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o Corrosion is a primary determinant of waste package performance
at the proposed Yucca Mountain Repository

> The most likely degradation process

> Controls the delay time for radionuclide transport from the waste
package

> Determines when packages will be penetrated and the shape size and
distribution of those penetrations

@ In this presentation a framework for the analysis of localized
corrosion is presented and demonstrated for a scenario

>  Water chemistry of mixed salt solutions (sodium chloride-potassium
nitrate)

> Time-temperature-relative humidity profiles for a hot, mid and cool
temperature waste package




@ Materials performance at the proposed Yucca Mountain Repository
is amenable to a familiar and effective analytical methodology

> Widely accepted in the energy, transportation and other industries

@ Three components comprise the analysis
> Definition of the performance requirements

> Determination of the operating conditions to which materials will be
exposed

> Selection of materials of construction that perform well in those
conditions

@ A special feature of the proposed Repository is the extremely long
time frame of interest, i.e. 10,000’s of years and longer

> Time evolution of the environment in contact with waste package
surfaces

> Time evolution of corrosion damage that may result
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@ Proposed Repository is
about 300 m below the
surface and 300 m above
the water table

@ Unsaturated zone, i.e.
fractures and pores in rock
are partially filled with water

o Desert area with about 18
cm of rain per year

o Atmospheric pressure

i o Ambient waters are dilute
and near neutral pH

form by condensation,
deliquescence and

o Concentrated waters can
| evaporation




Rock Boits

Gantry Rail (135 Iblyd)
and Runway Beam

Ground Control
Bernold Type (Cap Plate Not Shown for Clarity)
Perforated Sheet Transverse Support Beam
@1500 mm Maximum Spacing
(Typical)
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Longitudinal Support Beam
(Typical for 3 Across) Invert Ballast
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o Alloy 22 belongs to a family of Ni-Cr-Mo alloys

> Earlier alloys include C-276 and C-4 and later alloys include
Inconel 686, Alloy 59, Hastelloy C-2000 and MAT-21

> Alloy 22 (N06022) is a solid solution of Ni, Cr, Mo and W as the
main alloying elements

> Cr-Mo-W in Alloy 22 act synergistically to provide resistance to
localized corrosion such as crevice corrosion

@ Large industrial equipment in service for many years in
harsh environments without corrosion

> Alloy 22 has great toughness and over 50% elongation before
failure

> Can be hot or cold formed and is weldable by many methods
> Can be fabricated into large structures and components
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@ Radionuclides are fully isolated if
there are no penetrations

> Even penetrated package can limit
radionuclide movement

o Corrosion rates of passive metals
are extremely low

> Realistic rates are less than 1 ym/yr
(a millionth of a meter per year) and
much less

> Alloy 22 layer is 2-cm thick (a stack
of 12 U.S. quarters)

@ Corrosion rates of approximately 16,000 to 160,000 years to
0.01 pm/year are measured in penetrate the thickness of one
exposures of over 5-years at the U.S. quarter for a corrosion rate
Long Term Test Facility at Lawrence of 0.1 to 0.01 umlyr

Livermore National Laboratory
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Deliquescence
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One long, slow heating/cooling
cycle

> Packages cool to ambient over
several thousands of years

Waste packages on support
pallets

> No immersion in waters
No moving parts

Low heat fluxes, slow heating
and cooling, and modest thermal
gradients

Radiation effects at waste
package surface negligible after
a few hundred years

Limited amount of water moving
through the rock

Limited salts and minerals
carried into drifts by incoming
water and dust
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e ! - @ |- Emplacement of waste
: . packages and preclosure
| Te : /E—“ > Start to Year 50
%0 T T 1 0 _
o vo [ : o = @ Il - Heat Up after closure
g 5= I ] z
£ o -, “w § > Year 50 to ~65
E'w { l R » E @ 1l - Cool down/Thermal
g w : w 3 Barrier (drift wall above
r k : ¢ . E boiling temperature)
3 . 1.:"/ S ™ . >  Year ~65to 750
) 1 - wl } Lo @ IV - Cool Down/Dripping and
’ - e, ’ Seepage Possible
¢ o =\ e e - > Year 750 to 1375
- . ”. = | o V-Waste Packages below Critical Temp
: - for Corrosion
1 11 Il 1v \% > Year 1375 and beyond
@  This scenario is for Temp-RH shown @ Periods are determined by
above >  Temperature-RH conditions
>  Waste Package at 101°C when Drift : : E
Wall cooled to 96°C >  Time when drift wall reaches 96°C
> Critical Corrosion Temp 90°C >  Critical Corrosion Temp for Alloy 22
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@  When drift wall is below boiling 2 : . 00
temperature (96°C), dripping/seepage i |4 ! (,——"""" i
can occur ol - - L= &
g o e LN | /B g
@ Dripping/seepage can contact waste g 7 Y . >
package surface § . - -1
B . g e i & . “ s
> Where both capillary barrier and £ il |y 2
drip shield are inoperative = it A \ - :
> And dripping location is in aligned ol ; i Ty o
with drip shield penetration . i Y | »
@ When these conditions are met o AEETEEERLL P o)
> If waste package temperature b i
above critical corrosion : ]
temperature
> Then follow decision-tree analysis I 1 o Iv Vv
for local corrosion damage
evolution
@  Drift wall is below boiling at year 750

> Waste Package at 101°C
Relative humidity 65%

Waste Package is at 90°C at year 1375
Relative Humidity 84%
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Ci

Evaporative ci =
Conenirstion  ISRSRIS SN ® Ambient Waters:
c-eo.;-uu-
> ol " > Dilute solutions
[ Na, Ca, Mg, $O,, €I l ‘m.ng.co,.so..ml
e . o > Na-Ca-Mg-HCO,-C0O,-CI-NO,-SO,
A 7 \ / \ > Near neutral pH
onkss| [mapdoc| [Niacrd) |wic e, © Waters can be concentrated
> Modified during movement
> Thermal-chemical processes
Dilute Water . gre .
z @ Modifications on waste package
-| & e
11 PP S e surface
: P axe Wit o Chemical and electrochemical
; . } \ A processes
+i Ca,Mg,CINDY
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@ T-RH Profiles Related to Brine Solution Compositions for
Sodium and Potassium Base Salts

T(WP) 90°C @ 1375 yrs

90 { SOur NN ” ¢ Repository profiles
e L g Cool down after peak temperature
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o A decision-tree for localized corrosion

> Are environments and crevices present to induce
localized corrosion?

>> Consider conditions in moist layers of particulate and
deposits

> If localized corrosion initiates, will it persist?

>> Consider stifling and arrest processes as the
corrosion proceeds

> What amount of metal penetration occurs?
> What is the size and distribution of corrosion sites?
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o A decision-tree for localized corrosion

drips
1 |
" " —_— T e
Thermal p Capillary > Drip € |drips - Sulfaie In——
Barrier Barrier Shield “| onwpP on WP - Na, K, Cl, NOy Initiate
- Na, K, Mg,Cl, NOy | Crevice Corrosion
yes yes yes
_| Dilute waters l
Carbonates Ecorr positive enough
Mls’odera"a te Nitrate |
- Sulfate |
-Na, K, CI, NOs __| Severe crevices are
- Na, K, Mg,Cl, NO, present

l -
Y

Evaluate initiation,

. 3 no propagation, stifling
No Localized Corrosion <—' | and arrest

Determine evolution
of corrosion damage
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Presented a framework for the analysis of localized corrosion

Demonstrated the analysis for a scenario
> Water chemistry of mixed salt solutions
> Time-temperature-relative humidity profiles for waste packages

Localized corrosion on waste packages is restricted to finite time
periods

> Corrosion conditions at key time periods in proposed Repository

> Corrosion analysis during period IV-cool down/dripping and seepage
Decision-tree analysis for corrosion damage evolution

> For those time periods when localized corrosion can be supported

> Based upon the temperature and possible water chemistries

> Apply decision-tree analysis to determine the evolution of corrosion
damage




