

CHEMICAL CONTROLS ON THE OPAL-A TO OPAL-CT

TRANSFORMATION

M. Kastner and J. B. Keene
Scripps Institution of Oceanography
La Jolla, California 92093

Since early Paleozoic the major mechanisms of silica precipitation at ordinary temperatures and pressures is biochemical. Other mechanisms are: adsorption, organo-silicon complexing, evaporation or cooling of silica-rich waters (with subsequent precipitation), and neutralization of strongly alkaline solutions.

Evidence from deep-sea sediments supports the following diagenetic sequence Opal-A (siliceous oozes) \rightarrow Opal-CT (porcelanite) \rightarrow chalcedony or cryptocrystalline quartz (chert) \rightarrow mega-quartz (chert). A solution and precipitation mechanism is involved in the above first two transformations. Exceptions to the overall maturation sequence are numerous, suggesting that temperature (burial depth) and time are not the only important factors that control the transformation of Opal-A to Opal-CT. The kinetics of the above transformations are strongly affected by the composition of the host sediments; in clayey sediments Opal-CT (porcelanite) predominates while in carbonate sediments quartz (chert) predominates. There is no simple way to relate either the crystalline state of silica or the texture of porcelanite and chert horizons to the age of surrounding sediments.

Experiments at 25°C and 150°C over a period of one to six months, using both chemical and mineralogical analyses, suggest that the transformation rate of Opal-A to Opal-CT is greatly enhanced in carbonate versus clayey pelagic sediments. The role of carbonate can be explained as follows: Opal-CT lepispheres co-precipitate with a hydrous magnesium complex. In carbonate sediments the continuous dissolution of carbonate provides the necessary alkalinity, and sea water provides the magnesium for the magnesium hydroxide complex. In contrast in clayey sediments, in particular, those rich in expandable clays, the clay minerals compete with Opal-CT formation for the available alkalinity. As a result, the expandable clays transform to a magnesium-rich mixed layered clay and/or to chlorite and the rate of Opal-CT formation is highly reduced.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Table 1. Solution chemistry of hydrothermal experiments in sea water, at 150°C.

Experiment Number	Starting Materials	Time Months	Si(OH) ₄ $\mu\text{M/l}$	Mg mM/l	Alkalinity meq/l
1	Eocene Radiolarians	1	2550	50.6	0.2
2	Eocene Radiolarians	6	>10,000	50.4	0.1
3	Eocene Radiolarians + Foraminifera	1	1980	19.2	3.8
4	Eocene Radiolarians + Foraminifera	6	7850	7.3	2.7
5	Eocene Radiolarians + Montmorillonite	1	2400	51.1	0.2
6	Eocene Radiolarians + Foraminifera + Montmorillonite	1	2060	18.5	3.7
7	Quaternary Diatoms	1	6000	46.9	0.1
8	Quaternary Diatoms	6	>10,000	50.1	0.1
9	Quaternary Diatoms + Foraminifera	1	2050	3.2	2.1
10	Quaternary Diatoms + Foraminifera	6	7350	5.0	1.4
11	Quaternary Diatoms + Montmorillonite	1	8000	46.6	0.1
12	Quaternary Diatoms + Foraminifera + Montmorillonite	1	1950	26.6	0.7
Average Surface Sea Water			2-3	53.0	2.5

Table 2. Solution chemistry of room temperature experiments.

Experiment Number	Starting Materials	Si(OH) ₄ $\mu\text{M}/1$		
		1 week	2 weeks	3 weeks
a	Eocene Radiolarians + distilled H ₂ O	n.d.	22	42
b	Eocene Radiolarians + sea water	47	125	142
c	Eocene Radiolarians + Foraminifera + sea water	<40	105	120
d	Quaternary Radiolarians + distilled H ₂ O	1300	1430	1610
e	Quaternary Diatoms + distilled H ₂ O	105	143	195
f	Quaternary Diatoms + sea water	920	1030	1020
g	Quaternary Diatoms + Foraminifera + sea water	840	935	
h	Quaternary Diatoms + Reagent grade CaCO ₃ powder + sea water	120	125	125
i	Quaternary Diatoms + Iceland Spar 150-250 μ + sea water	910		
j	Quaternary Diatoms + Iceland spar 63-105 μ + sea water	860		
k	Quaternary Diatoms + Iceland spar <44 μ + sea water	840		
l	Cultured Diatom, <i>Navicula pelliculosa</i> + sea water	480	950	1110
m	Cultured Diatom, <i>Nitzschia thermalis</i> + sea water	350	960	1120

n.d. = not detected

Table 3. The effects of Mg, Ca, Na, K, and alkalinity on the rate of opal-A to Opal-CT transformation; solution chemistry of hydrothermal experiments at pH 8, 150°C.

Experiment Number	Starting Materials	Time Months	Si(OH)4 $\mu\text{M/l}$	Mg mM/l	Alkalinity meq/l
1	Eocene Radiolarians + sea water	1	2550	50.6	0.2
3	Eocene Radiolarians + Foraminifera + sea water	1	1980	19.2	3.8
13	Eocene Radiolarians + artificial sea water without Mg*	1	2160	--	n.a.
14	Eocene Radiolarians + Foraminifera + artificial sea water without Mg*	1	2130	--	n.a.
15	Eocene Radiolarians + 0.5M NaCl, 0.03M MgCl_2 sol. ($I = 0.68$)	1	6820	29.0	0.1
16	Eocene Radiolarians + Foraminifera + 0.5M NaCl, 0.03M MgCl_2 sol. ($I = 0.68$)	1	2550	2.2	2.8
17	Eocene Radiolarians + 0.027M MgCl_2 , 0.028M NaHCO_3 sol. ($I = 0.12$)	1 day	4920	13.4	2.2
18	Eocene Radiolarians + 0.03M MgCl_2 , 0.03M NaHCO_3 sol. ($I = 0.12$)	1	6550	16.6	1.1
19	Eocene Radiolarians + 0.03M MgCl_2 , 0.03M NaHCO_3 sol. ($I = 0.12$)	3	9750	14.4	0.8
20	Eocene Radiolarians + 0.03M MgCl_2 , 0.006M NaHCO_3 , 0.024M NaCl sol. ($I = 0.12$)**	1	9100	27.2	0.4
21	Eocene Radiolarians + 0.03M NaHCO_3 , 0.1M NaCl sol. ($I = 0.13$)	1	3400	--	30.4
22	Eocene Radiolarians + Montmorillonite + 0.03M MgCl_2 , 0.03M NaHCO_3 sol. ($I = 0.12$)	1	7400	15.1	1.6
23	Montmorillonite + 0.03M MgCl_2 , 0.03M NaHCO_3 sol. ($I = 0.12$)	1	3100	15.4	3.1
24	Eocene Radiolarians + 0.03M MgCl_2 , 0.03M KHCO_3 sol. ($I = 0.12$)	1	7900	16.0	1.6
25	Eocene Radiolarians + 0.03M MgCl_2 , 0.015M $\text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}$ sol.**	1	7350	27.5	0.1

n.a. = not analyzed

* Artificial sea water according to Lyman and Fleming (1940).

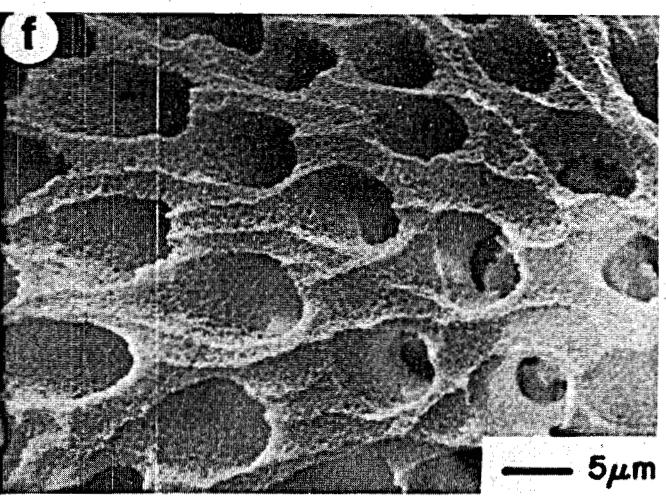
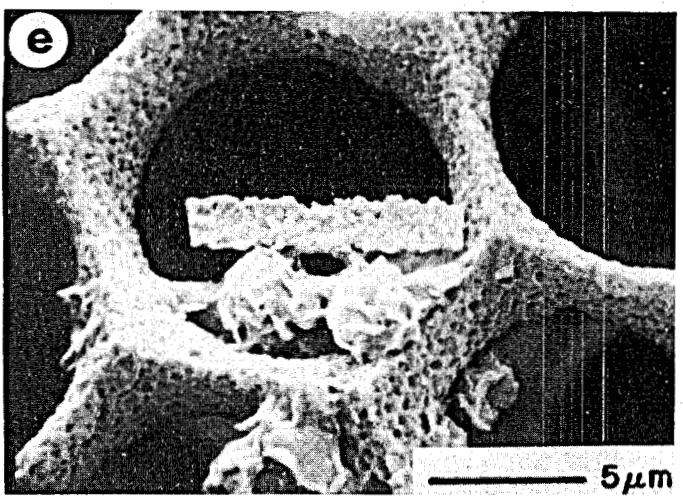
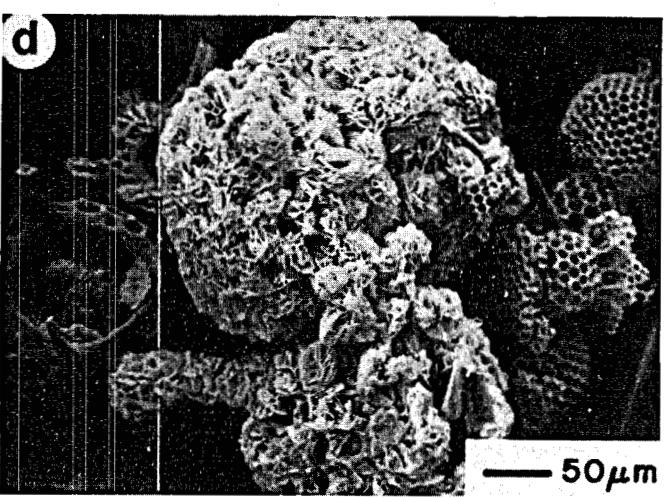
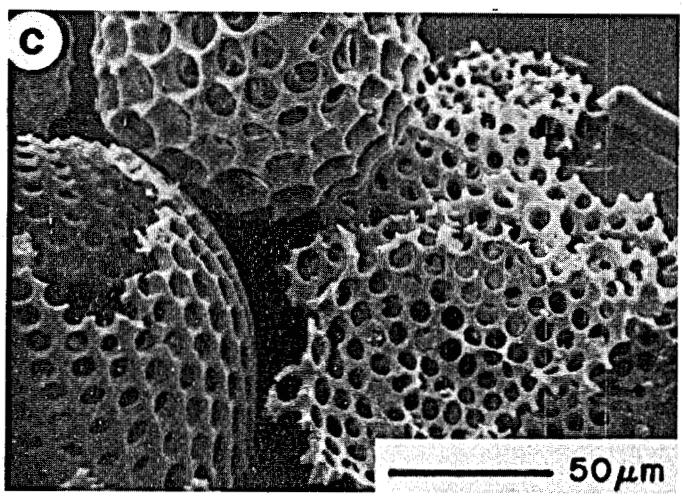
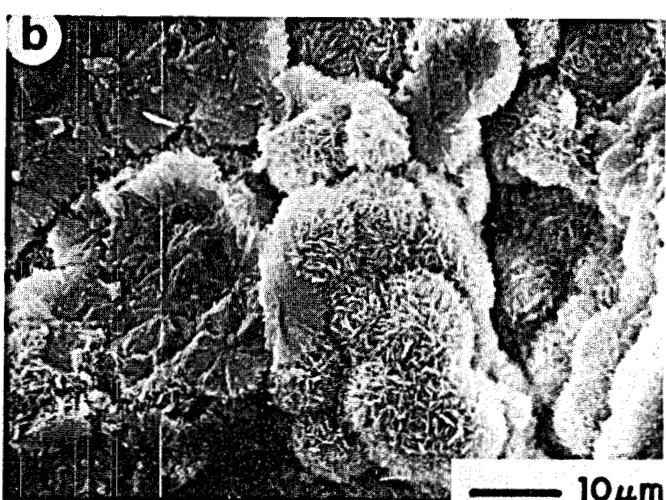
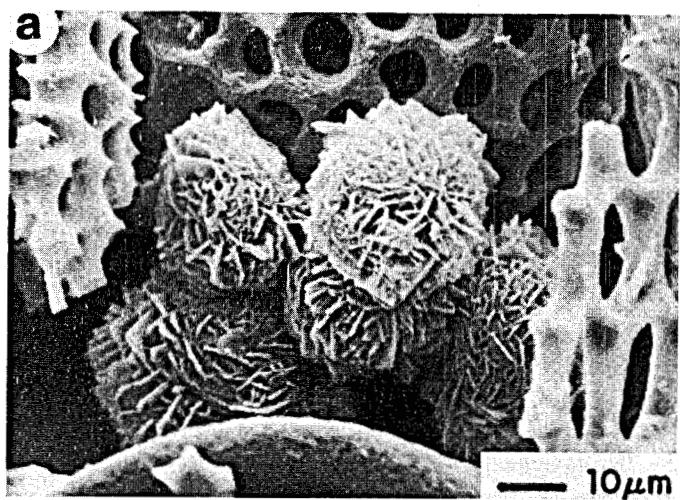






** The pH of the solution was adjusted to pH 8 by acid titration. The alkalinity of the final solutions were 5.6 meq/l.

Table 4. The effect of ionic strength on the rate of opal-A to opal-CT transformation; solution chemistry of hydrothermal experiments at pH 8, 150°C, 1 month.

Experiment Number	Starting Materials	Si(OH) ₄ μM/l	Mg mM/l	Alkalinity meq/l
18	Eocene Radiolarians + 0.03M MgCl ₂ , 0.03M NaHCO ₃ sol. (I = 0.12)	6550	16.6	1.1
26	Eocene Radiolarians + 0.03M MgCl ₂ , 0.03M NaHCO ₃ , 0.58M NaCl sol. (I = 0.7)	6425	19.1	13.6
27	Eocene Radiolarians + 0.03M MgCl ₂ , 0.03M NaHCO ₃ , 0.88M NaCl sol. (I = 1.0)	6225	16.6	3.2
24	Eocene Radiolarians + 0.03M MgCl ₂ , 0.03M KHCO ₃ sol. (I = 0.12)	7900	16.0	1.6
28	Eocene Radiolarians + 0.03M MgCl ₂ , 0.03M KHCO ₃ , 0.58M NaCl sol. (I = 0.7)	6975	17.4	2.8

Figure 6. Scanning Electron Microscope Photographs of:

- (a) A cluster of well formed Opal-CT lepispheres that crystallized in Exp. 18, Table 3.
- (b) Opal-CT lepispheres from a deep-sea porcelanite of Early Cretaceous age. The lepispheres line the inside of a radiolarian mold and texturally are very similar to the lepispheres of Fig. 6 (a).
- (c) Several severely corroded radiolarian fragments and two less corroded robust species. Exp. 18, Table 3.
- (d) Pseudomorphs of Opal-CT after robust radiolarians. Exp. 19, Table 3.
- (e) Small embryonic Opal-CT lepispheres are attached to the surface of a radiolarian test and cement a radiolarian fragment to the test. Exp. 20, Table 3.
- (f) Severe corrosion of a robust radiolarian test. Exp. 21, Table 3.

