn =0

0 CE -
aP(x.OJ) =35 P(x1p) = 0

(1,1)

J !

In this problem the inner and the outer boundaries are held at
constant pressures and the other two boundaries at a no flux
condition. Figures 6 through 9 show the comparisons with
the analytical solution. Pressure solutions match very well
even for large time steps. But flux is infinite at early times
and thus poses a problem for large time steps. On taking
sufficiently small time steps the fluxes match well. The
X effect of time step size on the solutions for pressures are

shown in Figs. 6 and 7 whereas Figs. 8 and 9 show the
effect of time step size on the calculation of fluxes at the

Figure 3. Domain used for example calculations inner boundary.
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Figure 4. Neumann problem Figure 6. Mixed problem
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Figure 5. Effect of step size on the solution for Neumann Figure 7. Effect of step size on the solution for mixed

problem
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problem
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Figure 8. Mixed problem: Matching of flux singularity at
the inlet
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Figure 9. Effect of step size on flux for mixed problem

Problems with Radiation Boundary Conditions

The problem domain remains the same as the previous
problems. Two different inner boundary conditions were
used. The outer boundary conditions are the same in both the
examples considered below. The outer boundary conditions
for the two problems are

9 -
P + =—P(yd) = 0

Figure 10 shows the pressure response at the outer boundary
with time for the case of a constant pressure inner boundary
condition. It is the flux at the inner boundary which has a
singular behavior and is difficult to match. With refinement
of step sizes we could match the fluxes well at early times.
Figure 11 shows the flux at the inner boundary as a function
of time, for a step size of 0.005.

Figure 12 shows the pressure response at inner and
outer boundaries with time. This is for the case of a
prescribed flux inner boundary condition and radiation outer
boundary condition. The BEM solution matches the analytical
solution very closely.

These problems are very simple but they do show the
efficacy of the method which can now be used on compli-
cated and odd shaped domains with accuracy.
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Figure 10. Constant pressure inner boundary and radiation

outer boundary
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Figure 11. Matching fluxes for constant pressure IBC and
radiation OBC
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Figure 12. Constant flux inner boundary and radiation outer

boundary



CONCLUSIONS

Problems govemed by diffusivity equation in odd
shaped boundaries can be solved efficiently and accurately by
the Boundary Element Method. A slightly different formula-
tion compared to other authors has been discussed and imple-
mented. Simple problems with analytical solutions have been
tested to check the validity of the method. All combinations
of the three boundary conditions viz, Dirichlet, Neumann and
Radiation (mixed) have been used. The solution methodol-
ogy holds promise for solution of problems leading to pres-
sure transient testing for single phase flow.

ACKNOWLEDGMENTS

Financial support was provided by the Stanford Geoth-
ermal Program, DOE Contract No. DE-AS(07-84ID12529 and
by Stanford University.

REFERENCES

Abramowitz, M., and Stegun, 1. A., Handbook of Mathemati-
cal Functions, 1964.

Aziz, K., and Settari, A., Petroleum Reservoir Simulation,
Pub. Elsevier, 1979.

Brebbia, C. A., "Weighted Residual Formulation of Approxi-
mate Methods", Boundary Element Methods in Com-
puter Aided Engineering, Ed. Brebbia, C. A., 1984,

Carslaw, H. S., and Jaegar, J. C., Conduction of Heat in
Solids, 1959.

Connor, J. J., and Brebbia, C. A, "Boundary Element
Methods", Boundary Element Methods in Computer
Aided Engineering, Ed. Brebbia C. A., 1984,

Greenberg, M. D., Application of Green's Functions in Sci-
ence and Engineering, Pub. Prentice Hall, Inc., 1971,

Lafe, O. E., Liggett, J. A, and Liu, P. L-F, " BIEM Solu-
tions to Combinations of Leaky, Layered, Confined,
Unconfined, Nonisotropic Aquifers, WRR, 1970.

Ligget, J. A., and Liu, Phillip L-F, The Boundary Integral
Equation Method for Porous Media Flow, Pub.
George Allen & Unwin, 1983.

Liggett, J. A, and Liu, Phillip L-F, "Unsteady Flow in
Confined Aquifers : A Comparison of Two Boundary
Integral Methods", WRR, Aug. 1984.

Masukawa, J, and Home, R.N., "The Application of the
Boundary Intetgral Method to Immiscible Displace-
ment Problems”, SPE Paper #15136, April, 1986.

Morse, P. M., and Feshbach, H., Methods of Theoretical
Physics, Pub. McGraw Hill, 1953,

Numbere, D.T., and Tiab, D., "An Improved Streamline Gen-
erating Technique Using Boundary (Integral) Element
Method", SPE Paper #15135, April, 1986.

Pina, H. L. G., "Time Dependent Potential Problems"”, Boun-
dary Element Methods in Computer Aided Engineer-
ing, Ed. Brebbia, C. A., 1984,

Rizzo, F. J,, and Shippy, D. J., "A Method of Solution for
Certain Problems in Transient Heat Conduction”,
AIAA J, 1970.

-267-

Taigbenu, A. E., and Liggett, J. A, "Boundary Element Cal-
culations of Diffusion Equation”, J. of Eng. Mech,
Division of ASCE, April, 1985.

Wrobel, L. C., and Brebbia, C., "Time Dependent Potential
Problems”, Progress in Boundary Element Methods,
vol. 1, Ed. Brebbia, C.A., 1981.

Zauderer, E., Partial Differential Equations in Applied
Mathematics, Pub. Wiley-Interscience, 1983.

APPENDIX-A

We evaluate here the singular integral obtained when
the collocation point is on the same boundary element as the
field point.

[4
I= JEl(aﬁ) dx (AD
where,
1
o= o (A2)
Integrating once by parts, we obtain
c
d
I = xE\@d ) - 1; [E,(wc’)] dx (A3)

c

cEy(ac?) - xE(ad) ) + 2‘[exp(—o.x2)d.x (Ad)

Since E;(ax® as x — 0 grows logarithmically and hence
grows slower than any polynomial, thus x — 0 faster than E,
grows.

= xEo) -0 as x>0

(AS)
thus,

4

‘[El(w:z)dx = cEi(oc? + \/% erf (Vac) (A6)

where

z

‘[exp %) dx (A7)

erfz) =

2
I

For large arguments E;(oc?) goes to zero asymptotically and
erf (Yoc) goes to 1 asymptotically. Thus a very stable and
easy to evaluate form is obtained.






