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We analyze the problem of radiation trapping (imprisonment) by the
method of Holstein. The process is described by an integrodifferential equation
which shows that the effective radiative decay rate of the system depends on the
size and the shape of the active medium. Holstein obtains a global decay rate for a
particular geometry by assuming that the radiating excited species evolves into a
steady state spatial mode. We derive a new approximation for the trapped decay
which has a space dependent decay rate and is easy to implement in a detailed
computer simulation of a plasma confined within an arbitrary geometry. We
analyze the line shapes that are relevant to a near-atmospheric-pressure mixture of
He and Xe. This line-shape analysis can be utilized in either the Holstein formulae

or the space-dependent decay approximation.
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1. Introduction

Radiation emitted within an optically thick system is partially reabsorbed
before it exits the physical volume of the system. The effect is very important
when the transition connects to the ground level of the emitting species or to a
highly populated metastable level. The effect has been found to be important in
discharge lamps. The Hg emissions of fluorescent lamps is a notable example from
the lighting industry.1,2 The prime system of interest to us is the operation of
discharge flat panel display panels3 in which the density of the ground level
atoms is usually large enough to result in trapping of the ultraviolet emission that
is used to excite the phosphors. Generally one cannot construct an adequate
theoretical model of the discharge kinetics in any of these systems unless the
trapping is included in the rate equations. Radiation trapping leads to a decrease
in the emission rate and a change in the spectral density within the line profile.
Early work on radiation trapping attempted a diffusion analysis of the absorption-
reemission process of radiation transport within the system. T. Holstein4.5
(referred to as TH) pointed out that a diffusion limit of the transport equation was
not correct for any of the common line shapes. References to the earlier work are
given in TH. TH showed that the effective decay rate of the radiatively trapped
system depends on the geometry of the active volume. The TH analysis assumes
complete line redistribution within the absorption-reemission process, which
means that the emission profile is the same as the absorption profile. This may not
be true in all circumstances, but appears to be valid for most systems4.

Holstein has developed analytic formulae for the effective decay rates of
pressure-broadened and Doppler-broadened lines, with the active volume either
an infinite plane-parallel slabl or cylinder.2 The cylinder is of special importance
in the analysis of fluorescent lights. The TH analysis consists of two basic parts.
First of all, one obtains the correct form of the integral equation for radiation
transport within the medium, and, second, the spatial profile of the emitting species
is assumed to be controlled by the decay process itself. TH finds the spatial mode
for each geometry by a variational approximation.

There are three fundamental difficulties with use of the TH results. The first
is contained in the line shapes: if the line profile is not purely Doppler broadened
(Gaussian profile) or pressure broadened ( typically a Lorentz profile), then one
must decide which region of the line dominates the radiation leakage from the
system. Huennekens and Colbert® have shown that using the larger of the escape
factors of a pure Doppler or pure pressure broadened line (when both mechanisms



are active) agrees with their experimental results. They refer to other discussions
of this point. The second difficulty in using the TH results is that an actual system
may not be a slab or a cylinder. Although the shape dependence is weak, being
mainly a function of the smallest dimension, this is a basic limitation of the analytic
results. The third problem with the TH study is that the spatial profile of the
emitting species is constrained to be that of the fundamental mode of the decaying
excited level. Van Trigt? develops higher modes of the basic transport equation,
but our main concern is that other competing kinetic processes within the system
are just as fast as the trapped decay rate and that the radiating mode may never be
established. All these difficulties will be addressed in this report. In particular we
will derive a formula for a space dependent decay rate that has a simple
dependence on geometry.

We mention that there is a new series of computational solutions to
radiation trapping and transport that rely on full numerical solutions of the
radiation spectral transport equations.8,9 This is the method of choice for an
accurate examination of the coupled kinetics and radiation evolution of a
discharge plasma. The only difficulty is that the radiation transport part of the
problem makes it difficult to implement implicit numerical methods in the discharge
simulations. For this reason we are pursuing applications of the TH theory to
situations of different geometry and transient time dependence. These results will
be easy to incorporate into an existing discharge simulation code.



2. Analysis of Radiation Transport and Trapping

In this Section 2. we will write down the basic equations for radiation
transport in a medium with the presence of trapping. The first Subsection 2.1 will
present the basic equations and review the results of TH. Next in Section 2.2 we
will demonstrate the lack of applicability of the diffusion equation to trapping by a
novel approach. Subsection 2.3 will present a new approximation for the
integrodifferential equation for transport. Lastly in Subsection 2.4 we will use an
approximate analysis based on the transmission functions of TH4.5 to determine
the space-dependent decay rate within the active medium.

If the reader is just interested in implementing the TH theory, then they can
proceed directly to Section 3 after reviewing Section 2.1.

2.1 Review of Trapping and the TH Results

In this section we will write down the basic equations that describe
radiation transport within a gas that possesses complete spectral redistribution.4
Most of these relations are contained in TH. First consider the photon (radiation)
space and spectral density, n(7, v,t), produced by upper level emission and lower
level absorption. The upper level number density is #,,, and the lower level
density is n;. All of these quantities are space and time dependent with the only
restriction being that changes are slow on the scale of the radiation transit time of
the medium. Later we will incorporate the requirement that the active medium is
contained within a volume V with absorbing walls, within which the lower level
density is uniform and constant, and the upper level has an unspecified form. We
have in general the expression for the photon density:

11
n(F,v,)= [d3r —ysp P(V)1, (F',1)
I a7 g
7] @
xexp| —o(v) [ds nj(F" +se(F,7),1) |.
0

If n is multiplied by AV and integrated over frequency, we have the radiation
energy density. In Eq.(1) c is the speed of light, Vsp is the spontaneous decay

rate, and




k(v)=xP(v)=0(V)n;,

dvP(v)=1,

_I V) 2
s=r-r",

e(r,r’)=

k(Vv) is the extinction of the radiation at frequency V due to absorption by the
lower level, P(V) is the normalized emission profile related to the extinction
because of the redistribution assumption, and o(V) is the absorption cross

section. The transition rate of the upper level number density at position ¥ due to
radiative decay and absorption is

iy (Fo1) = = Yp 1y (Fo1) + [ dve s(VIn(F, v, 1) my (7, 1). 3)

Stimulated emission and changes in n; are not important in these systems because

of the large population of the lower level. Egs.(1) and (3) can be combined into
the transport equation for the number density of the upper level:

n, (Fat) == Y 1y (F 1) + ¥5p [ A2 GFF 1), (F/,1). “)
where
1 s
G(F.7,t)=——m(F.1)[dvP(v) o(V)exp| —o(V) [ ds'm (7' +57&,1) |
4r 0 )

s=|F-7.

It is reasonable to assume that the number density of the lower level is constant
within a convex active volume V, and with time, in which case Eq.(5) can be more
simply written:



G(?,F',t)zG(|7—?’|)=4% Tva(v)k( v)exp(—k(v)s),
TS —00

The convex condition ensures that the path integral in Eq.(5) remains within the
volume V as long as the end points are within V. The integration over all space

must now be restricted to the integration over V, since the spatial dependence of
n; has been lost. It is sometimes advantageous to express G(s) as a derivative of

the transmission function T(s):

1 d

G(s)= —Z—m—zgs'T(S) ,
T(s)= [dvP(V)exp(=k(V)s), (7)
T(0)=1.

T(s) is the probability that the radiation, weighted by the emission profile, is not
absorbed after travelling a distance s from the emission point. If one can evaluate
the function T(s), or G(s), then the integrodifferential Eq.(4) is available to solve for
the upper level density and decay.

The equation that we have obtained is for the upper level atomic number

density. An analogous equation can be written for the first spectral-weighted
moment, 1y (7,t), of the photon density:

i (Fot) == ygp m(F.1) + ¥gp [dor G(s) my (7',1),
4 ®)
m (F,t)=[dvP(V) n(F,v,1).

Thus the moment of the radiation spectral distribution obeys the same transport
equation as the upper level density. This is different than the spectral average.
Expressions for T(s) have been obtained by TH for the Doppler line shape,
the impact pressure broadened line (Lorentz), and the quasi-static (statistical)
pressure broadened line. Only the Lorentz line has an exact result, the others




being asymptotic forms that apply for large extinction. For completeness, we write
down some of those results. The Doppler line profile is

k()= ko exp(—((v= o)/ vo)? (c1vo)?),

k :)"03’115_1,{_ ysp
° 8z g Anv,’ ©)

vo =2k T M,
AVfwhm =4/4In2 Vo Vo /c.

The notation is standard, involving wavelength, degeneracy ratio, mass, and
thermal velocity. TH evaluates the asymptotic form of T(s), namely,

T(s)~1/k,smin(k,s) . (10)

The impact line profile is, ignoring the line shift termd:

1
Pr1e@an(v- Vo)l yp)2 ’

k(v)=k

102 n 8y Vsp
2r 81 7p
AV fopm =Yp 1 27,

k. =

» an

where ¥, is the pressure broadened FWHM in 1/s. ¥, is directly proportional to

the collision frequency. T(s) can be evaluated exactly, namely,

T(s)=1, (kp s/ 2)exp(—kp s/2),

(12)
~1/ nkps , large kps.

Only the asymptotic result was written down in TH. I, is the modified Bessel
function of order zero.

The procedure in TH is to use Eqs.(10) or (12) in the variational
approximation to evaluate the spatial profile of the emitting level within either an



infinite slab or an infinite cylinder. From this approximation one derives an
“escape factor”, g, that relates the decay rate of the approximated fundamental
spatial mode of Eq.(4) to the spontaneous rate: Yeff =8 7Vsp - Again from TH,
these results are listed here for the two distinct line profiles and the two
geometries. In all cases the asymptotic, large-extinction, limit is used.

First TH gives the impact broadened (ib) case (Lorentz profile) in a slab of
thickness L and a cylinder of radius R:

8ib,stab =1.150/ \[xk, L,
(13)
8ibey =1.115/ [Tk, R .

Next the Doppler broadened (db) case, again in a slab of thickness L and a
cylinder of radius R:

8db.siab =1.875/ ky L+(min(k, L) ,
8db,cyl =1.60/k, R+/mln(k, R) .

These are the main results of TH, except for the algebraically more complex quasi-
static broadening case, which we will not present in detail.

An interesting observation concerning the TH results in Eqs.(13)-(14) is that
the g factors are close to being the value of the transmission function 7(s) with s
evaluated at the “middle” of the volume, ie either s = R for the cylinder or s = L/2
for the slab. In fact, for the four cases in Eqs.(13)-(14), the functional form is that
of T(s) and the numerical coefficients differ by factors of 0.813, 1.115, 0.938, and
1.60,. We have ignored the small variation produced by the log term in the
Doppler case.4-> Only the g value of the Doppler-broadened cylinder is
significantly different than unity. These factors directly enable us to express g in

(14)

terms of T. This suggests that we may obtain a simple approximate connection of
g to T for more than just the TH geometries.

There appears to be agreement in the literature®,10:11 that a line shape with
both Doppler and pressure-broadened regions (for example, a Voigt profile) can be
analyzed with the TH results. The procedure is to find the frequency at which the
extinction through the medium is unity, and to use the trapping formula for
Doppler or impact cases depending whether the unit-trapping frequency lies in the




Doppler or impact region of the composite line shape. The Huennekens-Colbert
procedure6 appears to logically and smoothly combine these ideas by choosing
the larger of the g factors for the different line profiles for a particular geometry.
We will discuss and use this procedure in Section 3.

2.2 Study of the Diffusion Limit of the Integral Equation

The integrodifferential Eq.(4) complicates the numerical simulation of
plasmas. Typically all of the operators in a plasma particle simulation are local in
space, with only the boundary conditions for the Poisson equation forcing a
nonlocal character. By local, one means that the time derivatives for the
dependent variables in the differential equations of motion are expressible in terms
of function values or spatial differential operators at the same point in space. For
one thing, this facilitates implicit numerical time incrementation. It is obvious that
a replacement of the integral operator in Eq.(4) with a local operator, say the
diffusion Laplacian, would greatly lessen the difficulty of the computation. The
early studies of the diffusion “approximation” to radiation transport neglected
some crucial analysis that is necessary to find an effective diffusion coefficient 4
The work of TH showed that “infinities” would arise with the assumption of a
diffusion description of the emission and absorption process for the common line
shapes involved in atomic systems. In this section we analyze the diffusion limit
quantitatively from the view of Fourier transform theory.

We will convert Eq.(4) from coordinate space to transform space. Define a
general space transform and its inverse by:

(k)= [d3r n(F)exp(~ik -7) .
- - (15)
n(F)=Q2m) 7> [dk fi(k)exp(ik - 7).

The time variable will be suppressed in writing the equations in this section. The

integrals cover all space, with any finite boundaries incorporated by the properties
of n(¥). Define:

D -7)=Y5p(-83G-F)+GF-7]), (6

which allows us to write the transform of the integrodifferential Eq.(4):

10



(k)= Dk)ik). a7n

Here the transform of the kernel is:

N . sin(kx) dT(x)
D(k)= ysp(1+(j)dx - }

dx

==Y (J;a’xT(x)kjl(kx) (18)

= —¥gp [dzT(z/ k) j1(2)
0

all of which is deceptively simple, but nevertheless does aid the diffusion analysis.
T is just the transmission function of scalar argument as defined in Eq.(7). jjis the

spherical Bessel function of order one, which is a simple function of sines and
cosines.

Now, a diffusion limit, if it exists, will give rise to an equation in transform
space of the form:

(k)= —ka2 k), (19)

where Dy is the diffusion constant. The second power of k corresponds to the
Laplacian operator. The notion of locality arises in the sense of n(7) being
spatially smooth and thus 7i(k) localized in k space about zero. Thus the
function D(k) is only needed near zero values of the magnitude of k, and may be
expanded in a power series in k. A complementary view of locality may be
expressed in coordinate space in terms of the peaked nature of G(s) and the

smoothness of the densities.
If the transmission function is an exponential, T(s) = exp(—s/ d), we find

that

11



_ tan(kd
(20)
L D

'Ysp3’

This is the standard diffusion result, proportional to k2 , depending on the
radiation mean free path.

Our task is to find the small-k limit of Eq.(18); this is straightforward from
the second expression in the group:

—~ 1 2°°
D(k)— =5~ Ysp 3k (j) dxT(x)x. @1)

However this expression is indeterminate if the forms of 7(x) for the Doppler or
Lorentz line are substituted from Eqs.(10) or (12). The appropriate well defined
limit is found from the last expression in Eq.(18). Using the Lorentz form given in
Eq.(12), we find:

N
DO =5~ Ve e )
0 (22)
_ 1 2k
P37
kP

Thus the transform-space limit that should lead to the k2 dependence and the
diffusion form leads instead to a fractional power of k and an ill-defined inverse
transform in coordinate space. There may exist some useful inverse to the vk
dependence in coordinate space, but we have not found it.

It is instructive to understand why a diffusion description fails for our
radiation transport problem. Note that we are not claiming failure because of the
finite size of the container, which could occur for any transport problem with a
large mean free path between scattering events, but a failure in principle due to the
process itself. Since each frequency obeys Beer’s law (exponential decrease with
distance), one might expect that a diffusion description would follow in the

12



appropriate limit just as it does for particle propagation. The crucial difference is
that we have assumed, more or less correctly, that the radiation transport possesses
complete frequency redistribution for each absorption-emission process. The
summation over all frequencies leads to a transport Eq.(4), which does not obey
Beer’s law as evidenced by Eqgs.(10) or (12), and a failure of the diffusion equation
to apply with any size container.

To reiterate the results of this section, the lack of a k> dependence of D(k)
as k — 0 proves that the diffusion equation cannot be rigorously derived from
the radiation transport equation. Only if the integral appearing in Eq.(21) is finite
can one infer a diffusion constant for the transport. Modifications to the basic
form of T(s), such as introducing a cutoff to give convergence,12 may be
successful, but one would have to establish that the radiative emission from the
medium (decay rate) is not a sensitive function of the cutoff point. Another
possible route to forcing a diffusion approximation is to equate the TH decay rate
for the fundamental mode of Eq.(4) to the decay rate of the fundamental diffusion
mode, and in so doing, fix an empirical diffusion constant. This is a geometry-
specific result, but it should be reasonably accurate.

2.3 Approximation of Integral Equation by Local Operator

In order to construct an approximation for the integral operator that
represents the radiation reabsorption in Eq.(4), one must look for a procedure that
takes advantage of the spatially singular nature of the kernel G(s) at s=0, but also
does not neglect the long range character at large s. Let us rewrite Eq.(4) in its
general form:

iy F) =Yg [d2F(83F-F)=GFF-FD)n,Fr).  (@3)
14

We now integrate over the volume to find the total decay rate of all upper levels
within the medium:

N, = [dPrn,F,0),
|4
(24)

N, (0)=~7g, [d%F (1— [d3r G(F - ?'|)} 1, (F,1) .
vV \%

13




As may be shown from Eq.(7), the integral over all space of G(s) is unity for any
positive amount of extinction in the system. Thus one minus the integral over
d3r in the last equation may be replaced by an integral over the space external
to the active volume if we agree to define the constant lower level density
throughout all space. Nothing within the active volume is changed - only the
range of definition of the function G(s). This leaves:

Nu(t) ==Vsp Jd3r' g(r) n, (¥',1),
. (25)
gH)= [drG(F-7).

Vext

The first equation can be interpreted as the integration over the active medium of
an effective decay rate of the upper level at that point in space, namely:

'Yeﬁ‘(?) = ’}/sp g(r). (26)

The determination of g is yet to be accomplished, but it will develop that it can be
reasonably approximated using the results of TH.

As a systematic means of leading to this approximation for the radiation
transport, return to the exact Eq.(23) and introduce an expansion for the upper
level density under the integral. An analysis of the kernel shows that the most
important contribution to the integral arises from positions near to the point 7.
This suggests that we expand in a Taylor series:

i, (F)= [d DG =7)(n, ) + (7 = 7)- Vi, (F,0)+-)

Y @)
= n, (7, 1) [ 3’ D(F = 7)+ Yy (7,1)- [d3r (7 = F) D(F = 7' )+,
| \4

where D is defined in Eq.(16). Truncating this series at the leading term leads to
the “local” approximation for the transport equation:

14



fi (Fot) =y, (F,0) [P D(F - 7). (28)
|4

The local description applies because the density has effectively been removed
from the integral and evaluated at the position 7. We see that the previous
interpretation of Eq.(26) applies to Eq.(28) with the identical definition of g(7),
giving :

i (Fo 1) = — Y5 8(F) 1y, (F,1). (29)

The function g(7) depends on the size and shape of the active medium because
we have assumed that the lower level is uniformly distributed throughout V. g(7)
does not depend on the distribution of the upper level density within V. However,
our new approximation becomes exact only as the upper level density becomes
uniform within the active volume V.

The time dependent behavior of the solution to Eq.(29) is that of an
exponentially decaying initial upper level density with a space-dependent decay
rate. The solution does not settle into a fundamental eigenmode of the transport
Eq.(4) where the solution decays in time with a single overall rate. Eq.(29) is most
accurate, as mentioned, when the upper level density is nearly uniform within V.
This is a transient situation requiring an eigenmode superposition as developed by
van Trigt/ as an extension of the TH analysis. Moreover, the situation of a
decaying prepared initial upper level density should be contrasted with the case of
a uniform source of upper level excitation by other kinetic processes, in which the
TH analysis predicts a spatially uniform density of upper levels at steady state,
whereas Eq.(29) will predict a spatial profile dependent on g(7). This seems more
realistic.

2.4 Determination of the Localized Decay Rate

The whole point of this subsection in the calculation of the position-
dependent scale factor g connecting the effective decay rate to the spontaneous
emission rate as defined in Eqs.(25) and (26). The precise expression for g is:

15




gH)= [d°rG(F-7|)= [d>rG(s)

Vext ) Vext 30
N W10 oo
Vext 475‘92 ds

Of course s:|F -7 '| in these expressions. Note that, by writing g as an integral
over the external volume to the medium, we have maintained additivity in the
joining of exterior volume pieces around the medium. We wish to approximate g
in a very general manner so that the size and shape dependence of the effective

decay rate is preserved. The g integral has a simple geometrical interpretation that
is worth describing. If we change from integration variable 7’ to §=7"—F, and

express the boundaries of the volume in terms of the new variables, we have:

g(F)= [d’sG(s)

Vext
= [ &3 (“_ld_T@)
V;[xr ’ 4”S2 ds
e
dT(s) g
= Jas ds O(s.7) (31)
0
0 3

©(s,7) is the fraction of the solid angle subtended by the exterior space at the
distance s from the point 7 in the medium. Thus ©(s,7) is zero for s less than the
minimum distance to a boundary, and is unity for s greater than the span of the
medium. In writing the last expression in Eq.(31) we have assumed that the point

s = 0 lies within the medium and that ®(0,7) is zero there. This is only important

in obtaining limiting results at the surface of the medium.

2.4.1 The Semi-infinite Volume and Infinite Slab Geometries

16



An explicit evaluation of Eq.(31) is possible in idealized conditions.
Consider the point 7 to lie at a distance z measured into a medium bounded by an
infinite plane boundary. Then the function ©(s,7) is found to be:

O(s,z)=0, s<gz,

O, 20)=1(1-2/5), s>z,
00(s,z)/ ds=0, s<z,
8®(s,z)/8s=z/2s2, §>27.

(32)

Later we will approximate g for general T, but here we will evaluate g for the
specific geometry taking advantage of the TH analytic forms of the transmission
function. The effective decay factor g can be evaluated using Eq.(12) for the
impact broadening (ib) case in the semi-infinite volume (o)

00(s,2)

8ib,eo (2) = jds:r() =

Z

Z

i 1

£ 1/7rkps]2s2 (33)
%/Jnkp » Thpz>1,
1

2

1
67rkpz, nkpz<1.

= |ds min[l,

In Eq.(33) we have used a simple bounding relation to make the asymptotic form
of Eq.(12) acceptable for the whole range of s. One might equally well have used
the asymptotic form of T for all s within the integral over s and applied the upper
bound of 1/2 (radiating source at surface of medium) to the g value. For the
Doppler-broadened (db) case we use the asymptotic form of T and do the integral
by pulling out the slowly varying log factor. The result is:

8db,= (z) ~ %/kozw/nln(koz) . (34)

17




Of course this function must be bounded as z — 0; the appropriate bound is 1/2,
so one can just use the minimum of the function value as given in Egs.(34) and 1/2
as a reasonable evaluation of the function for any value of the argument z.

The case of a plane parallel slab is just the sum of Eq.(33), or of Eq.(34),
with z=z; and z =z, where z; and z; are the distances from the two plane

boundaries of the slab. For impact broadening:

, (33a)
and for Doppler broadening,
8abistab (21:22) = min(§.4 /Koy w2y ) + (342)
a
min(3, 4 /kozp w22 )

We have chosen the simpler method of correcting the asymptotic forms as
discussed following Eq.(34) above.

It is interesting to compare to the TH result for the decay of the
fundamental mode, which is peaked in the center of the slab and decreases
towards the edges. If we set 1=z =L /2in Eq.(33a) to correspond to the

center, we obtain:

8ib,slab ~ 0.943/ 1/715ka , (35)

which is 18% less than the TH result in Eq.(14), but remember that we are looking
at the slowest of our position-dependent decay rates at the center of the slab and
comparing to the TH decay for the whole mode. For the Doppler case in Eq.(34a)
we get:

8db.slab ~ l/koL\/nln(koL/2) . (36)

This is a factor of 1.85 smaller than TH, but the same rationale applies as mentioned
after Eq.(35).
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2.4.2 Spherical Geometry

Another idealized geometry that can be explored is the spherical medium of
radius R. Consider 7 to lie a distance z from the center, with z restricted to be in
the range of 0 to R. The solid angle fraction and its derivative are:

0(s,2)=0, s<R-z,

2 p2
®(S,z)=(2+s) R , R—z<s<R+z,
4zs

O(s,z2)=1, s=2R+z,
009(s,2)/ ds=0, s<R-z,
s> +R*-7?

4752 ’
00(s,z)/ ds=0, s<R-z.

37)
d0(s,z)/ ds=

R—z<s<R+7z,

Although © is a continuous function of s, the derivative is not, and one must be
careful in evaluating the irregular double limit of z — R and s — O under the
integral for g(z), which is

R+z 2 2 2
+R* —
g(z)= [ dsT(s)" :
R—z 4zs
=1 , T(s)=1

5 , 0<z<R,
(38)

The decay factor is easy to evaluate at the center of the sphere, where the limit is:
g(0)=T(R). (39)

The effective decay rate at the surface of the sphere may be found from Eq.(38). It
is:

2R
g(R)= %[1 +5bs [ds T(S)J : (40)
0
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Note that these results reduce to the proper value of unity when the transmission
function is one. If we know a particular form for the line broadening, we can
substitute T(s) into Eq.(38) and have a position-dependent decay rate for the
spherical medium that is useful.

2.4.3 Recommendation for General Geometry

The question is what to do in general with the geometry factor. Are all
geometries similar to a sphere or a slab? We think that sufficient insight may be
gotten from those results to make a general statement possible. Consider the result
of combining Eqs.(31) and (32) to find the decay rate in a semiinfinite medium at a
distance z from a plane boundary:

g(z)=%—z J’alsT(s)/s2 . 41)

Z

If the extinction is large, that is to say in the asymptotic region where T behaves as
in Eqs.(10) or (12), we can approximate the integral in Eq.(41) based on the slower
variation of T{s) under the integral. This gives:

g2)=32T(z) [ds/ 52 = 1T(2). (42)

Z

This result also happens to be exact (g=1/2) in the limit that 7 — 1 at small

extinction within the medium. In the case of the sphere, we can apply the same
argument based on the slow variation of T at larger extinction in order to
approximate from Eq.(38):
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1 R+z R2 2R+Z
8=, [dsT(s) +——=— 7 [dsT(s)/s*

2 Rz z R-z
1 R+z R2 2 R+z
=—T(R) [ds +— T T(R-2) fdsi s 43)
R— —Z 4 R-z
= 1T(R)  + 1T(R-2),

where R is the radius of the spherical volume and z is the distance from the center.
We note that Eq.(43) is also correct (g = 1) in the T = 1 limit of no extinction. It is
exact at the center of the sphere as given in Eq.(39). It is also in reasonable
agreement with the surface value calculated in Eq.(40).

Based on the form of the result in Eq.(43), what we propose for a general
arbitrary geometry formulation of the effective decay rate is

g(F)=2T(Ry)+2 T (dpeqr (F)), (44)

where Ry is some fixed mean radius of the active volume and d,,,,,- (¥) is the

distance from the point 7 to the nearest boundary surface of the volume. Note
that all of the space dependence in g is contained in the transmission function to
the nearest surface. The other term can be thought of as a normalization constant
added in order to obtain the correct decay in the center of the medium. The
definition of the mean radius is of concern when we apply Eq.(44) to the idealized
infinite span geometries considered by TH. Next we will examine Eq.(44) with
various limits and tests. _

First of all, Eq.(44) reduces to the correct result of g = 1 everywhere within
any shape volume for small extinction and little radiation trapping, where T=1. It
is also true that it approaches the correct value of 1/2 as the position 7 approaches
any locally plane boundary of the volume for large extinction and trapping. The
formula correctly reduces to Eq.(39) at the center of a spherical medium.

The infinite slab and cylinder of TH afford some insight into the mean
radius, Rp. It would appear that we should choose R, to be the largest radius
sphere that fits within the active volume. Thus for the slab and cylinder with 7
positioned at the center, the two terms of Eq.(44) are equal, and Eq.(44) reduces
to:
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8siap(center)=T(L/2),

8cyl (center)=T(R). (5)

TH’s asymptotic formulae, Eqs.(13) and (14) for impact and Doppler broadening
would have given, in terms of the T function:

8ib,slab = 0.813T(L/2),
8ib,cyl = 1.115T(R),

8db,slab =0.938T(L/2),
8ab,cy1 =1.60 T(R).

(46)

This connection of g to the transmission function has been discussed previously in
the text following Eq.(14). If the fixed radius Ry had been chosen larger, the first,
fixed, term of Eq.(44) would be smaller and our approximations in Eq.(45) could
be up to a factor of one half smaller. Since this does not improve the agreement
with TH’s results for the mode decay rate in Eq.(46), we feel that chosing Ry as
the enclosed sphere’s radius is adequate for active medium shapes that are not
close to spherical.

We remind the reader that only a full numerical solution of the radiation
transport equation with spectral redistribution is capable of reproducing subtleties
in exotically shaped media.

It recently came to our attention that a series of articles by Irons13
discusses the construction of the “escape factor” for radiation trapping. These
articles are a good review of all of the work prior to 1978 on trapping, especially
for analytic approximations. We should point out that our Eq.(44), which is being
advanced for general geometries, appears to be unique among all approximations.
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3. Broadening of the He and Xe Lines in a Mixture

The shape of spectral lines is an extremely complex subject even without
the added complications of trapping of the radiation within an emitting volume,
which has been the subject of the preceding material in this report. Fortunately
we need only be concerned with some of the simpler issues14 in the emission from
mixtures of noble gas plasmas. Generally there are three mechanisms that
contribute to the observed width in frequency of an untrapped spectral line: the
natural width due to the finite lifetime of the emitting state, the Doppler width due
to the distribution in velocities of the emitting species, and the collisional width
due to interactions with other species. The natural width is generally unimportant
at the temperatures and pressures of interest in our systems. However the natural
line shape is Lorentzian, which decreases slowly in the wings of the profile, and
therefore possibly important in situations of strong trapping as we will discuss in
the following subsection. The trapping process strongly modifies the radiation
line shape that escapes from an optically thick medium, but we will not be
concerned with the emitted line profile. In the plasma flat panel display, the
absorption of the emitted light is by a phosphor which is not sensitive to the
profile.

3.1 Line Broadening in Trapped Emission

In the absence of trapping we do not have to be concerned with the shape
of the emission line: the decay rate is that of spontaneous emission and the profile
is broadened without affecting the rate. Trapping brings in the feature that the
effective decay rate is a function of the line shape.4,5 TH managed to evaluate
the asymptotic forms of the transmission function ( T(s) in Eq.(7) ) only for the
Doppler, Lorentzian, and quasi-static lines when they are pure. An examination of
the transmission function integral by the saddle point method shows that the

dominant contribution to the integral arises from frequencies in the neighborhood
of the unit optical depth (UOD ) point V,:

k(v )R, =1. (47)

In this determination of V,., one should think of R, as being the characteristic
radius Ry of the active volume as discussed in Section 2.4.3. It is interesting that a
simple approximation of the transmission integral by an expansion of the
exponentiated integrand through second power in frequency about the zero-
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slope point agrees to within a factor of two with the exact results in the
asymptotic region where the line center extinction is large. Thus there is little
question that the behavior of trapped radiation should be governed by the line
shape in the vicinity of the UOD point 6,10,11 via the transmission function of TH.

Any one of the three mechanisms (natural, Doppler, or collisional) could
dominate the line shape in the neighborhood of the UOD point. TH points out
that Doppler and collisional broadening both tend to have complete spectral
redistribution in the absorption-emission process, whereas natural broadening
does not possess complete redistribution. The question is how to cover all regions
of broadening with a meaningful approximation based on the TH theory. The
specific recommendation of Huennekens and Colbert3 ( their method 2 ) is to
evaluate the trapped decay rates of TH for Doppler and collisional mechanisms
(but not natural) and to choose the larger of the rates. They show that this
method is much preferable by comparison to experiment on Na emission. This also
avoids the use of the TH formulae for natural broadening where they were not
intended. We have adopted the Huennekens and Colbert procedure in lieu of
trying to calculate a composite line shape and to obtain a new approximation for
the T integral. '

The Doppler line profile is given in Eq.(9) and the Lorentzian line profile in
Eq.(11). The Doppler effect by itself always produces the Gaussian shape as given
in Eq.(9), but pressure or collisional broadening is not always of the Lorentzian
shape, even if it is the only active mechanism for broadening. The Lorentzian
profile arises from the so-called impact limit or phase interruption limit of collisional
broadening in which the collisions of the radiating species are basicly short in

duration and isolated in time. The condition for validity of the impact
approximation is frequently expressed as |@ — @,1<<1/ 7, where 7 is the

“duration” of the collision.14 The other extreme of this limit, @ — @,1>>1/ 7,
gives rise to an approximation called quasi-static broadening (or sometimes the
statistical model) and the line shape is no longer Lorentzian, being dependent on
the form of the interaction potential between the emitter and perturber. The
frequency profile of a line is not purely of any single form. The most common
compound form is the Voigf profile resulting from the combined effect of Doppler
and impact-limit broadening. The line center tends to appear Gaussian and the
wings Lorentzian due to the slower decay with frequency.

Let us summarize what we need from the atomic physics in order to
implement the calculation of the trapped decay rates from the plasma system. The
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basic quantity to be determined is the transmisson function, T(s). The simplest
approach is to assume that the active medium is close to a slab or a cylindrical
geometry. In this case T(s), with s set to L/2 or R, can either be used directly in the
TH formulae in Eq.(46), which are rewrites of Eqs.(13) and (14), to calculate the
decay rate of the fundamental spatial mode. The more complicated approach is to
use our newly derived space-dependent decay rate as formulated in Section 2.4.3
in Eq.(44), which requires T(s) as a function of s. Whichever method is used, we
must construct T(s) for the radiative transition, which requires examination of the
line shape in the neighborhood of the UOD point in order to determine the
important line broadening mechanism.

3.2 The 147 nm Transition of Xe in He, Xe Mixtures
Here we must immediately specialize to a particular system, and if we are

using the TH formulae, to a particular geometry. We choose a slab geometry with
the gas at a temperature of 300 K and a thickness of L =100 um. The Xe

wavelength, frequency (in Hz), and radian frequency (in 1/s) are:

A, =147.0nm,
Vvo=cli,, (48)
W, =27V, .

We will assume a foreign gas pressure broadening coefficient of 10 MHz/Torr for
He collisions with Xe, which is typical of this kind of transition and collision
species, but the value is not precisely known. From this, of course, we find ¥ p as
present in Eq.(11) due to the collisions with He. This is only valid in the impact
limit for frequencies nearer to line center and must be supplemented with the
quasi-static broadening theory if we require the line shape very far from line
center. The impact resonance broadening of excited Xe colliding with Xe is
treated using the data of Carrington, Stacey, and Cooper.15 This contributes to

the Lorentz profile just as the usual impact broadening mechanism. The
spontaneous decay rate, Ysp» is set to 0.3 per ns.16

The UOD (unit optical depth) frequencies, @, = 27 v, are examined by
plotting the roots of Eq.(47) with Ro = L for the extinctions as given in Eq.(9) for
Doppler and in Eq.(11) for impact broadening for a fixed Xe pressure as a function
of He pressure. The results at 1 Torr Xe are given in Fig. I and 10 Torr Xe in Fig. 2.
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We have also included the quasi-static result for a van der Waals’ interaction
calibrated using the Weisskopf modell4 and our He-Xe foreign gas broadening
coefficient of 10MHz/Torr. Because the TH theory does not treat a combination
of broadening mechanisms, we do not have the ability to combine the quasi-static
foreign broadening of He with Xe and the impact broadening of Xe on Xe. Thus
the quasi-static UOD line does not include the Xe-Xe broadening, which would
dominate at low He pressure. A rough estimate of the collision duration of He and
Xe gives 1/ 7, ~10'? /5. Thus the impact theory should be good up to about 1
kTorr of He. The first observation from Figs. 1 and 2 is that radiation trapping with
the Doppler line shape is dominated by much smaller frequencies ( ie, closer to line
center) than the pressure broadening cases. This means that we should use the
trapped decay rates based on the impact or quasi-static line shapes for total gas
pressures over a few Torr. The impact limit of the pressure broadening would
appear to be valid over nearly the complete range of interest for plasma flat panel
displays. At 10 Torr Xe, the information in Fig. 2 shows that the impact and quasi-
static UOD frequencies are comparable at about 500 Torr of He, but this is of
negligible effect up to 1000 Torr.
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Figure 1. Variation of the UOD (unit optical depth ) frequencies measured from

line center as a function of He pressure for 1 Torr of Xe. The characteristic length
is 100 pm in the evaluation of the optical depth. “impact” refers to the impact

limit of the total Xe plus He and Xe plus Xe broadening, while “quasi-static”
refers to the quasi-static line shape of the Xe plus He system.
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Figure 2. Variation of the UOD (unit optical depth ) frequencies measured from

line center as a function of He pressure for 10 Torr of Xe. The characteristic length
is 100 um in the evaluation of the optical depth. “impact” refers to the impact

limit of the total Xe plus He and Xe plus Xe broadening, while “quasi-static”
refers to the quasi-static line shape of the Xe plus He system.
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Examination of the UOD tells us which line profile is most important in the
region of frequency that escapes from the medium. An alternative procedure is to
examine the transmission function evaluated for the different broadening
mechanisms. In Figs. 3 and 4 we plot the escape factors for the different line
shapes evaluated according the the TH formulae for the Xe and He case under
study. According to the prescription of Huennekens and Colbert® we choose the
largest of the escape factors (largest decay rate) as the correct simulation of the
radiation trapping. It is to be noted that this is consistent with the UOD analysis in
Figs. 1 and 2. By this we mean that the dominance of the pressure broadening
over Doppler occurs for about the same pressure, and that the transition region
from impact to quasi-static occurs at nearly the same pressure of He. Of course this
is not fortuitous, as one can show that the analytic formulae must predict nearly
the same results.

The above theory can be compared to experimental observations for
trapping in pure Xe.l7 The experiments covered a pressure range of 0.002 to 10
Torr. Over this range in pressure, the trapped decay switches from Dopplér
controlled to impact collisional controlled. In the transition region between
Doppler and collisional, the natural line width would appear to be important, but
the redistribution effect does not allow the trapping to be evaluated simply by
adding the natural and collision widths within the Lorentzian line profile. The TH
theory for a cylindrical geometry with the Huennekens-Colbert modifications
agrees with the data to within 50% over the whole range. In fact it agrees better
with the experimental data than the Post theory with frequency redistribution.17
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Figure 3. The escape factors, g(L), as a function of He pressure for 1 Torr of Xe.
The characteristic length is 100 um in the evaluation of the optical depth.

“impact” refers to the impact limit of the total Xe plus He and Xe plus Xe
broadening, while “quasi-static” refers to the quasi-static line shape of the Xe plus
He system.
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Figure 4. The escape factors, g(L), as a function of He pressure for 10 Torr of Xe.
The characteristic length is 100 ym in the evaluation of the optical depth.

“impact” refers to the impact limit of the total Xe plus He and Xe plus Xe
broadening, while “quasi-static” refers to the quasi-static line shape of the Xe plus
He system.
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The numerical surveys presented in Figs. 1-4 indicate that the impact limit
broadening of Xe by the “foreign” gas He and the resonance self-broadening of
Xe by Xe combine to make the impact limit with its Lorentzian profile the only line
broadening mechanism of importance from 1 Torr to almost 1000 Torr of total
pressure in typical mixtures. For completeness, we give the necessary information
to evaluate the trapping theory in the impact limit of pressure broadening for the
147 nm Xe line for most relevant situations in the He-Xe mixture. First of all the
foreign (f) gas broadening must be specified; we have assumed a typical value for
the coefficient:

Awf=2mAVf =27 py, BHe Xe »

(49)
BHe,Xe = IOMHZ / Torr.

The self or resonance (r) broadening is evaluated from the data of Carrington,
Stacey, and Cooper.15 They give:

Aw, =27mn;2.4078,

2
B= € fosc 50
dre, dm,0,

where n; is the number density of the lower (ground) level of Xe, 2.407 is a

computed constant13 for the appropriate kind of collisional process, e is the
electron charge, m, is the electron mass, and f,;. =0.28 is the oscillator strength

of the 147nm Xe transition.16 The total pressure broadening is just:

Yp= Aa)f +Aw, , (51)

which can be substituted directly into Eq.(11) to evaluate the line center
extinction kp. kp is used in Eq. (13), or in Eqs.(12) and (46), to find the TH result
for trapping in a slab or cylinder.

The space dependent decay rate as written in Eq.(44) is easily evaluated
from the transmission function given in Eq.(12):
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Tiyp(s)=1, (kp s/ 2)exp(—kp s/2),

= min(l, 1/ nkps) , 62

where we introduced a bounding relation to enable the use of the asymptotic form
of the Bessel function over the whole range of the argument. This is necessary for
the space-dependent decay rate as one approaches a boundary surface of the
active medium.
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4. Discussion and Conclusion

This purpose of this report was to provide a tractable means of including
radiation trapping within a computer simulation of plasmas relevant to the plasma
flat panel display effort at Sandia National Labs and elsewhere. The immediate
practical means of doing this is the Holstein (TH) theory, which has some
limitations as we mentioned in the Introduction. The problem of lineshapes does
not seem foreboding once we find that the impact-limit pressure broadening
applies to nearly all of the parametric range of interest in these plasmas. Outside
that range we would appeal to the Huennekens and Colbert3 idea to combine
Doppler and pressure broadening. The second and third limitations of the TH
theory to the fundamental radiating spatial mode of a slab or cylinder have been
addressed by a new approximation for obtaining a position-dependent decay rate
for the trapped radiating level in the system. This approximation has not been
implemented or tested numerically, but the analytic examinations indicate that it is
close to the TH results when it should be. The diffusion approximation, which has
numerical advantages over the use of the transport integrodifferential equation,
does not appear to be useful by our analysis. As mentioned at the end of Section
2.2, an empirical definition of the diffusion constant to force it to agree with the
TH decay rate may be the only way to make the diffusion approximation useful.
This concept would need testing before implementation.

We can summarize the contents of this report by outlining the necessary
programmatic steps for its complete implementation. The first step is to decide
whether the TH theory with its assumed geometry is to be used, or whether the
general space-dependent decay rate of Eq.(44) is to be used. One therefore
begins with Eqgs.(13) or (14), or Eq.(44), which are logically connected to T(s) in
Eq.(52), which depends on kp in Eq.(11), which needs ¥y p from Eq.(51), which is a
function of pressure and/or density as given in Eq.(49) and (50).

As one final point, we mention that the radiation escaping from the active
plasma to the surface of the phosphor must be computed from the transmission
function, 7{(s). Thus one must have a representation of 7(s) valid throughout the
medium. The total radiation photon density £ within the medium is evaluated from
Eq.(1) by integrating over the spectral distribution of the emission line of interest.
Although the emission is spectrally distorted, the absorption of the radiation by a
phosphor will not be sensitive to the profile. The result is:
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which is to be evaluated when needed at the surface position of the phosphor.
Note that this volume integral would have to be done to evaluate the radiation
density whether one implements the TH decay rate or the space-dependent decay
rate within the plasma simulation.
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