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Incident Energy Dependence of p, Correlations at RHIC
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We present results for two-particle transverse momentum correlations, (Ap:;Apy, ), as a function
of event centrality for Au+Au collisions at /sy = 20, 62, 130, and 200 GeV at the Relativistic
Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four
incident energies. The correlations multiplied by the multiplicity density increase with incident
energy and the centrality dependence may show evidence of processes such as thermalization, jet
production, or the saturation of transverse flow. The square root of the correlations divided by the
event-wise average transverse momentum per event shows little or no beam energy dependence and
generally agrees with previous measurements at the Super Proton Synchrotron.

PACS numbers: 25.75.Gz

The study of event-by-event fluctuations in global in particle production, may provide evidence for the pro-
quantities, which are intimately related to correlations duction of the quark gluon plasma (QGP) in relativistic



heavy ion collisions ﬂ, E, E, E, E, , ﬁ, , E, IE, EL IE,
E, , E] Various theoretical work predicts that the
production of a QGP phase in relativistic heavy ion col-
lisions could produce significant dynamic event-by-event
fluctuations in apparent temperature, mean transverse
momentum, multiplicity, and conserved quantities such
as net charge. Several recent experimental studies at the
SPs [16, 17, [1d] and at RHIC 19, 4, 21, 24, 23, 24] have
focused on the study of fluctuations and correlations in
relativistic heavy ion collisions. One possible signal of
the QGP would be a non-monotonic change in p; corre-
lations as function of centrality and/or as the incident
energy is raised [8].

Here we report an experimental study of the incident
energy dependence of p; correlations using Au+Au colli-
sions ranging in center of mass energy from the highest
SPS energy to the highest RHIC energy using the STAR
detector at RHIC.

Fluctuations involve a purely statistical component
arising from the stochastic nature of particle production
and detection processes, as well as a dynamic component
determined by correlations arising in various particle pro-
duction processes. In this paper we first unambiguously
demonstrate the existence of a finite dynamical compo-
nent at all four incident energies by comparing the dis-
tribution of measured event-wise average transverse mo-
mentum per event, (p;), with the same quantity from
mixed events. We then analyze these dynamical fluctua-
tions using the two particle transverse momentum corre-
lations defined as covariance

1 Nevent Ck
<Apt,iApt,j> = Newr: 2 Ne(Ne 1) (1)
where
N, Ng
=33 (i~ () ey — () (2)
i=1 j=1,i#j

and Nevent is the number of events, p;; is the transverse
momentum of the i** track in each event, Ny, is the num-
ber of tracks in the k" event. The overall event average
transverse momentum ((p;)) is given by

Nevent
<<pt>> = ( Z <pt>k) /chcnt (3)

k=1

where (p;), is the average transverse momentum per
event given by

Ny
() = (Zpt,i) /N (4)
i=1

(Ap,iApe ;) is independent, to first order, of detection
efficiencies because both the numerator C) and the de-
nominator Ni(Ng — 1) are proportional to the the square
of the particle detection efficiency. Therefore the ef-
ficiency cancels. By construction (Ap,;Ap; ;) is zero
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FIG. 1: (Color online) Histograms of the average transverse

momentum per event for Au+Au at /syy = 20, 62, 130,
and 200 GeV for the 5% most central collisions at each en-
ergy. Both data and mixed events are shown for each incident
energy. The lines represent gamma distributions.

within statistics for properly mixed events because all
correlations are removed. Note that we use mixed events
only in Figure 1.

The data used in this analysis were measured using the
Solenoidal Tracker at RHIC (STAR) detector to study
Au+Au collisions at \/syy = 20, 62, 130, and 200 GeV
m] The main detector was the Time Projection Cham-



ber (TPC) located in a solenoidal magnetic field. The
magnetic field was 0.25 T for the 20 and 130 GeV data
and 0.5 T for the 62 and 200 GeV data. Tracks from the
TPC with 0.15 GeV/c < p; < 2.0 GeV/c with |n| < 1.0
were used in the analysis. All tracks were required to
have originated within 1 cm of the measured event ver-
tex. Events were selected according to their distance of
the event vertex from the center of STAR. Events were
accepted within 1 cm of the center of STAR in the plane
perpendicular to the beam direction. For the 20 and
130 GeV data sets, events were accepted with vertices
within 75 cm of the center of STAR in the beam direc-
tion, while for the 62 and 200 GeV data sets, events were
accepted within 25 cm of the center.

Data shown for 62, 130 and 200 GeV are from min-
imum bias triggers. Minimum bias triggers were de-
fined by the coincidence of two Zero Degree Calorimeters
(ZDCs) [26] located + 18 m from the center of the in-
teraction region. For 20 GeV a combination of minimum
bias and central triggers was used. Centrality bins were
determined using the multiplicity of all charged particles
measured in the TPC with |n| < 0.5. The centrality bins
were calculated as fractions of this multiplicity distribu-
tion starting with the highest multiplicities. The ranges
used were 0-5% (most central), 5-10%, 10-20%, 20-30%,
30-40%, 40-50%, 50-60%, 60-70%, and 70-80% (most pe-
ripheral). Each centrality was associated with a number
of participating nucleons, Npqr¢, using a Glauber Monte
Carlo calculation [21].

We treated the variation of ((p;)) within a given cen-
trality bin using the following procedure. We calculated
({pt)) as a function of N, the multiplicity used to define
the centrality bin. We fitted this dependence and used
the fit in Egs. 1-4 on an event-by-event basis as a func-
tion of N.,. This method removes the dependence of the
experimental results on the size of the centrality bin and
slightly reduces (Ap, ;Ap; ;) by removing correlations in-
duced by the changing of ((p;)) within the experimental
centrality bins. The results presented in the paper are
obtained using this fitting procedure.

Fig. [ shows histograms of (p;) for the 5% most cen-
tral Au+Au collisions at 20, 62, 130, and 200 GeV. His-
tograms for (p;) are also shown for mixed events. The
histograms for the data are wider than the histograms for
mixed events indicating that we observe non-statistical
fluctuations at all four incident energies. Similar results
are obtained for all centralities. The overall normaliza-
tion reflects the number events taken at each energy. The
values of p; included in these histograms are not corrected
for experimental momentum resolution, acceptance or ef-
ficiency.

The mixed events at each energy were created by ran-
domly selecting one track from an event chosen from
measured events in the same centrality and event ver-
tex bin. Ten centrality bins and either five or ten bins
(depending on the available number of events at each en-
ergy) in the event vertex position in the beam direction
were used to create mixed events with the same multi-
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FIG. 2: (Color online) (Ap:;Ap: ;) as a function of central-
ity and incident energy for Au+Au collisions compared with
HIJING results.

plicity distribution as the real events. Note that we do
not use mixed events for the quantitative analysis based
on (Ap; i Apy j)-

The lines in Fig. [ represent gamma distributions for
both the data and mixed events. The parameters for the
gamma distributions are shown in Table 1. According
to Ref. [2&], without p; cuts the parameter « divided by
the average multiplicity in the centrality bin, (), should
be approximately two and the parameter 8 multiplied by
(N) should reflect the temperature parameter of the p;
distributions. We find that «/(N) varies from 2.27 to
1.93 and B(N) varies from 0.230 to 0.299 GeV/c as the
energy goes from 20 to 200 GeV.

TABLE I: Parameters for the gamma distributions shown in
Fig. 1. The gamma distribution is given by the form f(z) =

xal:(;;;/ﬁ where o = 5—2 and 8 = ‘7_; in GeV/c. u is the

mean in GeV/c and o is the standard deviation in GeV/c.

Case o I64 I o

20 GeV Real [1096]4.772 x 10~*[0.5228(0.01579
20 GeV Mixed |1199]4.360 x 10~{0.5227(0.01510
62 GeV Real |1445|3.786 x 10™*[0.5471|0.01439
62 GeV Mixed |1743|3.139 x 10~*[0.5470(0.01310
130 GeV Real [1556(3.608 x 107*|0.5614[0.01423
130 GeV Mixed |1917(2.927 x 107*{0.5612{0.01282
200 GeV Real |1853(3.129 x 107*[0.5799|0.01347
200 GeV Mixed |2373|2.443 x 10~*[0.5799 |0.01190

To characterize the transverse momentum correlations,
we use the the quantity (Ap;;Ap ;), defined in Eq. 1.
Fig. Blshows (Ap ;Apy ;) for Au+Au collisions at /syn
= 20, 62, 130, and 200 GeV as a function of centrality.
One observes that (Ap;;Ap; ;) decreases with central-
ity at all four energies as expected due to a progressive
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FIG. 3: (Color online) (dN/dn)(Ap:iAp,;) as a function of
centrality and incident energy for Au+Au collisions compared
with HIJING results.
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FIG. 4: (Color online) \/(Aps,iAps,;)/ {(pe)) as a function of

centrality and incident energy for Au+Au collisions compared
with HIJING results for corresponding systems. The inset
shows the excitation function for the most central bin.

dilution of the correlations resulting from the increased
number of participants if the correlations are dominated
by pairs of particles that originate from the same nucleon-
nucleon collision. The correlations measured at 62, 130
and 200 GeV are similar while the correlations for 20 GeV
are smaller than those observed at the higher energies.

To explore the issue of the relative importance of short
range correlations such as Coulomb interactions and Han-
bury Brown-Twiss (HBT) effects, we extracted the cor-
relations excluding pairs with invariant relative momen-
tum, gine, less than 0.1 GeV/c, assuming that all parti-

cles were pions. We observed that 10% of the measured
correlations at 62, 130, and 200 GeV and 20% of mea-
sured correlations at 20 GeV could be attributed to these
short range correlations. These estimates agree with
those extracted for 17 GeV Pb+Pb [1€] using a somewhat
different method. We also estimated the contribution of
resonances and other charge-ordering effects by studying
the reduction in the correlations for same charge (nega-
tive) particles compared with correlations for all charged
particles. This study indicated that the reduction in
(Apy iApy ;) is 40% at 20 GeV, 20% at 62 and 130 GeV,
and 15% at 200 GeV. We do not correct (Ap; ;Apy ;) for
short range correlations or resonance contributions.

The errors shown in all figures are statistical unless
otherwise noted. We estimate the systematic relative
errors for (Ap.;Ap; ;) using studies of the effects of
pi-dependent efficiencies (1.2%) and sensitivity to track
merging and splitting (1.4%). These values give an over-
all systematic relative error of 2%. The measured cor-
relations were lowered approximately 3% using the fit-
ting method rather than the binning method. The re-
ported values are sensitive to the p; cuts for kinematic
and physics reasons. Using HIJING [29] we observe a 6%
increase in correlations when the lower p; cut is removed.
Raising the upper p; cut increases the correlations. We
used 0.15 GeV/c < p; < 2.0 GeV/c for all the results
reported in this paper. The upper p; cut was chosen to
be consistent with previous work [19, [24].

Also shown in Fig. Bl are HIJING calculations for
Au+Au collisions at \/syy = 20, 62, 130, and 200 GeV
[29]. We used HIJING version 1.36 with the default op-
tions, which includes jet quenching. The HIJING results
were obtained by selecting particles with 0.15 GeV/c
< pr < 2.0 GeV/c with |n| < 1.0 without further effi-
ciency corrections. HIJING reproduces correlations in
p+p and a+a collisions at Intersecting Storage Ring
(ISR) energies [30], p+p collisions at RHIC energies, and
p+p collisions at CERN p+p Collider (SppS) energies
[31]. We use HIJING to provide a reference incorporat-
ing a superposition of nucleon-nucleon interactions. Any
differences between HIJING and the experimental results
might signal phenomena unique to nucleus-nucleus colli-
sions. The HIJING calculations exhibit little incident
energy dependence and decrease with increasing central-
ity. The values for (Ap; ;Ap; ;) predicted by HIJING are
always smaller than the data.

To address the observed dilution of the correla-
tions with centrality, and to check the hypothesis
that the correlations scale as inverse multiplicity, we
multiply(Ap, ;Ap, ;) by the charged particle pseudora-
pidity density at a given centrality, dN/dn. We use
fully corrected values for dN/dn from published work
[32, 33, B4]. The quantity %(ApmApt’j) then is in-
sensitive to efficiency and is similar to the (efficiency
corrected) quantity Ao, [19] that STAR has reported
previously.

In Fig. B we show the quantity Y (Ap;;Ap; ;) for

dn
Au+Au collisions at 20, 62, 130, and 200 GeV as a func-



tion of centrality. In this figure the errors include the
quoted errors in dN/dn. This quantity increases with
incident energy at all centralities. At each energy this
measure of the correlations increases quickly as the colli-
sions become more central and then saturates in central
collisions. The behavior of this quantity is similar to that
of the quantity Ao, previously studied by STAR [19].
This saturation might indicate effects such as the onset
of thermalization [17], the onset of jet quenching [14], the
saturation of transverse flow [3f] in central collisions, or
other processes.

In Fig. the results of HIJING calculations for
%(Apt,iApm) are also shown. In contrast to the ex-
perimental results, the HIJING results show little de-
pendence on centrality.

To account for possible changes of (Ap, ;Ap; ;) due to
possible changes in ({p:)) with incident energy and/or
centrality of the collision, we also study the square root
of the measured correlations scaled by ((p:)). The re-
sulting quantity \/(Ap.:Ape )/ ({pe)) is shown in Fig. El
for Au+Au collisions at 20, 62, 130, and 200 GeV. Sim-
ilar results from Pb+Pb collisions at 17 GeV [L6] are
also shown in Fig. @l These values are consistent with
our measured results for Au+Au at 20 GeV. We observe
little or no dependence on the incident energy for this
quantity. The inset in Fig. Bl demonstrates the incident
energy dependence of /(Ap, ;Ap, )/ ({p;)) for the 0 -
5% most central bin where the Pb+Pb results are from
Ref. [16].

In contrast to the measured correlations, HIJING pre-
dictions for /(Ap: iApy )/ ((p+)) vary with incident en-
ergy. HIJING predicts a different centrality dependence
as well as a noticeable dependence on the incident energy.

In conclusion we observe clear non-zero p; correla-
tions, (Ap¢;Ap:;), in Aut+Au collisions from /syn
= 20 to 200 GeV. The quantity ‘Z—]:<Apt7iApt7j> in-
creases with beam energy. The centrality dependence of
(Zl_]: (Ape,iApe ;) may show signs of effects such as thermal-
ization [15], the onset of jet suppression [14, 24], the sat-
uration of transverse expansion in central collisions [34],
or other processes. The quantity /(Ap;;Api;)/ ((pe))
shows little or no change with beam energy. HIJING
model calculations underpredict the measured correla-
tions and do not predict the observed centrality depen-
dence.
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