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Since early Paleozoic the major mechanisms of silica precipitation at
ordinary temperatures and pressures is biochemical _Other mechanisms
are: adsorption, organo-silicon complexing, evaporation or cooling of
silica-rich waters (with subsequent precipitation), and neutralization
of strongly alkaline solutions.

.Evidence from deep-sea sediments ,supports the.following diagenetic se-
quence Opal-A (siliceous oozes) + Opal-CT (porcelanite) + chalcedony or
cryptocrystdlline quartz (chert) - mega-quartz ‘(chert). . A solution and
precipitation mechanism is involved in the above first two transforma-
tions. Exceptions to the overall maturation sequence are numerous,
suggesting that temperature (burial depth) and time are not the only
important factors that control the transformation of Opal-A to Opal-CT.
The kinetics of the above transformations are strongly affected by the
composition of the host sediments; in clayey sediments Opal-CT (por-
celanite) predominates while in carbonate sediments quartz (chert) pre-
dominates. There is no simple way to relate either the crystalline state
of silica or the texture of porcelanite and chert horizons to the age of

surrounding sediments. :

Experiments at 25°C and 150°C over a period of one to six months, using
both chemical and mineralogical analyses, suggest that the transforma-
tion rate of Opal-A to Opal-CT is greatly enhanced in carbonate versus
clayey pelagic sediments. The role of carbonate can be explained as
follows: Opal-CT lepispheres- co-precipitate with a hydrous magnesium
complex. In carbonate sediments the continuous dissolution of carbonate
provides the necessary alkalinity, and sea water provides the magnesium
for the magnesium hydroxide complex. - In: contrast in clayey sediments,
in particular,.those rich in expandable clays, the clay minerals compete
with Opal-CT: ‘formation for the. available :alkalinity. As a result, the

- expandable clays transform to a magnesium-rich mixed layered clay-and/or
to chlorite and the rate of Opal—CT formation is highly reduced.
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Table 1. Solution chemistry of hydrothermal experiments in sea water, at 150°C.

Si(0H),

Experiment Time ‘g Alkalinity
Number Starting Materials Months ul/1 m4/1 meq/
1 Eocene Radiolarians 1 2550 50.6 0.2
2 Eocene Radiolarians 6 >10,000 50.4 0.1
3 Eocene Radiolarians + Foraminifera 1 1980 19,2 3.8
4 Eocene Radiolarians + Foraminifera 6 7850 7.3 2.7
5 Eocene Radiolarians + Montmorillonite 1 2400 51.1 0.2
6 Eocene Radiolarians + Foraminifera ‘ :
+ Montmorillonite 1 2060 18.5 3.7
7 Quaternary Diatoms ! 6000 46.9 0.1
8 Quaternary Diatoms 6 >10,000 50.1 0.1
9 Quaternary Diatoms + Foraminifera 1 2050 3.2 2.1
10 Quaternary Diatoms + Foraminifera 6 7350 5.0 1.4
11 Quaternary Diatoms + Montmorillonite 1 - 8000 46.6 0.1
12 Quaternary Diatoms + Foraminifera ' :
+ Montmorillonite 1 1950 26.6 0.7
Average
Surface
Sea Water ,2f3 53.0 2.5
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‘ :Tabﬁe_Z.‘*So1ution chemistry of room temperature experiments.
S1(OH)4 uM/l

Experiment T N ‘

Number -~ ... _Starting Materials -~ .1 week 2 week 3 weeks
2 | Eocene Radiolarians + distilled H0 -~ . | nd. | 22. | .42 [
b Eocéne Rad1o1ar1ans + sea water 47 125 142
c Eocene Radiolarians + Foram1n1fera | s o e
- -+ sea water , ; <40-.]. 105 .| 120 |
d Quaternary Rad101a?fans +“di$ti]1ed H,O 1300 1430 1610
e Quaternary Diators + distiiled HZO 105 | 143 | 195
f Quaternary Diatoms:+ sea water - 1920 1030 | 1020

-Quaternary D1atoms + Foraminifera.. : s -

+ sea uater P e L 840 935
h Quaternary D1atoms £ Reagent grade CaCO3 | ’

powder + sea water _ ; 1120 57125 o 125
i Quaternary Dlatoms + Ice]and Spar 150 -250yp —

‘¥ sea wWater : .0 910
j Quaternary,n1atoms;+ Ice]and spar,63—105u N

+.sea water ' ‘ ..860
k - Quaternary Dlatoms + Ice]and spar <44u

+-sed’ water L 840
B Cultured Diatom, Navicula pelliculosa e
. + sea water 7 - - 480 950 {1110
m Cu]tured Diatom, Nitzschia thermdlls - R

ot sea water* {Eh . 350 {.-+960 1120

n.d. = not detected
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Table 3. The effects of Mg, Ca, Na, K, and alkalinity on the rate of opal-A to Opal-CT
transformation; solution chemistry of hydrothermal experiments at pH 8, 150°C.

Experiment : Time S1{OH)s Mg Alkalinity
Number ; Starting Materials Months wM/1 mA/1 meq/1
1 Eocene Radjolarians + sea water 1 2550 50.6 0.2
3 Eocene Radiolarians + Foraminifera + sea vater 1 1980 . 19.2 3.8
13 Focene Radiolarians + artificial sea water
without Mg* 1 . 2160 -- n.a.
14 Eocene Radiolarians + Foraminifera + artificial
sea water without Mg* 1 2130 e n.a.
15, Eocene Radiolarians + 0,5M NaCl, 0,034 MgC\2 i
so0l, {I = 0.68) - : 6820 29.0 0.1
16 focene Radiolarians + Foraminifera + 0.5M NaCl,
0.03M Mgc12 sol. (1 = 0.68) 1 2550 2.2 2.8
17 Eocene Radiolarians + 0.027M MaCl,, ‘ A
‘ 0.028M haHCO sol. (1 = 0.12) 1day . 4929 13.4 2.2
18 - Eocene Rad101ar1ans + 0.03M MgC12, 0.03M N'aHCO3 ’
- sol, (1 =0,12) 6550 16.6 1.1
19 . Eocene Radiolarians + 0.03M MgCIZ. 0.03M NaHCO3 :
sol, (I = 0.12) ‘ 9750 14.4 0.8
20 Eocene Radiolarians + 0.03M M C12, 0.006M NaHCOa.
' 0.024M NaCl sol. (I = 0. 12?** 9100 27.2 0.4
21 Eocene Radiolarians + 0.03M NaHCO 0.1M NaCl. ‘ '
sol, (I = 0.13) 1 3400 . 30.4
22 Eocene Radiolarians + Montmorillonite + 0,03M
MoC12, 0.03M l\cho3 sol. (I = 0,12) 1 7400 15.1 1.6
23 Montmorillonite + 0.03M MgC]z, 0.03M NaHC03 : o
sol. {1 =0.,12) 1 3100 15.4 3.1
24 Eocene Radfolarians + 0.03M MgCl,, o.osm KHCO, ‘ 5
o sol, (I = 0,12) 1 . 7900 . 16.0 1.6
.25 Focere Radiolarians + 0,03M | WgCIZ, 0.015M Na28407
10H20 sol.** 1 7350 27.5 0.1

n.a. = not analyzed
* Artificial sea water according to Lyman and Fleming (1940)

** The pH of the solution was adjusted to pH 8 by acid titration. The alkalinity of the final solutions were
5.6 meq/1.
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Table 4. The effect of 1on1c strength on the rate of opal-A to opal-CT transformation;

. so1ution chem1stry of hydrothermal exper1ments at pH 8, 190 C, 1 month.

Experiment Tou o Si(OH) - Mg Atkalinity
Number Startin@ Méteria]s ‘,; M/ 1 VA meq/1 -

18 Eocene Radiolarians + 0. 03% MgClz, 0. O3M Nar{CO3 T '7 |

sol. (I = 0.12) i - | .+ 6550. 16.6 1.1
26 ‘Eocene Radiolarians + 0. 03M MgC]z,,O 03M AaHCO3, R o

0.58M NaCl sol. (I = 0.7) . - 6425, 12.1 13.6
27 - Eocene Radiolarians + 0.03M Mgc12, 0. 03M NaHCO3,'A B -

0.88M NaCl sol. (I = 1.0) : o o . 6225; 16.6 3.2
24 Eocene Radiolarians + 0. 03M MgCTz, 0.03M KHC03 A

sol. (I = 0.12) - .7200- 16.0 1.6
28 Eocene Radiolarians + 0. 03M MgC12, 0. 03M KPC03, S

0.58M NaCl sol. (I'= 0.7) - | +~ 6975 17.4 2.8




Figure 6. Scanning Electron Microscope Photographs of:

(a)

(b)

(c)
(a)

(e)

(£)

A cluster of well formed Opal-CT lepispheres that
crystallized in Exp. 18 Table 3.

Opal-CT lepispheres from a deep—sea porcelanite of
Early Cretaceous age. _The lepispheres line the: inside
of a radiolarian mold and texturally are very similar
to the lepispheres of Fig. 6 (a). :

Several severely corrodéd rédiolarian‘fragments'and
two less corroded robust species. Exp. 18, Table'3.

Pseudomorphs of Opal—CT after robust radiolarians.
Exp. 19, Table 3.

Small embryonic Opal-CT lepispheres are attached to
the surface of a radiolarian test and cement a radio-

larian fragment to the test. Exp. 20, Table 3.

Severe corrosion of a robust radiolarian test. EXp. 21,
Table 3.
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