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A high-temperature vapor-dominated reservoi r  
underlies a portion of the Northwest Geysers 
area. Sonoma County, California. The high- 
temperature reservoi r  (HTR) is defined by 
flowing f l u i d  temperatures exceeding 50O0Ff 
rock temperatures apparently exceeding 600°F 
and steam enthalpies of about 1320 BTU/lb. 
Steam from e x i s t i n g  wel ls  d r i l l e d  i n  t h e  
Northwest Geysers is produced from both a 
"typical" Geysers reservoi r  and the HTR. I n  
a l l  cases ,  the HTR is in the lower portion of 
t h e  wells and is  o v e r l a i n  by a " t y p i c a l "  
Geysers r e s e r v o i r .  Depth t o  t h e  high- 
temperature reservoi r  is re l a t ive ly  uniform 
a t  about  -5900 f t  subsea .  There are no 
iden t i f i ed  l i tho logic  or  mineralogic condi- 
t i o n s  t h a t  s e p a r a t e  t h e  HTR f rom t h e  
"typical" reservoi r ,  although the two reser- 
v o i r s  are v e r t i c a l l y  d i s t i n c t  and can  be 
located in most wells t o  within about 200 f t  
by t h e  use  of downhole temperature-depth 
measurements. Gas concentrations in steam 
from the HTR are higher (6 t o  9 w t  %> than 
from the "typical" Geysers reservoir (0.85 t o  
2.6 w t  %). Steam from the HTR is enriched 
in chloride and the  heavy isotopes of water 
r e l a t i v e  t o  the "typical" reservoir.  Avail- 
able static and dynamic measurements show 
pressures are subhydrostatic i n  both reser- 
vo i r s  with no anomalous differences between 
the  two: the  HTR pressure being near 520 ps ia  
a t  sea l e v e l  datum. The small observed 
differences i n  pressure between the reser- 
vo i r s  appear t o  vary along a steam density 
gradient. It is postulated that the North- 
west Geysers area evolved more slowly toward 
vapor-dominated conditions than other p a r t s  
of The Geysers f i e l d  because of its poor$ '  
connection with the surface. In this paper. 
a model is presented i n  which the boundary, 
between the HTR and "typical" reservoi r  is a 
thermodynamic feature only, resulting fromi 
recent deep venting of a liquid-dominated 
system i n  which conduction is  still a n  
Important component of heat t ransfer .  

The presence of high temperatures (%OO°F) in 
wells d r i l l e d  by GI30 Operator Corporation 
( G B O O C ) .  a w h o l l y  owned s u b s i d i a r y  of  
Geothermal Resources I n t e r n a t i o n a l ,  Inc  . 
(GEO), in the  Northwest Geysers (Figure 1) 
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Figure 1: Map of The Geysers wi th  
location of geologic cross section (A-B) 
of Figure 2. 

was first recognized in 1982 from tempera- 
tures measured during downhole d i rec t iona l  
well surveys. With the ava i l ab i l i t y  of high- 
temperature logging t o o l s ,  the presence of 
flowing high-temperature (>656'F) steam was 
recorded in January 1984. 

Wells i n  leases o f f s e t t i n g  t h e  Northwest 
Geysers area of GBOOC a l s o  p e n e t r a t e  (a) 
high+mperature reservoir(s)  (Sternfeld and 
others.  1983 and Beall. 1985). Because there 
are a t  least two deep (&lO,OOO f t )  wells t h a t  
do not  encounter high temperatures between 
the GEOOC and high-temperature wells on other 
leases, the HTR i n  the GEOOC area is treated 
intthis paper as if it were a separate reser- 
vo i r  no t  r e l a t ed  t o  others. 

Wells penetrating the Northwest Geysers HTR. 
re fer red  t o  as high-temperature wells l a t e r  
in t h i s  paper, are the ab jec t  of previous 
papers. Drenick (1986) discussed the  logging 
and  i n t e r p r e t a t i o n  of  a s i n g l e  h i g h -  
temperature w e l l  and Haizlip (1985) described 
enriched isotope composition in steam from 
Northwest Geysers wells. 
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The primary purpose of t h i s  paper is t o  docu- 
ment the existence of a HTR by describing the 
areal extent and characteristics of the flTR 
penetrated by GBOOC wells. In this paper, it 
w i l l  be shown t h a t  t h e  tempera ture  and 
enthalpy of steam in the HTR are significant- 
l y  d i f f e r e n t  from t h e  " t y p i c a l "  Geysers 
reservoi r  steam. It will a l s o  be shown that 
rock type, secondary mineralogy and pressure 
do not appear t o  be diegnostic of the HTR. 
Finally,  a conceptual model is presented t o  
explain the presence of the R!l'R in the North- 
west Geysers. 

*P- 

Most wells d r i l l e d  by GBOOC In the Northwest 
Geysers are d r i l l e d  from the surface t o  t o t a l  
depth i n  Franciscan graywacke (Figure 2). 
The only in te r rupt ions  of the graywacke are 
occasional, thin (usually less than 100 it) 
units of greenstone and chert, and tectonlc- 
r e l a t ed  melanges which include eerpentinite , 
blueschist  and clay. No s igni f icant  changes 
in primary Franciscan formation metamorphic 
grade or  d e t r i t a l  composition are observable 
between the  graywackes of the unfractured 
r o c k  o v e r l y i n g  t h e  t o p  of  eteam. t h e  
"typical" reservoh- and the HTR. These weak- 
l y  metamorphosed metasedhentary rocks are 
reconsti tuted t o  textural grade 1 described 
by Blake and others (1967). 

There is  a g r a d a t i o n a l  a l t e r a t i o n  of t h e  
graywacke with depth due t o  hydrothermal as 
well as thermal metamorphism. With increas- 
ing depth, the graywacke becomes hornfelsic 

as matrix materiels and then framework gra ins  
become Increasingly recrys ta l l ized .  Tourmal- 
inized reeervolr rock (single hatching on the 
ll thology column of Figure 3) displays weak 
t o  moderately developed echistose textures. 
A t  greater depths, the reeervolr is notice- 
a b l y  h o r n f e l s i c  (double ha t ch ing  on t h e  
l l tho logy  column of Figure 3). 

The HTR is most o f t e n  encountered w i t h i n  
hornfelsic graywacke and sometimes within the  
tourmelinized zone inferring a causal rela- 
t i o n s h i p .  However, t h e  c o r r e l a t i o n  is 
f o r t u i t o u s  as " t y p i c a l "  steam r e s e r v o i r  
c o n d i t i o n s  are a l s o  found i n  tourmaline- 
bear- and hornfelsic a l t e r ed  rocks in other 
Northwest Geysers wells. The apparent corre- 
l a t i o n  between the hornfels and the  HTR is 
simply a depth relationship.  

The hornfels Indicates in t rus ive  rocks are 
r e l a t ive ly  near. Publicly ava i lab le ,  open- 
f i l e  w e l l  r e c o r d s  f rom t h e  C a l i f o r n i a  
D i v i s i o n  of O i l  and  Gas i n d i c a t e  t h a t  
hornfels aureoles occur within 1500 f t  or  
more above felsite bodies in the Southeast 
and Central Geysers areas. The nearly planar 
d i s t r ibu t ion  of hornfelsic graywacke (Figure 
2) Indica tes  that fe ls i te  In t rus ives  probably 
underlie a large ex ten t  of the GEOOC portion 
of the f i e l d  although only two subsurface 
Occurrences of in t rus ives  are as yet dr i l led  
i n  t h e  N o r t h w e s t  G e y s e r s .  A d d i t i o n a l  
i nd i r ec t  evidence f o r  Quaternary Intrusion 
comes from geomorphological s tud ies  of the 
area. Circular anomalies, barbed t r ibu ta r i e s  
and arcuate stream segments are evidence f o r  

I . - 1. rn Il.W.... 

Figure 2: G e o l o g i c  c r o s s  s e c t i o n  
through Northwest Geysers area (A-B) of 
Figure 1. 
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recent u p l i f t  and associated tensional fau l t -  
ing related t o  in t rus ive  a c t i v i t y  (Bebber. 
1986). 

There is no evidence t o  suggest that second- 
ary minerals form a seal between the  RTR and 
"typical" reservoi r .  The percentage of vein- 
f i l l i n g  minerals t o  t o t a l  rock in bot5 reser- 
vo i r s  is typica l ly  1 t o  3% and there is not a 
unique assemblage of minerals r e s t r i c t ed  t o  
either reservoi r .  A t  least three generations 
of secondary minerals are recognized in The 
Geysers (Figure 3) as determined from petro- 
log ic  and i so topic  s tud ies  (Lambert. 1976; 
S ternfe ld ,  1981). The dominant secondary 
mineralization is a strongly zoned succession 
of Quaternary mineral assemblages deposited 
by a liquid-dominated hydrothemil system 
Induced by f e l s i t e  i n t r u s i o n .  A l a te r  
Quaternary set of retrograde minerals super- 
imposed over t he  f i r s t .  occurs sporadically 
throughout the  steam reservoi r  and tends t o  
cor re la te  with steam e n t r i e s  in well bores. 
This later Quaternary mineral assemblage, 
c h a r a c t e r i z e d  by p r e h n i t e  and a x i n i t e  , 
probably represents the last forming minerals 
prec ip i ta ted  from l iqu id  during the  vapori- 
zation process that transformed The Geysers 
from a liquid-dominated t o  a vapor-dominated 
system. The temperature of formation f o r  
prehnite in ac t ive  geothermal systems, 460 t o  
680°F (Bird and o thers ,  1984). corresponds 
with the range of observed temperatures ir: 
both reservoi rs .  

that the surficial geothermal manifestations 
in the  Northwest Geysers were a l so  of limited 
extent in the  pas t  as in the present. 
The spatial re la t ionship  of noncondensible 
gas in steam from geothermal wel l s  t o  sur f i -  
cia1 geothermal manifestations I s  also shown 
i n  F igu re  4. As d i scussed  la ter  i n  t h i s  
paper, the high gas content in the steam from 
wells of the Northwest Geysers and the rela- 
t i v e l y  few s u r f a c e  m a n i f e s t a t i o n s  a re  
believed t o  be d i r e c t l y  re la ted .  

0 7 '  I I. 

Figure  4: Rela t ionsh ip  of gas la team 
r a t i o s  from wells t o  vent areas in The 
Geysers. 
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Figure 3: Generalized secondary miner- 
alogy a t  The Geysers. 

Unlike the Central and Southeast Geysers, 
r e l a t ive ly  few s u r f i c i a l  hydrothermal mani- 
f e s t a t ions ,  i . e . ,  vent areas, occur in the  
Northwest Geysers as shown In Figure  4. 
Presently,  the  only known venting of noncon- 
densible gases i n  the portion .of the North- 
west- Geysers developed by GECQC are confined 
along the  traces of two f au l t s .  These gases 
are from dry  gas vents and cold springs which 
have anomalous concentrations of sulfate. 
carbon dioxide, boron and carbonate. Because 
hydrothermal a l t e r a t ion  is often evidence f o r  
pas t  geothermal ac t iv i ty .  it is concluded 

v 
The HTR is recognized primarily by downhole 
temperature measurements. Wellhead data are 
a l s o  u s e f u l  i n  t h e  r e c o g n i t i o n  of wells 
penetrating the  HTR but are not diagnostic i n  
some cases where the  r e l a t i v e  steam contribu- 
t i on  from the HTR t o  the  t o t a l  flow rate of 
the  well is low (Table 1 ) .  

TABLE I 
Nortbwest Geysers 

SonDne county. California 

nmlEK4D DATA 

U6LL5 PBNBPRATING "TYPICAL" GBYSWS RESEIVOIR (Sb80°€) 

Bnthnlp~~ (BTLVlt Total Gas (ppw) NIC (z) 6'-/00) 

1195-1211 8500-25700 250-870 -0.2 -50 <I 

YgtLS m T I N G  EIGH -m RESBRVOIR (2500% 

---- -- 

Chloride * Enthalpy* Total N/C* R2S* 
(BRl/lb.) Oaa (ppw)  (ppw) 6 1 m o / O O ) *  (ppm) 

1200-1242 26.000 - 750-1660 +1.4 -4b 15-150 
?6,700 

Note: Values repre,Ecnt combined ateam f lw  from both the HTR and 
.typical" C e g w s  reservoIT. The re lat ive  contribution 
from the.Rl'R at the wellhead rmgea from ~5 t o  69% of the 
t o t a l  flow. The highest values are from vells with the 
greatest stem contribution from the m. 
Isotope values are vcQhted averages n 
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Publicly available temperature-depth data f o r  
wells i n  t h e  C e n t r a l  Geysers (Lipman and 
o thers ,  1978 and Thomas and others,  1981) 
and proprietary temperature-pressure-*inner 
(TPS) data obtained by GEOC are the bases of 
the following conclusions about temperatures 
i n  the "typical" Geysers reservoir:  

I 

1. 

2. 

3. 

Temperature l o g s  from f lowing  wells 
cons is ten t ly  indicate temperatures in 
the range  of 440 t o  490°F w i t h i n  t h e  
reservoi r .  Where TF'S 106s are avail- 
able, enthalpy values range from approx- 
imetely 1220 t o  1250 BTU/lb. 
Temperature-depth p l o t s  of maximum- 
reading thermometer (MRT) measurements 
made on bottom during d i rec t iona l  sur- 
veys whi le  d r i l l i n g  i n  t h e  "typical" 
r e s e r v o i r  u s u a l l y  range  from 400 t o  
450°F with mexirrmm values near 480°F. 
MRT temperatures exceeding 600°F are the 
first indication of a high temperature 
reservoi r .  
Flow l i n e  t empera tu res  (FLT) of t h e  
c i rcu la t ing  drilling medium (air) mea- 
su red  whi le  d r i l l i n g  t h e  " t y p i c a l "  
reservoi r  are normally in the range of 
210 t o  230°F but may approach 320 F in 
some cases. 

Using the data developed from wells i n  the  
"typical" Geysers reservoi r ,  criteria were 
established t o  determine whether o r  not the 
HTR is penetrated. These criteria are as 
follows and are ranked by importance: 

1. MRT values exceeding 500°F. 
2. Downhole f lowing  steam tempera tures  

3. FLT measurements of more than  300 t o  
exceeding 500°F. 

320°F. 

Taken together.  these criteria were used t o  
estimate the depth t o  the HTR f o r  each well 
d r i l l e d  by GEOOC. Examples of these cri teria 
and the  resu l t ing  estimate of depth t o  the 
HTR are graphically presented as individual 
temperature-depth p l o t s  f o r  both a "typical" 
well and a high-temperature w e l l  (Figures 5 
and 6) .  Accuracy of the depth estimates t o  
the HTR is about 200 f t  f o r  most wells. 

The temperature logs of flowing steam from 
completed wells often do not accurately show 
the  boundary between the "typical" and high- 
temperature reservoi rs .  The reason f o r  this 
is t h a t  high-temperature steam flowing up the 
wel lbore  masks t h e  c o o l e r  e n t r i e s  i n  t h e  
" t y p i c a l "  r e s e r v o i r  ( D r e n i c k ,  1986). 
Consequently. MRT v a l u e s  c o l l e c t e d  whi le  
drilling wells serve as a better criteria f o r  
delineating the top of the HTR and are ranked 
accordingly. However, it is acknowledged 
that MRT values from unequilibrated boreholes 
are not accurate temperature measurements of 
the  reservoi r  rock temperatures (mess and 
others.  1987). 

Although the  maximum temperature of the HTR 
i s  not known. a flowing steam temperature of 

- STEAM ENTRY +BOTTOM W E  
TWRMOMETER (YRTI 

O I FLOWING STEAM 
RETURN 

pisure 5: TemperatureAepth p lo t  f o r  
well p e n e t r a t i n g  only  t h e  " t y p i c a l "  
Geysers reservoi r .  

656'F was measured p r io r  t o  the f a i l u r e  of 
one temperature too l .  The upper limit is not 
known because n e i t h e r  thermometers nor  
electric logging t o o l s  are available which 
exceed about  650°F. Where TPS l o g s  are 
ava i lab le ,  the enthalpies measured in the HTR 
range from 1300 t o  1320 BTU/lb. 

The depth t o ,  and areal extent o f ,  the HTR i n  
the area of GBOOC's operation in the North- 
west Geysers is shown on Figure 7. Ugh- 
tempera ture  wells are a l s o  known t o  t h e  
northeast  (e. g . , Occidental Wilson 1 well) 
but because eeveral  deep wells between these 
two areas encounter only the "typical" reser- 
vo i r ,  it is unknown whether o r  not the two 
areas t ap  the same HTR. It is unknown how 
f a r  the HTR may extend t o  the northeast ,  but 
it could extend across the Clearlake volcanic 
f ield (Beall, 1985). Similarly. it is un- 
known whether o r  no t  the HTR is present below 
the greater Geysers production area and has 
not ye t  been detected (Drenick. 1986) because 
wells and/or temperature measurements may not 
be deep enough. 
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WELL " A "  
TEWERATURE (OF) 

- SEAM LNTRY + BOTtOMHOLE 

o ~LLlNGARRETURN FLOWING STEAM 
THERMOMETER IMRT) 

I - - EST Top OF HIGH TEMP RESERVOIR 

Figure 6: Temperature-depth p l o t  f o r  
w e l l  p e n e t r a t i n g  HTR and over ly ing  
"typical" Geysers reservoir .  

The thickness of the "typical" Geysers reser- 
v o i r  over ly ing  t h e  HTR is  shown on t h e  
geologic cross  sect ion of Figure 2 .  This 
section is indicat ive of the r e l a t i v e  contri-  
bution t h a t  the "typical" reservoir  makes t o  
wells penetrating the HTR. The thinnest  par t  
of the "typical" reservoir  i s  a l s o  where the 
enthalpy and gas concentration of the steam, 
as measured a t  the wellhead, are  highest. 

Figure 7: Depth t o  HTR in GEO portion 
of Northwest Geysers. 

Heat traneport  from the "typical" reservoir  
t o  t h e  s u r f a c e  i s  l a r g e l y  by conduct ion 
(Urban and  o t h e r s ,  1 9 7 5 ) .  W i t h i n  t h e  
ntypical" reservoir, heat t ransport  is large- 
l y  by convection (White and others ,  1971) a s  
evidenced by almost isothermal temperature- 
depth relat ionships .  I n  Figure 5 ,  an i l l u s -  
t r a t i o n  of t h i s  phenomenon is presented .  
Heat t ransport  in the ElTR appears t o  have a 
large conductive component. Although the 
bottom-hole measurements made while d r i l l i n g  
a r e  n o t  e q u i l i b r a t e d ,  t h e r e  are d e f i n i t e  
increases in temperature with depth in the 
HTR wi th  apparent  g r a d i e n t s  ranging from 
approximtely 5 t o  10°F/lOO f t .  An i l l u s -  
t r a t i o n  of an apparently high temperature 
gradient in the ElTR is provided in Figure 6. 

For any g iven  h e a t  f l u x ,  t h e  temperature  
gradient is a function of thermal conductiv- 
i t y .  Thermal conductivity measurements on 19 
samples of hornfelsic graywacke were made 
using a method described by Sass and others 
(1971) t o  determine if the  apparent higher 
temperature gradients observed in the HTR 
were re la ted  t o  the thermal a l t e r a t i o n  of the 
graywacke. Thermal conductivity values of 
the hornfels ic  graywacke 8aIples ranged from 
6.1 t o  7.6 TCU (mcal/cm-sec- C) with a median 
va lue  of 6 . 8  TCU. These v a l u e s  a r e  very 
similar t o  graywacke which has a mean value 
of 7.6 TCU (Thomas. 1986). Therefore, the 
apparent high-temperature gradients  in the 
HTR cannot be a t t r ibu ted  primarily t o  con- 
trasting thermal conductivity values. - 
Pressure p r o f i l e s  were obtained in flowing 
w e l l s .  i d l e  wells on smal l  "b leeds" ,  and 
completely s t a t i c  wells. The p r o f i l e s  are  
from wells both inside and outside the HTR 
shown in Figure 7. Approximately 50 prof i les  
a re  avai lable  from the various wells,  with 
the measurements having been performed from 1 
t o  600 days after completion of drilling. In 
a l l  cases ,  steam is the pressure controll ing 
medium with the maXirmrm pressure measured 
being approximately 520 peia a t  sea l eve l  
datum. A l l  pressure gradients conform t o  
expected steam dens i t ies ;  higher gradients 
which would be e x p e c t e d  f o r  a l i q u i d -  
dominated s e c t i o n  o r  a b o i l i n g ,  vapor- 
dominated t o  liquid-dominated interface have 
not been encountered. Further,  there  do not 
appear t o  be s ign i f icant  pressure differences 
between the  two r e s e r v o k s .  Thus, the HTR is  
not a liquid-dominated region a t  t h i s  time. 
nor  does it appear  t o  have s u b s t a n t i a l  
p r e s s u r e  d i f f e r e n c e s '  from t h e  " t y p i c a l "  
ceservoi r  which overl ies  it. Analysis of 
pressure buildup data. 'and other pressure 
trans1ent"measurements is underway t o  c l a r i f y  
the in te rpre ta t ion  of the pressure behavior 
of the  "R. - 
Samples of steam were collected a t  the well- 
head or  steam l i n e  during drilling and flow 
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testing. Drilling samples were collected 
during t r i p s  and d i rec t iona l  surveys. The 
d r i l l i n g  s a m p l e s  r e p r e s e n t  c u m u l a t i v e  
samples; i . e . ,  the steam of each succeeding 
o r  deeper en t ry  is mixed with the previous 
en t r i e s .  Flow test samples represent com- 
bined production from a l l  en t r i e s .  Data from 
the analyses of noncondensible gas. chloride,  
oxygen-18 (0-18) and deuterium (D) data can 
be used t o  distinguish the  HTR and "typical" 
reservoi r .  

Samples collected during drilling reflect 
changes of concen t r a t ion  wi th  depth .  A 
"typical" Geysers well has r e l a t ive ly  con- 
stant f l u i d  chemistry concentrations in the 
reservoi r  (see Figure 8). except f o r  a pos- 
sible gassy upper layer due t o  condensation. 
Gas concentrations in a high-temperature well 
increase s igni f icant ly  near the top of the  
HTR (see Figure 9) .  
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Figure 8: Wellhead gas concentrations 
of a well penetrating only the  "typical" 
Geysers reservoi r .  

Flow test results from high-temperature wells 
representing the combined production of the 
"typical" and HTR reservoi rs  are compared 
wi th  " t y p i c a l "  wells i n  Table 1. Wells 
penetrating the  HTR contain higher concentra- 
t i ons  of noncondensible gas,  chloride and t o  
a lesser extent 0-18 and D than "typical" 
wells. When the gas results are compared t o  
the  proportional contribution of the  HTR t o  
the t o t a l  flow, the HTR appears t o  produce 
steam with 6 t o  9% by weight noncondensible 
gas and 1900 t o  2600 ppmw hydrogen su l f ide  

(H S) contrasted t o  0.85 t o  2.6% and 150 t o  
806 ppmw, r e s p e c t i v e l y ,  i n  t h e  " t y p i c a l "  
reservoi r .  Chloride concentrations in steam 
a t  the wellhead from the  high-temperature 
wells range from 15 t o  150 ppmw; chloride i n  
HTR steam is estimated t o  be about 200 ppmw. 
0-18 and D are enriched in high-temperature 
wells r e l a t i v e  t o  the "typical" reservoi r  but 
the data are not  su f f i c i en t ly  consistent t o  
ca lcu la te  the  i so topic  composition of the  HTR 
steam. 

WELL "A" 

1000 

NOTE ALL IURVEV IWORMATIII IS ONL Of OR A WYmNATlON OF TRIP BOMB. 
wRyE* K U 0  OR RlGlFLOW TEST K U B  

Figure 9: Wellhead gas concentrations 
of a well penetrating the HTR. 

The composition of g a s  from t h e  HTR is 
distinguished by enrichment in methane (CH ) 
a n d  carbon dioxide (CO ) and depletion i n  
ammonia ("3) and  H 3 r e l a t i v e  t o  t h e  
"typical" reservoi r .  dwever , these d i f fe r -  
ences are smell compared t o  the fieldwide 
var ia t ions  in the noncondensible gases across 
'ihe Geysers ( see  F igure  4) where noncon- 
densible gas values are almost two orders of 
magnitude higher i n  the Northwest than the 
Southeast (Truesdell and others,  1987). 

Similar gas composition and gas concentra- 
t i ons  on the same order of magnitude i n  the 
'XlR and "typical" Northwest Geysers reservoir 
a r e  consistent with the  similar mineralogy 
between t h e  two r e s e r v o i r s  g i v e n  t h a t  
water/rock reac t ions  a re  the primary control 
on reservoi r  f l u i d  chemistry. Variations can 
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be explained by differences in source f l u i d  
and temperature. The presence of connate 
water as sugges ted  p rev ious ly  (Ha iz l ip .  
19861, would increase the concentrations of 
chloride.  D and 0-18 in the steam. Higher 
concentrations of chloride and noncondensible 
gaees (CO2 and M b ,  in pa r t i cu la r ) ,  and rela- 
t i v e l y  lower MI3 can be generated in steam by 
boiling a t  higher temperatures. The high gas 
concentrations in the HTR produce s igni f icant  
p a r t i a l  p r e s s u r e s ,  p o s s i b l y  over  10 bars 
(Mahon and o t h e r s ,  1980). This  h a s  t h e  
effect of lowering and f l a t t en ing  the boiling 
point t o  depth curve, p a r t i a l l y  explaining 
the change in temperature gradient in the 
HTR. 

Quaternary f e l s i c  in t rus ives .  probably relat- 
ed t o  the Clearlake volcanics. intruded the  
fianciscan graywacke and associated rocks 
(Schriener and Suenmicht , 1980) and are found 
throughout t h e  subsu r face  i n  The Geysers 
(Hebein. 1986). The in t rus ions  caused heat- 
ing.  u p l i f t ,  and are a l i ke ly  cause of frac- 
t u r e s  i n  t h e  ove r ly ing  steam r e s e r v o i r  
( Je rome and  Cook, 1958: Koide  and  
Bhattacharji .  1975). Upl i f t  in The Geysers 
initiated deep erosion and landsliding and 
gave the  area a geomorphic signature d i f fe r -  
e n t  from t h e  sur rounding  areas (Bebber, 
1986). 

Intrusion probably caused extensive fracture 
enhancement as well as thermal metamorphiam 
of the  graywacke c lose  t o  the  in t rus ives .  
Consequently, the  f i v e  d iscre te  convection 
cells controlled by f rac tur ing  in The Geysers 
(Thomas and o thers ,  1981) may be a result of 
localized f rac ture  enhancement by intrusion 
r a the r  than regional tec tonics .  Heating of 
the formation water in the fracture system 
around t h e  i n t r u s i v e s  a l s o  i n i t i a t e d  (a) 
hydrothermal system(s). Mineral Isotope and 
other data ind ica te  t h a t  a liquid-dominated, 
high-temperature r e s e r v o i r  pre-dated t h e  
present vapor-dominated Geysers reservoi r  
(Sternfeld. 1981). The Quaternary mercury 
deposits once mined a t  the periphery of The 
Geysers (Bailey. 1946) may be the halo around 
t h i s  earlier hydrothermal system. 

Where the  f e l s i t e s  were intruded su f f i c i en t ly  
shallow as i n  the Southeast Geysers (Hebein, 
1986). the associated f rac ture  system reached 
t h e  s u r f a c e  a l lowing  ven t ing  and decom- 
pression of the hydrothermal system. begin- 
n ing  b o i l i n g  and convec t ion .  The l a r g e .  
s u r f i c i a l l y  a l t e r ed .  areas in the  Southeast 
and Central Geysers are a record of both pas t  
and  p r e s e n t  d e g a s s i n g  of  t h e  s y s t e m .  

Compared t o  other areas in The Geysers. rela- 
t i v e l y  l i t t l e  C02 (5002 ppmw) and H S (50 t o  
100 ppmw) a re  presently found in &e steam 
f r o m  we l l s  n e a r e s t  t h e s e  v e n t  a r e a s  
(Truesdell and others,  1986). This near- 
surface fracture enhancement a l so  allowed the 
ent ry  of meteoric water i n t o  the  system(s). 

The p r e s e n t  steam r e s e r v o i r  found i n  t h e  
Southeast and Central Geysers is from a vent- 
ed l iqu id  system that has l o s t  most of its 
or ig ina l  gas and formation water and is now 
f l u s h e d  by meteor ic  water (Truesde l l  and 
o t h e r s .  1986). The Northwest Geysers is 
be l i eved  t o  be fo l lowing  t h e  same. bu t  
slower, evolutionary development as in the 
Southeast and Central Geysers. The HTR is a 
recent ly  vented llquid-dominated reservoir.  
A "brine" o r  liquid-dominated system below 
the HTR cannot be ruled out. 

Evolution of the Northwest Geysers reservoi r  
is believed t o  be slower because the intru- 
s i o n s  are deeper :  on ly  a few t h i n  f e l s i c  
dikes are encountered by wells and the horn- 
fe l s  development is deep (below -5900 f t  sub- 
sea). The f rac ture  system associated with 
the in t rus ive(s )  therefore is a l s o  deeper: 
consequently, the top of steam is deeper i n  
the Northwest Geysers than other p a r t s  of The 
Geysers where t h e  f e l s i t e  i n t r u s i v e s  a r e  
known t o  be shallow. The top of steam is 
-2500 f t  t o  -4500 f t  in the  Northwest Geysers, 
compared t o  2000 f t  t o  -2500 f t  i n  t h e  
Central and Southeast Geysers (Thomas and 
others,  1981). Venting of the deep Northwest 
Geysers system t o  the surface may therefore 
depend upon f a u l t s  r e l a t e d  t o  r e g i o n a l  
tec tonism and In t e rconnec t ion  wi th  o t h e r  
f r ac tu re  systems in the  Central Geysers. The 
few, r e l a t ive ly  insignificant. vent areas i n  
the Northwest Geysers are a l l  associated with 
f a u l t s .  S t a t i c  p r e s s u r e  d e c l i n e s  i n  un- 
produced GEOOC wells i n  the "typical" reser- 
vo i r  suggest connection with the  fracture 
system(s) of wells now being produced i n  the 
Central Geysers. Because current Central 
Geysers production may be an a r t i f i c i a l  vent 
of the  Northwest Geysers, it is reasonable t o  
assume t h a t  the area of extensive a l t e r a t ion  
near Geysers Resort and along Big Sulphur 
Creek may a l so  na tura l ly  vent the Northwest 
Geysers. 

The consequences of a poorer surface connec- 
t i o n  w i t h  the  steam r e s e r v o i r  than  the  
Central and Southeastern Geysers a reas  ln- 
cludes less venting of noncondensible gas and 
less d i lu t ion  by meteoric water. The hlgh- 
t e m p e r a t u r e  r e s e r v o i r  u n d e r l y i n g  t h e  
"typical" reservoi r  is believed t o  be simply 
a fossil of the liquid-dominated system i n  
which t h e  o n s e t  of convec t ion  is  r e c e n t ,  
leaving an Important conductive element i n  
the t r ans fe r  of heat from the  evolving hydro- 
thermal system. 

1. The enrichment of 0-18 and D in steam 
from the  Northwest Geysers wells pre- 
viously described by Haizllp (1986) is 
probably from a connate water component 
in the  high-temperature reservoi r  (HTR). 

2. The s ingle  high-temperature well pre- 
viously described by Drenick (1986) i n  
the  Northwest Geysers penetrated a large 
HTR that may extend beyond the  Northwest 
Geysers. 
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3. The HTR desc r ibed  i n  t h i s  paper i s  a 
t r a n s i e n t  phenomenon caused by t h e  
recent t r ans i t i on  from liquid-domlnated 
t o  vapor-domlnated conditions. This is 
the ~ e m e  conclusion as that suggested by 
P ruess  and o t h e r s  (1987) f o r  high- 
temperature wells a t  Lardarello. 

The HTR in the Northwest Geysers is probably 
a deep, evolving system in cont ras t  t o  the 
s h a l l o w e r .  l e a k y  a n d  m a t u r e  steam 
reservoir(s) i n  the cen t r a l  and southeastern 
portions of the  f i e l d .  Before natural vent- 
ing and nearby production caused pressure t o  
decline,  t h e  HTR was a liquid-dominated 
system with some connate water; the connate 
water being the  source of the high gas con- 
t e n t s ,  chloride,  and unique i so topic  composi- 
t i o n  r e l a t i v e  t o  steam from a " t y p i c a l "  
Geysers reservoir.  Therefore, the present 
boundary between the "typical" r e s e r v o h  and 
HTR I s  a t r ans i en t .  themnodynamic condition 
due t o  t h e  r e c e n t  e v o l u t i o n  of a vapor- 
dominated zone from a liquid-domlnated zone 
which has ye t  t o  cool down. It a l s o  demarks 
a p r e v i o u s  l i q u i d  t o  v a p o r  i n t e r f a c e .  
Pressure in the two r e s e r v o h s  is es sen t i a l ly  
the  same because they are in communication 
w i t h  e a c h  o t h e r .  I n  o t h e r  words ,  t h e  
temperature change I n  the HTR is lagging the 
pressure change. 
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