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WORKSHOP ON ALGORITHMS FOR
MACROMOLECULAR MODELING

In the past, simplicity has often been the prime determining factor in the choice of al-
gorithms in macromolecular modeling, but with more ambitious computations and higher
expectations for realism, the demands on software and numerical algorithms have changed.
The trend now is to combine novel numerical modeling techniques with sophisticated al-
gorithms to bring big improvements in computational efficiency.

We hope that this workshop will benefit applied mathematicians and computer scientists
from having direct interaction with the modelers—in formulating numerical and algorith-
mic problems and focusing on the most critical open problems. At the same time, we hope
that biochemical modelers will profit by directing more attention to issues in numerics and
algorithms.

We are grateful for generous financial support from
Kansas Institute for Theoretical and Computational Science
Department of Energy (DE-FG02-94ER25212.A000)
National Science Foundation (DMS-9412473)

and for tremendous assistance from Larisa Martin with the organization of the meeting.

Jan Hermans
Krzysztof Kuczera
Ben Leimkuhler
Bob- Skeel



WORKSHOP ON ALGORITHMS FOR MACROMOLECULAR MODELING

Lawrence, Kansas, Sept.30-Oct. 2, 1994

All talks in Jayhawk room, except as noted

Friday, September 30, 1994

8:00 - 8:30

8:30-9:10

9:15-9:55

10:00 - 10:30
10:30 - 10:55

11:00 - 11:25

11:30-11:55

12:00 - 12:25

12:30 - 2:00

2:00 - 2:40

2:45 -3:25

3:30 - 4:15

4:15 - 4:55

5:00 - 5:25

5:30 - 5:55

6:00-7:30

Registration

Jan Hermans:
"Molecular Dynamics of Proteins: What has been achieved, and what
problems stand in our way?"

Tamar Schlick:
"Numerical Integration Schemes for Molecular Dynamics"

Coffee break

Peter Wolynes:
"Navigating the Energy Landscape of Protein"

John Straub:
"Simulated Annealing Using the Classical Density Distribution"

Michael Levitt:
"Can the Amino Acid Sequence Distinguish the Correct Fold at Low
Resolution?"

Zhijun Wu:
“Continuation-Based Global Optimization for Molecular Conformation
and Protein Folding"

Lunch

Barry Honig: A
"Recent Developments in the Application of Classical Electrostatics to
Proteins and Nucleic Acids"

Montgomery Pettitt:
"Modeling Water in and around Proteins"

Poster Session I: Britt Park, Ilya Logunov, Witold Rudnicki,
Shu-Yun Le, Adrian Roitberg, Hongmei Jian, Marios Philippopoulos,
Gomathi Ramachandran, Lu Wang

Carol Post:
“"Molecular Dynamics of Rhino Virus: Effects of an Antiviral Compound"

Zan Luthey-Schulten:
"Protein Structure Prediction Using Optimized Hamiltonians"

Carmay Lim:

"Discrete, Dynamic Polymer Modeling Using Cellular Automata
Techniques"

Reception in Centennial room.



Saturday, October 1, 1994

8:00 - 8:30
8:30-9:10

9:15-9:55

10:00 - 10:30

10:30 - 10:55

11:00 - 11:25

11:35-12:00
Session 1
(Auditorium)

Session 2
(Jayhawk room)

12:05 - 12:30
Session 1
(Auditorium)

Session 2
(Jayhawk room)

12:30 - 2:00
2:00 -2:40

2:45 - 3:25

3:30-4:15

4:15 - 4:55

Registration

Peter Kollman:
"Force Fields and Free Energy Calculations for Complex Systems"

Ron Elber:
"Molecular Dynamics with the Locally Enhanced sampling Method:
Applications to Structure and Dynamics of Biomolecules"

Coffee break

Arieh Warshel:
"Calculation of Electrostatic Energies in Macromolecules"

Michael Holst:
"“The Poisson-Boltzmann Equation"

Eric Jakobsson:
"Simulation of a Fluid Phase Lipid Bilayer Membrane: Incorporation of
the Surface Tension into System Boundary Conditions"

David Case:
"Generation of Models for "Unusual' DNA and RNA: A Computer
Language for Structural Exploration"

Hon Chun:
"A Substructuring Approach for Reduced Variable Macromolecular
Modeling" ;

Mike Prisant:
"Application of the Ray-Rpresentation and a Massively Parallel Special
Pupose Computer to Problems of Protein Structure and Function"

Lunch

Bernard Brooks:
"Advanced Methods for Macromolecular Simulation"

Ridgway Scott:
"Parallel Algorithms for Biomolecular Modeling"

Poster Session II: K. Srinivas, Yosi Shibberu, Robert Skeel,
Marcia Fenley, Jianpeng Ma, Margaret Mandziuk, Hasim Saber,
Qindsheng Zhao, Tai-Sung Lee

John A. Board:
"Multipole-Accelerated Evaluation of Force Fields in Macromolecular
Modeling"




5:05-5:30
Session 1
(Kansas room)

Session 2
(Jayhawk room)

5:35-6:00
Session 1
(Kansas room)

Dinesh Manocha:
"Conformational Analysis of Molecular Chains Using Nano-Kinematics"

Ramzi Kutteh:
"A Fast Multipole Algorithm for Molecular Simulations of Very Large
Dipolar and Charged Dipolar Systems"

Eric Barth:
"Algorithms for Constrained Molecular Dynamics"

Session 2 Lars Nyland:
(Jayhawk room) "Algorithms for Shared Memory Parallel Molecular Dynamics in Sigma"
Sunday, October 2, 1994
8:15-8:55 David Chandler:
"Modeling Quantum Processes in Complex Systems"
9:00 - 9:40 Paul Bash:
"Modeling Enzyme Reactions Using Combined Quantum/Classical
Methods"
9:40 - 10:00 Coffee Break
10:00:10:25 Bogdan Lesyng:
"Quantum-Classical Molecular Dynamics, Theory and Algorithms"
10:30 - 10:55 Weitao Yang:
"A Divide-and-Conquer Method and Its Application to Large Molecules"”
11:00 - 11:25 Alain St. Amant:

"Gaussian Density Functional Calculations on Large Systems Using
Yang's Divide-and-Conquer Approach"
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Gaussian Density Functional Calculations on Large Systems
Using Yang’s Divide—-and—Conquer Approach

Alain St-Amant, Department of Chemistry, University of Ottawa

Density functional theory (DFT) has recently garnered a great deal of attention from computa-
tional chemists. Compared to the simplest ab initio wavefunction—-based approach, the Hartree-Fock
approximation, DFT methods incorporate the effects of electron correlation yet require less com-
putational resources. With the advent of gradient—corrected DFT, the popularity of these methods
has greatly increased and systematic benchmarks tend to situate the quality of their results at the
level of the considerably more computationally demanding MP2 level of theory.

Our particular benchmark of DFT (A. St-Amant, W. D. Cornell, T. A. Halgren, and P. A.
Kollman, J. Comp. Chem., submitted) focussed on an ensemble of roughly one hundred organic
molecules containing a wide variety of functional groups. Within gradient—corrected DFT, bond
lengths are systematically overestimated, the RMS error being 0.18 A. The RMS error within
MP2 is 0.010 A. For bond angles, the RMS DFT and MP2 errors are respectively 0.8° and 0.7°.
For torsional angles, where experimental data is far more scarce and far less reliable, the average
DFT and MP2 errors fall within three to four degrees. In a demanding test of DFT’s ability to
provide reliable energies, relative conformational energies were also studied. For the ensemble of
35 molecules for which experimental data is available, the DFT and MP2 RMS errors are found
to be 0.46 and 0.43 kcal mol™, respectively. The glycine and alanine dipeptide analogs, for which
no experimental data is available, were also studied since they represent the simplest models of a
polypeptide. The gradient-corrected DFT and MP2 results for these systems’ low-lying conformers
agreed fairly well upon their structures and relative conformational energies. Results from HF and
DFT calculations without gradient—corrections on these dipeptide analogs appeared deficient and
the use of results from these two levels of theory for the purpose of force field parameterization
would seem to be discouraged.

With the promise of these results in hand, we are currently trying to apply DFT methods
to large biological systems. To treat these large systems, we have begun to implement Yang’s
divide-and-conquer DFT approach (W. Yang, J. Mol. Struct. (Theochem), 255, 461 (1992))
within our gaussian DFT code, DeFT (DeFT may be obtained free of charge by sending a short
note to request@theory.chem.uottawa.ca). In Yang’s divide-and—conquer scheme, a large system is
subdivided into a collection of subsystems. The global Hamiltonian is then projected onto these
subsystems and a subsequent independent diagonalization process is carried out on each subsystem
to extract a set of subsystem orbitals. These subsystem orbitals are then assigned electrons following
the Aufbau principle until we reach the point where by piecing together all the subsystem densities,

the total number of electrons is conserved. Communication between the subsystems occurs through
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the electrostatic potential and the fact that each subsystem obeys a global Fermi energy. The key
point here is that the divide-and-conquer scheme takes us away from conventional DFT methods
that scale as N® (where the global molecular orbitals must be obtained by diagonalization of a matrix
that scales linearly with system size) to a method that scales linearly with system size. The divide—
and—conquer method scales linearly since the CPU time is dominated by the independent work on
the individual subsystems, which scale linearly with system size. Also, since the CPU-dominating
subsystem calculations can be carried out independently, the divide—and-conquer philosophy is
ideally suited for massively parallel architectures. The combination of linear scaling and inherent
parallelism have led us to test this approach on large biomolecular systems of interest to us.

However, it should be noted at this point that the projection of the global Hamiltonian onto the
subsystems is an approximation. To obtain accurate results, the Hamiltonian must be projected
not only onto the subsystem’s atoms, but also onto a set of associated buffer atoms. A system’s
buffer atoms are those atoms that are within a certain distance of any of the subsystem’s atoms. By
adding to the buffer space atoms that are within five or six bonds of a subsystem atom, Yang has
been able to reduce the errors in the divide-and-conquer DFT energies to about £ 0.001 hartrees.
However, this can correspond to fluctuations with a range of roughly 1.5 kcal mol™, a number that
is far too high for our studies of biological systems. Buffer space can be extended, but this results
in a dramatic increase in the CPU time devoted to each of the subsystem calculations.

In an attempt to improve the precision and economy of our divide-and-conquer gaussian DFT
calculations, we have retained the concept of buffer atoms but we have extended it by using various
levels of basis set sophistication. In this approach, each atom can be assigned, simultaneously,
double-{ with polarization and diffuse functions, double-( with polarization function, double-(,
and minimal, single—(, basis sets. Within a subsystem calculation, the subsystem atoms and nearby
buffer atoms are assigned the most sophisticated basis sets while those buffer atoms at the outer
limits of buffer space are assigned minimal basis sets. Buffer atoms within these two extremes can
be assigned intermediate quality basis sets. Therefore, the quality of an atom’s basis set will change
from subsystem calculation to subsystem calculation, and its quality will depend on it’s position
relative to the actual subsystem atoms. This scheme allows us to extend the spatial extent of the
buffer space while keeping the number of basis functions as low as possible.

Since this is the first implementation of divide-and~conquer DFT within a gaussian DF'T frame-
work, a divide-and~conquer approach to fitting the charge density and exchange-correlation poten-
tials has to be devised as well if we are to retain linear scaling. It can be shown that this can be
easily achieved by extending the partitioning scheme already used to obtain the subsystem orbitals.

To date, we have completed test calculations on only dipeptides and tripeptides and have been
able to keep the errors down to about 0.5 kcal mol~! in relative conformational energies. This is a
promising first step towards performing divide-and—conquer DFT calculations on large biomolecular

systems. Ultimately, we would like to use such approaches in modelling enzymatic reactions.
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ALGORITHMS FOR CONSTRAINED MOLECULAR DYNAMICS

A Eric Barth

Courant Institute of Mathematical Sciences

In molecular dynamics simulations, the fastest components of the potential
severely limit the size of timestep for explicit integration schemes. The
problem has been treated by replacing these components with algebraic
constraints. The imposition of constraints necessitates the solution of a
systems of nonlinear equations at each integration step. In a popular
discretization scheme for the resulting constrained Hamiltonian system, the
algebraic structure of the nonlinear equations is closely related to the bond
structure of the molecule being simulated.

This property is exploited to analyse the convergence of the traditional

solution algorithm SHAKE, and to motivate alternative methods which enjoy
improved performance.
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Computer Simulation Methods for Enzyme Reactions

Paul A. Bash, Lawrence Ho, and Surya Panigrahy
Argonne National Laboratory
Argonne, IL. 60439

The Advanced Photon Source at Argonne National Laboratory will provide the capability in 1996 to carry out
time-resolved x-ray crystallography experiments to determine the structures of metastable intermediates of enzyme
reaction pathways. Such structural data are necessary but insufficient to characterize the mechanisms and
energetics of enzyme reactions. Complete atomic mechanisms can only be determined using a first-principles
analysis based on quantum and statistical mechanics combined with structural information for the enzyme and its
interaction with its substrate. The long-term goal of our work is to develop theoretical and computational methods
that combine quantum and classical mechanics methods, implement them on massively parallel computers, and use
them to characterize the atomic and electronic events of enzyme reaction mechanisms. These computational
techniques will provide a tool for determining the atomic structures and energetics along enzyme reaction
pathways. Such methods will complement and enhance time-resolved crystallographic structural data and provide
the means to predict the effects of site-specific mutagenesis experiments.

The specific agenda for our work in the near future is:

(1) Develop the capability to determine minimum energy and free energy surfaces and pathways for enzyme
reactions. This will be accomplished using a hybrid, semiempirical quantum mechanics and classical
molecular mechanics (QM/MM) method, together with free energy perturbation and molecular dynamics
techniques.

(2) Test the accuracy of this method on small molecule systems in the gas phase that represent the key functional
groups of the enzyme system malate dehydrogenase. Both the absolute energetics of reactions and the
structures of the participating molecules, as well as interaction energies, will be characterized by comparisons
with high level Hartree-Fock ab initio methods.

(3) Demonstrate the utility of these methods by applying them to the reaction catalyzed by the enzyme malate
dehydrogenase (MDH). Free energy transition states of native and site-directed mutants of MDH will be
calculated and used to determine the relative transition state binding free energies of native and mutant
enzymes. These calculated relative free energies will be compared with corresponding experimental values
derived from enzyme kinetic data. ’

(4) Combine a density functional ab initio quantum method with molecular mechanics in order to increase
applicability of the QM/MM method to a wider class of enzyme systems. The density functional
implementation will be a localized orbital approach that uses .(a) a numerical basis set, . (b) gradient
corrections to the exchange and correlation, and (c) a “divide and conquer” procedure to enhance
computational efficiency.

(5) All methods will be implemented to run on massively parallel, multiple instruction, multiple data (MIMD)

computers.

To study the properties of condensed phase reactions we have developed an approach that uses (1) a
computational quantum mechanics method to treat the part of a system where the electronic structure is changing
do to bond making and breaking events and (2) a classical mechanics technique to model the rest of the system.!-2
This work extended and enhanced the concepts and implementations of earlier efforts to use quantum and classical
mechanics methods to study complex molecular systems.>* The specific hybrid quantum and molecular mechanics
(QM/MM) method that was developed can model the chemical reactions of an enzyme and include solvation effects
due to the protein matrix. For most enzyme reactions, the changes in electronic structure are localized to a small
region of the active site (less than 5% of the entire enzyme, or about 25-100 atoms). It is reasonable to hypothesize
that only this region of the enzyme needs to be modeled with quantum mechanics. The use of this approach can
dramatically reduce computational requirements.

The key to the proper implementation of a QM/MM approach is the representation of different parts of a system
with a method whose accuracy is commensurate with relevant experimental data. A particular system can be
divided into the following regions:
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Protein-protein (solvent-solvent). These interactions are not involved directly with bond breaking or formation
and should reproduce structural and dynamical properties near a level of accuracy of protein crystal structures. A
molecular mechanics method such as CHARMM? has proven to be a reasonable model for the structural properties
of proteins.$ .

Reaction region (solute-solute). Components of a system where the electronic structure changes during bond
making and breaking must be treated with quantum mechanics. The primary challenge for the successful
application of a QM/MM method is the development and use of a QM approach that is both efficient and accurate.
These two requirements are not necessarily compatible, and a large portion of our future methods development will
deal with solutions to this problem.

Protein-substrate nonbonded (solate-solvent). The accurate modeling of protein-substrate interactions is
crucial to the success of a QM/MM method. A primary function of an enzyme is to stabilize reaction intermediates
by solvent effects due to its unique amino acid environment. Qur experience, and others, with a QM/MM method
that uses semiempirical quantum mechanics suggests that solvent effects can be adequately treated for both
reactions in enzymes’ and solution.'® However, this component of the Hamiltonian should be tested for each
application.

The utility of our QM/MM approach has been demonstrated by (1) reproducing the experimental free energy of
reaction for the S\2 reaction. of chloride plus methyl chloride in solution! and (2) suggesting a novel mechanism
for the enzyme reaction in triosephosphate isomerase’ that was subsequently verified by experiment.® This method
has also been effectively used by Gao®!° to gain insights into the behavior of organic reactions in solution,
providing further evidence of the utility of a QM/MM approach for the study of chemical reactions in the
condensed phase.

Our semiempirical QM/MM method consists of the following three components:

MM-MM interactions. These are modeled with the CHARMM force field'! and empirical potential energy
function.’

QM-QM interactions. These are represented by the semiempirical AM1 Hamiltonian and parameterization.!?
We are in the process of adding a density functional quantum mechanical method to increase the reliability and
extend the applicability of our method.

QM-MM interactions. These are composed of four different terms. The first is MM (partial charge) and QM
(electron) interaction, which is included directly into the one-electron portion of the QM Hamiltonian. The second
is the coulomb interaction between charges centered on the atoms, which includes partial charges on MM atoms
and the net core positive charge (equal to the number of valence electrons for each QM atom). The third is a
molecular mechanics Van der Waals interaction between QM and MM atoms. This emulates the electron
repulsion and dispersion interactions between QM and MM atoms that can not be calculated directly because MM
atoms have no explicit electrons. The fourth is the interaction of QM and MM atoms that are connected by a
chemical bond. In this instance, the QM atom will contain an unpaired electron because the MM atom has no
electron to contribute to the bond. To satisfy the valency, an extra hydrogen atom is added between the bonded
QM and MM atoms. MM bond, angle, and dihedral interactions are calculated between QM and MM atoms when

at least one of the atoms in such terms is MM,
is-177

MM Region
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Figure 1. Active site and co-factor NAD for the reaction in malate dehydrogenase.

One of the objectives of our work is to create new methods and procedures for the determination of free
energies associated with enzyme reactions. To develop and test such methods, we select an enzyme system as a test
bed and verify that our QM/MM Hamiltonian can adequately model the chemical components that characterize this
particular enzyme. We use the enzyme malate dehydrogenase (MDH), which catalyzes the conversion of malate to
oxaloacetate in the citric acid cycle. There is an excellent x-ray structure available at 1.9A resolution!3 for a
ternary complex consisting of the enzyme, the substrate analog citrate, and nicotinamide adenine diphosphate
(NAD), and there is good thermodynamic and kinetic data for site-specific mutants.!® Figure 1 shows the key
elements, their orientation in the active site of MDH, and the QM/MM partition to be used in all our simulations
The reaction catalyzed by this enzyme is the transfer of a hydride anion, H21, from C2 on malate to C4N in the
nicotinamide ring of NAD, and the transfer of a proton, H2, from O2 on malate to NE2 of His-177 in the enzyme.

To test the applicability of our QM/MM method in the context of this enzyme system, the following
calculations were done.

MM-MM interactions. The active site region of MDH was modeled using a stochastic boundary molecular
dynamics procedure.!® An 18A spherical region was generated about the C2 atom of malate that included the
enzyme, malate, NAD, crystallographic water, and TIP3P water'S added to fill the active site region out to 18 A .
A reaction zone of 16 A was used with a buffer region of 2 A (16-18A from C2). Harmonic restraints are placed
on buffer zone atoms with reference to corresponding x-ray coordinates and force constants derived from the
crystallographic temperature factors. MM parameters for protein atoms were taken from the new CHARMM all
atom force field.!! MM parameters for the hydroxyl, carboxylate, and methylene functional groups in malate were
generated by analogy with corresponding amino acid functional groups. Parameters for NAD were determined by
analogy with the CHARMM all atorn DNA force field!! with the exception of charges for the nicotinamide portion
of NAD, which were generated using the ESP!? option from MOPAC 6.0. Using SHAKE'® to keep bond lengths
constant and 2 f5 time steps, a constant energy molecular dynamics simulation was carried out. Heating and
equilibration was done for 60 ps and the subsequent 40 ps trajectory was used to determine an average structure for
comparison with the x-ray crystal structure. The RMS difference between the crystal and simulated structures was
0.55 A for Cor atoms and 1.05 A for all atoms. This reasonable agreement with experiment suggests that the
CHARMM MM force field should be adequate to model the overall structural features of MDH within our
QM/MM scheme.

QM-MM interactions. Tests on small molecule systems? indicate that the QM/MM method, using
semiempirical QM, can produce nonbonded potential energy surfaces in reasonable agreement to MP2/6-31G*
level of ab initio theory. Figure 1 depicts the QM/MM partition of the active site of MDH and suggests that the
most significant QM/MM interactions are between the guanidinium groups of Arg-81 and Arg-153 and the
carboxylate groups of malate. These strong electrostatic interactions dominate the binding of malate to MDH and
should have a significant effect on the electronic structure changes that occur during the reaction. We evaluate our
QM/MM to model the interaction between these groups by determining the potential energy surface for a
guanidinium/formic acid complex in the gas phase using (a) Gaussian Hartree-Fock at an MP2/6-31+G* level of
theory with counterpoise-corrections,!’® (b) AM1 semiempirical QM (formic acid) and CHARMM MM
(guanidinium), and (¢) CHARMM MM (formic acid) and CHARMM MM (guanidinium). The CHARMM
parameters for formic acid and guanidinium were determined by analogy to corresponding functional groups in
arginine and glutamate from the all atom protein force field. The structures of guanidinium and formic acid were
optimized separately in the gas phase using MP2/6-31+G*, AM1, and MM levels of theory. Using these
structures, the complex was formed in CoV symmetry (Figure 2) and the distance between the carbon atoms in the
two molecules was varied from 3.1 to 13.0A.
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Figure 2. Guanidinium (+) and formic acid (-) complex in C, V symmetry.

The interaction energy was determined for each conformation with no additional geometry optimization at each
configuration. The resultant potential energy surfaces at each level of theory are shown in Figure 3.
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Figure 3. Comparison of the potential energy surface between guanidinium and formic acid using
counterpoise-corrected MP2/6-31+G* ab initio, combined AMI semiempirical QM and
molecular mechanics, and molecular mechanics methods.

This test indicates that the QM/MM Hamiltonian is able to calculate the potential energy surface for this complex
in excellent agreement with a high level of ab initio theory. This is a very encouraging result. MP2 connterpoise-
corrected interaction energies are not perfect,?? however, this level of theory provides a reasonable standard with
which to calibrate more approximate methods. There is no experiment capable of determining the potential energy
surface for this kind of charged complex. The guanidinium and formic acid complex was also optimized at the
MP2/6-31+G* level without the imposition of CyV symmetry to obtain the equilibrium geometry. The resultant ab
intio structure compares favorably to the QM/MM optimized complex. The agreement between the two
calculations is excellent, with bond lengths differing by about 0.05 A and bond angles by no more than 5°, and the
interaction energy is within 2 kcal/mol. .

In addition to these gas phase tests, the classical MD simulation of the enzyme, described above, was continued
with QM used to describe the active site atoms indicated in Figure 1. Starting at the end of the 100 ps MM
simulation, 40 ps of MD (20 ps of equilibration and 20 ps of data collection) was carried out with the QM
activated. An average structure was determined during the data collection phase and compared with the-crystal
structure and the average structure from the MM simulation. The QM/MM and MM structures differed by 0.16A
and 0.45A RMS for Cor and all atoms, respectively. The QM/MM and x-ray structures differed by 0.6A and 1.1A
for Cer and all atoms, respectively. There was no fundamental difference between the QM/MM and purely MM
simulations with respect to structural characteristics. All these tests suggest that QM/MM interactions appear to be
well balanced in the context of the MDH model.

QM-QM interactions. The most problematic aspect of the QM/MM method is the determination of energy
barriers for reactions. Although it is a very long-range goal to be able to determine absolute rate constants from
first principles, our immediate objective is more realistic: fo develop methods that can determine relative reaction
Jree energies to an accuracy of 1-2 kcal/mol. However, we characterize the ability of the semiempirical method to
calculate absolute reaction energies in order to ascertain its limits of applicability. Tests are carried out on small
model systems at AM1 and MP?2 levels of theory. For the proton and hydride reactions of the MDH system, we
represent the proton transfer by methanol and imidazole and the hydride transfer by methanol and nicotinamide in
the gas phase. The reaction profiles are determined by constraining the proton or hydride to distances of 1.0-2.0 A
or 1.1-2.0 A from NE2(imidazole) or C4N(nicotinamide). Figure 4 shows the energy profiles for the two reactions,
and Figure 5 plots the distances of the proton or hydride from donor and acceptor atoms.
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Figure 5. Distances of H2 from donor (NE2) and acceptor (O2) for a proton transfer and 21 from donor (C4N)
and acceptor (C2) for a hydride transfer at two levels’ of theory. CAN-H21 and NE2-H2 are
constrained to the ranges of 1.1-2.0 A and 1.0-2.0 A, respectively, in 0.1 A increments.

Figure 5 indicates that AM1 and ab initio derived structures agree within 0.05-0.1 A for donor-hydrogen and
acceptor-hydrogen distances, which is similar to results for equilibrium structures of molecules in gas phase.
Figure 4 shows that energies agree within 5-10 kcal/mol. Since structures determined with ab inifio methods, in
general, agree well with experiment, our results suggest that absolute geometries for states along a reaction
pathway, e.g., the transition state, may be represented reasonably well even at the AM1 level of theory. However,
our results indicate that absolute reaction energetics cannot be used to obtain quantitative insights into absolute
rates of reaction. Errors in the AM1 method may be systematic and relafive reaction energies may be calculated
with much higher accuracy. We will be testing this hypothesis through our development of methods to determine
relative free energies of reaction and their comparison with data derived from MDH site-directed mutation
experiments.

Using the above calibrations and tests as a basis, we calculated the minimum energy surface for the hydride and
proton transfer reactions in the MDH enzyme using our QM/MM method. This was done to obtain insights into
the details of the minimum energy pathway and transition state(s) for the reaction which are not possible to
determine experimentally. We carried out a systematic search over the relevant portions of conformational space
associated with the transfer of the proton, H2, from O2 to NE2 and the hydride, H21, from C2 to C4N (atom
designations from Figure 1). This was a four-dimensional search over the distances (a) O2-H2, (b) H2-NE2, (c)
C2-H21, and (d) H21-C4N. We used a 0.2 A grid spacing, where the range of distances were restricted such that
2.4 A < d(02-H2) + d(H2-NE2) < 3.2 A and 2.4 A < d(C2-H21) + d(H21+CAN) < 3.5 A, d(X-Y) means the
distance between X and Y. The same starting point, i.e., the MDH atomic model, was used for each set of distance
-parameters. This state was determined by molecular dynamics simulated annealing with d(O2-H2), d(H2-NE2),
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d(C2-H21), and d(H21-C4N) constrained to be the same 1.3 A distance, using SHAKE,'® and all other degrees of
freedom allowed to vary consistent with the stochastic boundary procedure!® used to model the enzyme active site
region that was described above. A final minimized structure was obtained where the energy difference over the
last 100 steps was less than 0.01 kcal/mol and the final RMS gradient of the forces was less than 0.01 kcal/mol-A.
Using this starting geometry, a total of 800 separate energy minimizations were done over the set of parameters
of the four distances defined above. All calculations were done on the 128 processor IBM SP1 parallel computer at
Argonne National Laboratory, where each processor was assigned an MDH model with a different set of distance
parameters. Each simulation was run for 500 steps. The energy convergence for all the calculations was AE =
0.009 = 0.01 keal/mol over the last 100 steps of minimization where AE = E(step=500) — E(step=400). The RMS
gradient was less then 0.02 kcal/mol-A for all calculations. We obtain the minimum energy surface for this
reaction by projecting out the two degrees of freedom that are “natural” coordinates for the MDH reaction for the
malate to oxaloacetate. These are d(O2-H2) and d(C2-H21). For each pair of distances for these reaction
coordinates, e.g. d(0O2-H2)=1.3 and d(C2-H21)=1.3, the lowest energy value was selected out of the other possible
conformations of d(H2-NE2) and d(H21-C4N). The result of this projection operation is shown in Figure 6.
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Figure 6. Minimum energy surface (left) for MDH reaction with respect to coordinates d(02-H2) (A) and d(C2-H21) (A).
Contour plot (right) of a 0.1 A grid search in the vacinity of the putative transition state.

From this plot, one can obtain insights into the minimum reaction pathway, energy barriers, and transition
states for the MDH enzyme reaction. At this level of theory and grid resolution, the reaction appears to be
concerted, with a transition state in the vicinity of d(C2-H21)=1.5 A and d(O2-H2)=1.1A

Calculations using a higher resolution, 0.1 A grid, were made to refine the position of the transition state
geometry. The result shown in Figure 6 suggests a transition state at reaction coordinates of d(C2-H21) = 1.48 A
and d(02-H2) = 1.02 A. This transition state region can be further characterized by a mathematical procedure that
uses the Hessian matrix of the QM/MM energy and an optimization procedure to search for a saddle point on the
energy surface for this enzyme reaction. We have implemented the eigenfollower technique of Jon Baker? within
the context of our QM/MM method. Application of this QM/MM eigenfollower procedure to the region of the
energy surface near the transition state suggested by Figure 6 is in progress. Preliminary results are consistent with
the grid search.
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Multipole-Accelerated Evaluation of Force Fields
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In molecular dynamics simulation (MD), the N-body problem manifests it-
self as the need to compute the long-range electrostatic forces acting between
all the charged atoms in a molecular system of interest. Straightforward im-
plementation of a Coulomb solver leads to O(N?2) summation over all pairwise
combinations of the N atoms in a system; this quadratic complexity limits the
size of systems that can be simulated to a few tens of thousands of atoms. Cur-
rent MD codes typically truncate the Coulomb interaction at some moderate
radius to limit the cost of force evaluation; this can potentially alter the dy-
narmics of the simulated system. The algorithms discussed in this talk permit
inclusion of all pair interactions at a runtime cost which grows linearly (or nearly
s0) in the size of the system.

Though others have contributed important insights to this field, we take as
our starting points the “tree code” of Barnes and Hut and the “Fast Multipole
Algorithm” (FMA) of Greengard and Rokhlin. Both the tree code and the FMA
exploit the observation that the effect of a distant group of charged bodies on
a particular charge of interest can be very well approximated by considering a
truncated series representation of the potential (and force) due to the distant
charges.

We have studied and implemented three different algorithms. Our FMA code
follows the original prescription of Greengard and Roklhin, with the additional
use of FFT-accelerated multipole manipulations when appropriate [3]. We have
2lso implemented two tree codes, dubbed PMTA (Parallel Multipole Tree Code)
and E-PMTA (Enhanced-PMTA). PMTA is similar to the algorithms proposed
by Barnes and Hut with a few differences, and E-PMTA hybridizes PMTA. with
the original FMA [2, 1].

Our package PMTA. 4.0 runs on serial workstations and on shared-memory
parallel computers such as the Kendall Square KSR-1. A separate distributed
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Generation of Models for "Unusual”™ DNA and RNA:
A Computer Language for Structural Exploration

Tom Macke and David A. Case
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1. Summary

We have developed a new approach to the modelling of nucleic acids that is implemented as
a computer language called NAB. The method was primarily designed to construct models of
helical and non-helical mucleic acids from a few dozen to a few hundred nucleotides in size, and
uses a combination of rigid body transformations and distance geometry to create candidate
structures that match input criteria. The language is designed to provide a flexible way to
described nucleic acid structures at an atomic level of resolution, and contains built-in connec-
tions to the AMBER molecular modelling package, the MEAD programs to compute solvation
effects at the Poisson-Boltzmann level, and the AVS visualization system.

2. Background

Many current modeling programs, including those marketed by major vendors like Biosym,
Tripos and Polygen, are much better suited for the study of proteins and enzymes than for nucleic
acids and their deriviatives. This is partially because computational "drug design" has typically
looked more heavily at protein-based targets and peptide-based drugs than at oligonucleotides,
partially because it has traditionally been difficult to model poly-ionic nucleic acids in a physi-
cally reasonable fashion, and partially because the community has only recently gained a sound
understanding of the structural principles behind "unusual” nucleic acids that go beyond base-
paired helical structures. Some conventional programs that analyze nucleic acid structures oper-
ate at a very detailed level of individual base-pair orientations relative to a helix axis, and are
appropriate for the description of deviations from helical geometries [1], but not for more com-
plex structures like hairpins, junctions or pseudoknots. Other nucleic acid modelling algorithms
have focussed on supercoiling and other aspects of DNA structure at the level of many hundreds
to thousands of base pairs [2]. For several years, we have been working to develop computa-
tional tools that will be appropriate for an intermediate range of structures have a few dozen to a
hundred or so nucleotides, arranged in a variety of environments. The project began with efforts
to understand the structural principles behind four-arm junctions that are models for Hollday-
type recombination sites [3], and has since branched out to study hairpins, triplexes and
tetraplexes.

The past few years have also seen the development of powerful techniques to estimate ener-
getics of biomolecules in aqueous and non-aqueous environments. Among the most successful
of these have been continuum-dielectric models for the response of solvent to charges and
dipoles in biomolecular solutes. These models treat the biomolecule as a region of low dielec-
tric, surrounded by a higher-dielectric solvent [4,5]. The Poisson-Boltzmann equation that

24




describes electrostatic interactions in this system (including "salt” effects arising from mobile
counterions in solution) can be solved numerically for aribitrary configurations of solute. This
provides a physically realisitic medel for the solvation energy as a function of conformation (or
binding, etc.) that can be added to more traditional molecular mechanics estimates of energies
that arise from molecular mechanics force fields. This ability to model solvent and salt effects on
nucleic acid interaction energies promises to provide significant improvements in the realism of
energetic evaluations of potential structures.

3. The NAB language

NAB (Nucleic Acid Builder) has been developed by Tom Macke as a part of his graduate
research at The Scripps Research Institute. It is a computer language (specified through lex and
yacc) that allows nucleic acid structures to be described in a hierarchical fashion, using a lan-
guage similar to C or awk, but designed especially for the manipulation of nucleic acid struc-
tures. NAB manipulates nucleic acid components through two principal techniques:

(1) First are base transformations, which are useful in helical or near-helical situations in
which the geometric relation of one basepair (or triple) can be specified relative to others
in the helix. Under these circumstances, the bases are laid out first to achieve desired
helical and base-pairing configurations, and the sugar-phosphate backbone (or derivatives
thereof) are added and optimized in a separate step using molecular mechanics energy
minimization procedures or distance geometry.

(2) The second pillar of NAB functionality is distance geometry, which allows molecular
structures to be built that satisfy sets of distance constraints [6].- Such constaints often
form a namral way of describing neighbor relationships, cross-linking or footprinting
results, or hydrogen bond and helical constaints in nucleic acids. By systematically
exploring databases of known nucleic acid structures [7], we have been able to derive
sets of correlated distance constraints that significantly improve the performance of dis-
tance geometry techniques as applied to unusual nuclic acid structures. These technques
are especially useful in laying out non-helical regions of structures, such as hairpins or
loops in pseudo-knot RNA structures.

Fig. 1 gives a simple example of an NAB program that illustrates many of its features. This
program sets up potential base triplex structures, and systematically (under program control)
searches for the optimal orientation of the bases. The program illustrates that nucleotides and
stands, etc. are represented as named objects that are easy to manipulate with NAB, and that ener-
getic quantities from molecular mechanics or continuum dielectric models are available as an
integral part of the language (in this case, by linking in the AMBER and MEAD programs for
molecular mechanics and Poisson-Boltzmann calculations, respectively). The fact that a pro-
gram loop structure is testing out various options, rather than the more traditional approach of
relying upon interactive graphical investigation, means that the results can be readily documented
and reproduced by other investigators, and the assumptions of the model can be summarized in
compact and testzble format. Further, the fact that standard energy analysis programs like
AMBER [8] and MEAD [9] can be linked into NAB means that this approach can easily keep
pace with scientific advances in compuational chemistry.
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4. Examples

In the talk, I will show examples of applications of NAB to double- and triple-helical sys-

terns, and to hairpins and pseudo-knots. Prospects and progress toward implementation of these
methods to larger systems (such as tRNA, the hammerhead ribozyme, and the Group I intron)
will be discussed. This language may also be useful for other molecular modelling tasks, and
some of its prospects and limitations will be described.
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Fig. 1. NAB Program to search for optimal triple helix alignment

molecule m3;

residue R r3;

matrix r_mat, t_mat;

(...other declarations...)

//

// create a Watson-Crick base pair

//

m3 = we_helix( sbase, "bdna.std.rlb", abase, "arna.std.rlb",
2.25, 0.0, 36.0, 3.38 );

//

// create 3rd strand; add 3rd base; save init coords:

/7

addstrand( m3, *“third" );
r3 = getres( tbase, "bdna.std.rlb" );
addresidue( m3, "third", r3 );
nratoms = getmolxyz( m3, "third::", resxyz ):
//
// Begin energy calc’s:
//
cutoff[ 1 ] = 8.0; nbupd([ 1 ] = 1;
ierr = sander prep ( xyz, box, cutoff };
//
// start search over the rectangle:
//
min rz = RZ_UNDEF;
for( x = low x; x <= hi_x; x = x + X _inc ){
for(y = low y; y <=hi y; y =y + y_inc ){
b_rz = RZ UNDEF;
for( rz = low_rz; ¥z <= hi_rz; rz = rz + rz_inc ){
// ’
// position the third strand.....
//
setmolxyz( m3, "third::", resxyz );
r_mat = newtransform(0.0, 0.0, 0.0, 0.0, 0.0, -90.0+xrz);
transformmol ( r mat, m3, “"third::" );
t_mat = newtransform( x, y, 0.0, 0.0, 0.0, 0.0 );
transformmol( t_mat, m3, "third::" );
//
// .... and calculate its energy:
//
natoms = getamberxyz( m3, xyz );
sander_force ( xyz, force, energy, nbupd );

}

}

}

//

// Recreate and write out the best structure:

//

setmolxyz( m3, “third::", resxyz );

r _mat = newtransform(0.0, 0.0, 0.0, 0.0, 0.0, —90.0+min_rz);
transformmol( r mat, m3, "third::" );

t_mat = newtransform( min_x, min_y, 0.0, 0.0, 0.0, 0.0 );
transformmol( t_mat, m3, "third::" );

putpdb( mfname, m3 ); :
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MODELING QUANTUM PROCESSES IN COMPLEX SYSTEMS

David Chandler
Department of Chemistry,
University of California
Berkeley, CA 94720

Abstract

I. Path integrals and the classical isomorphism
II. Computation of rate constants
A. Classical
B. Quantal and the centroid approximation
C. Electron transfer (ET)
- reaction coordinate, and role of electronic polarization
- nuclear tunneling
- harmonic approximation
II. Examples .
A. ET in an aqueous environment
B. ET in a proteic environment, photosynthetic reaction center

This lecture discusses a few computational techniques based upon the imaginary time
path integral formulation of quantum theory [1]. A well known classical-quantal
isomorphism results from this formulation [2,3]. The mapping has proved useful in
determining from computer simulation the role of quantal dispersion (the
uncertainty principle) on the equilibrium properties of water [4]. It has also proved
useful in computing the effects nuclear tunneling on electron transfer rates in
solution [5,6] and proteins [7,8]. In the case of kinetics, the path integral procedures
can be viewed in terms of the so-called "centroid approximation" — a quantum
transition state theory closely related to the instanton approximation [9,10,11]. This
view extends the classical correlation function formulation of rate processes and the
statistical issues pertaining to the computation of rate constants for rare events
[12,13,14]. For long range electron transfer reactions, the centroid approximation
coincides very closely with the stationary phase evaluation of the standard golden
rule rate formula [15,16].

Much of the lecture will focus specifically on examples of electron transfer, as they
illustrate the strengths and limitations of the centroid approach, and are of physical
interest as well. The connection with Marcus theory can be made, including a
description of the disparate roles of nuclear and electronic polarization [17].
Different approximations to the nuclear dynamics are discussed, such as harmonic
approximations including the "disperse polaron" model [18]. The effects of nuclear
tunneling are especially pronounced for strongly exothermic electron transfer --
Marcus' inverted regime. Finally, the role of dynamical disorder leading to complex
kinetics will be noted [19,20].

The cited references provide detailed descriptions of the techniques covered in this
lecture.
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A SUBSTRUCTURING APPROACH FOR REDUCED VARIABLE
MACROMOLECULAR MODELING

H.M. Chun, C.E. Padilla, K.B. Blair, J.H. Li, D.N. Haney, H.E. Alper

This paper presents a new approach to the modeling of macromolecular systems.
The method ig based on the idea that the essential dynamics of such systems are
captured by the low frequency modes of the system (Levy et al, 1984, Ichiye and Karplus,
1991; Horiuchi;and Go, 1991; Space et al, 1993; Amadei et al, 1993; Mizuguchi et al,
1994). There are many biological processes that take place in the nano- to milli-second
time frames that cannot be modeled with current methods because of the large size of
the systems arid small time steps needed for numerical integration. By considering only
the low frequency behaviors, much larger integration time-steps can be used. Modal
approaches also reduce the number of degrees of freedom that need to be modeled.
Modal methods have been used in the past to study macromolecular systems. However,
because of the linearization that is introduced in order to obtain the mode shapes and
frequencies, chh models are valid only for a small region near the conformation about
which the linearization was performed.

The approach that we have developed is based on the substructuring of a large
molecular system into bodies and particles. The substructuring is determined by the
amount of motion to be expected between atoms. For regions where motions are
expected to be very small, or small enough to be unimportant for the purposes of the
simulation, the:atoms can be grouped together into rigid bodies. Regions where there
are moderate amounts of motion can be modeled as flexible bodies. Regions where
large conformational changes are expected can remain atomistic. Since this modeling
approach allows large motions between bodies, as well as between individually modeled
atoms, it is expected to be valid for a much larger region in conformational space.

Secondary structures of proteins are primary candidates for grouping into bodies.
Alpha helices and beta sheets are naturally thought of as having coliective motions. In
fact, the analysis reported in the paper by Swaminathan et al, 1991 has demonstrated
this. Loop and tumn regions can be modeled atomistically to allow large conformational
changes. Parts of these regions might also be grouped into flexibie bodies. Because of
the distinct separatton of the system into high frequency atomistic regions and low
frequency flexible/rigid bodies, this modeling approach is highly amenable to treatment
by multiple time scale integration techniques.

The eigensolution process is more tractable far this substructured model because
the mode shapes and frequencies are calculated separately for individual bodies, rather
than for the entjre system. Itis computationally less expensive to compute eigensolutions
of component bodies within a system than it is to compute the eigensolution of the entire
system.

This substructured modeling app'roach is adapted from spacecraft and mechanical -
dynamics modeling techniques, where large relative motions are allowed between
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articulated bodies which may be either rigid or flexible. Elastic behavior of the individual
bodies are modeled by component modes. Constraints at hinges/joints are handled in
an exact manner, and there have been recent developments (Chun et al, 1987; Bae and
Haug, 1987; Rodriguez et al, 1991; Jain et al, 1993) that have resulted in fast algorithms
with Order (n). computational complexity. We have modified these well-understood
techniques to handle molecular systems, and have created a code (Turner, Weiner, Chun
et al, 1993) called MBO(N)D (Multi-Body Order (N) Dynamics). Exact rigorous bond
length and bond angle constraints have been implemented into this code. A hierarchical
body-based multipole algorithm has also been implemented for electrostatic interactions
so as to take advantage of the fact that invariant muitipole coefficients can be computed
if they are based on body-fixed coordinate frames.

There are several advantages of this substructured modeling technique. The
elimination of high frequency content from aggregated groups of atoms allows larger time-
steps, and hence longer time frame simulations or larger molecular systems. The ability
to manipulate groups of atoms collectively as bodies allows the modeling and simulation
of events that cannot be treated by all-atom models. Examples include flap motion of HIV
protease, sub-unit interactions in hemoglobin, and dynamic docking of ligand and
substrate. The.exact constraint formulation allows the relative motion between bodies to
be optionally ;speciﬂed as a function of time, thereby allowing inverse dynamics
simulations to be performed based on hypothetical or experimentally observed molecular
motians.

Within this substructured modeling approach, there are several aiternatives for the
calculation of bond and non-bondinteractions. Conventional alf-atom calcuiations (Brooks
et al,"1983) can be performed. Body forces and torques are obtained by summing up
atomistic forces and moments over the atoms that make up each body. Modal forces are
computed by multiplying atomistic forces by the mode shapes. This projects the physical
forces into the low frequency subspace of the body. A modified approach replaces the
body internal interactions by modal stiffness terms. The bond and non-bond pairlists are
reduced, resulting in a more efficient calculation. Fast multipole aigorithms (Greengard
and Rokhlin, 1987, 1989; Ding, Karasawa, and Goddard, 1992) could be applied to speed
up non-bond caiculations for large systems. As noted above, we have developed a body-
based multipole algorithm for better computational efficiency at high levels of aggregation.

The outputs from the substructured modeling approach are of the same type as
that from all-atom simulations. This is because the coordinates and velocities of every
atom are known once the translations, rotations, and modal amplitudes of the atom's
parent body ar@a found. Thus, conventional post-simulation analysis algorithms can be
directly applied: to these simulations.

The substructured modeling approach provides the framework for dealing with
collective motions, models with varying degrees of fidelity (higher fidelity near active site,
lower fidelity elsewhere), and a way of treating large systems and long time-frame
systems in a computationally tractable manner. The MBO(N)D code is currently in
various stages of development and integration with AMBER 4.0, CHARMM, and X-PLOR.
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Numerical results will be presented that demonstrate feasibility and potential speedups
introduced by this substructuring approach.
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MOLECULAR DYNAMICS WITH THE LOCALLY ENHANCED
SAMPLING METHOD: APPLICATIONS TO STRUCTURE
AND DYNAMICS OF BIOMOLECULES

Ron Elber#~ Carlos Simmerling” and Alex Ulitsky,"
The University of lllinois at Chicago™ and The Hebrew
University of Jerusalem#

During the last few years we developed and applied a mean field

approach called LES (Locally Enhanced Sampling) as a versatile
computational tool for treating a variety of problems, including
exploration of ligand diffusion pathways1.2.4, global optimization6-
8, free energy calculations® and approximate simulation of ligand-
protein dynamics3.5.

Two separate computational projects that employ the LES protocol
will be discussed in the lecture: (i) atomic detail calculations of
structures of peptides in explicit solvent, and (ii) simulation of /ong
time diffusion of ligands through proteins.

STRUCTURE OF PEPTIDES

It is not at all obvious that short peptides have a unique structure,
and in fact many of them do not. However if a unique structure
exists, it is of significant interest for a number of reasons:

First, many short peptides transfer a "message" to a receptor.
As such, they are the target of pharmaceutical research aiming to
identify their stable or biologically active conformation. A known
conformation of a biologically active peptide is a useful lead to the
design of a new drug.

Second, peptides can be used to test theoretical models. In the
last few years there was considerable progress in determining “low
resolution" structures of proteins10-11. Calculations of optimal
structure of peptides (ten to twenty residues) can be pursued using
either (a) an atomic level calculation with explicit solvent or (b)
reduced models of amino acids. This opens the possibility to examine
the accuracy of a reduced model and its applicability to structure
determination of peptides. We should like to emphasize that data
bases with known structures of peptides are very limited and
therefore (in contrast to proteins), one is forced to use energy
related techniques in structural modeling.

The third motivation for studying the conformations of short
peptides is the search for nucleation sites in protein folding.
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Levinthal raised the “kinetic" folding problem12 of how the protein
searches for the “correct" configuration through the very large
number of possible states. A plausible mechanism for getting around
that problem is the introduction of small structural segments that
are formed at early phases of the folding. The formation of
“nucleation sites" at early times reduces considerably the space that
needs to be explored and can solve (in principle) the Levinthal
paradox. It is well established that some protein fragments have a
significant tendency to assume their correct fold even when the rest
of the protein is not folded correctly or even missing!3.

| shall discuss how the LES protocol is used to investigate
structures of small peptides as models for folding nucleation sites.
The LES approach enables converged and systematic structural
investigations of peptides in explicit water. | shall also
demonstrate that regular annealing or straightforward molecular
dynamics simulations do not converge in the peptides that we
investigated. | shall describe calculations done on the peptides
CAAAAC, CHDLFC, CSVTC and RVEW. In these investigations we
demonstrate the importance of hydrophobic forces in formation of
structure in small peptides. The two peptides CHDLFC and REVW
form hydrophobic clusters in water solutions. We further show that
a water molecule at a specific site can form a bridged hydrogen bond
and provides further drive to a unique structure. This is in the
peptide CSVTC. As a general conclusion, in all our investigations of
short peptides, internal hydrogen bonding makes a minor
contribution to the formation of stable structure in solution. Only
RVEW has one, partially populated, internal hydrogen bond.

LES APPLICATION TO DYNAMICS

The second part of the talk will focus on simulations of
dynamics in non-equilibrium systems. This part is relevant to the
diffusion of small ligands in and out of protein matrices14-19. The
problem of how the ligand penetrates to the buried active site in a
globin was discussed first by Perutz!4, and attracted substantial
volume of experimental and theoretical work. Recent experimental
developments include on one hand advances in physical
instrumentation - the development of faster lasers and improvement
in detection techniques18.19 and on the other hand application of
genetic engineering methods - the use of mutants to perturb the
system21.,22_ |n parallel, computational studies benefited from
significant progress in computer technology (faster computers) and

from the introduction of new simulation methods!,16,23,24,
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The LES makes it possible to run a number of ligand trajectories
that share the same protein matrix. This provides more statistics
on ligand pathways at a cost comparable to one trajectory. However,
LES is an approximation -(mean field) when applied to dynamics. This
prevents us from studying absolute time scales. We have developed

5,25 a new variant of the mean field that includes a binary collision
correction (cLES). This variant provides a significant improvement
with respect to the previous mean field results when applied to
dynamics. The diffusion constants calculated from exact

trajectories and from the new variant are essentially the samed.
Application will be discussed of the mean field with a binary
collision correction to diffusion and recombination of nitric oxide in
myoglobin.

We show that the approximate simulation methodology reproduces
experimental trends of ligand recombination to protein mutants as
well as reproducing diffusion constants obtained from usual
molecular dynamics simulation. We further explore plausible
diffusion pathways of the ligand and discuss the connection to some
recent experiments.
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A Three-Dimensional Fast Method for the Computation of Electrostatic
Energy in Numerical Simulation of Polyelectrolyte DNA

Marcia O. Fenley, Kiat Chua, Alexander H. Boschitsch & Wilma K. Olson
Department of Chemistry, Rutgers, the State University of New Jcrsey, New Brunswick,
NJ 08903: Continuum Dynamics, Inc., Princeton NJ 08543

We present a three-dimensional fast method for the computation of long-range
electrostatic jnteractions in computer simulation of polyelectrolyte DNA. Classically, the
computation of electrostatic energy involves a direct summation of all pairwise interactions
due 1o all phosphate groups of DNA. This tesults in a N-body interaction problem with an
asymptotic time complexity of O(N2). This is computationally very expensive and Limits
the number of phosphate groups used in numerical simulations of polyelectrolyte DNA to a
few hundred. We prescnt a new computational technique that reduces the asymptotic time
complexity to O(N). This is achieved by grouping phosphate groups using multipole and
Taylor series cxpansions. The accuracy'and speed enhancements of the new method in the
computation of the electrostatic energy of circular DNA are studied under the conditions of
no added salt and high salt. The fast method is further employed in 2 Monte
Carlo/simulated anpealing simulation of closed circular polyelectrolyte DNA. In all cases,
order of magnitude improvement in the computational speed is observed with no loss in
numecrical accuracy. This work was supported by SBIR Phase I Grant No. 1 R43
GM50132-01.
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MOLECULAR DYNAMICS OF PROTEINS:
WHAT HAS BEEN ACHIEVED, AND
WHAT PROBLEMS STAND IN OUR WAY?

Jan Hermans

Department of Biochemistry and Biophysics
Univ. of North Carolina
Chapel Hill, NC 27599-7260

A review of the current status of molecular dynamics simulations, with focus
both on methods and on applications in structure and function of proteins. A
biophysicist's perspective on the importance of development of new
algorithms to deal with the problems of being able to do insufficiently long
simulations, and of having to use inaccurate and incomplete force fields.
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THE POISSON-BOLTZMANN EQUATION

~ Michael Holst
Applied Mathematics and CRPC at CalTech

In this talk we consider the nonlinear Poisson-Boltzmann equation, which
describes the electrostatic potential of a large complex biomolecule lying in a
solvent. This equation has several interesting features impacting both
theoretical analysis and numerical solution algorithms, including
discontinuous coefficients, rapid nonlinearities, and three spatial dimensions.
We develop robust and efficient numerical methods based on multigrid and
domain decomposition methods combined with global inexact-Newton methods.
Some convergence results are presented using a Schwarz theory framework.
Numerical results, illustrating the effectiveness of this method compared to
other methods, are presented for several test problems, including
superoxidedismutase and the HIV protease. We finish with a look at similar
equations arising in gravitation physics.
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RECENT DEVELOPMENTS IN THE APPLICATION OF CLASSICAL
ELECTROSTATICS TO PROTEINS AND NUCLEIC ACIDS

Barry Honig
Department of Biochemistry and Molecular Biophysics
Columbia University
630 West 168 St.
New York, NY 10032

Classical electrostatics as described by the Poisson-
Boltzmann (PB) equation offers an accurate and
computationally efficient approach to the study of molecules
in aqueous solution. The PB equation is giwven by

Ale (r)A.¢(r) ek 2sinh{d (r)] + 4mapf(r)/kT = 0 (1)

where ¢ (r) is the dimensionless electrostatic potential in
units of kT/q, k is the Boltzmann constant, T is the absolute
temperature, q is the proton charge, &€ is the dielectric
constant, and pf is the fixed charge density. The termx2 =
1/A2 = 8mq?I/ekT, where A is the Debye length and I is the

ionic strength of the bulk solution. The variables ¢,¢, xand p
are all functions of the position vector r.

In order to apply the PB equation to molecules of
arbitrary shape and charge distribution, it is necessary to
map molecular properties into the language of classical
electrostatics, that is into the variables that appear in
Equation 1. This is accomplished by describing the solute
molecule as a set of point charges embedded in a low
dielectric object which is surrounded by a material of a
different dielectric constant which may contain mobile ions.
Once the mapping is accomplished, it is necessary to solve
the PB equation for the complex shape and charge distribution
defined by the molecule in question. This is carried out in
two distinct steps. The first involves formulating the set of
equations to be solved and the second is their solution. The
first process, for non-regular geometries, involves a
discretization of some sort, for example mapping variables
onto a grid in finite difference methods. The precision and
computational requirements of all methods depends critically
on the representation used to define the molecular surface.
In the past few a years a number of analytical and numerical
techniques have been reported which can describe molecular
surfaces, even for complex molecules such as proteins, in a
few seconds CPU time on standard processors.

The second process is usually an iterative procedure
where an initial guess to a solution is refined successively.
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Significant progress has occurred in this area as well. In
recent years, a variety of numerical methods have yielded
increasing faster and more accurate algorithms. These include
successive over-relaxation, conjugate gradient techniques,
multigridding, integral boundary element methods, and finite
element. Finite difference methods have proved so far to be
faster than finite element although the latter offer the
possibility of greater accuracy. Recently, we have enhanced
the speed of the finite element approach through the use of
fast multipole methods.

The most up-to-date version of our own program, DelPhi,
employs an efficiently coded multigridding algorithm
developed in collaboration with Michael Holst. The mapping of
a protein molecule onto 653 three dimensional grid and the
subsequent numerical solution to the PB equation take a total
of about 5 seconds CPU time on an Indigo computer. Thus it is
now possible to calculate the electrical potential of a
molecule in a solution of an arbitrary ionic strength while
working interactively at a graphics workstation.

The presentation will present an overview of recent
numerical developments as well as describe new graphical
methods used to represent electrostatic potentials.
Applications will include salt effects on substrate binding
to nucleic acids, combined solvation/quantum mechanical
models, conformational free energies of peptides and pH
effects on protein stability.
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INCORPORATION OF THE SURFACE TENSION INTO SYSTEM BOUNDARY
CONDITIONS FOR SIMULATION OF A FLUID PHASE LIPID BILAYER
MEMBRANE

Chiu, S.-W.}, Clark, M.2, Balaji, V.}, Subramaniam, S.1345, Scott, H. L.2, and E. Jakobsson!345

!National Center for Supercomputing Applications, University of Illinois, Urbana, IL 61801,
USA, 2Department of Physics, Oklahoma State University, Stillwater, OK 74078-0444, USA
*Department of Physiology, “Center for Biophysics and Computational Biology, SBeckman
Institute for Advanced Science and Technology, University of Tllinois, Urbana, I, 61801, USA

ABSTRACT

Modeling membranes is not just modeling another kind of macromolecule, but modeling an
entire environment for a large class of biomolecular processes. The membrane modeling poses
quite a different set of technical problems and scientific issues from modeling proteins. This
paper reviews some of these issues and suggests approaches that seem promising for resolving
them, based on work in our laboratories and that of others.

INTRODUCTION

Because the membrane in its biological state is a liquid crystal, meaningful and useful models
must be dynamic rather than static. It is possible to put phospholipids into crystalline solids
(Hauser et al, 1981), but the biological state of membranes is far from this solid crystalline state.
Thus molecular dynamics, Monte Carlo, or stochastic dynamics methods are mandatory to
describe biological membranes. This paper will focus on several important issues that arise in
molecular dynamics simulations of membranes. The choice of the model system, i.e. number of
lipid and solvent molecules, choice of boundary conditions, nature of interaction potentials and
the method for equilibration bear significantly on the validity of computation and we will
address these issues with a view to providing a well-defined set of validation criteria for
membrane simulations.

Computations of membrane patches have been reported with stochastic boundary conditions
(Heller et al, 1993), with periodic boundary conditions at constant volume (Venable et al, 1993;
Alper et al, 1993; Damodaran and Merz, 1994), and with periodic boundary conditions at
constant pressure (Berendsen et al, 1992, Chiu et al, 1992). Each choice is fraught with trade-
offs. The appropriate choice may depend on the experimental conditions under consideration.

The stochastic boundary conditions suffer from being essentially artificial, especially in that
they may inhibit chain tilting of the boundary lipid, which will in turn affect tilting in the rest of
the simulation cell. In addition they fail to simulate the essentially infinite bilayer system.
However they have the advantage that, with a finite delimited computational space, it is feasible
to eliminate cut-offs of electrostatic forces within the computational space by use of a multipole
method (Board et al, 1992). But it is not clear that electrostatic forces longer than a reasonable
cut-off distance, 15 angstroms or so, are a significant modulator of membrane dynamics and
structure. However it probably is important to use neutral group-based rather than atom-based
cutoffs. Atom-based cutoffs are likely to introduce spurious polarizations, based on single
atoms of a group being on different sides of a cut-off distance. In using group based cut-offs,
each water and phospholipid molecule may be treated as a group (Damodaran and Merz, 1994).
However it is more economical in non-bonded interactions to divide the phospholipid molecule
into several neutral subgroups. This can generally be done with only minor adjustments to the
partial charges, well within their inherent range of uncertainty. If it is deemed desirable to
eliminate cut-offs altogether, a possible reasonably efficient technique to eliminate cut-offs in
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simulations with periodic boundary conditions is the particle mesh method for Ewald sums
(Darden et al, 1993).

Periodic boundary conditions are natural for the membrane system. A concern however is. that
periodic boundary conditions may introduce spurious collective motions, for example an
excessive collective tilt of the hydrocarbon chains. This effect might be mitigated by making
the box size large enough that the boundaries would have little effect on the interior of the box,
but of course this is at the cost of less economical computation. If the periodic boundary
conditions are to be used at constant volume, it is necessary to be confident of the density of
material in the lipid and at the lipid-electrolyte interface. This is possible in a multi-lammelar
preparation of known water content, such as the DOPC membrane that is the subject of a series
of papers from the laboratory of White (Wiener and White, 1992 ). In this case constant volume
calculations would seem justified. However in simulating a situation where there is excess
water it may be advisable to do the computations at constant pressure. In this method pressure
components in each spatial dimension are calculated according to a virial expression, and the
dimensions of the box are (slowly) adjusted during the simulation until the mean internal virial
matches the external applied pressure, which is set as a boundary condition ( Berendsen et al,
1984 ). This method, with the external pressure at one atmosphere, has been used by the
laboratory of Berendsen (Berendsen et al, 1992) and by us (Chiu et al, 1992). Recently in our
laboratories we have been using a variant of this method in which the lateral pressure (in the
plane of the membrane), rather than being set to the external laboratory pressure of one
atmosphere, is set according to the measured surface tension at the membrane-water interface.
This surface tension can be derived from the pressure-density curve of a monolayer in a
Langmuir trough and the surface tension for a pure air-water interface. (For a clear discussion
of surface tension at the membrane-water interface, see pp. 75-78 of Gennis, 1989). For
monolayers at the area/lipid characteristic of the fluid phase, this surface tension is of the order
of a few tens dyne/cm. Thus the lateral pressure for the simulation is negative and, depending
on the thickness of the simulated interface, of the order of a hundred atmospheres. These
boundary conditions are shown in schematic form in Figure 1(next page).

The force fields for the lipid and water molecules are also a matter of some concern. In a
previous constant pressure simulation at one atmosphere, it was found that the partial charges in
the lipid molecules had to be reduced in order to produce a fluid phase in a simulated DPPC
membrane (Berendsen et al, 1992). In the later part of this paper it will be seen that a constant
pressure simulation as represented in Figure 1 can produce an appropriate fluid phase in a
simulated PC membrane with full charges on the lipid molecules.

RESULTS OF A SIMULATION OF A DMPC BILAYER USING ANISOTROPIC
CONSTANT PRESSURE BOUNDARY CONDITIONS

We have recently done in our laboratory a simulation of a DMPC bilayer in a fluid state using
the constant-pressure boundary conditions shown in Figure 1. A full description of this work
will be presented in a journal more suitable for specialized membrane biophysics. A summary
of the computation and results is as follows:

The partial charges on the phospholipid molecules were calculated by ab initio electronic
structure computations using the GAUSSIAN 92 program at Hartree-Fock SCF level using the
6-31G* basis set. The geometry of the lipid was taken to be that of the x-ray crystal structure.
The partial atomic charges were extracted from the SCF total electron density by Mulliken
population analysis. Other aspects of the phospholipid force fields were as in a previous
simulation of a DPPC bilayer (Egberts, 1988), including the use of the Ryckaert-Bellemans
potential for the dihedral angles of the hydrocarbon chains. Unified atom representations were
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Figure 1. Schematic representation of the constant pressure boundary conditions for
computing a fully hydrated fluid phase membrane. The one atmosphere posititive pressure
normal to the membrane plane is derived from the laboratory conditions. The negative pressure
in the membrane plane is derived from the measured surface tension of a phospholipid

~ monolayer.

used for the carbons and hydrogens in the hydrocarbon chains. The SPC/E water model was
used (Berendsen et al, 1987). Neutral group-based cutoffsof 20 angstroms were used for the
non-bonded interactions. The simulation contained 100 phospholipid molecules, 50 in each
monolayer, and 2100 water molecules. The starting configuration of the lipid was the crystal
structure of Hauser et al (1981), which has a membrane area per lipid of about 38 square
angstroms. The pressure tensors were calculated by an internal virial (Berendsen et al, 1984).
A coupling time constant of 0.4 psec was used. The system was gradually heated to 325 K.
After warming, the system had spread to a cross-sectional area of about 56 square angstroms per
lipid molecule, and appeared to stabilize in its dimensions at that value. One change was made
in the computational method after heating. When the system reached 325 K, it was seen that
about 90% of the hydrocarbon chain dihedrals remained in the trans configuration. At this point
the van der Waals interactions were removed for the 1-4 atoms in the hydrocarbon chains, and
the simulation was restarted. After this change, the system relaxed to a trans/gauche ratio of
about 3/1, appropriate for a fluid phase.
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The hydrocarbon order parameters were in good agreement with those expected for a fluid
phase PC membrane. Although the actual area of the system was 56 square angstroms/lipid,
applying the formula of Nagle (1993) to our order parameters indicated an area of 62 square
angstroms. The distribution of particular groups in the direction normal to the membrane is
quite similar to that seen experimentally by neutron and x-ray diffraction (Wiener and White,
1992). However it must be added that the neutron and x-ray diffraction experiments were done
at a lower hydration, so the measurements may not be strictly comparable to our simulations.

The major discrepancy between our simulated results was the size of the computed dipole
potential. This is an electrical potential of the hydrocarbon interior of the membrane positive
relative to the external electrolyte ( Flewelling and Hubbell, 1986). It is largely due to
orientations of the water molecules in the interfacial region, although the lipid charges make a
contribution as well. In the case of the PC membrane, the contribution of the lipid is negative,
because of the charge distribution in the headgroup in which the choline group carries a net
postive charge and the phosphate a net negative charge. Experimentally the net dipole potential
should be of the order of a few hundred millivolts. In our simulations we found a computed
dipole potential of a few volts, about an order of magnitude too large. It appears our water
orientations were too extreme. At this writing we believe this may be due to our periodic
boundary conditions combined with not quite enough water in the system to meet the condition
of excess hydration, but the precise explanation awaits further computation and analysis.

SUMMARY

Our results show for the first time that a simulated fluid phase phase membrane can be produced
with parameters and boundary conditions that are derived from independent experiments and
theory, rather than from parameters and boundary conditions that are explicitly designed to give
the fluid phase. This has not previously been done. In previous fluid phase constant pressure
simulations, the partial charges on the lipid atoms were arbitrarily reduced to produce the fluid
phase (Berendsen et al, 1992). In constant volume simulations, the lipid density has been set at
a low enough value to ensure the fluid phase, and initial configurations have been randomized
(Alper et al, 1993; Venable et al, 1993; Damodaran and Merz, 1994). In our simulations the
fluid phase emerged from lipids with partial charges that were computed by ab initio
calculations, with the whole system under constant pressure boundary conditions derived from
measured surface tension. Further our fluid phase was produced from the crystal structure as
the initial conformation, to ensure that the system had no previous bias to be fluid.

It now seems reasonable to consider some future applications of simulated fluid membranes in
attacking molecular engineering problems of biological significance.

ACKNOWLEDGEMENTS

We gratefully acknowledge grant support from the National Science Foundation and the use of
the facilities of the National Center for Supercomputing Applications. Major computing time
was granted from the National Science Foundation Supercomputing Metacenter, for time on the
C90 at the Pittsburgh Supercomputing Center and the Convex C3 at the National Center for
Supercomputing Applications.

BIBLIOGRAPHY
Alper, H. E., Bassolino-Klimas, D., and T. R. Stouch. 1993. The limiting behavior of water

hydrating a phospholipid monolayer: A computer simulation study. J. Chem. Phys. 99:5547-
5559

46



Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. E,, DiNola, A., and J. R. Haak. 1984.
Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684-3689

Berendsen, H. J. C., Grigera, J. R., and T. P. Straatsma. 1987. The missing term in effective pair
potentials. J. Chem. Phys. 91:6289-6291

Berendsen, H. J. C., Egberts, B., Marrink, S.-J., and Ahlstrom, P. 1992. Molecular dynamics
simulations of phospholipid membranes and their interaction with phospholipase A, pp. 457-
470 in Membrane Proteins: Structures, Interactions and Models A. Pullman, J. J ortner, and B.
Pullman, eds. Kluwer Academic Publishers, The Netherlands

Board, Jr., J. A., Causey, J. W., Leathrum, Jr,, J. F., Windemuth, A., and K. Schulten. 1992.
Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chem.
Phys. Lett. 198:89

Chiu, S. W., Gulukota, K. and E. Jakobsson. 1992. Computational approaches to understanding
the ion channel-lipid system. pp. 315-338 in Membrane Proteins: Structures, Interactions, and
Models. A. Pullman, J. Jortner, and B. Pullman, eds. Kluwer Academic Publishers, The
Netherlands

Damodaran, K. V. and K. M. Merz. 1994. A comparison of DMPC- and DLPE-based lipid
bilayers. Biophys. J. 66:1076-1087

Darden, T., York, D., and L. Pedersen. 1993. Particle mesh Ewald: An N- -log(N) method for
Ewald sums in large systems. J. Chem. Phys. 98: 10089-10092

Egberts, E. 1988. Molecular dynamics simulations of ‘multibilayer membranes. Ph.D. Thesis,
University of Groningen

Flewelling, R. F., and W. L. Hubbell. 1986. The membrane dipole potential in a total membrane
potential model. Applications to hydrophobic ion interactions with membranes, Biophys. J.
49:541-552

Gennis, R. B. 1989. Biomembranes. Molecular Structure and Function. Springer-Verlag
Hauser, H., Pascher, L, Pearson, R. H., and S. Sundell. 1981. Preferred conformation and

molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochimica et
Biophysics Acta 650:21-51

Heller, H., Schaefer, M., and K. Schulten. 1993. Molecular dynamics simulation of a bilayer of
200 lipids in the gel and in the liquid-drystal phases. J. Phys. Chem. 97:8343-8360

Nagle, J. F. 1993. Area/lipid of bilayers from NMR. Biophys. J. 64:1476-1481

Venable, R. M., Zhang, Y., Hardy, B. J., and R. W. Pastor. 1993. Molecular dyanmics
simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science
262:223-226

Wiener, M. C., and S. H. White. 1992. Structure of a fluid dioleoylphosphatidylcholine bilayer

determined by joint refinement of x-ray and neutron diffraction data IIL. complete structure.
Biophys. J. 61:434-447

47



MONTE CARLO STUDY ON POLYETHELYNE GLYCOL (PEG) CHAIN
WITH ALAMETHICIN CHANNELS

* Hongmei Jian

New York University

We used Monte Carlo simulations to investigate the conformational and
thermodynamic properties of a Polyethelyne glycol (PEG) chain with
alamethicin channels. Three parameters determine the properties of polymer
in this model: Kuhn statistical length, torsional rigidity and channel
geometry. We studied the effects of polymer length and channel size on
conformational peroperties of polymer inside and outside the channel. It is
shown from the simulations that outside the channel the properties of PEG
chain are consistent with the statistical results. Inside the channel, the
important consideration is the size of the channel. With larger channel size
(larger than persistence length of the chain), the chain will fold and twist
while it is translocating. Several physical properties have been studied. With
small channel size, the simulation shows that it is also possible for the chain to
translocate from one side of the membrane to the other side. Some details are
still being investigated.
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FORCE FIELDS AND FREE ENERGY CALCULATIONS FOR COMPLEX
SYSTEMS

Peter Kollman

Dept. of Pharmaceutical Chemistry
UC, San Francisco

We will review our recent work using molecular dynamics techniques to study
complex molecules. We will begin with the simplest system, a dioxane, where
we have quantum mechanical data on the conformational equilibrium and
critically assess force field approaches which can reproduce the high level ab
initio and experimental data. Next we will show where non-additive effects
can be important in the calculation of molecular interactions both in vacuo
and in solution. Particularly striking examples are ion-pi complexes and
solvation of complex organic ions. We will then present some free energy
calculations on simple systems-amines, amides and phenols-where the results
disagree with experiments and try to assess why. We will then turn to
applications of molecular dynamics to more complex systems, choosing from
molecular dynamics of bpti including water, liquid octanol, octaspherand-
alkali cation, thermolysin and its inhibitors, biotin-avidin and distamycin-
DNA. We will attempt to critically assess the successes, failures and difficulties
in general applicability to non-covalent molecula interactions in complex
systems.
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A Fast Multipole Algorithm for Molecular Simulations

of Very Large Dipolar and Charged Dipolar Systems

Ramzi Kutteh and John B. Nicholas
High Performance Computing Group, Environmental and Molecular Sciences Laboratory,

Pacific Northwest Laboratory*, Richland, WA 99352

Abstract

The fast multipole method (FMM) and cell multipole method (CMM) are
efficient algorithms for computing charge-charge interactions in MD simu-
lations. However, dipolar interactions are as important and challenging to
compute. We present the dipole cell multipole method (DCMM) for com-
puting the dipolar energy and forces in million-particle systems. DCMM by
itself is applicable to systems of permanent dipoles and systems of perma-
nent and induced dipoles. We apply DCMM to arbitrary dipolar systems and
find it very fast and accurate. We also presen;; the DCMM/ CMM method
for efficient computation of all interactions in general charged dipolar sys-
tems. These include systems of permanent charges and permanent dipoles,
systems of permanent charges and induced dipoles, and polarizable systems
of cha.rgés and dipoles. The DCMM/CMM approach can be generalized to
include higher order point multipoles. Finally, we use DCMM to speed-up
the time consuming self-consistent iteration of induced dipoles in polarizable
systems. In particular, the DCMM iterative scheme proves very efficient when

we apply it to large systems of polarizable simple point charge (PSPC) water.

+ Pacific Northwest Laboratory is a multiprogram national laboratory op-
erated for the U.S. Department of Energy by Battelle Memorial Institute
under Contract DE-ACQ6-76RLO 1830.
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Modeling the Three-Dimensional Folding of
RNA Pseudoknots in the Ribosomal Frameshifting
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N. Pa,ttabirama,nf, and Jacob V. Maizel, Jr.
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Frederick, MD 21702
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Bethesda, MD 20892
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P.O. Box B, Frederick, MD 21702
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Abstract

Highly efficient ribosomal frameshifting in the gag-pro region of mouse mammary tumor
virus (MMTV) requires a higher-order RNA structure, pseudoknot, just downstream of
the frameshift site. The importance of the MM TV pseudoknot has been demonstrated by
extensive site-directed mutations, in which the distinct conformations of RNA pseudoknot
are supposed to be changed in the stacking region of stem 1 and stem 2, and in a crucial
bulge loop A that interrupt the two stems, and size of the loop 1. Using a computer
modeling protocol, RNA2D3D, we built four MMTYV pseudoknots used in the analyses
of extensive site-directed mutations on the basis of their established RNA secondary
structure and limited amounts of tertiary structural data. That is to say, the stem 1
is supposed to be coaxially stacked with stem 2, and loop 1 and loop 2 are across the
major and minor grooves, respectively. These structural models of RNA pseudoknots are
further refined by molecular mechanics and molecular dynamics (MD) simulations with
sodium ions and waters. The distinct conformations of these possible RNA pseudoknots
were analyzed and compared to each other. The important role of nucleotides at the
junction of the stem 1 and stem 2 was discussed in the efficient ribosomal frameshifting.
Our results indicate that the highly efficient frameshifting pseudoknots are so bent and
kinked that stem 1 and stem 2 are not coaxially stacked, and the base pairing in the
junction of these two stems is distorted. However, two stems in the poor frameshifting
pseudoknots are almost coaxially stacked. These models emphasize the importance of
base-base interaction and an unpaired A in the connection region of two stems of the

MMTYV pseudoknot.
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A NEW DEFINITION OF ATOMIC CHARGES BASED ON
A VARIATIONAL PRINCIPLE FOR
THE ELECTROSTATIC POTENTIAL ENERGY

Tai-Sung Lee

Department of Chemistry
Duke University
Durham, NC 27710

A unique definition of atomic charges in molecules is presented based on a
variational principle involving the electrostatic potential energy. The method
requires only the electron density as input, and does not rely on an arbitrary
set of fitting points as do conventional electrostatic potential fitting
procedures. The dipole moments and electrostatic potentials calculated from
atomic charges obtained from this method agree well with those from self-
consistent-field calculations. The new method also provides a spherical-atom
potential model that may be useful in future generation molecular simulation
force fields.
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Quantum - Classical Molecular Dynamics and Tts Applications in

Macromolecular Simulations

P.Balal, P.Grochowski2, B.Lesyng? and J.A.McCammon3

1 Institute of Physics, Nicolas Copernicus University, 5 Grudziadzka, 87-100 Torun, Poland - .

2 Interdisciplinary Centre for Mathematical and Computational Madelling, Warsaw University, )
2 Banache, 02-097 Warsaw, and Department of Biophysics, Warsaw Univarsity, 93 Zwiliki 1
Wigury, 02-089 Warsaw, Poland S

3 Institute for Molecular Design, Department of Chemistry, Umvershy of Houston, Houston
TX 77204, USA '

During the past few years we have been developing Quantum-ClassIEal'- and
Quantum-Stochastic Molecular Dynamics models (QCMD/QSMD), to describs -
time-dependent, quantum dynamical proton transfer procaesses in hydrogen—bonded
systems and in enzymes [1-6]. In general, the models can be used to simulate tunnelmg _
processes in time-dependent potentials, e.g., hopping of quantum particles, protons or
electrons, in the solid state and in macromolecular systems, see [7]. i should be noted
that tunneling effects, previously neglected in enzyme simulations, are Imbort'ant in
proton transfer processes [8]. .: |
in the QCMD model the proton/electron dynamics are described by the time-dependent '
Schroedinger equation. The dynamics of the classical atoms are descrlbed using
classical molecular dynamics. Coupling between the quantum proton/eiectron and the
classical atoms is accomplished via extended Hellmann-Feynman forces, as well as the
time-dependance of the potential energy function in the Schroedinger equation. The
extended theorem developed [2], is as follows: o

pom A - 5l 2 o 1+ e it ]

X are the positions of the nuclei. ¥, and E, are the instantaneous pigenfunctions and

eigenvalues of H. The QCMD moadel is numerically stable and conserves the total
energy. The potential energy function is either parametrized prior to the simulations -
[1-4] or is computed using a parametrized valence bond (VB) orbital method [6]. '
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The parametrizations are done based on ab initic calculations. In macromolecular
systems, e.g. in enzymas, the potential for the proton motion is modutated s}-_'/'ith local
dynamics (squeezing and strétching forces influencing the shape and the barrier height) -
and is modified by the electrostatic field generated by the remote classical atom's.‘. In'the
QSMD model! the interaction of the system with its enviranment is. described by
Langevin dynamics of the classical atoms/particles. -

During the workshop the scheme of the QCMD/QSMD models will be formulated
and simulation results will be presented for the quantum proton transfar reactions in
proton-bound ammonia-ammonia and water-ammonia dimers as well :as in
phosphoﬁpasé A,. Other quantum-dynamical models, e.g. [8-12], will be compared. The

QCMD/QSMD software package contains a variety of numerical tasks (Ic‘m§ range
two-body interactions, their gradients and second derivatives, matrix diagonalization
and polynomial expansions, FFT techniques, etc.).. Such problems require. mixed
parallel-vector type computer architactures. This is quite typical situation when trying to
mode! structure and dynamics of real physical, chemical and biological.at‘omici/' :
molecular systems. This formulates new challenges for next generatio'né of
supercomputers and software tools.
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Can the Amino Acid Sequence Distinguish the Correct
Fold of a Protein at Low-Resolution?

Michael Levitt, David Hinds and Britt Park
Department of Structural Biology,
Stanford Medical School,
Stanford, CA 94305

September 1994

Simplified models have played an important role in attempts to model
protein folding by computer simulation. By eliminating much of the detail,
such models are computationally more tractable. They also model physical
effects such as the interactions between side chain that are not ordered.

While such models are useful, a central question is whether there is
sufficient detail in a particular model to make the native fold stand out
from the vast number of alternate non-native folds. More specifically, one
hopes that the native fold has a very low free-energy value.

Here we use a simplified representation of proteins that allows all possible
conformations to be generated. We then search this conformational space
in order to find those folds that have low energies with a simple pair-wise
residues contact potential. Results on a wide variety of small proteins show
that, even at this low resolution, there is significant selectivity. Using the
correct sequence of the protein, selects for those folds that are more
similar to the native conformation of the protein. Using a shuffled
sequence does not show such selectivity.

Although this proves that the native sequence is able to distinguish the
native fold at low resolution, there are always other non-native folds that
also have low energies. While such degeneracy may be depend on the
energy functions we use, we believe it to an intrinsic property: at low
resolution there is simply not enough detail to make the native fold unique.
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DISCRETE DYNAMIC POLYMER MODELLING USING
CELLULAR AUTOMATA TECHNIQUES

Marc Roussel* and Carmay Lim**

University of Toronto
MSB 4388, 1 King's College Circle
Toronto, Ontario
MS5S 1A8 Canada

We have developed a novel simulation strategy based on cellular automata
methods which can be used to simulate a variety of physico-chemical
processes, including those involved in polymerization. Our approach leads to
dynamic, parallel models. This strategy can address several classes of
questions in technologically or scientifically important systems for which
only limited structural or dynamical information is available by current
experimental techniques. We illustrate the use of our methods by creating a
model of lignification in vivo. Our lignification model captures the essence of
the underlying physical processes, as evidenced by the fact that it reproduces
satisfactorily many experimentally determined properties of lignin. Due to
the inherent efficiency of parallel cellular automata, our simulation strategy
shows great promise, particularly for modeling species of very high molecular
weight (over a million daltons).

* Department of Chemistry
** Departments of Molecular and Medical Genetics, Biochemistry and
Chemistry
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MOLECULAR DYNAMICS STUDY OF THE 13-cis FORM OF
BACTERIORHODOPSIN AND ITS PHOTOCYCLE

- ‘Ilya Logunov

Beckman Institute
405 N Mathews Ave.
Urbana, IL 61801

The 13-cis photocycle of bacteriorhodopsin has been studied by means of
molecular dynamics simulations. The structure of the 13-cis bacteriorhodopsin
was obtained through molecular dynamics refinement and tested by altering
substituents of retinal and comparing with available observations. The
photoisomerization process was simulated. The resulting structures of the J, K,
and L intermediates revealed that the protonated Schiff base points to the
cytoplasmic side and, hence, cannot form an M intermediate. Qur simulations
suggest the possibility that leakage from the 13-cis cycle to the trans cycle
occurs during the initial photoisomerization step.
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PROTEIN STRUCTURE PREDICTION USING OPTIMIZED HAMILTONIANS

Zan Luthey-Schulten

B56 Noyes Lab, MC 712
600 S Mathews
Urbana, IL 61801

Optimal protein folding codes for residue-residue contact (local) and
associative memory type (AM) Hamiltonians lead to algorithms that correctly
recognize protein structures in the region of low sequence identity in the
overwhelming majority of cases. The optimization is based on simple
thermodynamic considerations using spin glass theory. Simulated annealing
for the optimally-encoded AM Hamiltonian generally leads to qualitatively
correct structures. The process of structure prediction and design using these
two approaches is presented for several unknown proteins.
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SIMULATION OF MANY BODY SYSTEMS USING
THE CLASSICAL DENSITY DISTRIBUTION

Jianpeng Ma

Chemistry Department
Boston, MAQ2215

Classical Gaussian wave packets approach were applied to the development of
varieties kinds of simulated annealing techniques. Constant temperature
Gaussian Phase Packet(GPP) algorithm was served as an alternative of classical
molecular dynamic simulation and Fokker-Planck(FP) dynamics was also an
another constant temperature dynamic algorithm developed for one to
perform the annealing simulation. Gaussian Density Annealing(GDA) method
were also established for one to pursue an approximate solution for the
equilibrium density distribution at zero temperature. All these three
annealing methods were applied to the energy global optimization of Lennard-
Jones clusters with size range from 8 to 19. Larger size clusters were also tried.
A systematic comparison of all methods and the comparison between wave
packets approach and conventional annealing algorithms were explored.



WHAT MIGHT EXPLAIN RESONANCE IN THE DYNAMICS OF
CHEMICAL SYSTEMS SIMULATED BY
THE IMPLICIT MIDPOINT SCHEME?

"Margaret Mandziuk

Chemistry Dept. and
Courant Institute of Mathematical Sciences
251 Mercer Street
New York, New York 10012

We study the numerical behavior of the implicit midpoint method (MID) with
relatively large timesteps of integration through applications to small
nonlinear systems such as an HBr molecule governed by a Morse potential, a
Henon-Heiles system, and deoxycytidine, and subsequent analysis.

MID is known to be stable and energy preserving for very large timesteps in
the linear regime. However, behavior in the nonlinear regime is not weil
understood. In particular resonance problems have been noted and limited the
application of MID to more complex systems such as biomolecules. For the
systems we examine here, the energy fluctuates from step to step, with the
range of fluctuations depending on the timestep used. However special
behavior is observed at particular timesteps. Namely, resonances occur at
certain values of the timestep and instability results. Interestingly, for other
values of timestep (even significantly larger than these associated with
resonances) the range of the fluctuations remains bound. The resonance at
these timesteps is analyzed by careful observation and Fourier analysis.

61

PRSI | " Sy s S A et MY e o rs oA



Conformational analysis of molecular chains using Nano-Kinematics

Dinesh Manocha
Computer Science Department
University of North Carolina
Chapel Hill, NC 27599-3175
{manocha,zhu,wright}@cs.unc.edu
Fax: (919)962-1799

Abstract: We present algorithms for 3-D manipulation and conformational analysis of molecular
chains, when bond length, bond angles and related dihedral a.néles remain fixed. These algorithms
are useful for local deformations of linear molecules, exact ring closure in cyclic molecules and molec-
ular embedding for short chains. Other possible applications include structure prediction, protein
folding, conformation energy analysis and 3D molecular matching and docking. The algorithms are
applicable to all serial molecular chains and make no asssumptions about their geometry. We make
use of results on direct and inverse kinematics from robotics and mechanics literature and show
the correspondence between kinematics and conformational analysis of molecules. In particular, we
pose these problems algebraically and compute all the solutions making use of the structure of these
equations and matrix computations. The algorithms have been implemented and perform well in
practice. In particular, they take tens of milliseconds on current workstations for local deformations

and chain closures on molecular chains consisting of six or fewer rotatable dihedral angles.
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ALGORITHMS FOR SHARED MEMORY
PARALLEL MOLECULAR DYNAMICS IN SIGMA

Lars Nyland

Dept. of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

The goal of our work is to achieve the best possible performance while
maintaining full functionality of the SIgMA MD simulator on currently
available high-performance computers. Our current efforts target the KSR-1,
a shared-memory computer with 48 5OMIP processors at the NC Supercomputer
Center. Multiple versions of SIgMA have been implemented on the KSR, using
different decompositions to assign work to processors. In this talk, we will
discuss the decomposition strategies, comparing them with one another and
with execution of SIgMA on other supercomputers as well. We will describe
the algorithms used, the primitives available for parallel execution on the
KSR, analysis capabilities, and desired capabilities. We will also discuss the
future plans of high-speed execution of SIgMA, based on what we've learned
here.
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LOW COMPLEXITY MODELS OF PROTEIN STRUCTURE

Britt Park

Dept. of Cell Biology
Stanford University
Stanford, CA 94305-5400

We have examined the relationship between the complexity and accuracy of
various models of protein a-carbon backbone structure, by developing a
simple algorithm for generating near optimal fits to X-Ray structure by
arbitrary models. We found that even low complexity models can be accurate.
By a simple optimization procedure we have generated several 4 state per
amino acid residue models which on average fit X-Ray protein structures to
within 2.4 A and preserve 80% of native contacts. We examine the
characteristics of these models and discuss their use in the prediction of
protein conformation.
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MODELING WATER IN AND AROUND PROTEINS

B. M. Pettitt

Department of Chemistry
University of Houston
Houston TX 77204-5641

Modeling the solvent around proteins is an important and notoriously difficult
problem for ligand design/evaluation. Both vector and parallel plaforms have been
used to obtain simulations of proteins in water; our goal here is to take a step toward
reducing the computational workload by reformulating the problem in terms of
characteristic solvation correlations derived from simulation. The solvent structure
and dynamics around myoglobin has been investigated at the microscopic level of
detail from a computer simulation. We analyzed a molecular dynamics trajectory in
terms of solvent mobility and probability distributions. A strong correlation between
the solvent mobility and density emerges on both global and local scales. We have
proposed a simple model where the solvent distribution measured perpendicularly to
the protein surface is utilized to reconstruct the simulated network of hydration
within 6 \AA\ from the protein surface with a relative error of only 17%. The global
precision of this solvation model matches results obtained with more complicated
models usually used in refinement procedures in X-ray and neutron experiments but
with far fewer parameters. The dramatically improved correspondence between
observed and calculated X-ray intensities at low resolution relative to other methods
both confirms the validity of the approach used in the MD simulations and allows the
results of this study to be implemented in solvent studies on real systems.
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IDENTIFYING THE MECHANISM OF PROTEIN LOOP CLOSURE

Marios Philippopoulos, Yue Fang Xiang and Carmay Lim

The mechanism underlying Loop opening in Bacillus Stearothermophillus
Lactate DeHydrogenase (BSLDH) is explored through a molecular dynamics
simulation at high temperature (1000 K) in the presence of explicit solvent,
starting from the X-ray structure of BSLDH complexed with the co-enzyme

NAD+* and oxamate at 2.5 AA. During the simulation, a significant
conformational change has occured, as evidenced by sharp dihedral angle
transitions, hydrogen bond breaking and formation and large root-mean-
square deviations from the starting structure; these changes define the
criteria for Loop-opening. The mechanical elements responsible for Loop
opening; i.e., Loop hinges and flap, are defined through a combination of
order parameters, dihedral angle changes and their correlations, and the
dynamical cross-correlation map of atomic displacements for the Loop
residues. The results indicate that the Loop consists of two flexible hinge
regions on either side of a relatively rigid three-residue segment that
undergoes a significant spatial displacement during Loop opening. Loop
opening is made possible through an array of correlated dihedral angle
changes and intra-Loop re-arrangements of hydrogen-bond interactions.
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MOLECULAR DYNAMICS OF RHINO VIRUS:
EFFECTS OF AN ANTIVIRAL COMPOUND

C. B. Post and D. Phelps

Dept. of Med. Chemistry
Purdue University
West Lafayette, IN 47906-1333

Structural and biological studies on human rhino virus (HRV) complexed with
antiviral agents indicate that one cause of the antiviral activity is the
inhibition of disassembly of the viral capsid. We are using molecular
dynamics methods to investigate how the alteration in conformational and
dynamical properties might lead to changes in disassembly or disruption of
quarternary structure. Molecular dynamics simulations are being carried out
on free HRV14 and drug-bound HRV14 using a stochastic boundary method
(sbmd) that involves a truncated, spherical region centered on the drug-
binding pocket. It was found that binding of a drug in the internal cavity of
the virus affected the magnitude of the fluctuations in free-volume, a quantity
related to thermodynamic compressibility. The computations were repeated
with different boundary conditions for the sbmd method, so that the free-
volume fluctuations were calculated using a grid method for combined time
periods of more than 2.4 ns. Thus, the compressibility was found to increase
when drug is bound in the viral pocket, a result which appears
counterintuitive but which is consistent with the measured increase in
thermal stability and inhibition of disassembly. Plans for future work to
understand this effect on compressibility include simulations with different
drugs and mutant forms of the virus. The viral dynamics also suggest a path
for entry into the fully buried binding pocket. Future work is planned to
study drug entry and to simulate larger systems that include important
protein-protein interactions. Large-scale simulations are underway and
should provide a more accurate description of the dynamics and
characterization of concerted, long-range motions.
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APPLICATION OF THE RAY-RPRESENTATION AND
A MASSIVELY PARALLEL SPECIAL PUPOSE COMPUTER TO
PROBLEMS OF PROTEIN STRUCTURE AND FUNCTION

Michael G. Prisant*

Department of Chemistry
Duke University
Durham, NC 27706

Methodology is developed to apply ray-representations to geometric analysis of
space-filling models of protein structure. The following specific problems are
treated. First, we define the ray-representation for fused-sphere models of proteins.
Second, using the ray-representation, we treat computation of molecular contact
surfaces in solution via Minkowski dilation and erosion. Third, we describe how all
points of the molecular contact surface can be tagged according to their chemical
properties. Fourth, we show how equivalence set methods can be applied to ray
representations of proteins in order to identify internal empty spaces and classify
their connectedness to the outside. Fifth, we develop filters to analyze the
morphology of interstitial spaces in proteins which connect to the outside. Sixth, we
discuss how Boolean algorithms can be used to determine whether water molecules
identified in X-ray crystallography are inside, outside, or intersecting the boundary
defined by the solvent accessible surface. Finally we discuss the computation of
volume properties from ray-representations. A special purpose massively parallel
computer is used to compute the ray-representation.

In an application of ray-casting technology, we consider the dynamical evolution of
voids in myoglobin. The analysis begins with the recent molecular dynamics (MD)
calculations on myoglobin in water performed by Bernard Brooks and coworkers at
NIH. A space-filling model is created based on the atomic coordinates of the protein
determined as a function of time in the MD calculations. This model defines the
solvent accessible boundary of the protein. Further geometric analysis determines
both the captured voids and reneentrant cavities in the protein based on this model.
Our preliminary results show that on a 100 picosecond time scale that there is a
bubbling motion of voids to the surface from the oxygen binding cavity along three
wel defined paths. This motion is due exclusively to thermal fluctiations

of the protein in the water bath.

* Secondary Appointment, Department of Computer Science, Duke University,
Durham, NC
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SOLVENT EFFECTS ON THE DYNAMICS OF SUPERCOILED DNA

Gomathi Ramachandran

Courant Institute of Mathematical Sciences
New York University
251, Mercer Street
New York, NY 10012

The effects of solvent on the dynamics of supercoiled DNA are examined
through a simple, macroscopic energy model in the context of Langevin
dynamics simulations. Closed circular DNA systems are modeled by B-splines
and both elastic and electrostatic (screened Coulomb) potentials are used in
the energy function.

In the Langevin formalism, the collision frequency, y, determines the
magnitude of the friction and the variance of the random forces due to
molecular collisions and thus characterizes approximately the influence of the
solvent on the motion of the solute. Thus, as a first approximation, the
Langevin equations of motion can be parametrized to model the dynamics of
DNA in solution. Solvent damping is well known to alter the dynamics
behavior of DNA, affect various hydrodynamic measurements, and introduce
significant entropic effects. By varying y over 10 orders of magnitude, we
identify three distinct physical regimes:

(i) low y, dominated by globally harmonic motion;

(ii) intermediate y, characterized by maximal sampling and high
mobility of the DNA; and

(iii) high vy, dominated by random forces, where all of the global modes
are effectively frozen by extreme overdamping.

The different regimes are explored extensively by Langevin dynamics

simulations and very different behavior is observed, offering insights into
hydrodynamic effects on supercoiled DNA.
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WET PROTEINS AND VIBRATIONAL STATES:
BEYOND NORMAL MODES

Adrian Roitberg
(Northwestern University, Evanston, IL)

Ron Elber
(University of Ilinois at Chicago, Chicago, IL and
Hebrew University at Jerusalem, Jerusalem, Israel)

Benny Gerber
(University of California at Irvine, Irvine, CA and
Hebrew University at Jerusalem, Jerusalem, Israel)

and
Mark Ratner
(Northwestern University, Evanston, IL)

In the present poster we will study the effect of a water shell on the vibrational
density of states of a medium-size protein and the influence of hydration on the
protein's RMS fluctuations.

A possible improvement on the normal modes picture, including anharmonicity is
presented and a calculation of vibrational ground state wavefunctions and energies
for a large system shown. :

The effects of the diagonal anharmonicity is shown to be large for a substantial

number of modes, while the effect of off-diagonal anharmonicity (mode-mode
coupling) is esentially zero.
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Structural Analysis of Nucleic Acids. Applicability of Commonly used
.Parametrizations of Electrostatic Interactions.

W.R.Rudnicki 2),b) and B.liesyng a)

a) Warsaw University, Department of Biophysics,
93 Zwirki i Wigury, 02-089 Warsaw, Poland

b) Agricultural University, Department of Biophysics
26/30 Rakowiecka, 02-528 Warsaw, Poland

The AMBER, CHARMM, BIOSYM .(cvff, ¢££91) and GROMOS force fields were
tested by optimization of; several DNA double-helical oligonucleotides
in their A and B forms, as an extension of our former studies on
DNA/RNA structure and dynamics, see e.g. [1-3]. We have applied various
sets of electrostatic parameters. The optimized structures were
characterized by their helicoidal parameters and compared with those
obtained from crystallographic data. Atomic charges are essential for
proper description of the DNA structure. In extreme case, the cvff and
cf£9l force fields with their original charges, fail to preserve the
double-helical structure of DNA, but after updating these charges with
the AMBER ones gave very gooad results, better than those obtained with
the original AMBER force field. The distance dependent "dielectric
constant™ is superior to a. fixed dielectric constant. Modification of
-the charges at the phosphate groups exhibit only minimal effects on the
structures, but influences noticeably the dynamics of the
oligonucleotides and the helicoidal parameters obtained by averaging
"the parameters over the trajectories. It is worth noting that the
barrier to pseudorotation of furanose rings inside the double-helical
DNA structures is sensitivé to the Van der Waals interaction parameters.

(1] B.Lesyng, "The Barrier to Pseudorotation of Furanose Rings and its
Biological Implications", in Topics in Nucleic Acid Structure ,
Part.3, ed. S.Neidle, Macmillan, London, 1977.

[2] W.R.Rudnicki, B.Lesyng and S.C.Harvey, Biopolimers, 34, 383 (1994)

{3] V.Pechenaya, W.R.Rudnicki, T.Grycuk and B.Lesyng, The Barrier to
Pseudorotation of Furanose Rings in Double-~Helical DNA Forms - in
preparation.
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A NUMERICAL TECHNIQUE FOR
EVALUATING MOLECULAR PARAMETERS USING
ULTRICENTRIFUGE SEDIMENTATION VELOCITY DATA

Hashim Saber

Montana State University - Billings
Department of Mathematics
1500 North 30th St.
Billings, MT 59101

A finite element scheme is adopted to simulate the ultracentrifuge
sedimentation velocity data. To estimate the diffusion and sedimentation
parameters, we use a non-linear least square algorithm that minimizes the
square difference between experimental and simulated data. We also use the
conveviance feature of the finite element algorithm to treat the non ideality
case where the required parameters depend on the concentraion. In addtion,
the multicomponent system where the parameters depend on the
concentration is also simulated.
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WRITEUP FOR KANSAS WORKSHOP, ALGORITHMS FOR MACROMOLECULAR MODELING
(ExcerpTED FROM OTHER WRITTEN MATERIAL)

Numerical Integration Schemes for Molecular Dynamics

Tamar Schlick

The Howard Hughes Medical Institute and New York University
Chemistry Department and Courant Institute of Mathematical Sciences
251 Mercer Street
New York, New York 10012, U.S.A.

(e-mail: schlick@nyu.edu)

Many problems in chemistry can be reduced to the solution of systems of coupled ordinary
differential equations (ODE’s). Examples include molecular and Langevin dynamics, rate
equations of kinetic theory, and the time-dependent Schrodinger equation when expanded in
a basis set. The technology of numerical integrators for solving ODE’s has a long history
with significant interplay between mathematics, physics and chemistry. Many of the earliest
integrators, such as Runge-Kutta and predictor-corrector integrators, are still in common use,
but there have also been recent advances, driven in part by the need for methods that can treat
multiple timescales and have greater stability for the large-scale coupled nonlinear oscillators
commonly found in molecular dynamics (MD) of polymers and biological macromolecules [1].
The long-time stability of integrators for such systems is a challenging area of mathematical-
analysis research that is still in relative early stages [2], and perhaps the context of biomolecular
MD will stimulate important developments.

Symplectic integrators have recently gained favorable attention in the mathematical com-
munity and quickly adapted for use in dynamics calculations in chemistry because of their
favorable properties. In applications to Hamiltonian systems, symplectic integrators have the
property of building in Liouville’s theorem, whereby areas in phase space are preserved as
the system evolves in time. This strong conservation property translates into stability over
long-time integrations, an important property in MD calculations involving millions and more
steps. One consequence of this for constant-energy MD simulations is that except for fluctua-
tions, symplectic integrators at small timesteps conserve energy for very long times, whereas
non-symplectic integrators typically introduce a systematic drift in the total energy. Time
reversibility is another useful practical property of symplectic integrators.

Symplectic integrators may be implicit or ezplicit. In explicit methods, the solution at the
end of the timestep is obtained by performing operations on the variables at the beginning
of each timestep. Symbolically, we write y™*! = f(y",A¢,...), where f is some nonlinear
function, At is the timestep, y™ is the approximation to the solution y at time nAt, and the dots
indicate other parameters or previous solutions (i.e., y™*,y"~2). With implicit integrators, the
final solutions are functions of both the initial and final variables (y*+* = f(y™*+, 4™ At,...),
so coupled nonlinear equations must generally be solved at each timestep to propagate the
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trajectory. The explicit versions generally involve simple algorithms that (for propagation
only) use modest memory, while implicit methods involve more complex algorithms but are
often more powerful for treating systems with disparate timescale dynamics.

The development of symplectic integrators has involved significant interplay between math-
ematicians, physicists, and chemists. Seminal work on symplectic integrators was done by both
physicists and mathematicians [3] based on second and third-order explicit approaches and
Runge-Kutta methods. Implicit approaches were developed in parallel [4]. Recently these
ideas have found their way into the chemistry community with promising results. The Verlet
integrator [5], already in common use, was found to be symplectic, thereby explaining the
good associated stability observed in practice. However, the Verlet and related methods —
while simple to formulate and fast to propagate — impose a severe constraint on the maximum
timestep possible

Standard techniques of effectively freezing the fast vibrational modes by a constrained
formulation [6]

There are well known numerical techniques for solving differential equations describing
physical processes with multiple timescales [9]. Various implicit formulations are available that
balance stability, accuracy, and complexity. However, the standard implicit techniques used by
numerical analysts [10] have not been directly applicable to MD simulations of macromolecules,
for the following reasons.

First, such implicit schemes are often designed to suppress the rapidly-decaying component
of the motion. This is a valid approach when the contribution of these components becomes
negligible for sufficiently long times, as is the case for the second term in y(¢) = exp(—1) +
exp(—100t). This situation does not hold for biomolecular systems because of the intricate
vibrational coupling. It is well recognized that concerted conformational transitions (e.g., in
hinge-bending proteins) require a cooperative mechanism driven by small-scale fluctuations
to make possible a large-scale collective displacement. Thus, while the damping of the high-
frequency modes may not by itself be a severe problem, the lower energies associated with
these modes — see below — may be undesirable for proteins and nucleic acids, as cooperative
motions among the correlated vibrational modes may require energy transfer.

Second, implicit schemes with known high-stability (e.g., implicit-Euler) can introduce
numerical damping [11]. Therefore, such discretizations of the classical Newton equations of
motion will eventually damp out the energy of a system. This has prompted the application
of such implicit schemes to the Langevin dynamics formulation, which involves frictional and
Gaussian random forces in addition to the systematic force to mimic molecular collisions
and therefore a thermal reservoir. This stabilizes implicit discretizations and can be used to
quench higher-frequency vibrational modes [12], but unphysical increased rigidity can result
[11]. Therefore, more rigorous approaches are required to resolve the subdynamics correctly,
such as by combining normal-mode techniques with implicit integration [11]; significant linear-
algebra work in the spectral decomposition is necessary for feasibility for macromolecular
systems. There has also been some work on implicit schemes that do not have inherent
damping, but preliminary experience suggests that for nonlinear systems desirable energy
conservation properties can only be obtained up to moderate timesteps [13].
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Third, implicit schemes increase complexity, since they involve solution of a nonlinear
system or minimization of a nonlinear function at each timestep. Therefore, very efficient
implementations of these additional computations are necessary and, even then, computational
gain (with respect to standard “brute-force” integrations at small timesteps) can be realized
only at very large timesteps.

At this point it appears that the optimal algorithms for MD will require a combination of
methods and strategies discussed above, including symplectic and implicit numerical integra-
tion schemes that have minimal intrinsic damping, and correct resolution of the subdynamics
of the system by some other technique (e.g., normal-mode analysis). Undoubtedly, high-
performance implementations will make possible a gain of several orders of magnitude in the
simulation times, and there are certainly additional gains to be achieved by clever program-
ming strategies.
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PARALLEL ALGORITHMS FOR BIOMOLECULAR MODELING

Babak Bagheri, Andrew Iin,-J. Andrew McCammon, L. Ridgway Scott, and Dexuan Xie
The Tezas Center for Advanced Molecular Computation
University of Houston

Abstract

We describe the development of some parallel iterative techniques for solving boundary value
problems for elliptic partial differential equations. Using domain decomposition techniques, we
modify standard sequential iterative techniques to obtain effective parallel methods. We contrast
implementations on distributed-memory and shared-memory scalable parallel processors. We de-
scribe the use of two different programming paradigms, one involving explicit parallelism in a
distributed-memory model and the other utilizing simple loop decompositions in 2 shared-memory
model. Our primary conclusion is that parallel computing on existing commercial parallel super-
computers makes it routine to do three-dimensional modeling of electrostatics around biomedically
interesting systems.

I. Introduction

We discuss several techniques for solving elliptic boundary value problems via iterative methods
which have a high degree of parallelism. These techniques are being developed to solve as broad a
class of problems as possible, but our primary motivation has come from computing the electrostatic
potential around molecules of biological significance [7]. Moreover, implementation of the methods
has been done as part of an existing code UHBD [5]. This makes the code development more
complex but also provides an assessment more realistic than would ‘be available by looking only at
computational kernels. In addition, we have applied some of the computational techniques to solve
prototypical problems related to semiconductor device simulation [3]-

We have studied several variants of standard iterative methods which we have designed to have
good parallelism. These include variants of the well known ICCG and SOR iterative methods. In
addition, we have proposed new types of iterations especially suitable for parallel computation [11].
We anticipate that all of these methods will be useful as coarse grid solvers for parallel multigrid
methods [8].

In addition to studying different parallel iterative methods, we have used different parallel
programming paradigms. Two of these are (1) Pfortran [1] and (2) shared memory constructs
supported by Kendall Square’s KSR-1 Fortran [10]. Both approaches have proved adequate for
implementing the parallel algorithms presented here, due to the high degree of regularity of the
loops involved. Less regular loops in UHBD, related to its Brownian dynamics phase, have been
easier to parallelize using shared-memory constructs [4].
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II. PSOR

The Jacobi method for approximating the solution of a linear system is naturally parallel, but
the typically more efficient Gauss-Seidel method is essentially sequential. In the Jacobi method,
each component X; of the approximate solution vector X = (Xj,...,Xn) can be computed sepa-

rately of all others, which we can write schematically as
X = Fy(XF,. . XE), for i=1,2,...,N, (2.1)

where the F; are functions of N variables. For example, F = (F1,..., Fn) is an affine function
in the case of solving a linear system. Typically F is sparse, depending only on entries near the
diagonal, which we indicate by Fi(...,X;—1, X, Xit1,...). With Gauss-Seidel, it is frequently the
case that X5 ; depends on Xf: schematically it is

X = F(.. XL xE xR, ) for i=12,..,N. (2.2)

The same applies for the SOR method, which is just a relaxed (or accelerated) version of Gauss-
Seidel.

One approach taken to deal with the sequential nature of SOR is to reorder the unknowns so
that one group of components X; can be computed independently of others. This is often referred
to as a coloring of the index set. The most well known case is that of two colors, usually called
“red-black” ordering since it is similar to a chess board in simple cases. While this can be quite
effective, it requires communication to be done for each color as opposed to just once for each
iteration, as is the case for the Conjugate Gradient (CG) method. The number of colors required
depends on the extent of the sparcity of F.

A simple technique used in practice is to decompose the index domain (the set of indices ¢) in
a way to minimize the communication (either the number of messages required, or the size) among
neighboring domains. Gauss-Seidel (or SOR) is used within each domain, without updating using
the appropriate neighboring values. In the two-processor case, it takes the form

XH =R XPLXEXELL ) Vi, 1<i< N/,

1
2.3)
XEP =R X e Xy o XEEL XE XE L) VY, %Jr 1<i<N. (

/2410 3 i1

Once the local Gauss-Seidel (or SOR) sweep is done, neighboring values are exchanged, similarly to
what would be done in the Jacobi iteration. For this reason, we refer to this method as the Jacobi-
Gauss-Seidel (JGS) algorithm (or JSOR for its accelerated or relaxed variant). While appealing
for its simplicity, this algorithm frequently requires a much larger number of iterations than the
sequential case.

Remarkably, a simple alternative [12] to JGS and JSOR has convergence properties similar to
the sequential case, but with communication features similar to JGS/JSOR. We will not attempt

a complete description of the most general case, but will simply describe an example and present
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numerical results. Consider the following algorithm:

X =Fy(.. .,X{‘_‘ql,X{‘,...,Xﬁ,,g,X§7;+1,...) Vi, 1<i< N/2,

. (2.4)
b éan =F,-(...,Xﬁ/z,X§,7;+l,...,ijll,Xf,X,."H,...) Vi, %4- 1<i<N.

This algorithm, which we call PGS (and PSOR for its accelerated or relaxed variant) is parallel
for sparse F' to the extent that the values X J'\‘;'/"zl, ..» X5 which are produced by the PTOCesSor
computing the second line can be computed and made available to the processor computing the first
line before they are needed. In the case that the functions F; are suitably sparse, this constraint
poses no practical limitation to parallelism.

Figure 2.1 shows performance analysis for calculations done with the 5-point discretization of
Laplace’s equation using a strip decomposition (algorithm (2.4) in the case of two processors). We
use this type of performance analysis graph to isolate different parts of a code. The computation
time decreases even superlinearly [4] whereas the communication time (due to the use of a strip
decomposition) remains nearly constant. The category “other time” simply reflects the part of the
total time that cannot be accounted for in either of these categories; in this case it is quite small
(being less that a second for two and four Processors).

PSOR for Poisson Equation on 512 x 512 Grid
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Optimal relaxation parameter = 1.99
4 The floating point performance for P = 1 is 6.58 Mflops
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(2] | 4
ke [
=
[o]
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Figure 2.1. Performance analysis for PSOR for the 5-point discretization
of Laplace’s equation using a strip decomposition on the KSR-1.

We note that the code for this test was implemented in IPfortran and compiled separately for
the Delta and KSR-1, without change of source code. The resulting speedup is almost identical for
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both systems. In fact, the computation and communications times are largely the same for both
systems. Although it is certainly possible to optimize performance for these distinct architectures,
this shows that a single programming paradigm can provide efficient execution across a variety of
different parallel architectures. '

IIL. PICCG

Our parallel variants of ICCG have been implemented as part of the code UHBD [5,6] which was
developed to study the interaction of two molecules of biological significance. One phase involves
computing the electrostatic potential around the dominant molecule, and the second phase simulates
Brownian motion of the second molecule in this electrostatic force field. The first phase solves the
nonlinear Poisson-Boltzmann (NLPB) equation for the electrostatic potential.

We have modified the electrostatic solver to be able to model semiconductor devices [3]. This
has provided a stronger test both of the linear and.nonlinear parts of the solver, but the principal
conclusion is that semiconductor devices can be modeled quite effectively on massively parallel
computers. For example, the following table shows that the solver is scalable in the sense that
larger problems can be solved without increasing the execution time, by increasing the number of

processors used.

Total CPU time in seconds for a MOSFET simulation
on the_Intel Delta for P nodes and mesh of size N3

N3 P=1 2 4 8 16 32 64 128 256
30° 22 14 9 6 4 4 4 5 8
603 192 99 52 35 20 - 15 12 13 16
903 214 94 62 36 28 26 28
1403 184 127 90 91 76
2003 252 228 197
2603 440

One particular case of interest is the so-called memory constrained scaling, the times for which
are indicated in bold face. This is the case using the smallest number of processors which can run
the problem, i.e., can fit the problem in local memory. We note nearly constant run times for this
case. The slanted numbers indicate a different scaling which corresponds to a number of processors
yielding an execution time that is an order of magnitude smaller. In this case, local memory is not
utilized fully. '

Most importantly, this table indicates that very large problems can be solved in just a few
minutes (or just a few seconds, depending on resources available), allowing repeated designs to be
tested or even optimized. We note also that the best decomposition has not been used for the
case of large P and moderate N. If a block decomposition were used in this case, even better

performance would be realized for the times away from the diagonal in the table.
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One striking conclusion of our work so far [2, 3, 4] is that the total execution time for the
elliptic solver portion of UHBD is essentially the same for quite disparate computer architectures and
programming paradigms, as shown in Figure 3.1. The computations on each machine have quite
distinct internal characteristics. For example, each calculation in done in each machine’s single
precision, which is 8-bytes on the KSR-1 and 4-bytes on the Delta. Due to the shorter word length,
more iterations actually are done to reach the pres.cribed tolerance (the same for both machines).

Comparison of LPBE Solvers on 100x100x100 Grid
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Figure 3.1. Timing for the linear and nonlinear solvers
in UHBD on a test problem with a single atom.

In addition, quite different programming paradigms are being used in each case. For the Delta
computations, we used IPfortran [1], an explicitly parallel language. For the KSR computations,
we used the KSR “tiling” directives [10]. However, the total time is almost identical for 16 and 32
processors for a uniform mesh of size 1003.

IV. Conclusions and future work

We have identified a number of promising parallel iterative methods, but we have not yet
begun to quantify their domains of applicability (and superiority). Moreover, we anticipate these
will ultimately find their best application as coarse grid solvers in a parallel multigrid technique.
On the other hand, just using these parallel variants of standard iterative methods, we are able to
solve two and three dimensional problems of substantial interest rema.rka.Bly quickly.
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The Acceleration of Time in DTH Dynamics

Yosi Shibberu
Mathematics Department
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email: Yosi.Shibberu@Rose-Hulman.Edu
September 12, 1994

Abstract

A discrete variational principle is used as the basis for a discrete-
time theory of Hamiltonian dynamical systems called DTH dynam-
ics. DTH dynamics is governed by implicit difference equations
which completely determine piecewise-linear, continuous trajecto-
ries. These trajectories exactly conserve the Hamiltonian function
at the midpoints of each linear segment and exactly conserve, at
the vertices, all conserved quadratic functions. The DTH equations
are formally equivariant with respect to a collection of symplectic,
piecewise-linear, continuous coordinate transformations. A generat-
ing function also exists which determines transformations between
the vertices of the piecewise-linear, continuous trajectories. DTH
dynamics determines a unique parametrization of time. An asymp-
totic expansion of this parametrization of time is used as the basis
of a new explicit scheme for integrating Hamiltonian dynamics.
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COMPLEXITY OF MULTIPLE TIME STEPPING ALGORITHMS

K. Srinivas

Beckman Institute
University of Illinois
Urbana, IL 61801

Though the idea of multiple time stepping dates back to the seventies, there
has not been a rigorous analysis of the error due to multiple time stepping and
the complexity of N-body integration using multiple time stepping. This poster
examines the complexity of a symplectic MTS scheme under various settings.
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A practical symplectic distance class algorithm
Robert D. Skeel!
Department of Computer Science and Beckman Institute
University of Illinois at Urbana-Champaign
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September 1994

Abstract

The high cost of doing macromolecular dynamics simulation is primarily due to the
calculation of large numbers of electrostatic interactions. The use of distance classes
with multiple time steps (MTS) has been found to reduce dramatically the computing
time. The idea is that different terms of the collective force vector are integrated with
different time steps. With distance classes the various pairwise interaction terms are par-
titioned into classes based on the distance between atom pairs: Interactions at greater
distances are much more numerous but they are evaluated less often. Further savings
are possible by using a method such as the fast multipole method to evaluate forces in
the “outermost” distance class, an idea due to A. Windemuth. *Although the concept
of multiple time steps goes back 20 years, only recently was discovered, independently
by groups at Illinois and Columbia, an MTS generalization of the Verlet method, which
is both time-reversible and symplectic. Symplecticness is a property of the original an-
alytical differential equations, which is inherited only by special numerical integrators.
The significance of being symplectic may be this: a numerical ihtegrator is symplectic if
and only if the discretization errors can be interpreted as errors in the energy function
(not merely as errors in the collective force vectors). However, the typical use of MTS in
conjunction with distance classes destroys both the time reversible and symplectic prop-
erty of the method. What we propose instead is an artificial splitting of each potential
energy term

U(T) — Uhard(r) + Usoft(,r)
such that U"4(r) vanishes for r > 7oy and U soft(r) is soft for all 7. So U**%(r) never
requires a small timestep. The effect of this is to permit a large timestep whenever r
exceeds the cutoff. For example with U(r) = 1/r we suggest
-1 _1,-32

3
Usoft(r) — 3Tecut — 3Tcut™ T < Tcut,
7‘-1: T Z Tcuts

and U4 = 7 — Jsoft This idea generalizes in a practical way to more than two distance
classes. We hope to present results of preliminary experiments ‘with this method.

Yeurrent address: (Courant Institute of Mathematical Sciences, New Yqrk University,) 251 Mercer Street,
New York, NY 10012; email: skeel@cs.uiuc. edu
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Simulated annealing using a continuous density distribution:
Application to a model protein

- John E. Straub
Department of Chemistry, Boston University
Boston, Massachusetts 02215

If the native state of the protein is assumed to be the global free energy minimum, the problem
of defining the native state configuration is reduced to the problem of finding the global minimum
of a complicated many dimensional energy function. This view has been made popular principally
through the work of Scheraga and coworkers who have contributed many creative approaches to
the difficult problem of optimizing protein structure.! The difficulty of finding the global minimum
is closely related to the character of the multidimensional energy function - the energy landscape
— of the protein. Finding the lowest energy conformation of a large protein, or folding the protein
in simulacro, is currently an intractable problem — one which cannot be solved in a realizable time
using an exhaustive search of configuration space.

Simulated annealing

The paradigm of global optimization of complex systems is simulated annealing.? This method
makes use of a powerful analogy between the statistical mechanical process of annealing and the
challenge of global optimization of a complex cost function. In global energy minimization, where
our cost function is the potential energy surface, this requires no stretch of the imagination. The
system is simulated at an initially high temperature using molecular dynamics or Monte Carlo. The
temperature is slowly lowered according to a cooling schedule, annealing the system to a low or
zero temperature. The final configuration of the system is the guess at the global energy minimum.
If the cooling schedule is chosen properly, we can expect to find the global minimum with a high
probability.

Potential smoothing and coarse graining

Hoare and Mclnnes® noted that softer potentials tend to favor a regular crystal configuration
(as the global minimum) while shorter range potentials tend to encourage amorphous structures.
In an elegant analysis of the nonlinear optimization problem, Stillinger and Weber? recognized that
while the number of local energy minima is a strongly (exponentially) increasing function of the
system size, how fast the absolute number of minima increases has a great deal to do with the
length scale of the interparticle interactions.® Systems with short range potentials dominated by
nearest neighbor interactions have large numbers of local minima. When the range of interaction
is increased, the number of minima can be drastically reduced. The program of smoothing the
potential energy hypersurface to remove high lying local minima and deepen and broaden the
global energy minimum has been referred to as the “antlion strategy.”*

My talk will present simulation algorithms which are based on the paradigms of simulated
annealing and potential smoothing. In each case, the system is represented by a continuous den-
sity distribution p(r,p) rather than a simple point in configuration space. Simulated annealing
for the continuous classical density distribution in time (by an approximate solution of the Liou-
ville equation 8p(r, p,t)/8t = —Lop(r,p,t)) or in temperature (by solution of the Bloch equation,
8p(r, B)/0B = —Hp(r, B)) is described. The algorithms are applied to fold a model protein.
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Classical simulated annealing in time

For simulated annealing to be an effective strategy for optimization of proteins, some changes
are required. Possibilities are suggested when one thinks of applying the simulated annealing
algorithm using an ensemble of systems in parallel. One may then explore a variety of mean
field ideas for the approximate integration of an ensemble of systems. Unlike an ad hoc potential
transform, these methods are rooted in the integration of the classical Liouville equation which
describes the time evolution of the classical density distribution (an ensemble of classical systems)
just as Newton’s equations employed in classical simulated annealing describe the time evolution
of a single trajectory. )

In the time evolution of an ensemble of classical systems, where each system follows the classical
mechanics defined by Newton’s equations of motion, the time evolution of the distribution p(r,p,t)
is described by the Liouville equation

ap(r1 b, t)/at= ’—EOP(T1 b, t) (1)

where Lo is the Liouville operator Lo = (p/m) - (8/0r) + F(r) - (0/0p), F(r) is the force and m is
the mass. F(r), r and p are d-dimensional vectors.

An exact description of the dynamics of p(r,p,t) is provided by the equations of motion for the
average position and momentum?®

d(r)/dt = (p)/m d(p)/dt = (F) 2)
and for the higher-order moments of positiori and momentum
dMy k/dt = (n/m) Moy k41 + kWi gy (3)

The moments of the distribution are defined as M, ; = ((r - 70)™(p — po)¥) and W, p = {(r -
r0)"(p — po)*(F — Fp)) where ro = (r), po = (p), and Fy = (F(r)). The brackets (...) imply an
average over the density distribution. Integration of this hierarchy of equations provides an exact
description of the dynamics of the ensemble. However, in practice this is intractable since for an
anharmonic potential the moments are coupled (up to infinite order moments). Therefore, one
must either truncate the moment expansion (which can be numerically unstable) or approximate
p(r,p,t). As a first approximation, Ma, Hsu and Straub® have taken p(r,p,t) for a many body
system to be a product of single particle distributions represented by d-dimensional spherically
symmetric Gaussian phase packets (GPP). Each GPP is completely defined by the first and second
moments — the packet center (rg, po) and widths (M2,0, M1,1, Mo 5) in phase space.

The appeal of these simple equations of motion comes from their origin as an approximate
solution of the Liouville equation for an ensemble of systems, while requiring little more compu-
tational investment than-is required to integrate Newton’s equations for a single representation of

the system. In general
mig = =V (V) - 4)

which has the form of Newton’s equation for the Gaussian center rg moving on a coarse-grained
effective potential (V). When Mz = 0 the equations of motion reduce to the usual equations
of classical molecular dynamics. The second moment equations depend on the Laplacian of the
effective potential.

In applying the GPP algorithm to an optimization problem we perform a simulated annealing
of the continuous density distribution and we must control the temperature during cooling.® There
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are a variety of ways to do this. One method involves a rigid constraint on the temperature.
Other methods involve coupling the system to a heat bath using a Fokker-Planck or BGK collision
operator such that the temperature of the system may fluctuate using the generalized Liouvillian®

L=2Lo+ L, (5)

where Lg is the streaming operator of the system and L. is the collision operator which couples the
system to the bath.

Classical simulated annealing in temperature

One difficulty in applying simulated annealing to proteins is the definition of a cooling schedule
which leads to a reasonable probability of finding the global minimum in a computationally realiz-
able time. An appealing alternative is to replace the cooling schedule necessary when annealing in
real or Monte Carlo time with direct integration in temperature.

Ma and Straub® have recently explored the possibility of performing simulated annealing directly
in temperature by approximately integrating the equation

0peq/ 0B = —(H — (H))Peq- (6)

to obtain the equilibrium classical density distribution for the canonical ensemble pe4(r,p, ) =
exp(—BH)/Q(B) at a given temperature. #(r,p) is the classical Hamiltonian energy function and
Q(B) = [ drdp exp(—pBH) is the canonical partition function. In fact, Eq. (6) is the classical analog
of the imaginary time Schrédinger equation which we have developed into a quantum mechanical
annealing algorithm.” For a many body system it is convenient to make the Hartree approximation
to the many body density distribution as a product of single body density distributions (employed
in the GPP integration® of the Liouville equation)

p(r,8) = (2 Ma/d) /% expl— (v = ro)?]. ()

The equations of motion in reciprocal temperature for the center ro and second moment M; of a
single Gaussian packet in d-dimensions are

8ro/9f = —(Mz/d)Vr (V) OM2/0p = —(Mz/d)*V7 (V). (8)

(V') is the pair potential a,vera;ged over the density distribution
(VYopa(ro, B) = (2w My /d)™*/2 / dr'V () e~dllro—r'II*/20a )

This effective potential is of the same form that appears in the approximate solution of the Liouville
equation using Gaussian phase packets. These equations define the Gaussian Density Annealing
(GDA) algorithm.

The form of these equations is quite appealing. The centers move according to a steepest
descent energy minimization equation on the effective potential energy surface while the widths
of the density distribution adjust themselves to the curvature of the effective potential surface.
Therefore, it benefits from the general properties of potential smoothing algorithms. Moreover,
the annealing minimization occurs directly in temperature. While the equations define a simulated
annealing protocol the algorithm is independent of cooling schedule — if the equations of motion
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are integrated accurately we should have the optimal annealing protocol for that representation of
the density distribution.

There is an important variation of the GDA algorithm - the “adiabatic GDA” (aGDA) method.
For the primitive GDA, problems result when the M, values decrease too quickly. Therefore, a
useful adiabatic approximation ‘provides that for every set of {Mz} the position of the density
distribution center relaxes “instantaneously” to its steady state value. The algorithm is applied as
follows. (1) The steepest decent equation

o = =V (V(ro, M2)) (10)

is solved with a fixed set of widths {M>} to find the minimum on the effective potential surface
for a particular temperature r§%(8). This can be performed using your favorite local minimizer.
(2) The widths of each packet are integrated in 8 by holding the center position {r@?} fixed and

solving ,
OM2/0 = —(M3/d)* V! (V (r§?, Mp)). (11)

(3) Return to step (1) and repeat the cycle.

The resulting algorithm is very much like the Diffusion Equation Method (DEM) of Scheraga
and coworkers® in that the positions of the centers follow changes in the widths adiabatically. We
refer to this method as the adiabatic GDA algorithm (aGDA). An important difference between this
algorithm and the DEM is that each width is allowed to evolve in an optimal way which depends
on the curvature of the effective potential surface; in the DEM each particle “density” has the same
width.

Application to a model protein

Amara and Straub have applied the GDA algorithm to a model protein. The model consists
of 22 residues where each residue is a sphere of neutral (N), hydrophobic (B) or hydrophilic (L)
nature. The details of this potential can be found elsewhere.® The sequence studied is B (LB)4
N3 (LB)s which leads to a global energy minimum configuration of a B-sheet. The global energy
minimum configuration allows for a2 maximum number of energetically favorable hydrophobic pair
contacts. This is a minimal model for protein folding and represents a serious test of the optimiza-
tion algorithms. It is a short step from the potential function used for this model protein to the
more general all atom empirical potential energy function such as ECEPP or CHARMm.

The more successful algorithms isolate lower energy states with higher probability. Algorithms
based on simulated annealing in time (MD, GPP) have the property that a distribution of energies
are isolated. Based on these results we find that the aGDA algorithm isolates only the global
energy minimum and is most effective. For this system, the GDA algorithm is superior to the
dynamical annealing algorithms in providing information on low lying states including the global
energy minimum.
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Fig. 1 The probability of locating a configuration with energy E or less from an initial distribution
of one hundred independent configurations is plotted for a model protein for four algorithms:
simulated annealing in time using molecular dynamics (MD) and Gaussian phase packet dynamics
(GPP), simulated annealing in temperature using the Gaussian density annealing (GDA) algorithm,
and the “adiabatic® GDA algorithm (aGDA).
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MOLECULAR DYNAMICS SIMULATION WITH
FRIEDMAN'S IMAGE CHARGE METHOD

Lu Wang and Jan Hermans

Department of Biochemistry & Biophysics
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-7260

An important technical problem in molecular dynamics simulations is how to
simulate a finite region of interest and at the same time incorporate long-
range interactions. We have explored the possibility of doing simulations on a
droplet system and incorporate the long-range interactions by Friedman's
image charge method. This reaction field method is applicable to spherical
systems with arbitrary charge distributions and with high dielectric constant
such as aqueous solutions. We have tested this scheme with simulations on
pure water droplets of radius of 9:5, 11.5 and 14.5 angstroms. We also calculated
the hydration free energy of a model cation located at different positions in
the droplets. With the reaction field, the radial distribution fiinction is much
closer to the result of simulations with periodic boundary condition than that
obtained from the simulations without the reaction field. However, the
properties of a 3 angstrom surface layer are much perturbed. The calculated
hydration free energy of the ion is constant in the interior part of the .
droplets, but goes up as the ion approaches the surface. Clearly, the reaction
field strongly perturbs the surface layer. We found that the problem could be
alleviated by not applying the reaction field to the surface layer. With this
modification, the calculated hydration free energy of the ion is constant in the
major part of the droplets. Also, the reaction field forces between the water
molecules could now be ignored for a saving of .computer time.
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Calculations of Electrostatic
Energies in Proteins

Arieh Warshel
Department of Chemistry-
University of Southern California
Los Angeles, CA 90089-1062

Calculations of Electrostatic energies provide what is prabably the best correlation
between structure and function of biological molecules {1-5]. In ;irinciple, orfxe can try to
use three different strategies. First are microscopic models with explicit solvent molecules
and free energy perturbation (FEP) type calculations. Such approaches convferge very
slowly and could not be used until the mid 80's [6]. Second, simplified microscopic
models describe the solvent molecules by dipoles. Such models, in particular.the PDLD
model [2,5], have allowed one to study proteins quite early [5] and to capture for the first
time the physics of solvation effects and electrostatic energies in proteins. Third are
macroscopic models that replace the solvent dipoles by polarized volume elerments. Such
models, which have gained enormous popularity in recent years (e.g. ref. 4), are-
conceptually very complicated despite the fact that they use extrermely familiar
electrostatic equations. The main problems are associated with the nonhomogeneous
nature of proteins and with the complicated nature of the corresponding diele!cttic
constants. Thus, the early macroscopic studies of proteins have reflected what is basically
incorrect physics (see discussion in refs. 2 and 3). :

In this lecture we will review the current status of the first two approz@ches-and
their relationship to the continuum models. We will concentrate on the following points:
(1) new strategies of treating long range interactions in FEP calculations [7]; (2)
microscopic FEP calculations of pK.'s in protein {7,9}; (3) microscopic evaluation of the
dielectric constants of proteins and the true meaning of these paramneters [8]; : (4) the
advantages of PDLD type models in terms of: (a) simple incorporation of LD dipoles to
MD simulations {9}, (b) very simple integration with quantum mechanical models
including excited electronic states (when the proper continuum treatment is not obvious),
and {c) providing a way to move from fully microscopic to a senn—macroscopic
description; and finally, (5) we will give some representative examples of recent
electrostatic calculations.
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Navigating the Energy Landscape of Protein

P. G. Wolynes

School of Chemical Sciences, Univeristy of Illinois, Urbana-Champaign
Urbana, Ilinois 68101

I will discuss models of the kinetics of protein folding that go beyond the single reaction coordinate
analysis that has been used before. In addition, the effects of correlation in the energy landscape
will be discussed, especially vis-a-vis structure prediction.
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Continuation-Based Global Optimization for

Molecular Conformation and Protein Folding

Zhijun Wu
Mathematics and Computer Science Division
Argonne National Laboratory

This talk is about our recent work on developing a new global optimiza-
tion algorithm for molecular conformation and protein folding.

A global optimization problem is computationally intractable in general,
and is difficult to solve if the problem size is large such as the problems for
protein conformation.

The goal of our work is to focus on only the problem for molecular
conformation and protein folding, and develop an algorithm that exploits
the problem structure so that an efficient solution specific to this class of
problems can be found.

In our approach, given a global minimization problem, to avoid directly
minimizing a “difficult” objective function, we first use a special technique
to transform the function into a class of gradually deformed, but “smoother”
or “easier” functions. An optimization procedure is then applied to the new
functions successively, to trace their solutions back Yo the original function.

To deform a given function, we introduce a parametrized integral trans-
formation, transforming a given function into a class of new functions cor-
responding to a set of parameter values. A transformed function is a coarse
approximate to the original function, with small and narrow minimizers be-
ing removed while the overall structure of the function is maintained. This
property allows an optimization procedure to skip less interesting local min-
imizers and concentrate on regions with average low function values where
a global minimizer is most likely to be located.

The transformed function depends on a parameter A that controls the
degree of smoothing. The original function is obtained if \ = 0, while
smoother functions are obtained as A increases. We illustrate the transfor-
mation process with the problem of finding the global maximizer for the
function shown in Figure 1. The transformed functions in Figure 2, clearly
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FORCE FIELD AND GEOMETRY OPTIMIZATION FROM
A DIVIDE-AND-CONQUER METHOD

Qingsheng Zhao

Department of Chemistry
Duke University
Duhram, NC27706

An efficient way based on divide-and-conquer method in density-functional
theory is developed to compute the force field and optimize the geometry for
large molecules. Considering the 4th nearest neighbors contribution, the
primitive tests show that the average error of the optimized geometry between
the method and Kohn-Sham method is very small.
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and opinions of authors expressed herein do not necessarily state or reflect those of the
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