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COMPUTATTONAL METHODS FOR ESTIMATING

PRECIPITATION FROM GEOTHERMAL BRINES

D. Jackson, A. J. Piwinskii, D. G. Miller
Lawrence Livermore Laboratory
University of California
Livermore, California 94550

Laboratory experiments using Salton Sea Geothermal Field brines at ele-
vated temperatures are costly, time-consuming, and potentially difficult
to perform. The LLL Geothermal Program is therefore’'also attempting to
predict equilibria in the SSGF brines by computation.

Two approaches to this problem are being taken. Modeling of chemical
reactions in the brines is being carried out using the Helgeson-Herrick
(HH) code. In addition, the precipitation of many solids is being
studied individually using effective activity coefficients which take
chloride complexing into account.

The results of both methods are consistent with one another in predic-
ting precipitation behavior in the temperature range 100-300°C. For
example, results for Sinclair No. 4 brines at 200°C indicate that at
low pH, S102, MnOj, and Fe silicates precipitate. As pH increases, Cu
and Fe sulphides, Fe silicates and Fe oxides also precipitate.

For the San Diegd Gas and Electric Megmamax brine at 200°C, the HH code
predicts results quite similar ‘to those described above for .the Sinclair
No. 4 brine with one notable exception, PbS precipitated at pH greater
than 4.0. This correlates with observations on the scale examined from
the San Diego Gas and Electric test site.
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recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
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BRINES ARE COMPLICATED

Many Constituents
Concentrated Salt Solutioms
Many Interdependent Equilibria

Expensive to Experiment

Scale Forming Components

LLL PROPOSED SCALE CONTROL METHODS

® Reduced pH (e.g., add HC1)
® Oxidize (e.g., S—2 to S)

® Combination

CODES HELP SCREEN CONTROL METHODS

Minimize Costly Experiments
Save Tedious Hand Calculations
Parameter Studies of Additives

Account for Differences between Wells.

LLL USES TWO CALCULATIONAL APPROACHES

¢ Helgeson-Herrick Code
Large Scale Geochemical Equilibrium Code
@ Individual Solids Code

Includes Activity Coefficient for Complexes
in Concentrated Cl Solns.

Results are Mutually Consistent.
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THERMOCHEMICAL CALCULATIONS

‘An approximate, or "limited reaction" method has

been developed to study the chemistry of geothermal

brines.

This method is based on the use of effective activity
coefficients which take into account chlorine com~

plexing.

Solubilities of scale-forming substances and distri-

butions of non-condensable gases can be computed.

The effects of pH and temperature on scaling can be

studied.

£

It may be possible to predict which solids will

precipitate, and how much can form under specified

conditions.
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BRINE CONDITIONS
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EBTIMATED CHEMICAL DATA FOR SINCLAIR 4
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Table 1. Potentfal for Scale Formatfon from M&gmamax #1 Brine

Possible Precipitatfon

Reducing - Oxidizing
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Reducing S oxidizing

PbCO4 - Cu0
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Mg (0H),
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CRTION MOLAL SOLUBILITIES A" pH -

40

o™ | | 1 |

\\.FeS

O B L R

10"t

&

10

MOLRLITY
\\

1

N [ ¥ lTllli,

K  . .
da
T
. ) ‘.

Si/ I&l

4 1 3 1]ty

,o.g/ [ T R N N
240

100 7 120 140 160 180 200 220
TEMPERRTURE (°c)

243




CAVEATS FOR COMPARISON WITH EXPERIMENT

Substances may appear'amorphousiy, not as predicted materials.
(mineral prediction indicates potential pptn.)

Substances may co-precipitate

Substénces may not appear at all
(kinetics is slow)

Data base may contain errors

SOME PREDICTION PROBLEMS CAN BE REMOVED

Material doesn't appear in scale

- may be suspended in brines; or
=" kinetics slow, remove from data base

Material not predicted shows up

- either material missing from data base; or
- the input data needs revision

Comparison with Experiment is Important - Our Results are
Consistent with Observations. :
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NEW GEOCHEMICAL CODE IS NEEDED

® Helgeson-Herrick now

- designed for rock soln, not solids pptn
- doesn't yield amounts or final concentrations
- slow with large memory requirement

® New design should be
- fast
- small memory

- suitable for subroutine in other codes
- more versatile

FUTURE APPLICATIONS

® Scale problems
- other temperatures
- other additives
- other wells

® Other uses

- = corrosion (Pourbaix diagrams)
- reinjection equilibria
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