

DOWNHOLE TEMPERATURE PREDICTION FOR DRILLING GEOTHERMAL WELLS

R. F. Mitchell
EnerTech Engineering and Research Co.

United States

ABSTRACT

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations.

The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project.

The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

1. Introduction

Drilling geothermal wells can be more difficult than drilling oil wells because of the unusually high temperatures encountered (as well as other problems such as lost circulation [1]). High wellbore temperatures strongly effect the performance of drilling fluids, cements, well casing and tubing, and the elastomers and seals in packers.

Determination of downhole wellbore and earth temperatures is a complex task. Many variables influence temperatures, which are continuously changing with time. Temperature recording devices have been developed, but these provide only isolated data points for a transient quantity and, furthermore, cannot provide sufficient information to establish the relative importance of variables influencing temperatures. Therefore, a means of computing downhole temperatures is needed to determine important design criteria, such as maximum temperature and time for exposure to high temperatures. Experience has demonstrated that a computer model is needed to account for complexities of heat transfer in a well.

Because of this need, Sandia Laboratories has funded the development of a wellbore thermal simulator called GEOTEMP by EnerTech Engineering and Research Co. Currently a second project to enhance the capabilities of GEOTEMP is being conducted. The simulations presented in this paper were conducted with this advanced form of GEOTEMP. This advanced GEOTEMP code will be available from Sandia in Spring of 1981.

Two drilling simulations were conducted, the first based on the GT-2 well drilled in the Los Alamos Hot Dry Rock Project and the second based on geothermal well #56-30 drilled by Republic Geothermal in the Imperial Valley East Mesa Field. The drilling fluids, circulation rates, drilling rates, and shut-in periods that were used in the actual wells were modeled by the thermal simulator. The thermal predictions from these studies are used to discuss:

1. Wellbore temperatures during drilling as a function of depth,
2. Bit temperatures over the drilling history,
3. Cement temperatures from setting to the end of drilling, and
4. Casing temperatures at selected depths over the drilling history.

2. The GEOTEMP Simulator

The major technical features of GEOTEMP are summarized in the following:

1. The flowing stream energy balance is a fully transient analysis with vertical heat convection, and radial heat conduction. Such a fully transient behavior has not previously been available for public use.

2. A composite of annular materials makes up the wellbore description, including the steel, cement, and fluids present in a well. A fully transient radial heat conduction model accounts for the wellbore region. Material heat capacities and natural convection in annular fluids are both included.

3. Radial and vertical heat conduction are the bases for the transient energy transfer in the soil. A key feature in the thermal simulator is the direct coupling of soil and well temperature calculations.

Particular emphasis has been placed on highly transient short time intervals, complex flow histories such as occur in drilling, and flexibility to allow sequential combinations of all flowing possibilities. With the code described in this paper, the complete life of a well can be modeled with one computer run for drilling and circulation during completion, through production and circulation during workover, additional production or injection through the life of a well, and even shut-in after a well is dead.

The original GEOTEMP was developed with only a single primary flowing fluid. The modified GEOTEMP currently under development allows several different wellbore fluids to be defined, and allows the user to specify the injection, production or circulation of any fluid at any time in the life of the well. Further, more than one fluid may be in the wellbore at any time, and the displacement of one fluid by another is automatically computed. The simulation of a cementing operation is one application of this capability.

The original GEOTEMP was developed to model liquid wellbore systems. The modified GEOTEMP now has the capability of simulating air and nitrogen drilling. The simulation can switch between air drilling and mud drilling at any time desired.

The GEOTEMP thermal simulator has been thoroughly tested against analytic solutions to several heat transfer problems and been shown to be very accurate. Field data was acquired from geothermal and petroleum wells for flowing and shut-in conditions to correlate with GEOTEMP. The performance of the thermal simulator in modeling this field data was excellent [2].

3. Geothermal Well Simulations

The GEOTEMP simulator was designed to allow the thermal simulation of the complex drilling and completion process of a typical geothermal well. Table 1 summarizes the drilling history of the Los Alamos GT-2 well. Twenty two separate time periods, six different drilling fluids, varied flow rates, and continuously changing depths characterize the drilling of this well. Table 2 summarizes the drilling history of Republic Geothermal well #56-30. Though not as complex as the Los Alamos well, a thermal simulation of this well would still require four different wellbore fluids, four different flow rates, and varying depth.

Tables 3 and 4 give the well completions of the Los Alamos and Republic wells, respectively. The Los Alamos well is completed with three different size casings and a drill pipe is specified. The Republic well is completed with four different casings and a drill pipe size is specified here also.

The input for the GEOTEMP thermal simulator is sufficiently flexible to completely specify the drilling histories and well completions of Tables 1-4. The remainder of this discussion will focus on particular results from these two thermal simulations.

A. Wellbore Temperatures

Figures 1-4 show the variation of wellbore temperatures with depth in the Los Alamos well at two selected time periods. Figure 1 shows the temperatures at the end of drilling on day 77, Figure 2 shows the temperatures at the end of the shut-in period of day 77. This drilling/shut-in pattern is repeated for the Los Alamos well in Figure 3 and 4 and for the Republic well in Figures 5 and 6. In Figures 1-6 the lines with circles give the tubing temperatures, the lines with squares give the annulus temperatures, and the unmarked lines gives the undisturbed geothermal temperature.

The key to the understanding of Figures 1-6 is the concept of the wellbore as a cross-flow heat exchanger. In Figures 1, 3 and 5 the annulus temperature exceeds the tubing temperature. Thus, the tubing fluid is heated as it flows down the drill pipe and its temperature increases continuously. The temperature of the annulus fluid is more difficult to predict because, while the annulus fluid is being cooled by the tubing fluid, it may be either heated or cooled by the surrounding soil, depending on depth. The balance between the cooling effect of the tubing fluid and the heating effect of the formation determines if the annulus fluid heats up or cools off. Of course, above the depth where the annulus temperature exceeds the geothermal temperature, the annulus temperature always decreases. Figure 1 shows the formation to be dominant in the annulus heat transfer. Note that the annulus temperature continues to increase until it crosses the geothermal line. In Figure 3, the tubing fluid has more influence, and the annulus temperature starts to decrease before

the geothermal line is crossed. Figure 5 shows a dominant effect by the tubing, thus the annulus fluid cools continuously.

Mass flow rate is the governing factor in the differences among Figures 1, 3, and 5. Figure 1 represents an air drilling simulation with a relatively low mass flow rate. The formation temperature governs the annulus heat transfer and there is a relatively large temperature difference between the annulus and tubing temperatures. Figure 5 results from the high mass flow rate of a conventional mud drilling. The annulus and tubing temperatures are nearly the same and the formation temperature has less relative effect on the fluid heat transfer. Figure 3 represents an intermediate case.

Figures 2, 4, and 6 show the effect of shut-in on the wellbore temperatures. In each case, the temperatures move toward the undisturbed geothermal temperatures. In Figure 2, the tubing temperature has lagged 15°-20° behind the annulus temperature, and this indicates the reduced ability of air to transfer heat compared to liquid systems. In Figures 4 and 6, the tubing and annulus temperatures in the liquid wellbore fluids are within a couple of degrees of each other. While the temperatures in all cases have not reached the geothermal temperature, it will be shown in Figures 9 and 10 that the wellbore temperatures have reached the temperature of the formation immediately in contact with the well. The conclusion is that a typical shut-in period is long enough for the wellbore fluid to reach equilibrium with the formation, but not long enough for the formation to return to its undisturbed temperature.

B. Bit Temperatures

Figures 7 and 8 give the temperatures at the drill bit over the drilling history of the Los Alamos and Republic wells respectively. Also indicated on the figures are the inlet temperatures, marked with circles, and the geothermal temperatures, marked with a solid line. These two curves represent extreme temperatures for the bit, and Figures 7 and 8 show that the bit temperature stays between them over the drilling history. The Los Alamos well is the most interesting because of the variety of drilling fluids and circulation rates used.

One notable result is that foam and air drilling are not as effective as conventional drilling fluids. Air and foam drilling are indicated on Figure 7, and in each case the bit temperature shows a significant increase over drilling with liquid systems. A temperature increase late in the drilling history indicates a reduction in daily circulation time from 18 to three hours. An increase to five hours of circulation per day reduced the bit temperature by 40° to 50°.

Figure 8, though not as dramatic as the Los Alamos simulation, clearly shows the effect of time on the bottom hole tem-

perature in the Republic well. At the eighth day and the twenty fourth, the daily hours of circulation were reduced because of logging operations, and in each case the bottom hole temperature increased, compared to bottom hole temperatures during drilling.

C. Cementing Temperatures

Figures 9 and 10 show a possible application of GEOTEMP to cementing operations. Figure 9 shows the radial temperature distribution at the end of cementing (square symbols) and at the end of "waiting on cement" time for the Los Alamos well. The solid line represents the initial undisturbed geothermal temperature. Figure 10 shows a similar plot for the Republic well. In each case, the cement is initially at a temperature 70° to 80° below the formation temperature. This formation temperature has been cooled by drilling operations by 20° in the Los Alamos well and 10° in the Republic well. At the end of the waiting period, the cement temperature has risen to the formation temperature, but it is still cooler than the initial undisturbed temperature.

The possible application of GEOTEMP would be to help design a cementing program where high formation temperatures make cement selection difficult and expensive. The simulations shown in Figures 9 and 10 indicate that the formation temperature governs the cement temperature but also that previous drilling operations have reduced the formation temperature. GEOTEMP could be used to design a circulation program to cool the formation sufficiently to help the cement operation.

D. Casing Temperatures

The final four figures relate temperature predictions to casing design. Figures 11 and 12 show the temperature of the 13-3/8" surface casing used in the Los Alamos well at two different depths over the drilling history of the well. Figures 13 and 14 show the same results for the Republic well. In each figure, square symbols indicate maximum temperatures, circles indicate minimum temperatures, and the solid line shows the undisturbed temperature as reference.

The temperature variation of about 60°F indicated at the casing seat of the Los Alamos well (Figure 11) corresponds to thermal stress changes of about 10,000 psi. The temperature changes at 400 ft range about 20°F, corresponding to 3,500 psi stress changes. These stress changes are large enough that they need to be considered in the well completion design [3]. Figures 13 and 14 indicate a temperature range of about 30°F at the surface casing seat the temperatures are uniformly below the disturbed temperature and at 400 ft the temperatures are above the geothermal temperature. Thus, at shut-in, the casing at 1400 ft will experience compressive thermal stress and the casing at 400 ft will feel tensile thermal stresses.

A useful application of GEOTEMP would be to simulate casing temperatures through drilling and the production life of a geothermal well. The resulting estimates of thermal stresses could be used to design the well completion. In difficult design cases, safety factors could be relaxed somewhat, because of the better thermal stress estimates.

4. Conclusion

The planning of a geothermal well can be aided by good estimates of wellbore and formation temperatures during drilling. Wellbore and bit temperatures are needed to help select drilling fluids. Knowledge of temperatures during cementing help the selection of cost effective cement formations and help design the cementing operations. Casing temperatures during drilling and production are needed to estimate thermal stresses for well completion design.

The GEOTEMP wellbore thermal simulator has been designed to provide this information. The actual well completion can be completely designated and all drilling parameters, such as drilling fluids, inlet temperature, flow rate, penetration rate, and hours of drilling per day, can be specified and changed at any time in the drilling history. Full information about wellbore and formation temperatures is provided at user selected times.

Four applications of the GEOTEMP simulator, 1. wellbore temperatures, 2. bit temperatures, 3. cementing temperatures, and 4. casing temperatures have been demonstrated. The drilling simulations were based on two actual geothermal well drilling histories, the Los Alamos GT-2 well and the Republic Geothermal #56-30 well.

REFERENCES

¹Malcolm A. Goodman, "Lost Circulation Experience in Geothermal Wells", presented at the International Conference on Geothermal Drilling and Completion Technology, Albuquerque, New Mexico, January 21-23, 1981.

²Gary R. Wooley, "Computing Downhole Temperatures in Circulation, Injection, and Production Wells", Journal of Petroleum Technology, September 1980.

³Carl Gatlin, Petroleum Engineering, Drilling And Well Completion, Prentice-Hall, Englewood Cliffs, N.J., 1960.

TABLE 1 LOS ALAMOS GT-2 WELL

DRILLING HISTORY

<u>Time (Days)</u>	<u>Depth (Ft)</u>	<u>Circ. Rate</u>	<u>Hrs. Circ Per Day</u>	<u>Fluid*</u>
0	0	125 gal/min	8.0	2
11.0	1595	125 gal/min	8.0	1
25.0	1595	125 gal/min	3.0	4
27.0	1595	300 SCF/min	8.0	Foam
48.0	2514	125 gal/min	3.0	4
50.0	2514	1245 SCF/min	11.0	Air
65.0	3556	1270 SCF/min	6.0	Air
78.0	3556	125 gal/min	5.0	1
87.0	3727	1275 SCF/min	3.0	Air
91.0	3727	125 gal/min	3.0	1
101.0	3727	1290 SCF/min	14.0	Air
105.0	3963	125 gal/min	15.0	1
114.0	4556	125 gal/min	11.0	3
148.0	6356	125 gal/min	0.0	1
194.0	6356	125 gal/min	13.0	1
199.0	6700	125 gal/min	5.0	1
236.0	6700	125 gal/min	15.0	1
258.0	8577	125 gal/min	1.0	1
263.0	8577	125 gal/min	18.0	1
268.0	9436	125 gal/min	3.0	1
276.0	9549	125 gal/min	5.0	1
292.0	9549	125 gal/min	5.0	1
295.0	9610	125 gal/min	5.0	1

<u>*Fluid</u>	<u>Density (Lb/Gal)</u>	<u>Plastic Visc. (Centipoise)</u>	<u>Yield Point (Lb/100 Ft²)</u>
1	8.3	1.0	0.0
2	9.3	10.0	3.0
3	8.6	5.0	2.0
4	15.1	30.0	50.0

LOS ALAMOS GT-2 WELL
WELLBORE TEMPERATURES

TIME = 77.2 DAYS

○ TUBING
□ ANNULUS

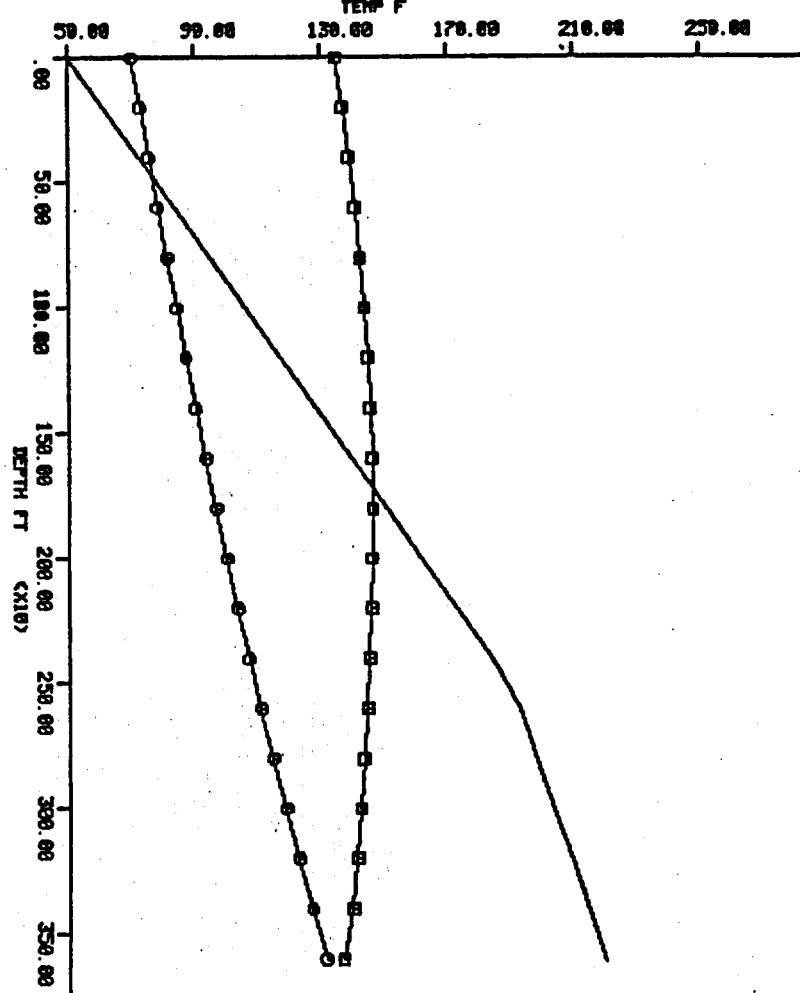


FIGURE 1

LOS ALAMOS GT-2 WELL
WELLBORE TEMPERATURES

TIME = 78.0 DAYS

○ TUBING
□ ANNULUS

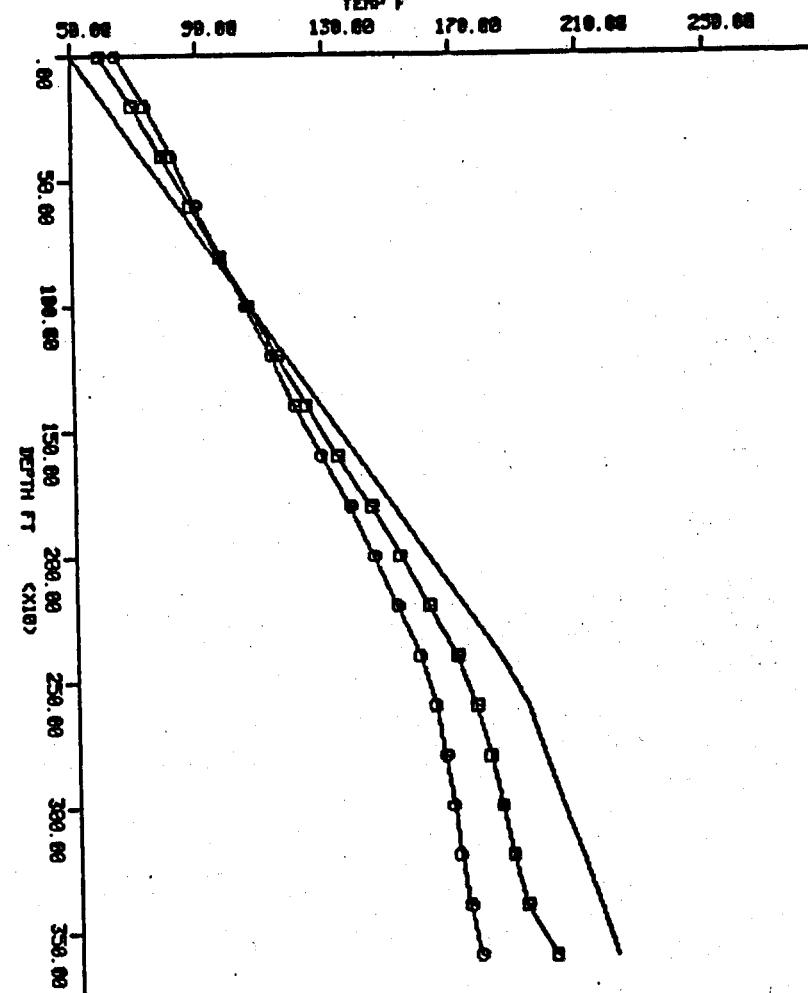


FIGURE 2

LOS ALAMOS GT-2 WELL
WELLBORE TEMPERATURES

TIME = 86.2 DAYS

○ TUBING
□ ANNULUS

TEMP F

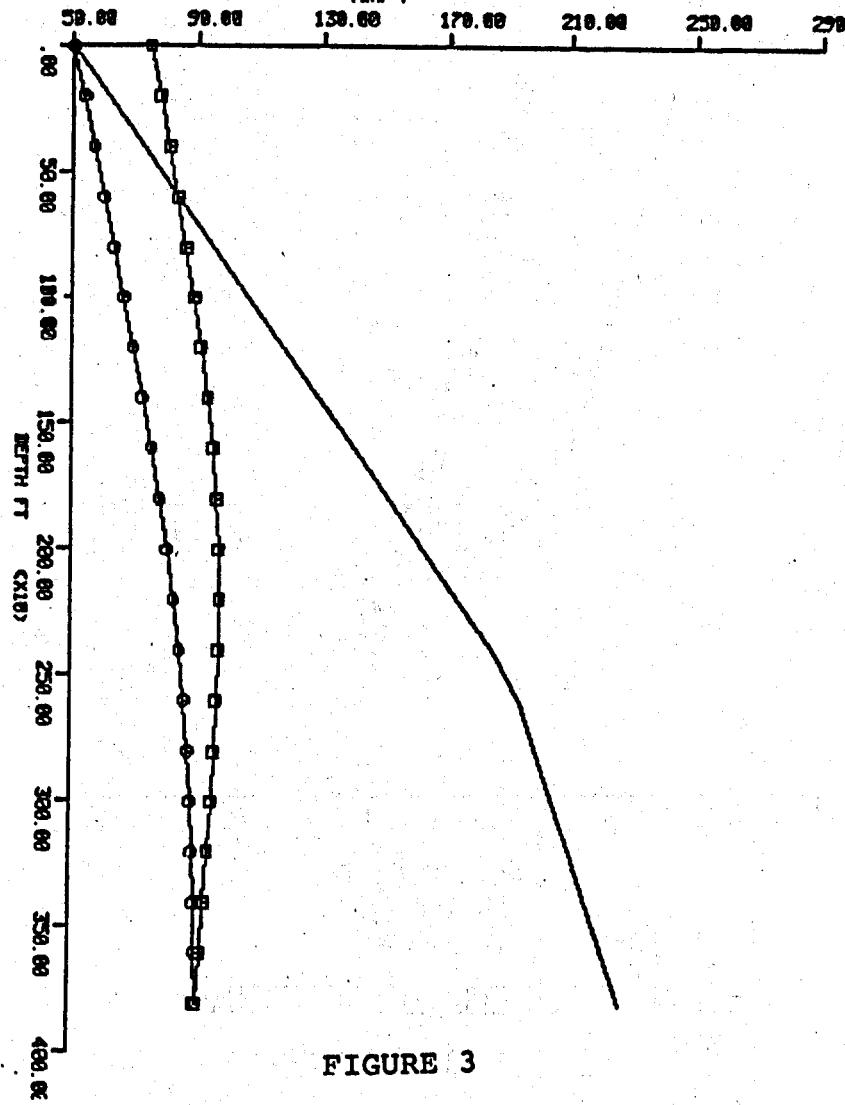


FIGURE 3

LOS ALAMOS GT-2 WELL
WELLBORE TEMPERATURES

TIME = 87.0 DAYS

○ TUBING
□ ANNULUS

TEMP F

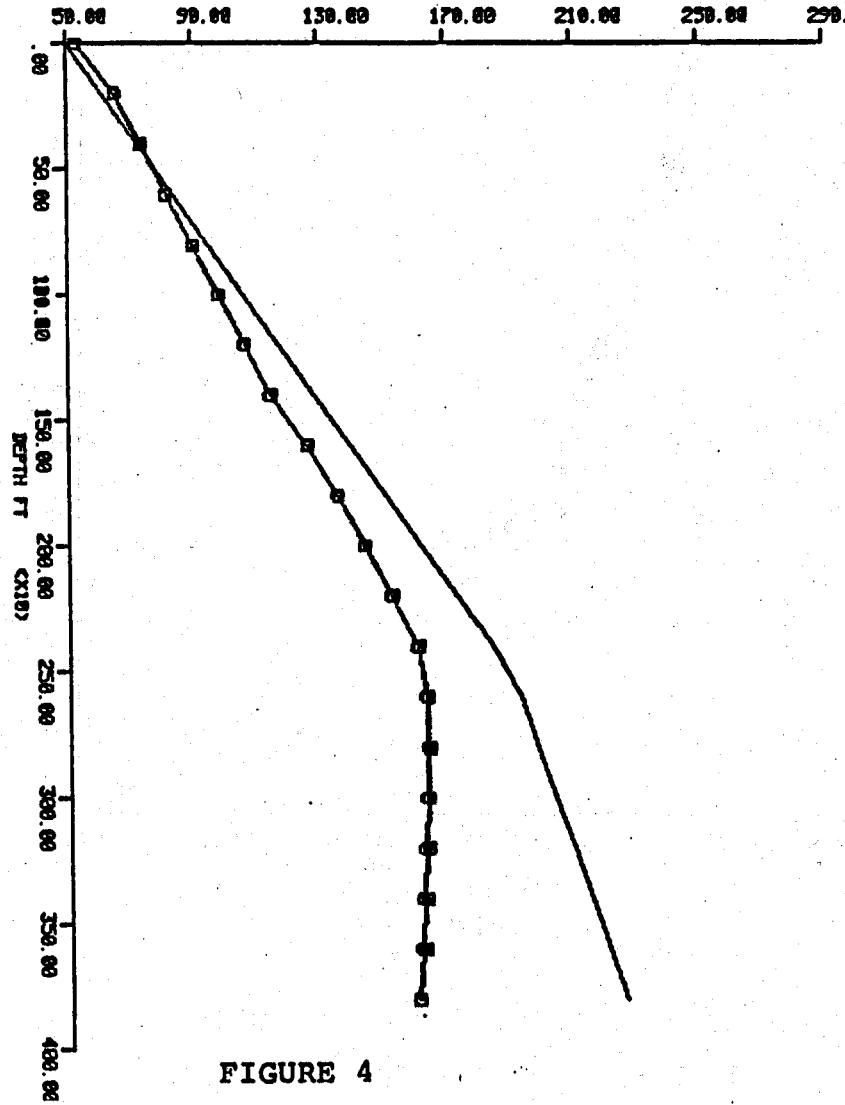


FIGURE 4

REPUBLIC 56-30 WELL
WELLBORE TEMPERATURES

TIME = 7.8 DAYS

○ TUBING
□ ANNULUS

TEMP F

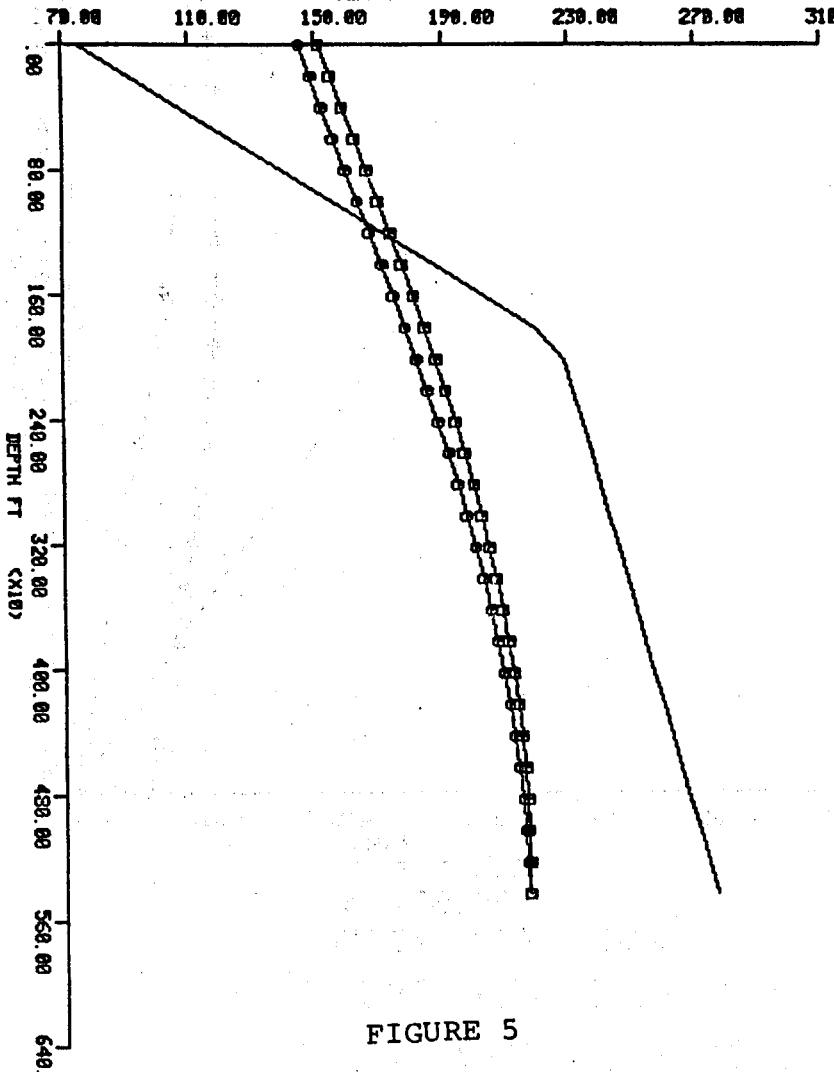


FIGURE 5

REPUBLIC 56-30 WELL
WELLBORE TEMPERATURES

TIME = 8.0 DAYS

○ TUBING
□ ANNULUS

TEMP F

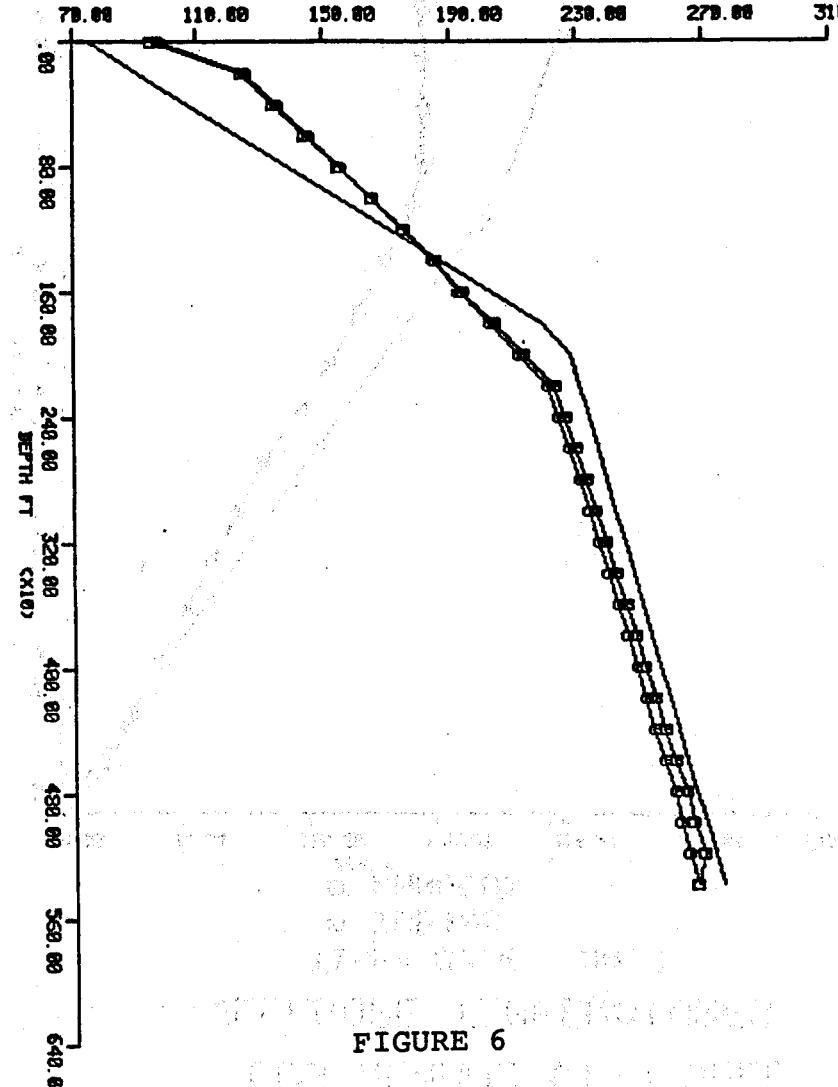


FIGURE 6

LOS ALAMOS GT-2 WELL
BIT TEMPERATURE

DEPTH=9600.0 FT

© INLET
■ BIT

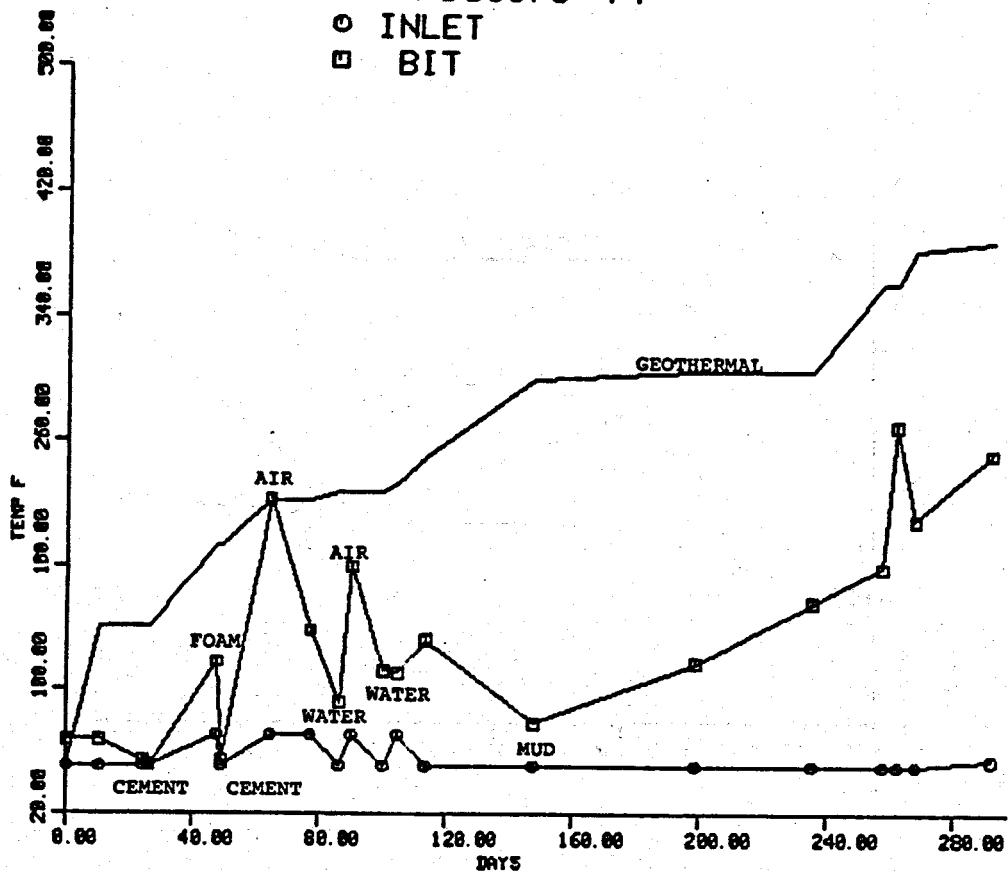


FIGURE 7

REPUBLIC 56-30 WELL
BIT TEMPERATURE
DEPTH=7600.0 FT

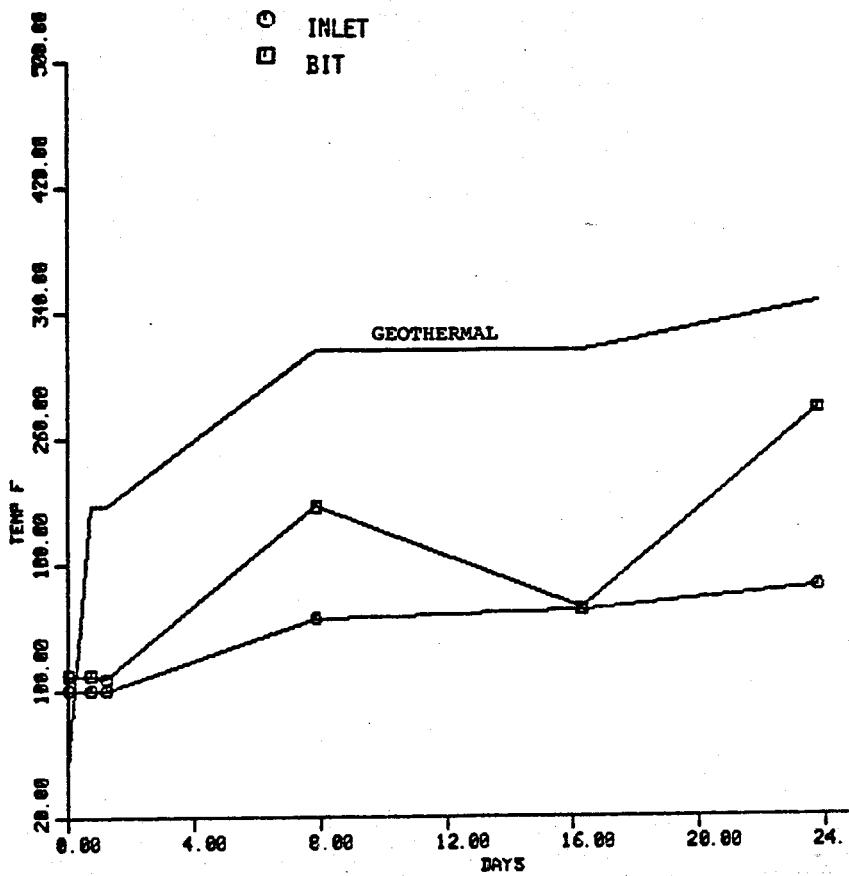


FIGURE 8

LOS ALAMOS GT-2 WELL
RADIAL TEMPERATURES

DEPTH=1600.0 FT

■ CEMENTNG
○ WAIT-O-C

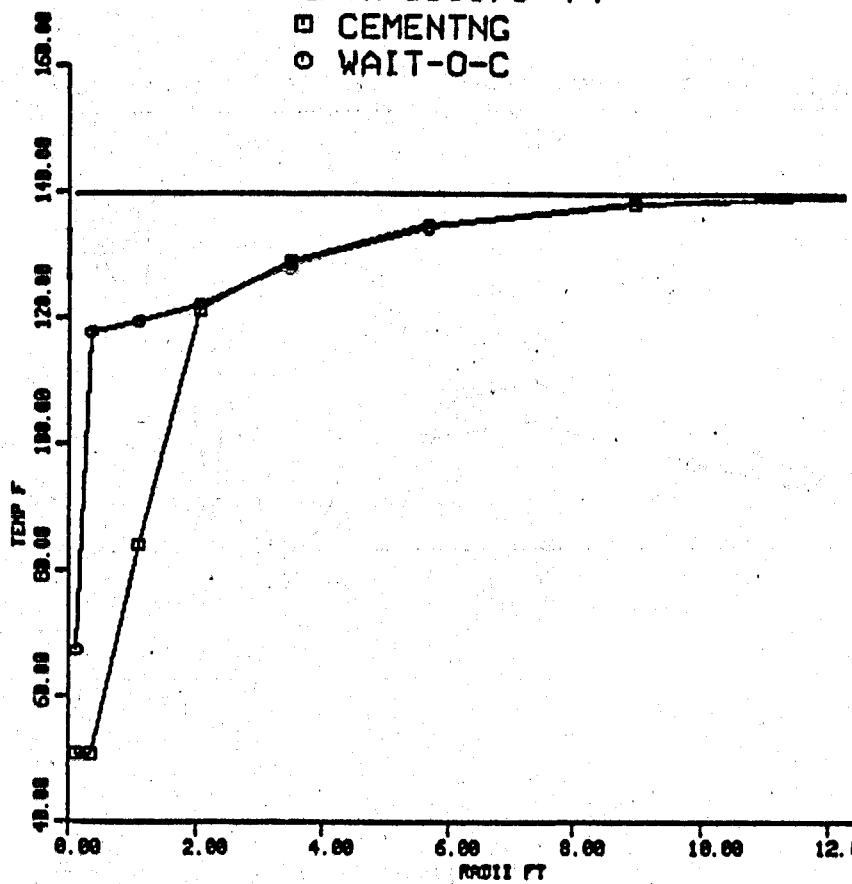


FIGURE 9

REPUBLIC 56-30 WELL
RADIAL TEMPERATURES

DEPTH=1400.0 FT

■ CEMENTNG
○ WAIT-O-C

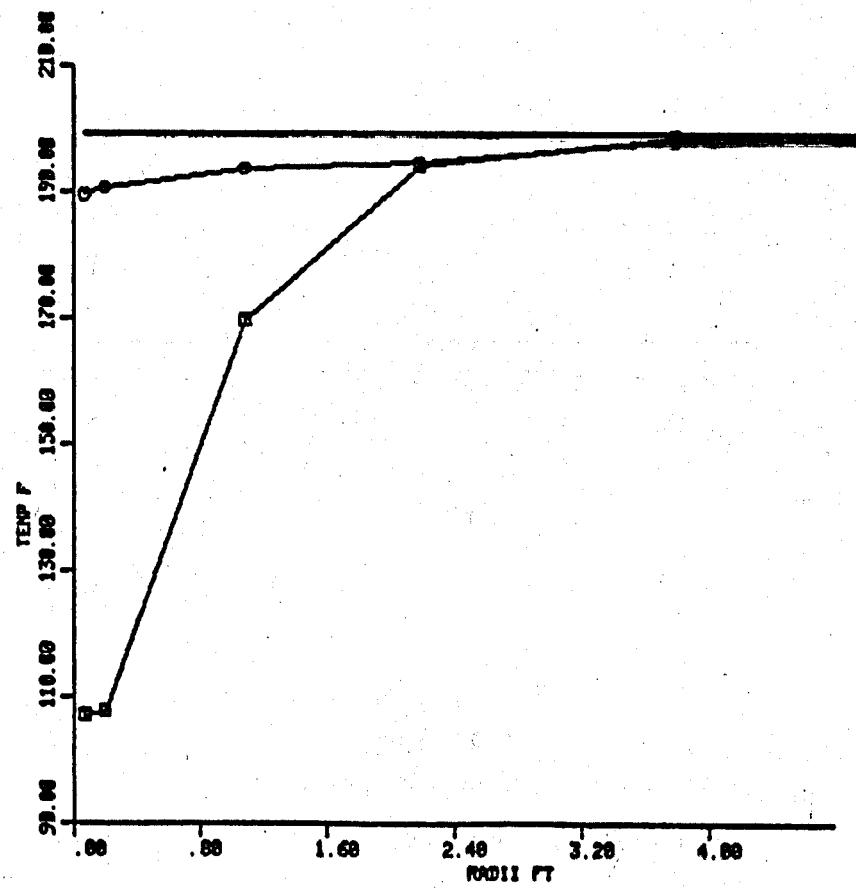


FIGURE 10

LOS ALAMOS GT-2 WELL CASING TEMPERATURE

DEPTH=1600.0 FT

- MAX TEMP
- MIN TEMP

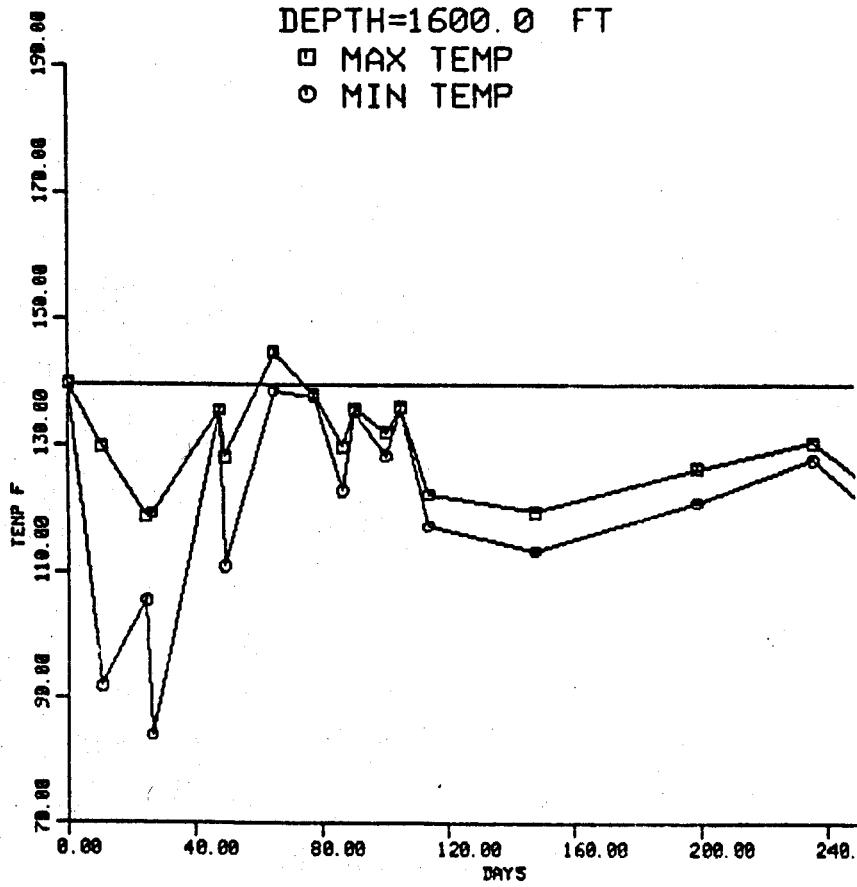


FIGURE 11

LOS ALAMOS GT-2 WELL CASING TEMPERATURE

DEPTH=400.0 FT

- MAX TEMP
- MIN TEMP

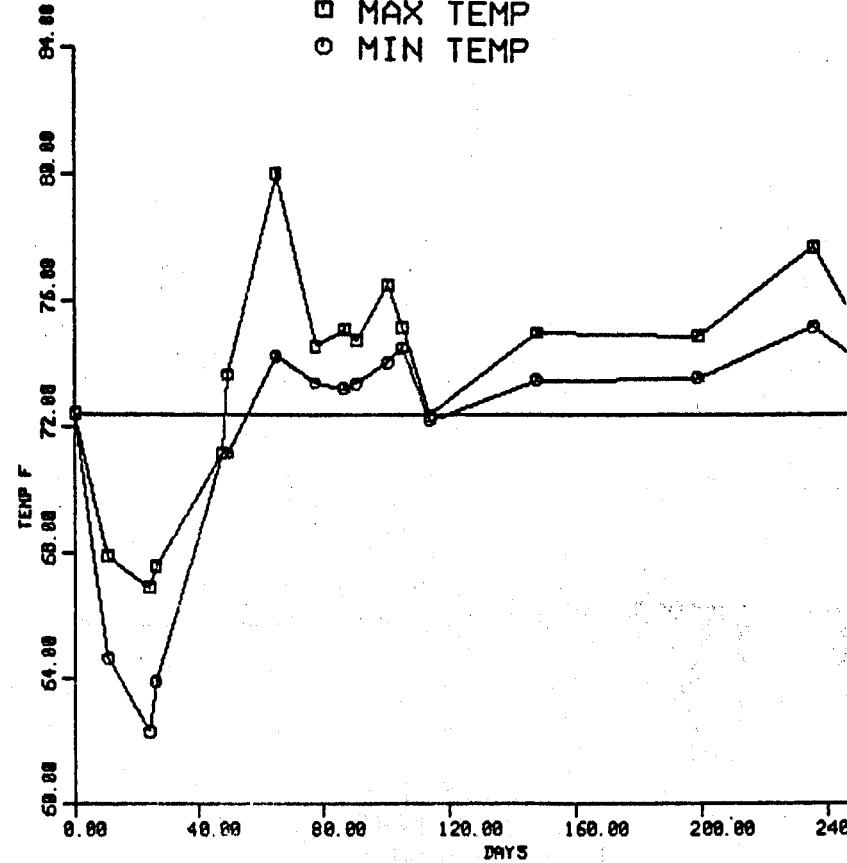


FIGURE 12

REPUBLIC 56-30 WELL
CASING TEMPERATURE

DEPTH=1400.0 FT

■ MAX TEMP
○ MIN TEMP

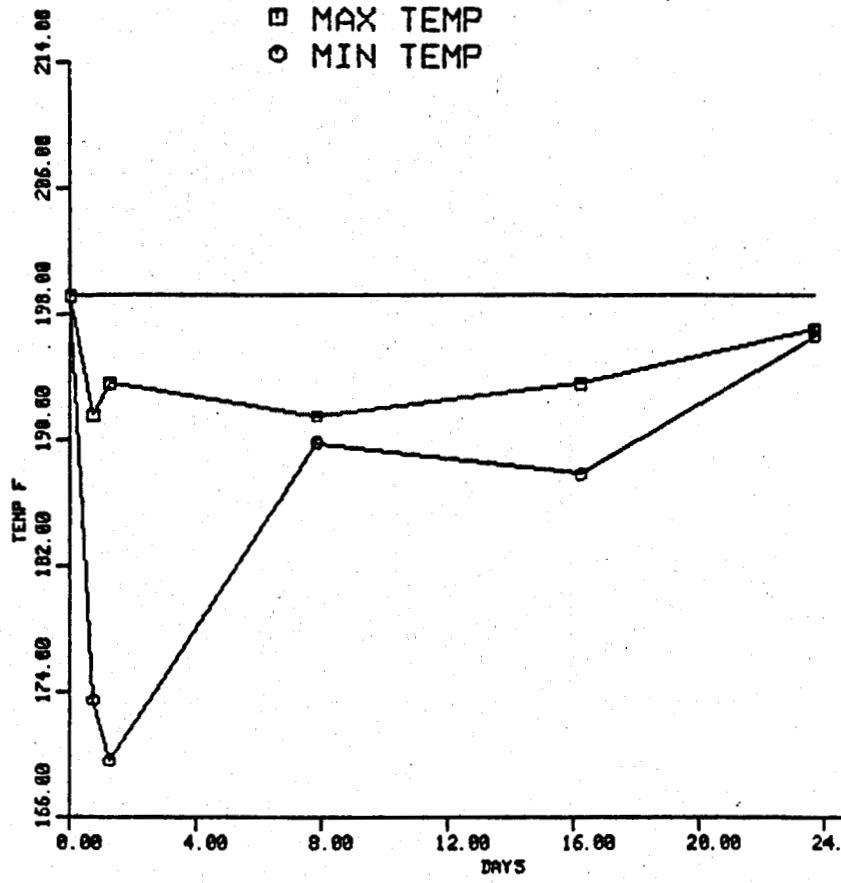


FIGURE 13

REPUBLIC 56-30 WELL
CASING TEMPERATURE

DEPTH=400.0 FT

■ MAX TEMP
○ MIN TEMP

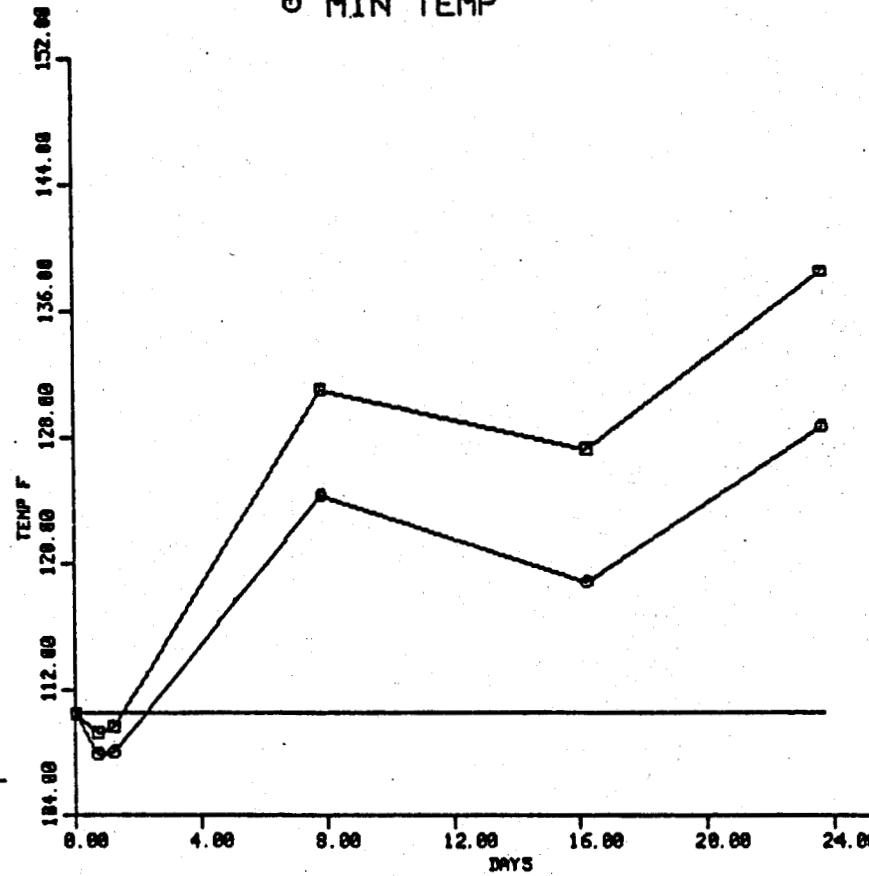


FIGURE 14

1. 651
2. 652
3. 653
4. 654
5. 655
6. 656
7. 657
8. 658
9. 659
10. 660
11. 661
12. 662
13. 663
14. 664
15. 665
16. 666
17. 667
18. 668
19. 669
20. 670
21. 671
22. 672
23. 673
24. 674
25. 675
26. 676
27. 677
28. 678
29. 679
30. 680
31. 681
32. 682
33. 683
34. 684
35. 685
36. 686
37. 687
38. 688
39. 689
40. 690
41. 691
42. 692
43. 693
44. 694
45. 695
46. 696
47. 697
48. 698
49. 699
50. 700
51. 701
52. 702
53. 703
54. 704
55. 705
56. 706
57. 707
58. 708
59. 709
60. 710
61. 711
62. 712
63. 713
64. 714
65. 715
66. 716
67. 717
68. 718
69. 719
70. 720
71. 721
72. 722
73. 723
74. 724
75. 725
76. 726
77. 727
78. 728
79. 729
80. 730
81. 731
82. 732
83. 733
84. 734
85. 735
86. 736
87. 737
88. 738
89. 739
90. 740
91. 741
92. 742
93. 743
94. 744
95. 745
96. 746
97. 747
98. 748
99. 749
100. 750
101. 751
102. 752
103. 753
104. 754
105. 755
106. 756
107. 757
108. 758
109. 759
110. 760
111. 761
112. 762
113. 763
114. 764
115. 765
116. 766
117. 767
118. 768
119. 769
120. 770
121. 771
122. 772
123. 773
124. 774
125. 775
126. 776
127. 777
128. 778
129. 779
130. 780
131. 781
132. 782
133. 783
134. 784
135. 785
136. 786
137. 787
138. 788
139. 789
140. 790
141. 791
142. 792
143. 793
144. 794
145. 795
146. 796
147. 797
148. 798
149. 799
150. 800
151. 801
152. 802
153. 803
154. 804
155. 805
156. 806
157. 807
158. 808
159. 809
160. 810
161. 811
162. 812
163. 813
164. 814
165. 815
166. 816
167. 817
168. 818
169. 819
170. 820
171. 821
172. 822
173. 823
174. 824
175. 825
176. 826
177. 827
178. 828
179. 829
180. 830
181. 831
182. 832
183. 833
184. 834
185. 835
186. 836
187. 837
188. 838
189. 839
190. 840
191. 841
192. 842
193. 843
194. 844
195. 845
196. 846
197. 847
198. 848
199. 849
200. 850
201. 851
202. 852
203. 853
204. 854
205. 855
206. 856
207. 857
208. 858
209. 859
210. 860
211. 861
212. 862
213. 863
214. 864
215. 865
216. 866
217. 867
218. 868
219. 869
220. 870
221. 871
222. 872
223. 873
224. 874
225. 875
226. 876
227. 877
228. 878
229. 879
230. 880
231. 881
232. 882
233. 883
234. 884
235. 885
236. 886
237. 887
238. 888
239. 889
240. 890
241. 891
242. 892
243. 893
244. 894
245. 895
246. 896
247. 897
248. 898
249. 899
250. 900
251. 901
252. 902
253. 903
254. 904
255. 905
256. 906
257. 907
258. 908
259. 909
260. 910
261. 911
262. 912
263. 913
264. 914
265. 915
266. 916
267. 917
268. 918
269. 919
270. 920
271. 921
272. 922
273. 923
274. 924
275. 925
276. 926
277. 927
278. 928
279. 929
280. 930
281. 931
282. 932
283. 933
284. 934
285. 935
286. 936
287. 937
288. 938
289. 939
290. 940
291. 941
292. 942
293. 943
294. 944
295. 945
296. 946
297. 947
298. 948
299. 949
300. 950
301. 951
302. 952
303. 953
304. 954
305. 955
306. 956
307. 957
308. 958
309. 959
310. 960
311. 961
312. 962
313. 963
314. 964
315. 965
316. 966
317. 967
318. 968
319. 969
320. 970
321. 971
322. 972
323. 973
324. 974
325. 975
326. 976
327. 977
328. 978
329. 979
330. 980
331. 981
332. 982
333. 983
334. 984
335. 985
336. 986
337. 987
338. 988
339. 989
340. 990
341. 991
342. 992
343. 993
344. 994
345. 995
346. 996
347. 997
348. 998
349. 999
350. 1000
351. 1001
352. 1002
353. 1003
354. 1004
355. 1005
356. 1006
357. 1007
358. 1008
359. 1009
360. 1010
361. 1011
362. 1012
363. 1013
364. 1014
365. 1015
366. 1016
367. 1017
368. 1018
369. 1019
370. 1020
371. 1021
372. 1022
373. 1023
374. 1024
375. 1025
376. 1026
377. 1027
378. 1028
379. 1029
380. 1030
381. 1031
382. 1032
383. 1033
384. 1034
385. 1035
386. 1036
387. 1037
388. 1038
389. 1039
390. 1040
391. 1041
392. 1042
393. 1043
394. 1044
395. 1045
396. 1046
397. 1047
398. 1048
399. 1049
400. 1050
401. 1051
402. 1052
403. 1053
404. 1054
405. 1055
406. 1056
407. 1057
408. 1058
409. 1059
410. 1060
411. 1061
412. 1062
413. 1063
414. 1064
415. 1065
416. 1066
417. 1067
418. 1068
419. 1069
420. 1070
421. 1071
422. 1072
423. 1073
424. 1074
425. 1075
426. 1076
427. 1077
428. 1078
429. 1079
430. 1080
431. 1081
432. 1082
433. 1083
434. 1084
435. 1085
436. 1086
437. 1087
438. 1088
439. 1089
440. 1090
441. 1091
442. 1092
443. 1093
444. 1094
445. 1095
446. 1096
447. 1097
448. 1098
449. 1099
450. 1100
451. 1101
452. 1102
453. 1103
454. 1104
455. 1105
456. 1106
457. 1107
458. 1108
459. 1109
460. 1110
461. 1111
462. 1112
463. 1113
464. 1114
465. 1115
466. 1116
467. 1117
468. 1118
469. 1119
470. 1120
471. 1121
472. 1122
473. 1123
474. 1124
475. 1125
476. 1126
477. 1127
478. 1128
479. 1129
480. 1130
481. 1131
482. 1132
483. 1133
484. 1134
485. 1135
486. 1136
487. 1137
488. 1138
489. 1139
490. 1140
491. 1141
492. 1142
493. 1143
494. 1144
495. 1145
496. 1146
497. 1147
498. 1148
499. 1149
500. 1150
501. 1151
502. 1152
503. 1153
504. 1154
505. 1155
506. 1156
507. 1157
508. 1158
509. 1159
510. 1160
511. 1161
512. 1162
513. 1163
514. 1164
515. 1165
516. 1166
517. 1167
518. 1168
519. 1169
520. 1170
521. 1171
522. 1172
523. 1173
524. 1174
525. 1175
526. 1176
527. 1177
528. 1178
529. 1179
530. 1180
531. 1181
532. 1182
533. 1183
534. 1184
535. 1185
536. 1186
537. 1187
538. 1188
539. 1189
540. 1190
541. 1191
542. 1192
543. 1193
544. 1194
545. 1195
546. 1196
547. 1197
548. 1198
549. 1199
550. 1200
551. 1201
552. 1202
553. 1203
554. 1204
555. 1205
556. 1206
557. 1207
558. 1208
559. 1209
560. 1210
561. 1211
562. 1212
563. 1213
564. 1214
565. 1215
566. 1216
567. 1217
568. 1218
569. 1219
570. 1220
571. 1221
572. 1222
573. 1223
574. 1224
575. 1225
576. 1226
577. 1227
578. 1228
579. 1229
580. 1230
581. 1231
582. 1232
583. 1233
584. 1234
585. 1235
586. 1236
587. 1237
588. 1238
589. 1239
590. 1240
591. 1241
592. 1242
593. 1243
594. 1244
595. 1245
596. 1246
597. 1247
598. 1248
599. 1249
600. 1250
601. 1251
602. 1252
603. 1253
604. 1254
605. 1255
606. 1256
607. 1257
608. 1258
609. 1259
610. 1260
611. 1261
612. 1262
613. 1263
614. 1264
615. 1265
616. 1266
617. 1267
618. 1268
619. 1269
620. 1270
621. 1271
622. 1272
623. 1273
624. 1274
625. 1275
626. 1276
627. 1277
628. 1278
629. 1279
630. 1280
631. 1281
632. 1282
633. 1283
634. 1284
635. 1285
636. 1286
637. 1287
638. 1288
639. 1289
640. 1290
641. 1291
642. 1292
643. 1293
644. 1294
645. 1295
646. 1296
647. 1297
648. 1298
649. 1299
650. 1300
651. 1301
652. 1302
653. 1303
654. 1304
655. 1305
656. 1306
657. 1307
658. 1308
659. 1309
660. 1310
661. 1311
662. 1312
663. 1313
664. 1314
665. 1315
666. 1316
667. 1317
668. 1318
669. 1319
670. 1320
671. 1321
672. 1322
673. 1323
674. 1324
675. 1325
676. 1326
677. 1327
678. 1328
679. 1329
680. 1330
681. 1331
682. 1332
683. 1333
684. 1334
685. 1335
686. 1336
687. 1337
688. 1338
689. 1339
690. 1340
691. 1341
692. 1342
693. 1343
694. 1344
695. 1345
696. 1346
697. 1347
698. 1348
699. 1349
700. 1350
701. 1351
702. 1352
703. 1353
704. 1354
705. 1355
706. 1356
707. 1357
708. 1358
709. 1359
710. 1360
711. 1361
712. 1362
713. 1363
714. 1364
715. 1365
716. 1366
717. 1367
718. 1368
719. 1369
720. 1370
721. 1371
722. 1372
723. 1373
724. 1374
725. 1375
726. 1376
727. 1377
728. 1378
729. 1379
730. 1380
731. 1381
732. 1382
733. 1383
734. 1384
735. 1385
736. 1386
737. 1387
738. 1388
739. 1389
740. 1390
741. 1391
742. 1392
743. 1393
744. 1394
745. 1395
746. 1396
747. 1397
748. 1398
749. 1399
750. 1400
751. 1401
752. 1402
753. 1403
754. 1404
755. 1405
756. 1406
757. 1407
758. 1408
759. 1409
760. 1410
761. 1411
762. 1412
763. 1413
764. 1414
765. 1415
766. 1416
767. 1417
768. 1418
769. 1419
770. 1420
771. 1421
772. 1422
773. 1423
774. 1424
775. 1425
776. 1426
777. 1427
778. 1428
779. 1429
780. 1430
781. 1431
782. 1432
783. 1433
784. 1434
785. 1435
786. 1436
787. 1437
788. 1438
789. 1439
790. 1440
791. 1441
792. 1442
793. 1443
794. 1444
795. 1445
796. 1446
797. 1447
798. 1448
799. 1449
800. 1450
801. 1451
802. 1452
803. 1453
804. 1454
805. 1455
806. 1456
807. 1457
808. 1458
809. 1459
810. 1460
811. 1461
812. 1462
813. 1463
814. 1464
815. 1465
816. 1466
817. 1467
818. 1468
819. 1469
820. 1470
821. 1471
822. 1472
823. 1473
824. 1474
825. 1475
826. 1476
827. 1477
828. 1478
829. 1479
830. 1480
831. 1481
832. 1482
833. 1483
834. 1484
835. 1485
836. 1486
837. 1487
838. 1488
839. 1489
840. 1490
841. 1491
842. 1492
843. 1493
844. 1494
845. 1495
846. 1496
847. 1497
848. 1498
849. 1499
850. 1500
851. 1501
852. 1502
853. 1503
854. 1504
855. 1505
856. 1506
857. 1507
858. 1508
859. 1509
860. 1510
861. 1511
862. 1512
863. 1513
864. 1514
865. 1515
866. 1516
867. 1517
868. 1518
869. 1519
870. 1520
871. 1521
872. 1522
873. 1523
874. 1524
875. 1525
876. 1526
877. 1527
878. 1528
879. 1529
880. 1530
881. 1531
882. 1532
883. 1533
884. 1534
885. 1535
886. 1536
887. 1537
888. 1538
889. 1539
890. 1540
891. 1541
892. 1542
893. 1543
894. 1544
895. 1545
896. 1546
897. 1547
898. 1548
899. 1549
900. 1550
901. 1551
902. 1552
903. 1553
904. 1554
905. 1555
906. 1556
907. 1557
908. 1558
909. 1559
910. 1560
911. 1561
912. 1562
913. 1563
914. 1564
915. 1565
916. 1566
917. 1567
918. 1568
919. 1569
920. 1570
921. 1571
922. 1572
923. 1573
924. 1574
925. 1575
926. 1576
927. 1577
928. 1578
929. 1579
930. 1580
931. 1581
932. 1582
933. 1583
934. 1584
935. 1585
936. 1586
937. 1587
938. 1588
939. 1589
940. 1590
941. 1591
942. 1592
943. 1593
944. 1594
945. 1595
946. 1596
947. 1597
948. 1598
949. 1599
950. 1600
951. 1601
952. 1602
953. 1603
954. 1604
955. 1605
956. 1606
957. 1607
958. 1608
959. 1609
960. 1610
961. 1611
962. 1612
963. 1613
964. 1614
965. 1615
966. 1616
967. 1617
968. 1618
969. 1619
970. 1620
971. 1621
972. 1622
973. 1623
974. 1624
975. 1625
976. 1626
977. 1627
978. 1628
979. 1629
980. 1630
981. 1631
982. 1632
983. 1633
984. 1634
985. 1635
986. 1636
987. 1637
988. 1638
989. 1639
990. 1640
991. 1641
992. 1642
993. 1643
994. 1644
995. 1645
996. 1646
997. 1647
998. 1648
999. 1649
1000. 1650
1001. 1651
1002. 1652
1003. 1653
1004. 1654
1005. 1655
1006. 1656
1007. 1657
1008. 1658
1009. 1659
1010. 1660
1011. 1661
1012. 1662
1013. 1663
1014. 1664
1015. 1665
1016. 1666
1017. 1667
1018. 1668
1019. 1669
1020. 1670
1021. 1671
1022. 1672
1023. 1673
1024. 1674
1025. 1675
1026. 1676
1027. 1677
1028. 1678
1029. 1679
1030. 1680
1031. 1681
1032. 1682
1033. 1683
1034. 1684
1035. 1685
1036. 1686
1037. 1687
1038. 1688
1039. 1689
1040. 1690
1041. 1691
1042. 1692
1043. 1693
1044. 1694
1045. 1695
1046. 1696
1047. 1697
1048. 1698
1049. 1699
1050. 1700
1051. 1701
1052. 1702
1053. 1703
1054. 1704
1055. 1705
1056. 1706
1057. 1707
1058. 1708
1059. 1709
1060. 1710
1061. 1711
1062. 1712
1063. 1713
1064. 1714
1065. 1715
1066. 1716
1067. 1717
1068. 1718
1069. 1719
1070. 1720
1071. 1721
1072. 1722
1073. 1723
1074. 1724
1075. 1725
1076. 1726
1077. 1727
1078. 1728
1079. 1729
1080. 1730
1081. 1731
1082. 1732
1083. 1733
1084. 1734
1085. 1735
1086. 1736
1087. 1737
1088. 1738
1089. 1739
1090. 1740
1091. 1741
1092. 1742
1093. 1743
1094. 1744
1095. 1745
1096. 1746
1097. 1747
1098. 1748
1099. 1749
1100. 1750
1101. 1751
1102. 1752
1103. 1753
1104. 1754
1105. 1755
1106. 1756
1107. 1757
1108. 1758
1109. 1759
1110. 1760
1111. 1761
1112. 1762
1113. 1763
1114. 1764
1115. 1765
1116. 1766
1117. 1767
1118. 1768
1119. 1769
1120. 1770
1121. 1771
1122. 1772
1123. 1773
1124. 1774
1125. 1775
1126. 1776
1127. 1777
1128. 1778
1129. 1779
1130. 1780
1131. 1781
1132. 1782
1133. 1783
1134. 1784
1135. 1785
1136. 1786
1137. 1787
1138. 1788
1139. 1789
1140. 1790
1141. 1791
1142. 1792
1143. 1793
1144. 1794
1145. 1795
1146. 1796
1147. 1797
1148. 1798
1149. 1799
1150. 1800
1151. 1801

1. 1950-1951
2. 1951-1952
3. 1952-1953
4. 1953-1954

11/23/2013 10:30 AM