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ABSTRACT 

The Sa l ton  Sea geothermal system i s  
o v e r l a i n  by a thermal cap o f  low pe rmeab i l i t y  
rocks t h a t  r e s t r i c t s  t h e  upward movement o f  
t h e  high-temperature r e s e r v o i r  b r ines .  
Petrographic and f l u i d  i n c l u s i o n  data f rom 
two w e l l s  show t h a t  t h e  thermal cap i n  t h e  
southern p a r t  o f  t h e  f i e l d  cons is t s  o f  an 
upper l a y e r  o f  l a c u s t r i n e  and evapor i t e  
depos i ts  w i t h  low i n i t i a l  p e r m e a b i l i t i e s  and 
a lower  l a y e r  o f  d e l t a i c  sandstones. The 
sandstones were incorpora ted  i n t o  t h e  thermal 
cap as downward percol  a t i  ng f l u i d s  deposi ted 
anhydr i t e  and c a l c i t e  i n  t h e  pore space o f  
t h e  rocks, reducing t h e i r  pe rmeab i l i t i es .  
Dur ing development o f  t h e  thermal cap, base- 
metal s u l f i d e s ,  potassium fe ldspar  and quar tz  
ve ins  were deposi ted by b r i n e s  f rom h ighe r  
temperature p o r t i o n s  o f  t h e  system. 

INTRODUCTION 

The Sa l ton  Sea geothermal system i s  
l oca ted  near t h e  center  o f  t h e  sediment 
f i l l e d  Sa l ton  Trough o f  southern C a l i f o r n i a  
and Mexico. Mineral  assemblages and tex tu res  
formed i n  response t o  geothermal a c t i v i t y  can 
be ca tegor ized  as d iagenet ic  o r  metamorphic 
(McKibben and Elders,  1985). D iagenet ic  
processes occur a t  temperatures o f  l e s s  than 
about 25OoC and have resu l ted  i n  the  recrys- 
t a l l i z a t i o n  o f  t h e  sheet s i l i c a t e s ,  and t h e  
depos i t i on  o f  anhydr i te ,  carbonates, and 
s u l f i d e s  i n  t h e  pore space o f  t h e  sediments. 
The reduc t i on  i n  t h e  pe rmeab i l i t i es  o f  t h e  
shal low sediments caused by t h e  depos i t i on  o f  
these pore f i l l i n g  minera ls  has l e d  t o  t h e  
development o f  a t h i c k  thermal cap, o r  zone 
o f  conduct ive heat ing,  over t h e  r e s e r v o i r  
(Younker e t  a1 . , 1982). Metamorphic proces- 
ses occu r r i ng  i n  t h e  reservojr. ,  where 
temperatures range from 250° t o  365OC, have 
l e d  t o  t h e  development o f  h o r n f e l s i c  tex tu res  
and mineral  assemblages t y p i c a l  o f  t h e  
greenschist  f a c i e s  ( M u f f l e r  and White, 1969). 
F l u i d s  encountered a t  t h e  depths where these 
metamorphic processes a re  occu r r i ng  have 
s a l i n i t i e s  o f  up t o  25 weight percent (Hel- 
geson, 1968). 

Sa l ton  Sea geothermal system, l i t t l e  data 
has been presented on t h e  temperatures and 
s a l i n i t e s  o f  t h e  b r i n e s  t h a t  have charac- 

I n  con t ras t  t o  t h e  deep po r t i ons  o f  t h e  

t e r i z e d  t h e  upper p a r t s  o f  t h e  geothermal 
f i e l d .  Furthermore, because the re  i s  
evidence t h a t  cond i t i ons  w i t h i n  t h e  geother- 
mal system have changed w i t h  t ime  (Skinner 
e t  a1 . , 1967; Huang, 1977; Andes and 
McKi bben, 1987), t h e  present borehole 
temperatures and f l u i d s  may no t  accura te ly  
r e f l e c t  t h e  cond i t i ons  associated w i t h  t h e  
a l t e r a t i o n  o f  t h e  sha l low sediments. 
A l t e r n a t i v e l y ,  t h i s  da ta  can be obtained 
from f l u i d  i nc lus ions  contained w i t h i n  t h e  
au th igen ic  minerals.  
descr ibe  the  r e s u l t s  o f  f l u i d  i n c l u s i o n  and 
pe t rograph ic  s tud ies  o f  two boreholes 
d r i l l e d  i n  the  southern p a r t  o f  t h e  f i e l d  
(F ig .  1). The samples were provided by 
Unocal . 

I n  t h i s  paper we 

LITHOLOGIC AND MINERALOGIC RELATIONSHIPS 

The rocks w i t h i n  t h e  Sa l ton  Sea 
geothermal system can be d i v ided  i n t o  an 
upper sequence o f  l a c u s t r i n e  c lays tone and 
evapor i t e  depos i ts  and a lower sequence o f  
d e l t a i c  sandstones, s i l t s t o n e s  and shales 
(Randal l ,  1974). 
1 i t h o l o g i e s  and mineral  assemblages found i n  
t h e  upper p a r t s  o f  t h e  w e l l s  s tud ied  by us. 
These l i t h o l o g i c  columns are  based on an 
examination o f  d r i  11 c h i p  samples co l  1 ected 
a t  6 o r  9 m (20 o r  30 f o o t )  i n t e r v a l s .  

The pr imary and secondary minera ls  we 
observed (Fig.  2) a re  s i m i l a r  t o  those found 
i n  o the r  p a r t s  o f  t h e  f i e l d  (e. g. M u f f l e r  
and White, 1969; McDowell and Elders,  1979, 
1980, 1983). 
secondary assembl ages a re  charac ter ized  by: 
1) anhydr i te ,  c a l c i t e ,  i n t e r l a y e r e d  il- 
l i t e / s m e c t i t e ,  and i n t e r l a y e r e d  c h l o r i t e / -  
smect i te  ( i n t e r l a y e r e d  i l l i t e / s m e c t i t e  zone: 
0-222 m, Well A; 0-241 m, Well B); 2)  
c h l o r i t e ,  i l l i t e ,  i n t e r l a y e r e d  c h l o r i t e -  
/ smect i t e  , ca l  c i t e  , an hyd r i  t e  , pota ss i um 
fe ldspar ,  quartz,  sphene, and base-metal 
s u l f i d e s  ( c h l o r i t e - c a l c i t e  zone: 222-616 m, 
Well A; 241-789 m, Well B); and 3) epidote,  
c a l c i t e ,  c h l o r i t e ,  quar tz ,  potassium fe ldsp-  
a r ,  a l b i t i c  p lag ioc lase ,  anhydr i te ,  i l l i t e ,  
and sphene ( c h l o r i t e - e p i d o t e - c a l c i t e  zone: 
616-1646 m, we1 1 A; 789-1292 m, We1 1 B) .  
Traces o f  p y r i t e  and hemati te occur through- 
ou t  these zones. 

F igure  2 d e t a i l s  t h e  

With i nc reas ing  depth, t h e  
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FLUID INCLUSION DATA 

F l u i d  i nc lus ions  i n  anhydr i te ,  sphaler-  
i t e  and ve in  quar tz  were studied. 
l a c u s t r i n e  deposi ts,  anhydr i t e  occurs as 
r o s e t t e s  i n  t h e  c lays tones  and as aggregates 
associated w i t h  c a l c i t e  i n  t h e  evapor i t e  
beds. 
c a l c i t e  cement t h e  sandstones above 387 m i n  
w e l l  A and 351 m i n  w e l l  B. A t  g rea te r  
depths, anhydr i t e - r i ch  zones a re  r e s t r i c t e d  
t o  a few narrow i n t e r v a l s .  

Spha le r i t e  occurs i n  s i g n i f i c a n t  
amounts (up t o  several  percent)  as a cement 
i n  t h e  sandstones between 341 and 387 m i n  
we l l  A and from 277 t o  360 m and 424 t o  433 m 
i n  we l l  B. I n  places, t h e  s p h a l e r i t e  
conta ins  i nc lus ions  o f  anhydr i te ,  suggest ing 
t h a t  i t  has replaced p r e e x i s t i n g  anhydr i t e  
cement. 
m a l s o  commonly con ta in  secondary potassium 
fe ldspar  a f t e r  d e t r i t a l  p lag ioc lase .  The 
s i g n i f i c a n c e  o f  these minera l  assemblages i s  
discussed be l  ow. 

c h l o r i t e ,  hemat i te,  and t r a c e s  o f  galena, 
spha le r i t e ,  c a l c i t e  and anhydr i t e  occur  
between depths o f  305 and 378 m i n  we l l  B 
(F ig .  2 ) .  Ba r i t e ,  i n  p a r t i c u l a r ,  i s  an 
uncommon minera l  i n  t h e  Sa l ton  Sea geothermal 
system. I n  these veins,  i t  i s  found as 
embayed c r y s t a l  s surrounded by quartz.  

t h a t  t h e  depos i t i on  o f  anhydr i t e  began p r i o r  
t o  bo th  s p h a l e r i t e  cementation and quar t z  
ve in ing .  
can p o t e n t i a l l y  p rov ide  i n fo rma t ion  on t h e  
temperatures and compositions o f  t h e  b r i n e s  
s ince  t h e  e a r l y  e v o l u t i o n  o f  t h e  thermal 
system. As discussed below, i n c l u s i o n s  i n  
s p h a l e r i t e  and v e i n  qua r t z  p rov ide  informa- 
t i o n  associated w i t h  t h e  ep isod ic  upwe l l i ng  
o f  b r i n e s  f rom deeper p a r t s  o f  t h e  system. 
Most o f  t h e  f l u i d  i n c l u s i o n  da ta  f rom t h e  
Sa l ton  Sea geothermal system i s  o f  t h i s  
l a t t e r  type  (Huang, 1977; Freckman, 1978; 
Andes and McKibben, 1987; Roedder and Howard, 
1987). 

A l l  t h e  f l u i d  i n c l u s i o n s  examined i n  
t h i s  study were l i q u i d - r i c h  and contained a 
small  vapor bubble t h a t  occupied about 20 
percent o f  t h e  i n c l u s i o n  volume a t  room 
temperature. 
t h e  range o f  2 t o  10 microns. 
a separate gas phase was observed i n  these 
i n c l u s i o n s  and, w i t h  t h e  except ion  o f  
anhydr i t e  f rom 168-177 m i n ' w e l l  B, none o f  
t h e  i n c l u s i o n s  found contained any s o l i d  
phases. I n  o rder  t o  assure t h e  v a l i d i t y  o f  
our data, f l u i d  i n c l u s i o n s  i n  anhydr i t e  f rom 
t h r e e  depth i n t e r v a l s  were sys temat i ca l l y  
overheated t o  determine t h e i r  s t r e t c h i n g  
c h a r a c t e r i s t i c s .  These experiments demon- 
s t r a t e d  t h a t  s t r e t c h i n g  caused by 1 abora tory  
heat ing  i s  no t  l i k e l y  t o  have a f f e c t e d  t h e  
r e s u l t s  repor ted  i n  t h i s  study. 

c lus ions  i n  t e n  samples were analyzed by 
mass spectrometry us ing  t h e  techniques 

I n  t h e  

I n  t h e  d e l t a i c  deposi ts,  anhydr i t e  and 

Rocks between depths o f  300 and 600 

Quar t z  ve ins  con ta in ing  minor b a r i t e ,  

The pe t rograph ic  r e l a t i o n s h i p s  suggest 

Thus, f l u i d  i n c l u s i o n s  i n  anhydr i t e  

Most had maximum dimensions i n  
No evidence o f  

I n  add i t i on ,  t h e  gas conten ts  o f  in- 

descr ibed by Somner e t  a1 . (1985). Methane, 
ethane, propane and carbon d i o x i d e  were 
detected i n  pr imary  i n c l u s i o n s  i n  s p h a l e r i t e  
and quartz.  I nc lus ions  i n  anhydr i t e  con- 
t a i n e d  main ly  carbon d i o x i d e  and methane. 

Anhydr i te  s u i t a b l e  f o r  f l u i d  i n c l u s i o n  
measurements t y p i c a l l y  occurs as cleavage 
fragments up t o  2 mn across. T y p i c a l l y  
several  generat ions o f  secondary o r  pseudo- 
secondary i n c l u s i o n s  a r e  present. Pr imary 
i nc lus ions  con ta in ing  a small (<1 micron) ,  
u n i d e n t i f i e d  b i r e f r i n g e n t  daughter minera l  
were observed i n  samples f rom 168-177 m i n  
we l l  B. These inc lus ions  form t h r e e  dimen- 
s iona l  a r rays  t h a t  d e f i n e  growth zones i n  
t h e  cleavage fragments. 

The homogenization temperatures o f  
f l u i d  i nc lus ions  i n  anhydr i t e  a re  p l o t t e d  
aga ins t  depth i n  F igu re  3A. The da ta  show 
t h a t  i r r e s p e c t i v e  o f  t h e  o r i g i n  o f  t h e  
i nc lus ions  i n  these samples, homogenization 
temperatures vary l i t t l e  w i t h i n  each depth 
i n t e r v a l ,  and t h a t  t h e  two w e l l s  record  
s imi  1 a r  thermal p r o f i l e s .  No pressure 
c o r r e c t i o n  has been appl i e d  t o  these data 
because o f  t h e  sha l low depths. 

I c e  m e l t i n g  temperatures o f  f l u i d  
i n c l u s i o n s  i n  anhydr i t e  (Fig.  38) range from 
-21.4O t o  -4.7OC. L i q u i d  was observed i n  
some o f  t h e  l a r g e r  i nc lus ions  a t  tempera- 
t u r e s  near -5OOC ( f i r s t  me l t i ng ) ,  i n d i c a t i n g  
t h a t  t h e  i n c l u s i o n  f l u i d s  a re  enr iched i n  
CaCl . For reference, m e l t i n g  p o i n t  
deprgssions rang ing  from 4.7O t o  20.8OC 
correspond t o  s a l i n i t i e s  o f  7.4 t o  23.2 
equi Val e n t  weight percent NaCl ( P o t t e r  e t  
a1 ., 1978). 

f o r  f r e e z i n g  and heat ing  measurements were 
found i n  a few c r y s t a l s  f rom two depth 
i n t e r v a l s  i n  we l l  B. These inc lus ions  a re  
pr imary,  forming small  i s o l a t e d  groups o r  
three-dimensional a r rays  t h a t  para1 l e 1  c o l o r  
banding. The inc lus ions  y i e l d e d  homogeniza- 
t i o n  temperatures rang ing  from 179O t o  223OC 
(Fig.  3A), and i c e  m e l t i n g  temperatures 
(F ig .  38) rang ing  f rom -12.0 t o  -lO.O°C 
(16.0 t o  14.0 equ iva len t  weight percent 
NaCl ) . 
Figs. 3A and B)  and secondary i n c l u s i o n s  o f  
ve in  quartz.  The pr imary  i n c l u s i o n s  occur 
i n  t h r e e  dimensional arrays t h a t  d e f i n e  
growth zones. Homogenization temperatures 
o f  these inc lus ions  range from 194O t o  242OC 
(F ig .  3A). Because o f  t h e i r  small s i z e  (1 
t o  3 microns) o n l y  a few f reez ing  p o i n t  
depressions were measured. 
temperatures ranged from -13.9O t o  -9.2OC 
(17.8 t o  13.1 equ iva len t  weight percent 
NaCl ) . 
temperatures rang ing  from 189O t o  21OoC and 
i c e  m e l t i n g  temperatures t h a t  vary f rom 
-16.5O t o  -0.7OC (20.0 t o  1.2 equ iva len t  
weight percent NaC1). The high-sal  i n i t y  
i n c l u s i o n s  have f reez ing  p o i n t  depressions 
s i m i l a r  t o  t h e  b r i n e s  t rapped i n  anhydr i t e  a t  
these depths and thus  may represent l o c a l l y  

F l u i d  i nc lus ions  i n  s p h a l e r i t e  s u i t a b l e  

Data were obtained on pr imary ( r e f e r  t o  

The i c e  m e l t i n g  

Secondary i n c l  usions have homogenization 
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der i ved  f l u i d s .  The low-sal i n i t y  f l u i d s  may 
represent  condensate mixed wi th a small  
amount o f  t h e  h i g h e r  s a l i n i t y  b r i nes .  

DISCUSSION 

The da ta  descr ibed above suggest t h a t  
t h e  e v o l u t i o n  o f  t h e  rocks i n  t h e  sha l l ow  
p o r t i o n s  o f  t h e  o f  t h e  two w e l l s  s tud ied  
i nvo l ved  f o u r  d i s t i n c t  processes. These 
inc lude :  1 )  t h e  fo rma t ion  o f  secondary 
minera l  s through low- t o  moderate-temperature 
isochemical react ions;  2) t h e  p rog ress i ve  
downward cementation o f  t h e  sandstones by 
a n h y d r i t e  and c a l c i t e ;  3) t h e  i n f l u x  o f  
meta l -bear ing b r ines ;  and 4)  t h e  development 
o f  f r a c t u r e  pe rmeab i l i t y .  The i n i t i a l  
hea t ing  o f  t h e  sediments i s  r e f l e c t e d  i n  t h e  
fo rma t ion  o f  a n h y d r i t e  a f t e r  gypsum and t h e  
r e c r y s t a l l i z a t i o n  o f  t h e  sheet s i l i c a t e s  as 
discussed by M u f f l e r  and White (1969). 
c o n t r a s t ,  t h e  a n h y d r i t e  + c a l c i t e  cement i n  
t h e  d e l t a i c  sandstones c o u l d  no t  have formed 
f rom t h e  f l u i d s  o r  d e t r i t a l  components 
o r i g i n a l l y  present  i n  these rocks. However, 
t h e  f l u i d s  i n  t h e  o v e r l y i n g  l a c u s t r i n e  rocks 
would have been enr iched i n  bo th  s u l f a t e  and 
b icarbonate.  Because c a l c i t e  and a n h y d r i t e  
d i s p l a y  r e t r o g r a d e  s o l u b i l i t i e s ,  hea t ing  o f  
downward moving s u l f a t e  and carbonate i o n s  
would have r e s u l t e d  i n  t h e  deposi ton o f  these 
m ine ra l s  i n  t h e  sandstones imned ia te l y  
under l y ing  t h e  l a c u s t r i n e  deposi ts .  With 
t ime, cont inued d i f f u s i o n  o f  s u l f a t e  and car-  
bonate would have l e d  t o  a p rog ress i ve  
t h i c k e n i n g  o f  t h e  a n h y d r i t e  + c a l c i t e  
cemented sandstones. 

temperature p r o f i l e s  cha rac te r i zed  by h i g h  
g rad ien ts  through t h e  upper 323 m i n  w e l l  A 
and 341 m i n  w e l l  B. Using t h e  average 
homogenization temperature o f  247OC f o r  
samples f rom a depth o f  332-341 m i n  w e l l  B, 
and a mean annual a i r  temperature o f  22.5OC 
( I m p e r i a l  I r r i g a t i o n  D i s t r i c t ,  1982), t h e  
c a l c u l a t e d  average g r a d i e n t  t o  t h i s  depth i s  
0.66OC/m. Younker e t  a1 . (1982) have shown 
t h a t  such h i g h  g rad ien ts  a r e  i n d i c a t i v e  o f  
hea t  t r a n s f e r  by conduct ion through rocks o f  
low pe rmeab i l i t y .  Th i s  c a l c u l a t e d  g r a d i e n t  
and t h e  m ine ra log i c  re1 a t i o n s h i  ps suggest 
t h a t  t h e  thermal cap extends t o  t h e  base o f  
t h e  a n h y d r i t e  + c a l c i t e  cemented sandstones. 
I n  c o n t r a s t ,  homogenization temperatures o f  
i n c l u s i o n s  i n  w e l l  A between 460 and 622 m 
a re  n e a r l y  constant  w i t h  depth, i m p l y i n g  t h a t  
heat  i s  t r a n s f e r r e d  through these rocks by 
convec t i on  (Younker e t  a1 . , 1982). 

The secondary potassium f e l d s p a r  and 
s p h a l e r i t e  cement found i n  t h e  lower  p a r t  o f  
t h e  thermal cap cou ld  no t  have been formed 
by t h e  f l u i d s  t h a t  deposi ted t h e  a n h y d r i t e  
i n  t h e  sandstones. 
p l a g i o c l a s e  by potassium f e l d s p a r  i nvo l ved  
t h e  a d d i t i o n  o f  K and removal o f  Na f rom t h e  
rocks. Because t h e  K/Na r a t i o  o f  geothermal 
waters increases w i t h  i nc reas ing  temperature 
( F o u r n i e r  and T ruesde l l ,  1973), t h e  forma- 
t i o n  o f  potassium f e l d s p a r  i n  t h e  shal low 

I n  

The f l u i d  i n c l u s i o n s  i n  a n h y d r i t e  reco rd  

The replacement o f  

d e l t a i c  rocks must have r e s u l t e d  f rom t h e  
i n f l u x  o f  b r i n e s  de r i ved  f rom h ighe r -  
temperature p o r t i o n s  o f  t h e  geothermal 
system. These f l u i d s  would a l s o  have been a 
l i k e l y  source o f  z inc ,  lead,  and copper. 

suggest t h a t  t h e  s p h a l e r i t e  cement found i n  
t h e  d e l t a i c  sandstones has rep laced pre- 
e x i s t i n g  a n h y d r i t e  cement. 
s u l f a t e  t o  s u l f i d e  cou ld  have occurred by 
severa l  d i f f e r e n t  mechanisms. However, 
r e d u c t i o n  by p r e - e x i s t i n g  s u l f i d e s  o r  
anerobic  b a c t e r i a  i s  n o t  l i k e l y  i n  t h i s  
case. 
been reduced by hydrocarbons c a r r i e d  i n  
s o l u t i o n  by t h e  upwe l l i ng  b r i n e s  accord ing 
t o  t h e  r e a c t i o n  (Anderson, 1983): 

As discussed above, ou r  observat ions 

Reduction o f  t h e  

A l t e r n a t i v e l y ,  t h e  s u l f a t e  cou ld  have 

a n h y d r i t e  + CH 4 + Zn+2 

= s p h a l e r i t e  + Ca+2 + COP + 2 H20 

We i n f e r  f rom t h e  widespread occurrence 
o f  s p h a l e r i t e  cement t h a t  m a t r i x  per- 
m e a b i l i t i e s  were r e l a t i v e l y  h i g h  d u r i n g  i t s  
depos i t i on .  I n  c o n t r a s t ,  t h e  fo rma t ion  o f  
ve ins  i m p l i e s  lower  m a t r i x  p e r m e a b i l i t i e s  
and f racture-dominated f l u i d  f l o w  (E lde rs ,  
1979). The occurrance o f  b a r i t e  i n  these 
ve ins  suggests t h a t  some m ix ing  o f  t h e  pore 
and v e i n  f l u i d s  occurred. As noted by 
Barnes (1983) i n  h i s  d i scuss ion  o f  
M i s s i s s i p p i  V a l l e y  l ead -z inc  deposi ts ,  t h e  
d e p o s i t i o n  o f  b a r i t e  would most l i k e l y  occur  
where barium-bearing s o l u t i o n s  encountered a 
s u l f a t e - r i c h  groundwater o r  where o x i d a t i o n  
o f  s u l f i d e  t o  s u l f a t e  i n  s o l u t i o n  can occur. 
As discussed above, su lphate-bear ing pore 
f l u i d s  must have been present  i n  t h e  
sandstones i n  t h e  upper p a r t  o f  t h e  d e l t a i c  
s e c t i o n  and cou ld  have mixed w i t h  t h e  r i s i n g  
v e i n  f l u i d s .  La te r ,  these f l u i d s  would have 
been purged f rom t h e  ve ins  as upward f l o w  
cont inued,  caus ing d i s s o l u t i o n  o f  e a r l y  
b a r i t e  and d e p o s i t i o n  o f  s u l f i d e s ,  hemat i te  
and a d d i t i o n a l  qua r t z  f rom f u r t h e r  coo l i ng .  

SUMMARY AND CONCLUSIONS 

F l u i d  i n c l u s i o n  data and pe t rog raph ic  
s t u d i e s  have been used t o  r e c o n s t r u c t  t h e  
e v o l u t i o n  o f  t h e  rocks i n  t h e  shal low 
p o r t i o n s  o f  two w e l l s  d r i l l e d  i n  t h e  
southern p a r t  o f  t h e  Sa l ton  Sea geothermal 
system. The i n i t i a l  hea t ing  o f  these rocks 
r e s u l t e d  i n  t h e  fo rma t ion  o f  a n h y d r i t e  a f t e r  
gypsum and t h e  fo rma t ion  o f  secondary 
p h y l l o s i l i c a t ' e s .  Anhydr i t e  and c a l c i t e  were 
a l s o  deposi ted d i r e c t l y  f rom t h e  pore f l u i d s  
as a cement i n  t h e  under l y ing  d e l t a i c  
sandstones. Cementation o f  t h e  sandstones 
progressed downward, reducing t h e i r  per- 
m e a b i l i t i e s  and l e a d i n g  t o  a t h i c k e n i n g  o f  
t h e  thermal cap w i t h  t ime. F l u i d  i n c l u s i o n  
homogenization temperatures i n  a n h y d r i t e  
i nc rease  s y s t e m a t i c a l l y  w i t h  depth through 
t h e  thermal cap. V a r i a t i o n s  i n  t h e  s a l i n i t -  
i e s  o f  t hese  f l u i d  i n c l u s i o n s  demonstrate 
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t h a t  some m ix ing  o f  downward-percolat ing 
b r i n e s  and r e s e r v o i r  f l u i d  took  place. 
However, t h e  v e l o c i t i e s  o f  t h e  descending 
waters were apparan t l y  n o t  h i g h  enough t o  
d i s t u r b  t h e  thermal gradient .  

The i n f l u x  o f  b r i n e s  f rom h i g h e r  
temperature p o r t i o n s  o f  t h e  geothermal system 
occurred e p i s o d i c a l l y  d u r i n g  development o f  
t h e  thermal cap. Movement o f  t hese  b r i n e s  
through t h e  thermal cap r e s u l t e d  i n  t h e  
d e p o s i t i o n  o f  potassium f e l d s p a r  and sphaler-  
i t e  cement and i n  t h e  fo rma t ion  o f  q u a r t z  
veins. 
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W e l l  l o c a t i o n s  i n  t h e  S a l t o n  Sea 
g e o t h e r m a l  f i e l d .  W e l l s :  C S  = 
C a l i f o r n i a  S t a t e ;  E = E l m o r e ;  MM = 
Magrnamax; S = S i n c l a i r ;  SP  = 
S p o r t s m a n ;  W = W o o l s e y .  A a n d  B 
a r e  t h e  l o c a t i o n s  o f  t h e  w e l l s  
d e s c r i b e d  i n  t h i s  s t - u d y .  R h y o l i t e  
domes:  M I  = M u l l e t  I s l a n d ;  OB = 
O b s i d i a n  B u t t e ;  RH = Rock H i l l ;  R I  
= Rock I s l a n d .  The  h a c h u r e d  l i n e  
shows t h e  b o u n d a r y  o f  t h e  o r i g i n a l  
S a l t o n  Sea Known G e o t h e r m a l  
R e s o u r c e  A r e a  (KGRA). M o d i f i e d  
f r o m  M c D o w e l l  a n d  E l d e r s  ( 1 9 8 0 ) .  
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H o m o g e n i z a t i o n  t e m p e r a t u r e  v s .  d e p t h  o f  f l u i d  i n c l u s i o n s  i n  a n h y d r i t e ,  
s p h a l e r i t e ,  a n d  q u a r t z .  S y m b o l s :  a n h y d r i t e  = open  s q u a r e s ,  W e l l  A ;  f i l l e d  
s q u a r e s ,  W e l l  B ;  + = q u a r t z ,  W e l l  B ;  X = s p h a l e r i t e ,  W e l l  B.  The b a s e l i n e s  o f  
t h e  h i s t o g r a m s  a r e  l o c a t e d  a t  t h e  l o w e r m o s t  l i m i t  o f  t h e  s a m p l e  i n t e r v a l .  T i c k  
m a r k s  l a b e l e d  A a n d  B i n d i c a t e  t h e  d e p t h  t o  t h e  b a s e  o f  t h e  l a c u s t r i n e  d e p o s i t s  
i n  t h e  t w o  w e l l s .  The  b o i l i n g  p o i n t  c u r v e  f o r  a 1 5  w e i g h t  p e r c e n t  NaCl s o l u t i o n  
( H a a s ,  1 9 7 1 )  i s  a l s o  shown f o r  r e f e r e n c e .  B.  F r e e z i n g  p o i n t  d e p r e s s i o n  v s .  
d e p t h  f o r  f l u i d  i n c l u s i o n s  i n  a n h y d r i t e .  R e f e r  t o  F i g .  3 A  f o r  an  e x p l a n a t i o n  o f  
t h e  s y m b o l s .  
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